Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

SE DICA — Enlglnc;e

thematicae publicationes
20 (1994) 219-239

DOCUMENT SYNTHESIS BASED ON AN ANALOGY
BETWEEN DOCUMENT DESCRIPTIONS AND HIGH LEVEL
LANGUAGE PROGRAMS*

PETER H. BARNEV, VESSELIN N. IGRACHEV, VLADIMIR S. SHKOURTOV

ABSTRACT. The present paper deals with an approach to document synthesis
based on combining text fragments prepared in advance. The fragments are ar-
ranged according to a scheme (skeleton) which defines the possible combinations.
Skeletons resemble algorithm flowcharts. The characteristic features of the docu-
ments processed through this approach are defined. Tools of describing the generic
logical structure of such documents are proposed. The problems related to the
parametrization of fragments are discussed in detail. The general structure of a
system named Syd2 based on the proposed approach is described as well. Some
data about the Syd2 efficiency are given too.

1. Introduction. It is well known that functionally close control structures are
used in conventional algorithmic languages. At first control structures were designed
so as to describe different numeric calculations. The same control structures were suc-
cessfully used later for describing a number of other routine activities, for example,
sequencing of computer jobs, manufacturing technologies for CAM systems, drawing
procedures for CAD systems, etc. Special-purpose languages were created (e.g. ad-
vanced job control languages such as that of the standard UNIX shell [Bour78]). Our
investigations have shown that control structures can be used for describing the pro-
cess of synthesis of documents created through combining preliminarily prepared text
fragments.

An approach to automating office clerks’ routine activities related to docu-
ment synthesis is proposed in this paper. The documents operated with are called
t-documents (from typed documents). T-documents counter some constraints given in
Section 1. The basic notions related to t-documents are defined in Section 2. The prob-
lem of specifying the logical structure of t-documents is discussed in Section 2 as well.

*The study described in the present paper has been supported by the Bulgarian Academy of
Sciences (project No 1001003)

220 Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

A method for the parametrization of t-documents is proposed and studied in Section
3. The general structure of a programming system intended for t-document processin
is outlined in Section 4. g

A number of authors believe that clerks’ everyday work in most offices consists
of creating documents of similar structure and that activity takes about 19-29% of thei
working time [Kell85]). Our study on the work in some Bulgarian offices confirmed thj:
statement.

1 The ;nost frequentlyFused documents are blank forms which are filled in by
employees when necessary. Forms are a special kind of
a.ctzri:ed N y peci documents and they are char-
— a standard part(s) of the text printed in advance;
— a fixed logical structure;
- a uniform layout.
comem:suaﬂy forms are provided for frequently created documents of relatively simple
Forms aim at:

. ” a3 X
e saving employees’ time due to reducing the amount of information filled in by

~ limiting the probability of making errors in the process of document .

~ facilitating the non-automated screening of documents (an empl Cl‘ean(?n;
read particular fields). ployee can easily

The form-oriented systems are widespread
in office automation. ’ b and well known software products

Our study is focused on documents which thou .
have no preliminary designed forms. The analysis of f:czf::c:::n:: :l?ice Practi?e
most cases they are particular instances of a document class (in terms of ODOX. that in
(1S086]) which differ in their logical structure. The layout of these document !‘tmdud
uniform. They merely look like standard free text formatted into linegen s is rather
and pages. Designing forms for such documents is either inconvenient'(p&rlsraphs
are rarely filled in, the contents of fields slightly varies in instances) most ﬁ(.!ldl
(for example, often a free text of unpredictable length should be ins " lm.p“"ble
documents). Examples of such classes of documents are: erted into the

- minut: of sessions of scientific, administrative, etc. councils:

— notarial acts (muniments), se !
el ractioh (), sentences and other documents from judicial and

- business letters referring to standard occasions.

Main properties of these documents are:

- They are routinely created by a specialist defini
n
rules of document constructing by these text fragmem,.lng a set of text fragments and

Document Synthesis. . . 221

- Documents consist of natural language sentences. The layout structure defines
a standard free text (formatted into lines, paragraphs and pages);

— Some of the documents have similar generic logical structure in the sense that
the text fragments they are built of appear in a partially predefined order.

Documents satisfying the above mentioned constraints are called t-documents.
Like forms, t-documents can also be well standardized, but in contrast to forms they
deal with deviations due to the generic logical structure of documents.

Our study has shown that 80% of the documents used in some Bulgarian of-
fices are forms, about 10% are t-documents and the remaining 10% are impossible-to-
standardize documents. These percentages may vary considerably in different offices.

2. T-document Model. The investigations described in the present paper are
focused on the problem of modelling the process of t-document creation. We decided
to deal with t-documents because forms have been studied for a decade [Tsic82] and a
number of commercial form-oriented office systems are available now. Even specialized
form processors (e.g. Form Base of Xerox) have already been developed. But on the
other hand there exist documents which cannot be standardized. Their individual
structure makes them quite unappropriate for automated synthesis.

