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SPECTRAL GEOMETRY ON CERTAIN ALMOST HERMITIAN
MANIFOLDS

LEW FRIEDLAND

ABSTRACT. On compact Riemannian and Kahler manifolds the spectra of the
real and complex Laplacians determine the geometry of the manifolds to a con-
siderable extent, though not completely, as isospectral manifolds need not to be
isometric. The literature on the geometric consequences of isospectrallity is exten-
sive (e.g., [1]-[3], [6]-[11]). In [3] we considered such consequences for the classes
of almost Hermitian Einstein manifolds satisfying p = p*, as well as inequality
relations between p and p*, where p is the scalar curvature and p* is the * - scalar
curvature; these included the almost and nearly Kahler Einstein manifolds. In this
paper we consider the implications of isospectrality for the class of almost Her-
mitian manifolds satisfying R. = R.., where R, = (R;j) is the Ricci curvature
tensor and R.. = (R;j+) is the Ricci * - tensor, and prove that complex projective
space (CP", go, Jo), where go is the Fubini — Study metric, is characterized by the
spectrum in this class.

1. Preliminaries. Let (M,g) be a Riemannian manifold of real dimension
m = 2n > 2 with metric ¢ = (gi;). If R = (Raijk) is the Riemann curvature tensor,
R. = (Rnk) = y‘th;,-k the Ricci curvature tensor and p = g** Ry, the scalar curvature,
then the Einstein tensor E = (E;;) is given by

— 4
(ll) E.’j = R,J - ;g.,

where (M, g) is Einstein if £ = 0.

If (M,g) is a compact connected C manifold and A = —(dé + éd) is the
Laplace operator on p-forms, 0 < p < 2n, (0-forms corresponding to differentiable
functions on M) with respect to the metric g, then the spectrum of the Laplacian are
the eigenvalues of A,

(1.2) Spec’(M,g) = (Aipl0 2 Ayp 2 Agp > -0 2 Mgy > -+ | —00}

where each eigenvalue is repeated as often as its multiplicity. Further Spec?~?(M,g) =
Spec?(M, g) when M is orientable.
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Relevant to the study of the spectrum is the Minakshisundaram-Pleijel-Gaffney
asymptotic formula

(1.3) E exp(/\k.,t) t :0 0 (Z:tT .z:; a‘-"t"

k=0

where the first three coefficients are given by [9].

(1.4) Gop = (2:) /M dM = (2:)vol(M),
-4(2)- (37 o

(1.6) azp = /M[q(?n,p)p’ + c2(2n, p)| Re|? + c3(2n, p)| RI*)dM;
where

- 43T
(D)) G
e atnn=15(5) -5 (520) +3(572):

2. Almost Hermitian manifolds and the Bochner curvature ten-
sor. Let (M,g,J) be an almost Hermitian of real dimension m = 2n > 2 with al-

most complex structure J = (F/) and almost Hermitian metric ¢ = (g;;); that is,
g(JX,JY)=g(X,Y) for all X,Y in the tangent space T,(M). In dimension 2n = 2,

(M, g) is Kahler Einstein and has holomorphic sectional curvature » = g
Define the Bochner curvature tensor B = (Bhijx) by

Bhijk = RMJ"‘ n+ 4(Rughk - Rtkgh, + Ru,g., - R;.Jg.k 4+ F.’ Rrh

(2.1) ~FixF} Rej + FaxF7 Ryj — FojFY Rk — 2Fju F} Ryi — 2F0i F] Re)

P

+m(9.‘,gu — 9ikgh; + FijFax — Fix Faj — 2Fy Fje).
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Lemma 2.1. (see e.g.,[4]) If (M, g) is a Kahler manifold of nonzero constant
holomorphic sectional curvature x, then the Riemann curvature tensor, Ricci curvature
tensor and scalar curvature are given, respectively by

>
(2.2) Riije = 7(9nkgii — 9ni9ik + FhiFij = Faj Fix = 2FaiFe),
n+1
(2.3) Rij = —5—*ijs
(2.4) p=n(n+1)x

Hence, (M, g) is Einstein and B = 0.

By Schur’s theorem, a Kahler manifold of dimension 2n > 4 with constant
holomorphic sectional curvature x is of constant holomorphic curvature; that is, x is a
global constant on the manifold.

