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DIFFERENTIAL GAME DESCRIBED BY A HYPERBOLIC
SYSTEM. e-MAXIMINS AND POSITIONAL STRATEGIES

DIKO M. SOUROUJON

ABSTRACT. The present paper deals with an antagonistic differential game of hy-
perbolic type with a vector pay-off function. A solution has been defined by a
differential game — ¢—Slater minimax (maximin) strategy. An existence theorem
and some properties of ¢—Slater maximins (minimaxes) from the theory of mul-
ticriterial classic antagonistic games have been proved for the case studied in the
present paper. Thus for the set of é—Slater maximins (minimaxes) the inward and
outward stability is proved. The assertion for the relation between the ¢—Slater
saddle point and the £—Slater maximin and minimax strategies, is given. An ex-
ample is considered which shows that in this assertion some conditions of regularity
cannot be reduced. Also games with a separable pay-off function have been con-
sidered. For these games, a simple description of the set of ¢—Slater saddle points
consisting of program strategies is given. It is shown through an example that
for this case such a description cannot be given when the corresponding strategies
of the e—Slater saddle point are non-programm. The same example is used also
to prove that the property of separability for the linear problem is not valid for
non-program strategies.

Introduction. The following multicriterial antagonistic differential game with
a vector pay-off function is considered:

(01) (E' {u’ V},{m(h(T))}'EN),

where N = {1,..., N}, N21 is the number of criteria.
The controllable system = is described by the boundary-value problem of hy-
perbolic type
Py

(0.2) 5'—,-=Ay+bnu:+cm+f| in G = (t,T) x N,

dy .
(03) Yt=t, = Y0, El"‘o =y in )
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(0.4) + 03y =byuz +c3v3+ f2 in £ = (,T) x T,

y
T o a
where 0; € {0,1}, 1= 1,2, 01 +0221.

The solution y of (0.2)-(0.4) is taken as in [4, p. 116, Theorem 4.1}, see also
(12, Lemma 1). Let h(t) = (y(t),0y(t)/0t). The exact description of the participant
symbols of (0.2) - (0.4) is given in the Introduction further on.

The properties of £—Slater minimaxes (maximins) of game (0.1) will be con-
sidered in the present paper. Let p = (p1,...,pn) be the vector pay-off function of
a multicriterial problem. It is known that a set B is inward stable if there exist no
two elements z’ € B and z” € B for which p(z’) > p(z"), i.e. pi(z’') > pi(z") for
Vi=1,...,N. One of the disadvantages with the use of vector e—saddle points is the
lack of inward stability. This means that there can exist two vector ¢—Slater saddle
points for which the values of all components of the vector p(-) at one of them are
greater than the respective components of the other e—saddle point. Therefore another
solution of game (0.1) — e—Slater minimax is introduced in.the present paper and it
possesses “the guarantee” properties of the é—saddle point [5, Ch. I] together with the
inward stability.

In Section 1 all these properties of e—Slater minimaxes (maximins) are consid-
ered: the existence theorem and the assertions for inward and outward stability are
given too. The assertion for the relation between the c—Slater saddle points and the
e—Slater minimax (maximin) strategies (Lemma 1.3) is proved. An example is given
so as to show that Lemma 1.3 does not hold if the regularity conditions (1.5) are not
satisfied.

In Section 2 the games with a separable pay-off function are considered. Such
classic (non-differential) games are well studied and they have comparatively simple
description with respect to the set of saddle (¢—saddle) points (for example see (5,
p.81-91]). The description of the set of e-Slater saddle points (Lemma 2.2) and a
property of separability for the linear problem - (2.6) can be given only for program
strategies. Theorem 2.1 and Theorem 2.2 show that Lemma 2.2 and equality (2.6) are
not valid if the corresponding strategies are non-program.

Some results from multicriterial optimization are used in the present paper.
Multicriterial classic problems (games) are studied in (5], [7], [2], [8]. Multicriterial
dynamic problems (games) described by a system of ordinary differential equations are
considered in [1], [6], and the corresponding examples are given there as well. The
present paper deals with some problems of positional control of systems described by
means of a hyperbolic boundary-value problem. Such control problems arise in dis-
tributed parameter systems, with motion of oscillated character [11, p. 39]. Problems
of that type are the control of fading fluctuations of gas streams (liquid, electricity
or other physical substances) into long pipelines; fading (or generating) of waves into
experimental pools or electromagnetic fluctuations into wavelines and resonance accel-
erators, etc., see [11]. The present paper is a continuation of (12] and the results of [5]
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and (7] for non-differential games are used.

It is supposed that in problem (0.2) - (0.4), the set  # O is bounded and open
in R® with boundary T' = 8Q; Q and T satisfy the following conditions of regularity
(10, p. 212, 222, Conditions 1), 2) and R]:

1) Q is a strictly Lipschitz domain [10, p. 30-31];

2) For almost all points z° € T (in the sense of measure of I') there exist a
plane tangential to ', such that the equation of T in a small neighbourhood of z° € T
in a local Descartes coordinate system is of the form 7, = w(M,-..yMn-1), where the
axis 7, is directed to the outside normal to T in z° and the axes m,..., 71 lie in
the plane tangential to I' in z°. It is supposed that there exist all partial derivatives
of w of second order and that the eigenvalues p;(2°), ..., sn(2°) of the quadratic form
n-1 82U

——— &€ in z° satisfy the condition sup {ux(z°)}SK for some constant K 20;
—~ Omdm kz0€l

R) If oy = 0, then the problem Az =, zlr = 0in Q is solvable in H} () -

H)(R) N H3(R) for some dense in Ly(12) subset of functions ¢, (where A is the Laplace
operator in (2).