Next in the text for brevity we shall use the word document(s) instead of t-
document(s). The investigations treated in this paper are based on text documents only.
We believe that our approach could be extended to multimedia documents [Tsic85] as
well. However, corresponding study has not been initiated because our observations
have shown that no-text documents are not intensively used in Bulgarian offices.

2.1. T-document Structure. The main property of t-documents is that they
can be divided into document classes. Each class is based on the set of text fragments
and it comprises documents consisting of elements of this set (precise definitions will
be built in the text iteratively). So, documents with one and the same purpose (reason
for appearance) and similar contents form a class. The notion of the document class
introduced corresponds to that of ODA standard.

Documents belonging to a given class are referred to as instances of that class.
At that early stage of the exposition we can only say that the instances of a class can
vary in the number and ordering of their text fragments.

The process of selecting fragments from real documents of one and the same
class is illustrated in Fig. 1*

The requirement that the texts of the fragments should be identical every time
they are used in a document seems to be quite restrictive and unnatural. That is why

*The lack of original documents in English hampered us in finding examples for the present paper.
The direct translation of Bulgarian documents is inadequate for the peculiarities of Bulgarian as a
language. Therefore we had to use some fabricated examples in order to illustrate our method. The
example is taken from everyday life of researchers. It could hardly be accepted as a typical office
document but we have chosen it for its comprehensibility.

222

23.02.1990

Poland

Warsaw

IPI - PAS

Prof. Miroslav Dombrovsky

Dear Prof. Dombrovsky,

Thank you for your kind invitation. It is a
big honour for me to participate in the con-
ference you organize. It would be a plea
sure for me to meet my in IPI-PAS
again and to learn more about the achieve-
ments and problems of informatics in Poland.

After | have been nc?unxi.ed with the to
ics of your conference [think that a sui
subject of my lecture might be "Methods for
Document Synthesis”. | would ask you to in-
form me how you find the proposed subject
till April 6 1990 in order to have enough time
to prepare the lecture.

I am looking forward to our meeting.
Sincerely yours.

Recipient
address

Excuse &
replacement

Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

01.03.1990

%SSR
Gorsystemotechnica institute
Prof. A. Stogniy

Dear Prof. Stognij,

. I would like to thank you for your kind
invitation and to inform you that unfortu-

nudylmnotinnponitiontoputi?;rue
en-

Offered
lecture

Info about
substitute

in the conference organize because
gagements alre. taken. In our institute
several colleagues of mine work in

you are interested in. | would like to recom-
mend some of them.

Vasil Slavchev was born in 1949. In 1977
received his Doctor’s degree in the Uni-
versity of Sofia. Dr. Slavchev has worked in
thelgI-CNRinPiu- Italy. He has been
working with us since 1977. The main field

of his interest is fuzzy sets.

Peter Ivanov was {orn in 1948. In 1981
he received his Doctor's degree in the Uni-
versity of Sofia. Dr. Ivanov has worked in
the Faculty of Mathematics and Informatics
at the University of Sofia. He has been work-
ing with us since 1976. The main field of his
interest is object-oriented systems.

: My colleagues Dr. Shvchcvdmd Dr.
vanov have not engagement during the
time in quo.tia\.‘né‘dl :fthe;n has agreed
to to conference. ou con-
tact them at the same address.

l-ouldlihcoexpmlmyr;rvtqnhbut
I hope another opportunity will arise soon to
meet you and your colleagues.

Sincerely yours.

The fragments used in these two instances of one and the same class are defined. Letters
intended to invite participants in a certain scientific event are related to that class. Some of
the fragments can be used in these two instances, others - only in one of them. There exist
some fragments which might be inserted several times in one and the same instance.

Figure 1. Segmentation of Two Document Class Instances (Letters) into Fragments

Document Synthesis. . . 223

partitions may be marked in the text of each fragment which will be formed in the
process of instance synthesis. Partitions of that type will be referred to as fragment
parameters. An example of a fragment and fragment parameters are given in Fig. 2.

<<Info about substitute>>

. was born in In Prof. Ivan Penev 1949
. he received his ... degree 1986 Doctor’s
in the He has worked in University of Moscow
. He has been working with University of Sofia
us since He is interes- 1979
ted in office automation

Each fragment has a unique name. The locations where parameter values should be inserted
are marked by dots. Sample parameter values are given on the right hand side of the fragment.
Substitutes of theirs have to be inserted by replacing the corresponding dots so as to obtain
the whole text

Figure 2. An Example of a Fragment with Fragment Parameters

Now we can define more precisely instances of a given class as documents that
vary in number, ordering and parameter values of their fragments.