Lemma 2.2. [4] An almost Hermitian manifold (M, g) of dimension 2n > 4
with curvature tensor given by (2.2) is Kahler and has constant holomorphic sectional

curvature »x = Consequently we have

n(n+1)

Corollary 2.3. If (M,g) is an almost Hermitian Einstein manifold of di-
mension 2n > 4 with B = 0 and p # 0, then the conclusion of Lemma 2.2 follows.

Lemma 2.4. [4] If{M,g) is a Kahler manifold then

1
(2.5) Ri; = Rij» = F‘"’R"erqj = —§qup."Rku‘n
(2.6) p=p"=FMF" Ry = _%F*vrf'k,,,j,,
(2.7) Rij = F}F} Ru.

The last equality in (2.5), as in (2.6), is by way of the first Bianchi identity.

Lemma 2.5. If (M,g) is a Hermitian manifold satisfying (2.5), then (2.6)
and (2.7) follow.

Proof. Equation (2.6) follows on contracting (2.5) with ¢*’. To prove (2.7),
multiply (2.5) by FiF}, then Ri; FyFi = FiFi F*F] Ripg; = —FI F*¥ Ripq; =
F!F* Ropi; = FIF* Ryjop = Rps .
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Lemma 2.6. If(M,g) is an almost Hermitian manifold with (2.5), then the
square length of the Bochner tensor is given by

2

1_ P8 Ry — 2
(2.8) |B| = IRl n+2IR¢| +(n+l)(n+2)p

Proof. The equation follows from a rather lenghty calculation of | Bj;;x|? using
(2.1), (2.5), (2.6), (2.7).

3. Spectral geometry on almost Hermitian manifolds satisfying R. =
R...

We shall assume in 3 that (M, g,J) and (M’,¢’,J’) are compact almost Hermi-
tian manifolds satisfying R;; = R;j+ in the respective metrics g and g’.

The main results in this section are the following:

Theorem 3.1. a) If Spec?(M,g) =Spec?(M’,g’) for p = 0,1 or 2, then in
dimension 2n = 2, (M, g) is of constant holomorphic curvature x if and only if (M',¢’)
is.

b) In dimension 2n > 4, if Spec®(M,g,J) =Spec®(M',g’), then (M,g) is a
Kahler manifold of constant holomorphic sectional curvature x if and only if (M',g’)
is, in the following cases: p=0and4<2n < 10;p=1and 16 <2n < 102; p =2 and
2n=6,8,140r18<2n < 188; p=0and 1 and 2n > 4; p=0 and 2 and 2n # 12.

Corollary 3.2. If Spec?(M,g,J) =Spec?(CP™, go,Jo), then (M,g,J) is
Kahler and holomorphically isotermic to (CP™, go,Jo) in the following cases: p = 0
and2<2n<10;p=1and2n =2 or 16 < 2n < 102; p = 2 and 2n = 2,6,8,14
or 18 < 2n < 188; p = 0 and 1 and 2n > 2, so that (CP",go,J)) is characterized by
the spectrum in every dimension in the class of almost Hermitian manifolds satisfying
R.= Re; p=0 and 2 and 2n # 12.

Proof of Theorem 3.1. Letting p = 0 in (1.4)-(1.9) gives:

(3.1) agp = / dM = vol(M),
M

1
(3.2) 10 = —/ de,

6 Jm

1
(3.3) 30 = 7— / [50% - 2|R|* + 2| R[*}d M.
360 Jar

a) In dimension 2n = 2, |R|? = p? and since g is an Einstein metric then by (1.1), |R|* =
2

% and azo = p*dM. I, say, (M, g,J) has constant holomorphic curvature x,

L3
60 /s
then since ao,0 = @y, 61,0 = @} o and az9 = @}y, it follows that vol(M) =vol(M') and

therefore, / p'dM’' = 23vol(M') and / p?dM' = 45@vol(M'). We  then  have
M M
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2
equality in the Schwarz inequality ( / p'dM') < ( / pndM') ( / dM'), 50
Ml ’ ’

that p’ is constant and p’ = p.