It is supposed that the coefficients of boundary-value problem (0.2)-(0.4) satisfy
the conditions: yo = yo(z) € La(R), n = n(z) € (H3(Q))*, fi = fi(z,t) € La(G),
fo= S0y V0D (z), where (1) € Luo(to,T), f37(2) € La(T), 5 = 1,...,m;

H3(R) = Wa(Q), Ly(Q) = HY(Q), H(®) = W1(Q) etc., see [3,4,10,12), are the
corresponding Sobolev spaces, H* is the dual functional space of H (for example
H7'(Q) = (H}())*, etc.). The functions by = by(z,t) and ¢; = ¢y(z,t)(by = by(z) and
¢3 = ¢3(z)) are measurable, bounded in G(I') and take values in R™ and R™ (R™ and
n
R™?) respectively. The operator A is of the form: A[] = E 8%:. (m,(z)%}) -a(z)[(.),
where a;;(z) = aji(z), a(z)2ao = const > 0, da;;(z)/dzx, 3,5,k = 1,...,n are func-
tions which are measurable (in the Lebesgue sense), bounded in {2 and there exist
constants a > 0 and # > 0 such that for each z € 2 and £ = (£,...,&n) € R™, the
following inequalities hold:

aY €Y aij(@)6k<8Y €

=1 =1 )=1

=1

g—l["l- = ,»JE_:, a.-,-(z)ggcoc(v, z,;) is the conormal derivative, corresponding to the self-
adjoint elliptic operator A of second order and v is the exterior normal to I'.

Next the sets of strategies will be described. The following sets P(t) = Py(t) x
Py(t) (Q(t) = Qi(t) x Qa(t)), t € [to,T], 0Sto < T where Py(t) C Ly(2;R™) and
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Py(t) C R™ (Q1(t) C L(2;R™) and Q2(t) C R™?) are given. These sets are convex,
closed (in the respective spaces), measurable and uniformly bounded with respect to t,
Vt € [to, T]. The vector-functions u = (u;,u3) € P(t) and v = (v;,v3) € Q(t) are called
program strategies.

It was proved in [12, Lemma 1] that all the conditions of [4, p. 116, Theorem 4.1]
are satisfied and hence the solution of (0.2) - (0.4) is defined as in [4). Let H = Ly(Q) x
(H}(N))* foroy = 1and H = H;'(Q) x (H30())", (where H}(Q) = HJ(Q)NH3(Q))
for oy = 0. It was proved in [12, Theorem 1] that h(.) = (y(.),8y(.)/dt) € C([to, T], ).

The present paper uses the formalization of a differential game described by a
hyperbolic system. The solution of the initial boundary-value problem is treated as in
[4] in one space and the controllable process obtained is considered for another space.
The respective objects are linked by one and the same Fourier series.

The result of game (0.1) is evaluated by criteria, given by the functionals p; in H,
i € N; p(h(T)) = (p1(A(T)),...,pn(R(T))) is called a vector pay-off function of game
(0.1). It is supposed that the functionals p; are strongly continuous (s.-continuous) in
H. The first player choosing the strategy U € U strives to smaller possible values of
all criteria p;(h(T)), ¢ € N; the second player using a strategy V € V strives to their
maximization. Each player chooses a strategy of his own which is independent of the
other player’s strategy.

Asin [12], we are gomg to use the following notations: R ={p=(p1,...,PN) €
RY [ p > 0¥i € N, RY = {p = (pr,....on) € RV | pi20,¥i € N}, RY =
{p = (p1,...,PN) € RV | pi20,Vi € N,p # Ox), where Oy is the zero-vector in RV,
p) > p@ = p) — ) e RY <= p) < p(1) p() % o) = p(1) _ p() ¢ RY.
The other relations are mtroduced analogously. For example p(!) ¥ p(’) if and only
if the relation p(‘) > p(?) is not satisfied, i.e. if and only if 3ip € N : ps) < pg)
pV) = p(a),

Let A € A be an arbitrary partition of the interval [to, T'] by the points tg = 75 <
71 < ...< Tpa) = T, (A is the set of these partitions). Then §(A) def max{(Tj41-7;) |
j=0,1,...,m(A) — 1}. The set of all sequences of partitions {A*¥)}° ¢ A with the
property klim 6(A(")) = 0 is denoted by II. Also we denote

%p(hA[T; Po, U, V]) =

p(halTi UV, lim - inf px(halTim,UV)))

mp(hA[T;pO' U, V]) =

(hm
6—.OAA[]6(A)$6

=[N ha(T;po, U, V)),.. e PN(hA[TiPo.U.V]));
(‘E’MAIT?&W"'( ol R=INIHAY
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The sets of positional strategies of the first (second) player, related to P(t) (Q(t))
are denoted by L/(V) etc. All other notations and concepts as positional strategy, step
motion, &-Slater saddle point etc., and the corresponding assertions can be found in
(12].

1. e—Slater minimaxes.