The fragment text consists of a constant part (about 61% of the number of
characters at the average) and a variable part, i.e. parameters (about 39 %). These
data have been found out due to studying about 300 instances of 15 document classes.
In other words, the use of the fragment parameters approach can result in saving a
lot of time for preparing a document in comparison to implementing a general purpose
text editor. As the reader will be convinced later the time saved additionally increases
with the use of a mechanism for naming fragment parameters (cf. 4.1).

2.2. Skeletons. As mentioned the instances of a document class are formed by
one and the same elements - fragments. Each fragment can be inserted into an instance
as many times as necessary (if at all inserted). A fragment is inserted into the text
of an instance according to a certain scheme. The scheme describes a set of modes of
combining fragments. Each mode is characterized by a certain degree of freedom which
varies from strictly fixed forms to free hypertext systems. We refer to the scheme that
determines the way of combining fragments as a skeleton. The use of skeletons requires
fragments to be arranged in a way similar to that of actions in flowcharts (Fig. 3).
Skeletons provide an intermediate choice between forms and hypertext systems, but
are more close to forms. Our experience gained has shown us that such an approach
is quite useful for processing t-documents that can strictly be standardized. The main
advantages of skeletons are:

224 Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

— users are supported at each step and thus a number of probable errors can

be avoided;

— fragment selection manipulations can be reduced;

— instances can be standardized.

to replace me with | to confirm the
my colleague | invitation
N

Q
to decline
the invitation

Kind
E’E“" refusal
O ffered

lecture

eplacement

not

yes

Info about

substitute yes
| S— Appendices

onclusion Cl

|

bonclunon R] Eclunon ﬂ
L

Enclonuu

February 23 1990
Sofia

Poland

Warsaw

IPI - PAS

Prof. Miroslav Dombrovsky

Dear Prof. Dombrovsky,

I would like to thank you for your kind in-
vitation and to inform you that I will par-
ticipate in the conference you organize with
a great pleasure. It will be a big honour for
me to meet my colleagues in IPI - PAS again
and to learn more about the achievements
and problems of informatics in Poland.

After I have been acquainted with the top-
ics your conference I think that a suitable
subject my lecture might be ”Methods for
Document Synthesis”. I would ask you to
inform me how you find the proposed sub-
Ject till April 6 1990 in order to have enough
time to prepare the lecture.

I am looking forward to our meeting.

Sincerely yours.

An instance of a letter (confirming the participation of a lecturer in a conference) is formed by
using a document class skeleton according to which the fragments needed are inserted where
necessary. The locations where a selection is made are denoted: by ¢ — a case type selection
and by w - a while type selection. The traversed path, corresponds to the relevant instance

marked by bold lines.

Figure 3. An Example of a Document Skeleton and a Document Class Instance

On the basis of observations on the documents of the same class the following
variants for combining fragments have been chosen:
- obligatory insertion of a fragment or a fragment sequence in all the instances

of a given class;

Document Synthesis. . . 225

— selection of a fragment sequence out of several predefined ones and inserting
it in a certain instance;

— insertion of fragment sequences for a non-predefined number of multiple in-
sertions;

- specification of a fragment text through the peculiarities of each of its in-
stances;

— iterative insertion of a fragment sequence for a number of iterations given in
advance or calculated in the process of synthesis;

- selection of one of several predefined sequences of fragments with or without
a capability of multiple selection.

Initially [BaNg86] the first four options have been used. They sufficed to de-
scribe the sequence logic of each t-document. However, processing turned out to be
quite clumsy. That is why the last two options were added later [BalS89).

A graphical example of a skeleton is given in Fig. 3. The well-known notations
of flowcharts are used. This skeleton corresponds to the document class considered in
Fig. 1.

Each skeleton can be presented through a directed graph which resembles the
well-known flowcharts used for describing algorithms. Each fragment corresponds to a
graph node. Each graph has an initial node and one or more terminal nodes. Each path
from the initial node to a terminal one defines a valid (permissible) way of combining
fragments.

Two sequences of fragments are given in Fig. 4 so as to illustrate some valid
ways of combining fragments.

<<Header>> <<Header>>
<<Recipient address>> <<Recipient address>>
<<Salutation>> <<Salutation>>
<<Excuse>> <<Kind refusal>>
<<Replacement>> <<Conclusion D>>
<<Info about substitute>> <<Enclosure>>

<<Info about substitute>>
<<Conclusion R>>
<<Enclosure>>

Figure 4. Two Valid Fragment Combinations

In short we can make the more formal conclusion that each document class can
be defined by an ordered couple <set of fragments, skeleton>. In addition we can say
that through the class definition we specify the generic logical structure of the class in
terms of the ODA standard. Some aspects of instance formatting (e.g. date, address
and salutation, Fig. 3) have been specified in the texts of the corresponding fragments.