The proofs in the remaining cases are similar upon taking p = 1 and 2, respec-
tively, in (1.4)—(1.9). For p = 2 the results follows, as well, as a consequence of the case
p = 0 since Spec®(M, g) =Spec’(M’,¢’) by duality.

b) In dimension 4 < 2n < 10, substituting (2.8) and (1.1) in (3.3) gives

5n2 +4n+3 , -2n+12 "
(3.4) /M[ n(n+1) pt n+2 |E[* + 2| BI]dM
’ 5n?4+4n+3 5, —-2n+412

P74+ |E'|? + 2| B'|*]dM’,

- M'[ n(n+1) n+2

since az,0 = @4, with the coefficient of |E|? positive.
If, say (M, g, J) is Kahler with constant holomorphic sectional curvature », then
by Lemma 2.1 (M, g) is Einstein and B = 0. Since p is constant, then agp = agp, @10 =

2
a} o and the Schwarz inequality imply ( / p”dM') ( / dM') > ( / p'dM') =
Ml ' '
2
( / de) = p?[vol(M)]* = pPvol(M")vol(M)=vol(M’) / p*dM. Then by (3.4)
M M

|B’|? = 0, and |E’|? = 0, s0 / p?dM’' = | p*dM, implying equality in the Schwarz
Ml

M
inequality. Thus, p’ is constant and p’ = p. Hence, by Corollary 2.3, (M',g¢',J") is
Kihler of constant holomorphic sectional curvature »' = x.
Letting p = 1 in (1.4)—(1.9) gives

(3.5) ag) = 2n/ dM = 2nvol(M),
M
(36) a ) = - 3/ de,
3 Im
(3.7)  am= TzlaT) / ((5n — 30)6* + (~2n + 90)| Rel? + (2n — 15)| R*] dM.
M

In dimension 16 < 2n < 102, substituting (2.8) and (1.1) in (3.7) gives
/ [5n3 —26n?+18n+15 5  —2n? +102n + 60
M

|E®

5n3 — 26n? + 18n 4 15
3.8 - NdM = n
(3.8) +(2n - 15)|B|*]dM /M,[ "+ 1)

o2
. * ‘f";" +60) 512 4 (2n - 15)| B?)dM’

n(n+1) ’ n+2
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since az; = a},, with coefficients of p?, | E|? and | B|? positive.
Letting p = 2 in (1.4)—1.9) gives

(3.9) a0z = (20? — n) / dM = (2n? — n)vol( M),
M
2 _
- w2 12n+ 12 /Mde,

%3 =365 / [(10n? — 125n + 300)p? + (—4n? + 362n — 1080)| R.|*
+(4n? — 62n + 240)|R|?]d M.

(3.11)

In dimension 2n = 6,8,14 or 18 < 2n < 188, substituting (2.8) and (1.1) in
(3.11) gives

/ [101;‘—117n3+362n7—183n-60 3+—4n3+386n2-852n—240|B|2
n(n+1) P n+2
10n*—117n%+362n% - 183n—60
3.12 4n? — 62n + 240)|B|? dM:/ 2
(312)  H4n n + 240)|B|?] M,[ "t 1) P

—4n +386n%—852n — 240
n+2

|E’|? 4 (4n® - 62n+240)| B'|*| dM";

since az 3 = a , with the coefficients of p?, | E|* and | B|? positive.
If (M,g,J) is a Kahler with constant holomorplnc sectional curvature x, then
the implications of B = 0, E = 0, p constant, ag, = ag, and a;, = a} , for p=1 and

2, and the Schwarz inequality are similar to the case p = 0. e

For the case p = 0 and 1 in dimension 2n > 4, multiplying (3.4) by
and subtracting the resulting equation from (3.8) give

(3.13) /["*5 p* +10|E|*]dM = / == RS P +10|E')*)dM’.

If (M, g,J) is Kahler of constant holomorphic sectional curvature x, then |B|? =
|E|?* = 0, and since / pdM > / p*dM, then |E’'|* = 0, so that / p%dM =
M’ M M’
p*dM and by (3.4), |B’)? = 0. Then by Lemma 2.2, (M’,¢’,J’) is Kihler and of
M
constant holomorphic sectional curvature » = .

For the case p = 0 and 2, we observe that from p = 0 and 2 above, the
exceptional dimensions are 2n = 12,16 and n > 190. In dimension 2n # 12, in a
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similar way as in the case for p = 0 and 1, we multiply (3.4), by 2r? — 31n + 120 and
subtract the resulting equation from (3.12) and the result follows.

Proof of Corollary 3.2. Since (CP™, go, Jo) is the only Kihler manifold with
a metric of positive constant holomorphic curvature x, then by Theorem 3.1, (M, g,J)
is Kahler with constant holomorphic curvature ». Hence, (M,g,J) and (CP", go, Jo)
are holomorphically isometric.
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