1. The differential game (0.1) is considered. Let U € U be an arbitrary strategy
of the first player. The set R[U] is defined as follows:

The vector p[U] € R[U] if there exists a sequence of partitions {aM)e e
and a corresponding sequence of step motions haw)[.] € haw[-; Po, U] such that p[U] =
5(Al(iP)1)-.op(hA(.)[n)' The latter supposes that the corresponding strategy V + v(t) €
Q(to, T) is fixed, where hyx)[.] = haw[-; Po, U, v]. Thus for a given strategy U, different
(fixed on A(¥)) functions v cause sets of elements of limits p[U] described above, whose
union is R[U] when v is changed in the admissible set Q(to,T). For each strategy
U € U,R[U)] is a bounded set since the set D(T';po) is a compact subset of M [12,
Theorem 1] and the functional p is s.-continuous in M.

Let ¢ = (£,...,6N) € R’zv be a fixed vector. For each strategy U € U we define

the set
(1.1) ROW] = {p9[U) € R{U] | p'U] £ p[U) - €,Vp[U) € R[U]}.

Thus p()[U] is an £—Slater maximal vector with respect to the set R[U], [5, p.11].

Definition 1.1. The strategy U®) € U is called an e - Slater minimaz strategy
of game (0.1) if there ezists a vector p\)[U(*)] € R[U(®)] such that

(1.2) PO # pOU) +¢, YU €U, pI[U] € ROU).

The vector i)'(‘)[U (‘)] s called an £—Slater minimaz of game (0.1) and the set of these
vectors is denoted by R(®).

The sets R()[U] and R(?) will be bounded since the sets R[U] and p(D(T; po)) =
{p(h) | h € D(T;po)} are bounded [12, Theorem 1].

Lemma 1.1. Let A be a bounded and non-empty subset of RY and ¢ € RY.
Then there exists an ¢ Slater minimal (mazimal) vector in A. -

Proof. Let us point out that an analogous assertion for the case when A4 is a
compact subset of R" and ¢ = Oy is proved in [7, p. 142). Since ¢ = (£y,...,6N) € R’;’.
let for example ¢, > 0 and A, = Pry A = (@, € R|(@,,...,ay) =d € A). But 4 is a
bounded set and £, > 0, hence inf A; = @ > —oo and 38‘;) €A : a‘,') ~ @)S€y. Then
‘(:)53? + 658 +6,Va € A, =>a) pa+¢ vae A, where a® € A is such that
Pryal®) = lg'). The vector @) thus defined is £ —Slater minimal in A.
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Lemma 1.2. The sets R[U] and R)[U] are non-empty compacts of RV, ie
R[U] and RO[U) € comp.RY for each strategy U € U.

Proof. As it is shown above, R[U] and R(*)[U] are bounded subsets of the
bounded set p(D(T;pp)). From [12, Theorem 1], for every sequence {aA®}e e I
with klim 6(A™) = 0 and the corresponding sequence of step motions hym|[.] €

—00
h o [-; Po, U], there exists a subsequence {A%)} such that 3 lim p(hA(.,)[T]) and this
300
limit is bounded by a constant, which does not depend on the choice of the correspond-
ing sequences. Hence R[U] # O. Let ro = klim ri and r; be an arbitrary vector in R[U].
—00
Then for each natural number k, there exists a natural number j = j(k) > k, a partition
AY) € 11, which is the “j” term on the “k” sequence {A{"}:2, € II, (i.e. lim §(A{") =
1=—+00

0, Vk = 1,2,...) and the corresponding step motion hA(,)[.] = hA(,)[.;po, U,v®)] such
k k

that | 4 — p(h\(»[T]) |< €, Where limk oo €k = limkoo §(AY™)y = 0. Since P(t) and
k
Q(t) are bounded sets of the corresponding functional spaces (see the Introduction),
then there exists a subsequence {v(*)}%2  C {v(¥} such that lim o) = @ ¢
p—oo

Q(t) in the weak* topology in Leo([to, T], L2(2;R™ ) x R™?). From [12, Theorem 1], it
follows that ro = 'l_x_.m;o p(h AU() (T; po, U, v(o)]) € R[U] and hence R[U] is a closed subset
k

of RV, i.e. R[U) € comp.R',. Now the multicriterial problem I'(U) =< R[U], p(h[T)) >
is considered. From (1.1) and Lemma 1.1 R()[U] is the set of all e—Slater maximal
(e-weak effective) solutions of I'(U), hence R©[U] is a non-empty compact of RV, see
also [7,p.142]. The lemma is proved.

By analogy with the definition of R[U] we can define the set R[V] for an arbit-
rary strategy V € V of the second player. By analogy with Definition 1.1 we give

Deffinition 1.2. The strategy V(¢) € V is called an ¢ Slater mazimin strategy
of game (0.1) if there ezists a vector p,)[V()] € R(,)[V(“)] such that

(1.3) PV £ p)[V] -, YV €V, pV] € R([V],

where R(,)[V] = {p((V] € RIV] | p[V] ¥ p[V]+¢, Vp[V] € R[V]}. The vector
5(.)[V(‘)] is called - Slater mazimin of game (0.1) and the set of these vectors is
denoted by R(,).

By analogy with Lemma 1.2 we can prove that the sets R[V] and R(,)[V] are
non-empty compacts of RV

Further the results only for ¢—Slater minimax strategies will be given. For
¢—Slater maximin strategies, analogous properties are valid as well.