226 Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

So, the generic layout structure is also specified by using the set of fragments. This
way of specifying is consistent with the simplified layout structure of t-documents.

The common syntax orientation makes our approach similar to the hierarchical
document model [Rabi85]. Our approach does not claim to be universal, but provides
specific means of describing the generic logical structure of t-documents.

2.3. A Skeleton Description Language. A specialized skeleton descrip-
tion language can be created on the basis of the above mentioned adopted variants of
combining fragments. A language, named EMO was created and implemented in the
process of the experiments. The syntax of that language is given below*:

(1) Skeleton ::= Sequence

(2) Sequence ::= Directive | Sequence Directive

(3) Directive ::= Prompt | Directive_REPEAT | Directive_SELECT
Directive_REPSEL | Directive_CYCLE

(4) Prompt ::= <Text> | <<Fragment_name>>

(5) Directive_REPEAT ::= REPEAT (Alternative)

(6) Alternative ::= Prompt | Alternative Directive

(7) Directive_SELECT ::= SELECT (Alternatives)

(8) Alternatives ;:= Alternative | Alternatives ; Alternative
(9) Directive_REPSEL ::= REPSEL (Alternatives)

(10) Directive_CYCLE CYCLE (Enumerated_type_name ; Sequence)

The number of alternatives in rule (7) should be at least two. Also only one
“empty” alternative at the most is permitted. An “empty” alternative is an alternative
which results in no other action except for leaving the current Directive_SELECT.

The description of the sample skeleton through our specialized language is
shown in Fig. 5.

Since a skeleton is prepared before creating any instance of a relevant class, it is
convenient to reduce the skeleton description by compiling it to a simple intermediate
language. The intermediate language resembles low level programming languages. It
consists of a small set of instructions suitable for a compact description of skeletons.
In the process of compilation the text of fragments is processed and a fragment table
is obtained as a result. It consists of some fragment characteristics (name, length,
code, etc.). In the process of synthesis the skeleton description in the intermediate
language is interpreted by making use of the fragment table. The synthesis process
is considerably speeded up due to the simplicity of the intermediate language. In the
process of synthesis a path is formed (traversed) by connecting the initial node and a
terminal one as shown in the graph depicted in Fig. 3. If a certain node is a fragment,
then the relevant text is inserted into the instance. Fragment parameters are set up
too (this process is explained in detail in Section 3).

*The angle bru‘kri:;re used here as terminal symbols.

Document Synthesis. . . 227

<<Header>>
<<Address>>
<<Salutation>>
SELECT (
<to confirm the invitation>
<<Confirmation>>
<<0ffered lecture>>
SELECT (
<without any papers applied>
<with some papers applied>
<<Appendices>>
)
<<Conclusion C>>
<to replace me with my colleagues>
<<Excuse>>
<<Replacement>>
REPEAT (
<<Info about substitute>>
)
<<Conclusion R>>
<to refuse the invitation>
<<Kind_refusal>>
<<Conclusion D>>
)

<<Enclosure>>
Figure 5. A Skeleton written in EMO Language

2.4. Analogy Between T-document Descriptions and Programs. One
can easily notice the close resemblance between the above discussed variants of com-
bining the considered fragments and the control structures of a High-Level Algorithmic
Language (HLAL), or more general, between a skeleton description in EMO and a
program in a HLAL. As seen from Table 1, this analogy is deep and comprehensive.

If we compare the two sides we would notice that the concept of procedure,
being of great importance in a HLAL, is missing on the right hand side of Table 1. At
first one might take the concept of fragment as that of procedure. However a deeper
insight into the matter shows that this is not the case since fragments have the same
rank in contrast to procedures in a HLAL.

228 Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

t-documents programs
instance synthesis program execution

instance (sequence of frag- | the result of a program exe-

ments along a given branch | cution (understood as the se-

of the skeleton) quence of actions along a gi-

ven branch of the algorithm
built in the program)

skeleton flowchart of the program
fragment one or group of unconditional
statements
parameter variable
functional dependency expression

between parameters®

synthesizing directive control statement
directive_SELECT case statement
directive_REPEAT while statement
directive_CYCLE for statement

Table 1. Correspondence of Notions of t-documents and Programs

The first purpose of the HLAL procedure technique is to enable users to de-
compose complex algorithms into simpler ones. Since the documents dealt with are not
very complex, to provide such tools seems to be useless.

The second purpose of the HLAL procedure technique is to enable users to
distinguish problems met often in different programs. Our experience gained has shown
that some items of a certain document class often become items of another. We believe
that the development of our approach in this aspect is interesting and promising.

Our study has been based on the analogy expressed in Table 1. As commented
above this analogy may be a a further source of ideas of enriching our approach with
other well examined techniques from the field of programming automation.