The strategy U(®) € U is called an ¢ —minimax strategy of game (0.1)if N =1,
i.e. game (0.1) is with a scalar pay-off function and the signs £ and ¥ in (1.1) and (1.2)
are replaced by 2 and < respectively [5]. Thus the given definitions for an £-Slater
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minimax (maximin) strategy includes the concept of an ¢—~minimax (maximin) strategy
of game (0.1) with a scalar pay-off function (for N = 1) as a particular case.

From Lemma 1.2 and [12, Theorem 1), the set R(¢) o ROU) | U € U} of
all £—Slater maximal vectors is a non-empty and bounded subset of RV. According
to Lemma 1.1, there exists an £—Slater minimal vector with respect to R(¢) and this
vector is denoted by 5{*) € p(*)[U(*)]. From Definition 1.1, the vector p'€) thus defined is
£—Slater minimax in game (0.1) and the corresponding strategy U(?) € U is an e-Slater
minimax strategy of this game. Thus, the following theorem is proved:

Theorem 1.1 (Existence theorem). For each choice of the initial position
Po € [to,T] X H and each ¢ € R’ZV there ezists an e-Slater minimaz (mazimin) strategy
of game (0.1).

I1. Stability. Let us consider a multicriterial antagonistic game with a vector

pay-off function p and the sets of strategies X (Y) of the first (second) player.
Let the vector ¢ € RY be given. At first, the following definitions from the

general theory of games [5, 8] are given:

Definition 1.3. A subset R CR= {p(:r,y)lz € X,ye Y} =p(X,Y)is
called e —inward stable, if for each p(V) € R and Vo) € R it follows that pM % p@ 4.

Definition 1.4. The subset RV, (RM) C R®) C R = p(X,Y) = {p(z,y)| z €
X,y € Y}) is called c-outward stable with respect to R(?) C R, if for each p® € R(),
there ezists p(1) € R() such that p(V<p(3).

The given definitions are generalized for the case of differential antagonistic
games with a vector pay-off function, if we take R = {R[U] | U € U} or R = {R[V] |
VeV).

Theorem 1.2. Let the vector € € R'ZV be given and R ' {R[U) | U € Uy.

The set R(®) of all ¢-Slater minimazes of game (0.1) is e-inward stable and R'®) is
¢-outward stable with respect to R(*) = {RO)[U] | U € U}. The sets ﬁ(,) and R(,) =
{R(¢)[V] | V € V} have analogous properties.

Proof. F‘ronl (1.2) arLd (1.3) (Definition 1.1 and Definition 1.2) the e—inward
stability of the sets R(*) and R(,) is proved.

Now we shall prove the assertion about the e-outward stability. The proof will
be given by using the method of (7, p. 158]. Let p(*) be an arbitrary element of R(®).
Let us consider the set Rg') ={p€ R | p§p(')}. Clearly Rg') C R is a bounded and
non-empty subset of RV, since p(©) € R!"). From Lemma 1.1 there exists an ¢-Slater
minimal vector p € Rg') for the set R(l'). We shall prove that p is an £-Slater minimal
vector with respect to R(®) as well.
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Suppose the contrary, i.e. that there exists 5 € R() such that p > p+¢. But
pE Rs') p<p® = p25> 5+ ¢ = p< pl®). Hence p € R, and

(1.4) p>7p+e, where pe R, 5e R

Relation (1.4) shows that 5 is not an ¢é-Slater minimal vector in R ), which contradicts
the choice of p. Therefore p is an eé-Slater minimal vector in Re‘) and there exists a
stra.tegy U®) € U such that p € pI[U®)] € R (see the proof of Theorem 1.1). But

pE R( ), i.e. for an arbitrary element p(*) € R(®) we found the vector 5 such that
p<p(‘) and 7 is the corresponding e-Slater minimax (7 € R()).

By analogy we can prove the é—outward stability of the set R(,) with respect
to R, i.e. that Vp € Ry, 3p € R(, p2p, i.e. the inequality is contrary to the
corresponding inequality of Definition 1.4. Thus the theorem is proved.

The relation between the e-Slater saddle points and the e-Slater minimax and
maximin strategies is given by the following

Lemma 1.3. Let us assume that the situation (U¢,V*®) € U XV is an e-Slater
saddle point in game (0.1) and there ezist partitions {A®)}° € T and {K(")}'i” ell
and corresponding step motions hyw[.] € hyw)[.; po, U¢,V*] and hK(')['] € hZ‘”[';m'
U¢,V*¢)] such that

I ham[T)) = halT; po.U*, V*
6(A(,{}1)_OP( am|[T)) I;I_.koip( alT;po.U%, V)

(1.5) lim  p(hzw(T)) = TIM p(ha[T; po.U*, V¥)).
5(a™)—o0

Then there ezist ¢-Slater mazimin and minimaz strategies U®) € U and V(©) € V
with the corresponding e-Slater minimaz p\*)(U(*)] and mazimin ,’,‘(‘)[V(‘)] such that
the following inequalities are valid

p[U®)< LIM p(ha[T; po, U*, V)
§—0
(1.6) I
§EI_§')IP(’1A[T,P0.U g ])gp(,)[V ]'

Proof. From (1.5) (using the proof of Lemma 1.2) it follows that the right-hand
sides of (1.5) belong respectively to the sets R[U*] and R[V*], and from [12, Definition
2], (1.1), Definition 1.1 and Definition 1.2 we obtain:

LIM p(ha[T; po, U%,V*]) € RO[U] C R
§—0

(1.7)
E:_rgp(hA[T;Po. U*,V*)) € R)[V*] C Ree).
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From (1.7) and Theorem 1.2 it follows that there exist an e-Slater minimax strategy
U(®) and a corresponding vector p{9)[U(¢)] € R()[U(?)] such that the first inequality of
(1.6) is valid. By analogy, the other inequality of (1.6) is proved, using the assertion of
c-outward stability of the set R, with respect to R(,) (see Theorem 1.2). The proof

is completed.
Remark. We should note that the assertions, analogous to Lemma 1.2, Lemma

1.3, Theorem 1.1 and Theorem 1.2 for the case of classic games, ¢ = Oy and compact

sets of strategies, are proved in [5] and [8].
Lemma 1.3 is not true if the relations (1.5) are not satisfied. This assertion is

proved through the following example.
Example 1.1. It is supposed that the controllable system = for game (0.1) is

described by the following boundary-value problem

8y /0t* — 8*y/0z* = (wi(t) + vi(t))sinz in G = (0,1) x (0, x)
(1.8) y(z,0) = (dy/dt)(z,0) =0 for z€ Q= (0,7)

¥(0,t) = y(x,t) =0 for t € (0,1), y € C([to, T), H3(0,7)).

Program and positional strategies will be used, where Py(t) = Q,(t) = [0, 1] and Py(t) =
Q2(t) = @. The set of strategies of the first (second) player is denoted by W(V) as well.

The vector pay-off function has two components p(h(T')) = (p1(y(1)),p2(¥(1)))
and it is of the form

pl(y(l))=/o'y(z.1)dz. m(y(l))=-/o'u(z.x)dz.

The unique solution y(z,t) of (1.8) [3, p.320-327] for fixed measurable and bounded
functions u,(t) € [0, 1] and vy(t) € [0,1], Vt € [0,1], is:
y(z,t) = fo‘(ul(a) + vy(8))sin (t — s)ds.sin z.

Clearly the function y(z,t)20 is strictly increasing with respect to u;(t) and vy(¢),
¥(z,t) € G = (0,1)x (0,7) as in [12, Lemma 6] and 0Sy(z,t)< fo‘ 2sin (t — s)ds.sinz =
2(1 - cos t)sin z. Hence 0<p;(y[1])S4(1 —cos 1) and the minimum of p;(y[1]) is reached
for U© = ugo)(t) =0, V0O + v{o)(t) = 0, and the maximum — for U") + usi)(t) =1,
V(‘)+vf”(t) = 1,Vt € [0,1]. The corresponding values of the vector pay-off function are
respectively p(ya[1;0,0,0,U@ v©)]) = (0,0) and p(ya[1;0,0,0,UM, V")) = (¢, -7)
for every partition A of the interval [0,1], where € = 4(1 — cos 1) > 0.

Next let us proceed by constructing the positional strategies U* and V*. Let
us remind that a positional strategy is said to be a mapping assigning a function u €
P(ty,t3) (v € Q(ty,13]) to any triplet (ty,23,h(t1)) € [0,1] x [0,1] x H, (Vt,,t3 € [0,1]:
ty < tg; h(t) = (y(1),¥'(t)) € H, Vt € [0,1]) [9,12], (here H = X = H{(0,x) x Ly(0,x),
see [9, Example 3.1]). Let the set S C [0,1], (0 € S,1 € S) be such that the sets
and [0,1]\S are dense in the interval [0,1]. The strategy U* is defined for t € (t;,13)
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(independently of h) as follows:

1 if 4, €S and €S
0 if ty €S or t2¢S

The strategy V* is defined in the same way. The following equality is valid:
LIM p(ya[1;0,0,0,U%, V")) =
§—0
—— l.i inf 1;0’0,0, U.’ V. ,
(6—131 hA[.],S(A)s&p](yA[ )

pa(va[1;0,0,0,U", V‘])) =

U‘-:—u;={

(1.9) im inf
6—0 hal].6(8)ss

( R _.oPl(wnlll).s(zl(lgl)_.om(vgn[l])) =(0,-9).

Here the first sequence of partitions {A(¥)}3° € II has the property that all numbers
of the partitions r,“) €S, Vi=12....mA®) -1, Vk = 1,2,..., and we have
’Fﬁk) €S, V= 1,2,....m(K(k)) —1,Vk =1,2,... for the second sequence of partitions
{K(k)};” € II. By analogy it is proved that

(1.10) LIM p(ya[150,0,0,U%,V?]) = (,0).

At the same time the set of values R of the vector pay-off function in the example
considered is of the form:

(1.11) R = {(a,-a)|a € (0,7}

The following properties of the situation (U*,V*) will be noted:
1. The situation (U*,V*) € U x V is an ¢-Slater saddle point [12, Definition 2]

fore = (g, g) € R; in the differential game studied. Really, the following relations are

valid
p(yam (1)) = (a1, —a) ¥ l;%p(yA[l;O.O,O,U‘,V‘]) +e

cc ¢ c
=(0,-9+(35:3)=(3-3)
and by analogy

P(VA(I)“]) = (azv -02) { ELMO'P(VAU;O.O,O.U°'V.l) —€= (%' —g)'
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(where a; € [0, and a; € [0,¢]) for arbitrary partitions A(") and A(®) and the
corresponding arbitrary step motions

hay[] € ha[50,0,0,U°] and ha (] € hy®|.;0,0,0,V*].