*This notation will be introduced later (cf. 3.3.)

Document Synthesis. .. 229

2.5. Document Filing. The specific character of our approach allows the
instances of a document class to be stored in a compact way. For that purpose it
is sufficient to store information only about the order of sequencing the participating
fragments and the values of parameters received. We call all this information track of
the instance. With respect to filing we distinguish short-term and long-term instances.
The tracks of short-term instances are stored in the work area which is shared by all the
document classes. Long-term instances are those which have to be accessed afterwards.
It is the user who explicitly transfers instances from the work area to the archive. The
archive is divided into subarchives. Each subarchive comprises the instances of a given
class. The organization of the archive and the retrieval techniques will not be discussed
in the present paper in detail.

3. Fragment parameters. Parameters provide information typical of an in-
stance. Each fragment can be tuned through them and inserted into a certain instance.
Each parameter can be characterized by the following optional attributes:

- parameter name;

- mode of parameter value setting;

- parameter type;

- parameter prompt.

3.1 Naming parameters. The aim of naming parameters is to ensure the
duplication of an entered parameter value at another location within a given instance.
Our practice has shown that this happens quite often. For this reason it is enough such
a parameter to be named and the parameter value saved. Obviously only parameters
which will be cited afterwards should be named. The value of a named parameter has
to be entered only when met for a first time. In each next coming across with this
parameter name the already known parameter value is to be used.

<<Info about substitute>>*

<name> was born in .. . In .. he received
his .. degree in the .. . <name> has worked in
. He has been working with us since .. . The

main fields of his interests are ..

The name of the substitute is denoted by <name>. It has to be entered only when first found.
Its second appearance will result in copying the value entered at first.

Figure 6. An Example of Named Parameter

*Different aspects of the parametrization of fragments are illustrated by using one and the same
fragment. In order to emphasize a certain aspect of parametrization, fragment texts have been slightly
changed.

230 Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

3.2 Parameter Value Setting. Three kinds of parameters can be distin-
guished with respect to their value setting:

- input parameters;

— parameters whose values is a combination of already known parameter values;

~ global parameters whose value can be obtained by synthesizing program en-
vironment data (e.g. date, clock, etc.).

If we go back to the analogy made between t-documents and programs, we
can notice that the enumerated three kinds of parameters correspond to the different
ways of variable setting in a HLAL, namely: through an input statement, through an
assignment statement and through the operating system.

3.3. Functional Dependencies of Parameters. A functional-dependent pa-
rameter is called a parameter whose value is calculated through the value(s) of other
parameter(s) — argument(s). The relationship between a functional-dependent parame-
ter and its arguments will be referred to as functional dependency (FD). The mechanism
of naming parameters plays an important role in specifying FD. All parameters which
are arguments in an FD have to be named. If a functional-dependent parameter has to
be used later, it must be named too.

A FD can be defined for parameters within a certain fragment and in different
fragments.

Some of the FD arguments might be results of the same or another FD. Nesting
of FDs is permitted. FDs can be assumed to be relevant to HLAL expressions. The
difference is that the only possible operation is the superposition of FDs. Our experience
has shown that the depth of FDs nesting is not great.

Taking into account the analogy made with a HLAL, the set of FDs of param-
eters can be treated as a set of standard functions in a HLAL. However, this analogy
cannot be complete, since FDs depend entirely on the natural language used, on differ-
ent conventions adopted in particular countries, firms and organizations. Two aspects
of this dependency will be mentioned below:

- it is impossible to construct a set of FDs which does not depend on a certain
natural language.

- it is possible for an algorithm for one and the same FD to vary in different
natural languages.

The problem of defining the constituents of the FD library is in fact a problem
of tuning the synthesizing system to the specific requirements of a certain workplace.

In the process of our study a set of 22 FDs often met in Bulgarian documents
was derived [BalS89). Some of these FDs are typical of Bulgarian documents, e.g.
date of birth and sex (male, female) derived from the personal identification number.
Probably some of the selected FDs might be also found in documents written in other
languages. For example: naming some simple arithmetic operations (sum, difference,
etc.) in numeric parameters; expressing some numeric accounts as strings of words;

Document Synthesis. . . 231

separating family names from first names, etc.

Ovur experiments have shown that the use of a mechanism of FD parameter cal-
culation increases considerably the intelligence of the synthesizing system and reduces
the amount of information to be entered (cf. 4.1.).

<<Info about substitute>>

<titname> was born in .. . In .. he received his <deg>
degree in the .. . He has been working with us since .
The main interests of =ADDRESSING(titname, deg) are ..
(a)

Prof. V. Slavchev was born in 1949. In 1976 he
received his Doctor’s degree in the University of
Sofia. He has been working with us since 1977. The
main interests of Prof. Slavchev are multimedia
documents, information retrieval and fuzzy sets.