2. Equations (1.5) are not valid for the situation (U*,V*), since for each se-
quence of partitions {A(’)}'i” € I1 and each corresponding sequence of step motions

hA(P) ['] € hA(’) ['; 0) 01 09 U.]’ S(A%%p(yA(')[l]) = (03’ —03) € R’ (lf this limit G.Xi‘tS),

where the number a3 € [0,¢] (1.11). At the same time, the right-hand sides of (1.5) do
not belong to R for U¢ = U* and V* = V*, see (1.9), (1.10), (1.11).

3. From Definition 1.1, pO[U*] = (a, —a) ¥ p U] +¢ = (8,-B8) +¢, YU € U,
Vp©[U] € RO[U), Ve € R’z and a,8 € [0,¢]. Hence U* is an e-Slater minimax
strategy, Ve € Rg. By analogy it is proved that V* is an ¢-Slater maximin strategy,
Ve € R;. The corresponding ¢-Slater minimaxes and maximins form the set R (1.11),

ie. R©) =R, =R Ve € RS and

LIM p(ya(130,0,0,U%, V*)) = (0,-0) < AU, Va U] € R,
—0

E[}g p(yal150,0,0,U%,V?)) = (5,0) 2 py[V), V5[V e R

see (1.11) for each e-Slater minimax (maximin) strategy U(?) (V(¢)). Therefore relations
(1.6) are not valid for the example under consideration.

2. Games with a separable linear pay-off function. In this section it is
supposed in addition that every component of the vector pay-off function p(h[T]) =
(p1(h[T)),...,pNn(A[T))) of game (0.1) is a linear s.-continuous functional in M. It

will be shown that the controllable system = of (0.1) is described by the following
boundary-value problems:

0’y“) (1) .
W_ = Ay"" + byuy + 0.5/, in G = (t,T)x N,
AR
2.1 " =05y, —5— =05y, i
( ) V|‘_‘° Yo ot I‘-.o 0 5!Ih in
oy
a.a—’:“— + o3y = byuz + 050 in £ = (to,T) x T,
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and
87y .
= 4y 4 e + 05 in G = (t0,T) X 9,
(2)
2.2 @ o5y, o 05y, i
( ) y|‘=‘° Yo, ot |‘=‘° 0 Sy, in Q
y(® @) .
0 v + 029" = a2+ 0.5f;in £ = (8, T) x I

Let us remind that all the coefficients of (2.1) and (2.2) satisfy all the conditions given

in the Introduction.
The following two multicriterial dynamic problems will correspond to differen-
tial game (0.1)

(2.3) EDVn(hD(T)}en)  and

(2.4) (=0 u, {—pe(h“)(T))}‘EN).h(j) = (yV),8yV)/81),5 = 1,2.

Setting & = {0}, the following definition is obtained from [12, Definition 2]

Definition 2.1. Lete = (¢y,...,65) € R';' be a fized vector. The strategy
V¢ €V is called an ¢ -Slater mazimal strategy of problem (2.3) if there erists a constant
8(¢) > 0 such that for VV € V and for VD[] € h[; po, V] with 6(A)S6(e), the
following vector inequality is valid:

(2.5) p(hD(T)) - € ¥ %xhg’tr;m, Vo).

The vector LIM p(hg)[T;po, V*?]) is called an ¢-Slater mazimum of problem (2.3).
§—0

From [12, Theorem 3], there exist an ¢-Slater maximal strategy and an &-Slater
maximum of problem (2.3), Ve € RY.

Now it is supposed that the sets &/ and V consist only of program strategies.

The following assertion is formulated:

Lemma 2.1. Lety(.), yY)(.), j = 1,2 be the solutions of problems (0.2) —
(0.4), (2.1) and (2.2) for u = (uy,u3) € P(t) and v = (vy,v3) € Q(t). Let h(.) =
(¥(.),dy(.)/8t) and hV)(.) = (y1)(.),dyY)(.)/81), j = 1,2. Then h = h(") 4 K2,

Let us remind that the solutions of the above problems are used in sense of (4,
Theorem 4.1] and A(.) and AU)(.), j = 1,2 belong to C([to, T, ), (12, Theorem 1).

Let hal.; po, U, V], hQ)[it0,0.590,0.591, U] and hS)[.; to, 0.5y0, 0.5y, V], (where
Po = (to, %o, %)) be the step motions corresponding to (0.2)-(0.4), (2.1) and (2.2), and
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caused by the program strategies U + u = (u1,u3) and V + v = (v1,v2)[12]. Then from
Lemma 2.1 the following equality holds:

halT;po, U, V] = hg)[T; to, 0.5y0, 0.5y, U]+
(2.6)
+h(A2)[T; to, 0.5y0, 0.51, V.

From [12, Definition 2], Definition 2.1 and (2.6), the following assertion is proved by
analogy with [5, p. 81, 82]

Lemma 2.2. Let the fized vector ¢ € RY be given and let U* € U and V* € V
be program strategies. Then the situation (U¢,V?) is an e-Slater saddle point of (0.1)
if and only if U* and V¢ are ¢-Slater mazimal strategies of problems (2.4) and (2.3)
respectively.

If the positional (non-program) strategies are used for the construction of step
motions, then equality (2.6) and Lemma 2.2 are not valid. This fact is proved by the
following example.

Example 2.1 (Continuation of [12, Example]). Let us remind that the con-
trollable system = for game (0.1) is described by the following boundary-value problem

d%y/ot? = 9%y/8z* in G =(0,1)x (0,7),
(2.7) y(z,0) = (dy/dt)(z,0) =0 for z € Q2 = (0,7),
—(0y/0z)(0,t) = u(t) + v(t), (dy/dz)(x,t) =0 for t € (0,1).

Program and positional strategies will be used, where Py(t) = Q3(t) = [0,1]and Py(t) =
Q1(t) = @. The set of strategies of the first (second) player is denoted by U(V) as well.
The vector pay-off function has two components p(h(T')) = (p1(y(1)), p2(¥(1)))

= (fo" y(z,1)dz, —/0 y(z,1)dz). We should note that these components are linear

and s.-continuous functionals in M = L3(0,7) x (H}(0,7))".
Now we shall remind the constructing of the strategies U()) and V1) 5 = 0,1,2.
We take:

U© £ uOt) = 0, v + () = 0,vt € [0,1),
UM = uM(t) = 1, v s oW(t) = 1,V € [0,1).

Next let us proceed by constructing the positional strategies U(?) and V(?) Let the set §
satisfy the conditions of Example 1.1. Then it is said that the triplet (t,,1;, h) satisfies
Condition A, if t; and t; belong to S and A(t;) = (0,0). The strategies U(?) and v
are defined as follows: if the triplet (t;,13, h) satisfies Condition A, then U +u(?) =0
and V® = v = 1; otherwise U?) + u(?) = 1 and V() + (3 = 0.
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In the Example of [12] it was shown that the situation (U(?),V(?)), which con-
sists of non-program strategies, is an e-Slater saddle point, Ve € R?. At the same time
we shall prove the following

Theorem 2.1. Let ¢ = (£1,2) € RS and £, + €3 < ¢, where
1 1 T
(2.8) ¢ = 3o (u(150,0,0,U0, V) = / / dgdr.
o Jo

Then the strategy U(®) € U is not an £-Slater mazimal strategy of multicriterial problem
(2.4).

Proof. Let us point out that c is the same constant, defined in [12,Lemma 6).

Suppose the contrary. Then relation (2.5) for the strategy U(?) in problem (2.4)
can be formulated in the following equivalent form: .

There exists a constant §(¢) > 0 such that for every strategy U € U and for
th)[.] € h(Al)[.;to,O.5yo,0.5y1,U] with §(A)<4(¢), at least one of the following two
inequalities
(29) a0 +azlm swp ;v [15t0,0.5%,0.50, UP)

vy [16(8)s8

or

2100 (81D +ea2lim sup  pa(yy[1;t0,0.5%0,0.55, U]
0 s8)s8

are valid. Inequalities (2.9) and (2.10) are obtained from (2.5) (Definition 2.1), taking
into account the sign — in the criteria of (2.4). Since p; = —p;, multiplying (2.10) by
—1 we obtain that (2.10) can be written in the form

(2.11) pyN) - eSlim  inf  py(y§[1;0,0,0,U)).
520 Q1).8(8)58

Now we take into account the example in [12]. Thus we prove that inequalities
(2.9)-(2.11) take the form

(2.12) o (A1) + e12¢ or py(hE[1]) - €250,
where U is an arbitrary strategy and hg)[.] S hg)[.;0.0.0, U] is an arbitrary element

with §(A)<é(¢). Inequality (2.12) is analogous to (12, (25)). Using a suitable construc-
tion as in [12, Example] we conclude that for each a and b such that 0Sa < bSc there

exist ¢ € (a,b) and A® with §(A®) < §(¢) so that the following equality holds

(2.13) Pl(hg(?)[l;otooov U(’)]) =0
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Relation (2.13) is analogous to [12, (26)). Let & = (¢1,£2) € R3 and &) +&; < c. Then,
the number @ can be chosen so that Z € (£3,¢ — £1) and for the step motion hy@[.] =
(va@[), ¥y@[]), corresponding to (2.13), none of inequalities (2.12) is satisfied. This

shows, that relation (2.5) is not valid, i.e. U (3) is not an &-Slater maximal strategy,
Ve = (£1,€2) € R2 €1 + €3 < c. The proof is completed.

Theorem 2.2. Equality (2.6) is not valid for the positional situation (U @,y
EUXV.

Proof. Let us take the partition A’ so that m(A’) = 2 and the partition A’
is defined by the points 7o = 0, 7; € (0,1) is an arbitrary point of § and m; = 1. Then
for the step motions ha/[.;0,0, 0,U@, v, hﬂ,’[.;o, 0,0,U?)] and h‘A’,’[.;o,o,o, v,
corresponding to problems (0.2)-(0.4), (2.1) and (2.2), the following inequality will be
proved:

(2.14) ya[1;0,0,0,UD, V@] # y0)(1;0,0,0,U™] + y{(1;0,0,0, V).
Let the constant ¢ be defined as in (2.8). Using the proof of [12, Lemma 6], we obtain:
(215) Pl(yA'[l;ov 0,0, U(z)v V(z)]) =c,

since for every partition A’ € A, u(®(t) + v(3)(t) = 1, Vt € (0, 1), where the functions
u(2)(t) and v(?)(t) correspond to the strategies U and V(). The points 79, 7, and 73
belong to S and hence