(v)
titname deg ADDRESSING(deg, titname)
Prof. P. Black Dr. Prof. Black
P. Brown Dr. Dr. Brown
Robert White - Mr. White
(c)

A sample FD named ADDRESSING with two arguments is used. The first argument is a
person’s scientific degree. The second argument is a person’s name which may be preceded by
a title. A suitable addressing is formed according to the argument values.

Figure 7. Examples of Functional-Dependent Parameters
(a) a fragment containing a FD
(b) a sample text generated from the fragment
(c) sample argument values and results of a FD.

3.4. Parameter types. Usually the value of a given parameter is not an
arbitrary string. Some of the constraints imposed on parameter values related to its
context can be described formally. Each parameter value has its specific range of
definition. Some of the values are composite and have an internal structure. Thus
we come to the concept of parameter type. The following data can be treated as
examples of parameter types: date, personal name, mailing address, phone number,
etc. The concept of parameter types is similar to that of data types in HLAL, especially

232 Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

languages with advanced data types (e.g. Pascal, Modula-2). The concept of parameter
types in the sense we use it is similar to that of object classes in the so called object-
oriented systems [Wegn87).

<<Info about substitute>>
<name>{PN} was born in {Y}. In {Y} he received
his {E:Degr} degree in the .. . <name> has worked in
. He has been working with us since {Y}. The main
fields of his interests are {S:Fields}.

The following parameter types are used:

{PN} - Personal name

{Y} - Calendar year

{E:Degr} - Element of standard enumerated type consisting of
scientific degrees

{S:Fields} - Set of elements of enumerated type consisting of
computer science fields

Type checking is not accomplished for the parameters marked by dots.

Figure 8. An Example of Parameter Types

The main benefit of introducing parameter types is in the more detailed defini-
tion of permissible values or ranges of values obtained through parameters. Also, the
opportunities for parameter values checking and document consistency maintenance
increase.

The set of parameter types should be flexible and adaptable to the needs of
each office. It depends on the natural language used, on the inter-firm conventions,
etc. A set of 23 parameter types, found in Bulgarian documents very frequently, has
been derived [BalS89]. The enumerated parameter types are of special interest for their
frequence of usage. They take values consisting of one or more elements of a base type
defined in advance. In the process of synthesis the parameter value of such a type is
selected from the set of values instead of being entered.

The elements of the base type might be whole phrases as well. For example if
a user wants to vary the contents of an instance s/he may select a phrase of identical
meaning from the set of phrases. Note that the longer the base type elements are,
the greater the linguistic problems with respect to inserting them into the text of
an instance are. It is not a common practice to use long phrases in t-documents.
Probably document synthesis based on standard phrases is a way to deal with some
of the difficult-to-standardize documents. This problem is studied by our colleagues
[KeNN90).

Our observations have shown that sometimes untrained users have some diffi-

Document Synthesis. . . 233

<<Info about substitute>>

<name>[Name of the substitute?] was born in [Birth year?].
In [The year he received his last degree in ?] he receives his
(Last degree?] degree in the [University?]. <name> has worked
in [The places he worked for]. He works with us since [Year?].
The main fields of his interests are [Select!].

The prompt texts for parameters are put in brackets. They supply users with information about
the semantics of the relevant parameters

Figure 9. An Example of Parameter Prompts

culties in satisfying parameter type requirements when entering parameter values. For
this purpose a parameter value an opportunity may be provided for taking down the
requirements of parameter type after a chosen number of failures.

The introduction of parameter types can be considered as an extension of the
logical structure of a document. The ODA standard does not provide such a level
of logical structuring but some authors think that such an extension is natural and
does not contradict the notion of the standard generic logical structure of documents
(Schu88].

3.5. Prompts for Parameters. The prompt for a parameter is a text message
which appears when a parameter value is to be entered. It differs from the prompts
in EMO (cf. 2.3.) which help users in the navigating processes. The prompts for
parameters supply users with information on the semantics of the parameters of a
certain document. The prompt text is defined by the class designer in advance.

3.6. Iterative Parameters. Each sequence of fragments used more than once
is called an iterative group (IG). Some problems related to the use of named parameters
arise with IG.