(2.16) p1(¥[150,0,0,UP)) = py(har[150,0,0,U), V) = o,

since Condition A is satisfied for the triplets (7o = 0,7, h) and (7,72 = 1, h) and then
u@(t) = 0,Vt € (0,1).
Now we shall prove that

(2.17) pl(y(A’,)[l;O.O,O.Vm]) =c', where 0 < ¢ <e.
The solution y(t) of (2.7) for fixed functions u(t) and v(t) is of the form

t pr
yt)y =" /0 /o (u(€) + v(€)|dEdr+

(2.18) + zj-le(o)/o‘[u(r) + v(7)]sin j(t = 7)drw;(z),

)=1
where w;(z) = /2/x cosjz,[12].
Now we take into account that Condition A is satisfied for the triplet (0,7,,h). Then

(2.19) wA(t)=0, v?(t)=1, Vte (0,n)
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and using (2.18), (2.19) and the proof of [12, Lemma 6], it follows that

x n T
(2.20) / var[r1;0,0,0,U®, v®)dz = / / dédr > 0,
0 o Jo
-
since / wj(z)dz = 0, see [12, Example]. From (2.20) we obtain that
0

(2.21) var[n] % var[n;0,0,0,U@, V@] £ 0

and then Condition A is not satisfied for the triplet (7, 1,h = (yar[.], ¥4/[.])-
Thus, from (2.19) and (2.21), it follows that

(2.22) v(t) = 1, Vt € (0,m) and v(t) = 0, Vt € (1, 1).
Using (2.18), (2.22), (2.8) and the proof of [12, Lemma 6] we obtain:

pl(y(:.)[l; 0,0,0, V(z)]) = p1(ya[150,0,0, v, V(z)]) =

=/ol/o'v(z)(f)d{dr=c'<c=/ol/o,dfd"',

where v(?)(.) is defined from (2.22), i.e. (2.17) is proved. From (2.15), (2.16) and (2.17),
the following relations are obtained:

(2.23)

pr(va[10,0,0,UD, V) = ¢ # pr(32)[1;0,0,0, U]+
(2.24)
+(y2)11;0,0,0,V®)) = ¢,

since 0 < ¢ < c, see (2.23). From (2.24) it follows that (2.14) is proved, which shows
that equality (2.6) is not valid for the positional strategies U® and V(). The theorem
is proved.

REFERENCES

(1) G. LEITMANN. Cooperative and noncooperative many players differential games.
Springer-Verlag, 1974.

(2] J. H. CASE. A class of games having Pareto optimal Nash equilibria. J. Optimiz.
Theory and Appl., 13, 3 (1974), 379-385.

(3] A&K.-J1. JInonc, 9. MANXKEHEC. Heomsopomunie rpaHMvHbLIe 3ala4M M HX
npuaoxennn. Mup, Mocksa, 1971.



256
(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

Diko M. Souroujon

J.-L. LioNs, E.MAGENES. Problémes aux limites non homogénes et applications,
vol. 2. Dunod, Paris, 1968.

B. U. Kykosckult, B. C. MonocTBOB. MEOrokpurepuajJbHasd ONTHMH3a-
IMA CHCTeM B YCJOBMAX HemoJaHON uHPopMammu. MexnyHapoannii Hay4HO-
HCCle IOBATEeILCKMI MHECTATYT npobiem ynpasienus, Mocksa, 1990.

B. U. &Kykosckuit, H. T. ToiHAHCKUH. PaBHOBecHbIe ynpaB/ieHUs MHOIOK-
pUTepHaIbHBIX JMHAMUYECKAX CHCTeM. MTI'Y, Mocksa, 1984.

B. B. NoaunoBckuif, B. JI. Horuu. Ilapero—onTuMaabHble pelleHEUs MHO-
rokpuTepuatbEnX 3ana4d. Hayka, Mocksa, 1982.

. U. Kutomuprckuif, B. A. MATBEEB. MakcuMHMH M ce/uioBasA TO4YKa U0
Cnetitepy. MHOrokpuTepuaibHble CACTEMBl, NP HeoNpele]eHHOCTH M HX
OPUJIOKEeHUA. MexBy30Bckuii cGOpHMK Hay4HBIX TPYIOB, Yenabunackuit ro-
cynapcTpennni#t yausepcuter, Yenabunck, BI'Y, 1988, 29-33.

A. U. KopoTkuli. O6 annpokcuManuy 3alay NO3MIMOHHOIO yOpaBJIeHMA.
ITMM, 44, 6 (1980), 1010-1018.

O. A. JIansikenckas, H. H. YPANbUEBA. Jluneitabie ¥ KBa3suIuHelHbIe
yPaBHEHUA 3JIIMNTUYECKOro TUla. Hayka, Mocksa, 1973.

A. . BYTKOBCKMH. MeToaml yuopaBJieHMA CHCTEMaMM C paclnpelie/leHHbIMH
napamerpamu. Hayka, Mocksa, 1975.

D. M. SourouJON. Vector e-saddle points in a differential game described by a
hyperbolic system. Serdica, 20 (1994), 24-41.

Varna University of Economics
Knyaz Boris [ Boul. 77

9002

Varna Received 02.06.1993

BULGARIA Revised 25.01.1994