If a parameter is cited within an IG and if its value is obtained out of that
IG no special problems arise. The parameter value will be one and the same in each
iteration. Problems arise with the use of a parameter quoted in an IG at which it
acquires a value. Such parameters will be called iterative ones. It is not clear what the
value of an iterative parameter (IP) within each iteration and after leaving an IG will
be. The solution at which the value of an IP should be entered once in each iteration is
the most natural one in such cases. Then within that IG, the IP may be quoted freely
and its value will be the current one for the iteration. In the course of preparation for
the next entering in the IG the current value of IP is stored as a consecutive element of
an internal enumerated type (IET). This type and the relevant IP are given one and the

234

Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

<<Info about substitute>>

<*name> was born in .. . In .. received
his .. degree in the .. . <*name> has been
4 working with us since .. . The main fields
| of his interests are ..
1
Info about
substitute
h— <<Conclusion R>>
< -
p——— My colleagues <name> have not any en

gagement during the time in question. Each
: of them has agreed to come at your <event>.
(a)
(®)
Prof. V. Slavchev was born in 1949. 1In 1976 he received

his Doctor’s degree at the University of Sofia. Prof. Slav-
chev has been working with us since 1977. The main fields of
his interests are multimedia documents, information retrie-
val and fuzzy sets.

Dr. S. Alexandrov was born in 1957. 1In 1987 he received

his Doctor’s degree at the University of Sofia. Dr. Alexan-
drov has been working with us since 1984. The main fields

of

his interests are office automation, document analysis

and synthesis and knowledge representation.

Dr. I. Dimanov was born in 1960. In 1990 he received his

Doctor’s degree at the University of Sofia. Dr. Dimanov has
been working with us since 1987. The main fields of his in-
terests are cognitive science, knowledge representation and
knowledge based systems.

My colleagues Prof. Slavchev, Dr. Alexandrov and Dr. Di-

manov have not any engagement during the time in question.
Each of them has agreed to come at your conference.

(c)

Figure 10. Examples of Iterative Parameters

same name.

(a) an iterative group
(b) the texts of the corresponding fragments
(c) a part of the sample instance

In the next iteration a new value is entered for the IP and this value

becomes a current one. Thus the process goes on until that IG is left. The quotation

Document Synthesis. . . 235

of the IP after that moment will result in inserting a “generalized” value of IP in the
instance. The "generalized” value is obtained from the elements of the corresponding
IET as follows:

algebraic sum wvhen elements are numeric
"Generalized" of elements
=
value concatenation when elements are symbolic
of separated
elements

The IET created in an IG may be used in the following course of synthesis as
each other enumerated predefined parameter type (e.g. for loop organizing where for
each element of the IET a single iteration is carried out). In Fig. 10 an example of a
"generalized” value is given.

Our observations have shown that more than 2-3 IP in an IG can hardly be
found in practice.

4. Implementation of the Proposed Approach

4.1. Project History. The problem of t-document synthesis has been studied
by the Laboratory of Applied Mathematics since 1985. At first we aimed at creating
and implementing an experimental system. The first version was written in Pascal and
was completed in 1986 [BaNg86]. Some of the ideas described in the present paper
originated from the implementation of that version. In 1987 the system was tested
through pilot experiments in several organizations and we got some useful feedback
information about its capabilities. The initial version and its pilot usage revealed some
drawbacks of the implementation and led us to some new ideas of improving the method
used.

In 1988-89 a new improved version named Syd2 was designed and implemented
[BalIS89]. The new variant was written in C. It comprised all the useful ideas of the old
version and some new ones as well. Special attention was paid to the user interface.
The Syd2 system is a software product intended for IBM/PC and compatibles. Some
experiments with Syd2 have already been carried out so as to evaluate the efficiency
of the parametrization apparatus introduced. The initial results obtained from 300
instances of three classes (5-20% of the parameter values are duplicated; 0-30% param-
eters are calculated by using FDs) show that the time benefit is about 15% and 30%
compared to the first version.

4.2. Implementation Structure. The general structure of the Syd2 system
is described in Fig. 11.

The monitor provides the user with unified environment for monitoring the
other system components.

236 Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

[(ortor

l i l |
[| [comote] [oomeme] [achvet | [Fomate]

Figure 11. General Structure of Syd2 system

@

Text E
R
[snmonh infern. ml

Figure 12. The Preparatory Stage

The text editor serves to create and update the initial skeleton descriptions and
fragment texts for the document classes.

The compiler serves to transform the skeleton description of document class
instances from an EMO language into an intermediate language.

The synthesizer is the main component of the system. It interprets the skeleton
presented in the intermediate language and in interaction with the user creates an
instance of the corresponding class. The synthesizer stores the names of the included
fragments, organizes the entry of their parameter values and performs type checking or
calculating. It provides the short-term storing of the synthesized instances.

The archivist serves to organize the long-term storage of the instances from
different document classes and the access to them as well.

The formatter serves for outputting the instances as required by users (in a
form suitable for displaying, printing, or storing them on the disk as text files).

The compiler is created on the basis of traditional techniques for such a kind
of software products. A number of original elements have been built in the synthesizer

Document Synthesis. . . 237

and archivist. Special attention has been paid to the synthesizer with respect to its ef-
ficiency and flexibility of interaction in the process of generating ready-made document
instances. The archivist is not completely implemented yet.

4.3. Processing Model. Documents are created through the Syd2 system at
three stages namely: preparatory, working and layout.

A document class is defined and formally described by an expert in EMO during
the preparatory stage. That stage consists of:

- analysing paper documents which represent the class;

— defining the class by using the skeleton description and entering fragment
texts;

- compiling the class definition.

Keyboard Fragment Fragment Skeleton in inter-
text table mediate language

v v v v

Synthesizer

|

Work area

i

Archivist

Archive

Figure 13. The Working Stage

The working stage (Fig. 13) consists of the synthesis of particular instances of a
given class, as well as of instance archiving and retrieval. In the course of the synthesis
of a particular instance by means of the synthesizer the user carries out the following
activities:

~ selects a document class;

~ indicates the necessary fragments in accordance with the skeleton require-
ments;

~ enters the parameter values for the traversed fragments.

Synthesis of a group of instances when they differ in a parameter value only
(e.g. circular letter) is also allowed.

238 Peter H. Barnev, Vesselin N. Igrachev, Vladimir S. Shkourtov

The working stage is the main one in everyday exploitation of the system and
it is carried out by employees who are not experts.

Keyboard FW Fm'g&onf m
L v] v
Formatter
¥ v
Display Printer Disk fie

Figure 14. The Layout Stage

The layout stage (Fig. 14) is necessary since the instances are stored in a com-
pact way. As mentioned above the instances are stored in the archive as tracks. The
full text of the instance is rebuilt from its track at the layout stage. Then the rebuilt
instance is output on the selected output device as specified by users (length of line,
pages, etc.)

5. Conclusion. An approach and a completely developed method to text
document synthesis were given in the present paper. The approach is based on the
popular idea of assembling a unit from "ready-made” parts. It enables users to combine
text fragments in accordance with a fixed scheme. This scheme is similar to the well-
known flowcharts.

Our approach for automated document synthesis is only one of the possible ones.
In the Laboratory of Applied Mathematics some other methods have been experimented
too. They are based on the use of abbreviations, standard phrases, document patterns,
etc.

The approach presented in this paper may be improved. We intend to focus
our future work on:

~ increasing the flexibility of skeletons;

- simultaneous synthesis of instances belonging to several interrelated classes;

- organizing a library which consists of fragments common for several classes,
etc.

Acknowledgements. We are very grateful to Dr. Stephan Kerpedjiev who
looked through two versions of the draft and made a number of useful remarks. We
are thankful to Mrs. Nadka Gouneva-Ivanova who helped us edit the English version
of the paper.

Document Synthesis. . . 239

REFERENCES

[BaIS89] BARNEV P., V. IGRACHEV, VL. SHKOURTOV. Syntax-directed document
synthesis — on the role of parameters. Proc. of the 18 Annual Spring Confer-
ence of the Union of Bulgarian Mathematicians., Albena 6-9 April 1989, (In

Bulgarian).

[BaNg86] BARNEV P., Do VIET NGA. A system for automatized synthesis of free
texts. KNVVT Conf. on Automatization of Inf. Proc. on PC, Budapest 5-9
May 1986, 15-26, (In Russian).

[Bour78] BoURNE S. R. An Introduction to the Unix Shell. The Bell System Technical
Journal, 57 (1978), 2797-2822.

[ISO86) International Standard ISO/IS 8613/1..8, Information processing — Text and
office systems — Office Document Architecture (ODA) and interchange format.

[Kell85] KeLLoG R. T. Computers aids that writers need. Behavior Research Methods
Instruments & Computers, 17(2), 253-258.

[KeNN90] KerPEDJIEV S., S. NEDKOVA, R. NIKOoLOVA. On a Method of document
synthesis using a phraseological dictionary. Proc. of the 19 Annual Spring
Conference of the Union of Bulgarian Mathematicians., Sl. bryag 6-9 April
1990.

[Rabi85] RaBITI F. A Model for Multimedia Documents. Office Automation (ed. D.
Tsichritzis), Springer Verlag 1985, 227-250.

[Schu88] ScuuLzE G. Office document architecture and its use in an office environment.
Conference on Information Technology for Organizational Systems. Athens,
16-20 May 1988, 1025-1030.

[Tsic82) TsicuriTzis D. Form management. Comm. ACM, 25 (7) (July 1982), 453-
478.

(Tsic85] Tsicuritzis D. (ed.) Office Automation - Concepts and Tools. Springer Ver-
lag, Berlin, Heidelberg, Tokyo 1985.

[Wegn87] WEGNER P. Dimensions of Object-Based Language Design. Brown Univer-
sity, Tech. Rep. No. CS-87-14, July 1987.

Laboratory of Applied Mathematics
15 N. Vaptzarov St. .

000 Plovdiv Received 13.04.1998
ulgaria Revised 17.08.1994

