


SERDICA — Bulgaricae
mathematicae publicationes
20 (1994) 257-268

SOME RESULTS ON THE COMMUTATIVE NEUTRIX

PRODUCT OF DISTRIBUTIONS

ADEM KILIÇMAN, BRIAN FISHER

Abstract. Let f, g be distributions in D′ and let fn = f ∗ δn, gn = g ∗ δn, where
{δn} is a certain sequence converging to the Dirac delta-function. The neutrix
product f�g is said to exist and be equal to h if

N−lim
n→∞

〈fngn, φ〉 = 〈h, φ〉

for all φ in D. Neutrix products of the form lnx+�δ(s)(x) and x−s

+ �δ(s)(x) are
evaluated from which further neutrix products are obtained.

The following definition of a neutrix was given by van der Corput [1]:

Difinition 1. Let N be an additive group of functions defined on a set N ′

with values in an additive group N ′′ with the property that the only constant function
in N is the zero function. Then N is said to be a neutrix and the functions in N are
said to be negligible.

Example 1. Let N ′ = N ′′ = R, the real numbers and let N be the set of
real-valued functions of the form

N = {asinx+ bcos x : a, b ∈ R}.

Then N is a neutrix.

Now suppose N ′ is a subspace of a topological space X having an accumulation
point y which is not in N ′. Let N ′′ = R (or C the complex numbers). Let N be an
additive group of real (or complex) valued functions defined on N ′, with the property
that if N contains a function ν(x) which converges to a finite limit c as x tends to y,
then c = 0. Then N is a neutrix, since if f is in N and f(x) = c for all x in N ′, then
limx→y f(x) = c implies c = 0.

This leads us to the following definition:
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Difinition 2. Let f be a real (or complex) valued function on N ′ and suppose
there exists c in R (or C) such that f(x)− c is in N . Then c is called the neutrix limit
of f(x) as x tends to y and we write

N−lim
x→y

f(x) = c.

Notice that if a neutrix limit c exists then it is unique, since if f(x) − c and
f(x) − c′ are in N , then

c− c′ ∈ N ⇒ c = c′.

Also notice that if N is a neutrix containing the set of all functions which
converge to zero in the normal sense as x tends to y, then

lim
x→y

f(x) = c⇒ N−lim
x→y

f(x) = c.

From now on, the neutrix N we will use will have domain the positive integers,
range the real numbers with negligible functions finite linear sums of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the normal sense as n tends to infinity.

Example 2. The Gamma function Γ(x) is defined for x > 0 by

Γ(x) =

∫

∞

0
tx−1e−t dt,

but more generally we have

Γ(r)(x) = N−lim
n→∞

∫

∞

1/n
tx−1 lnr te−t dt

for x 6= 0,−1,−2, . . . and r = 0, 1, 2, . . . , see [7].

Example 3. The Beta function B(x, y) is defined for x, y > 0 by

B(x, y) =

∫ 1

0
tx−1(1 − t)y−1 dt,

but more generally, if

Br,s(x, y) =
∂r+s

∂rx∂sy
B(x, y),

we have

Br,s(x, y) = N−lim
n→∞

∫ 1−1/n

1/n
tx−1 lnr t(1 − t)y−1 lns(1 − t) dt
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for x, y 6= 0,−1,−2, . . . and r, s = 0, 1, 2, . . ., see [8].

Example 4. The distribution xλ
+ is defined

〈xλ
+, φ(x)〉 =

∫

∞

0
xλφ(x) dx

for x > −1 and by

〈xλ
+, φ(x)〉 =

∫

∞

0
xλ
[

φ(x) −
m−1
∑

i=0

xi

i!
φ(i)(0)

]

dx

for −m− 1 < λ < −m and arbitrary φ in D, but more generally,

〈xλ
+ lnr x, φ(x)〉 = N−lim

n→∞

∫

∞

1/n
xλ lnr xφ(x) dx

for λ 6= −1,−2, . . . and r = 0, 1, 2, . . . , see [6].

We now let ρ(x) be any infinitely differentiable function having the following
properties:

(i) ρ(x) =0 for |x| ≥ 1,

(ii) ρ(x) ≥ 0,

(iii) ρ(x) = ρ(−x),

(iv)

∫ 1

−1
ρ(x) dx = 1.

Putting δn(x) = nρ(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular sequence
of infinitely differentiable functions converging to the Dirac delta-function δ(x).

Now let D be the space of infinitely differentiable functions with compact sup-
port and let D′ be the space of distributions defined on D. Then if f is an arbitrary
distribution in D′, we define

fn(x) = (f ∗ δn)(x) = 〈f(t), δn(x− t)〉

for n = 1, 2, . . . . It follows that {fn(x)} is a regular sequence of infinitely differentiable
functions converging to the distribution f .

The following definition for the product of two distributions was given in [3].

Difinition 3. Let f and g be distributions in D′ and let fn = f ∗ δn and
gn = g ∗ δn. We say that the neutrix product f�g of f and g exists and is equal to the
distribution h on the interval (a, b) if

N−lim
n→∞

〈fngn, φ〉 = 〈h, φ〉
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for all functions φ in D with support contained in the interval (a, b). If

lim
n→∞

〈fngn, φ〉 = 〈h, φ〉,

we simply say that the product f.g exists and equals h, see [2].

This definition of the neutrix product is clearly commutative. A non–commu-
tative neutrix product, denoted by f ◦ g, was considered in [5].

We now prove the following theorem.

Theorem 1. Let f and g be distributions in D′ and suppose that the neutrix
products f�g(i) exist on the interval (a, b) for i = 0, 1, . . . , r. Then the neutrix products
f (k)

�g exist on the interval (a, b) and

(1) f (k)
�g =

k
∑

i=0

(

k

i

)

(−1)i[f�g(i)](k−i)

k = 1, 2, . . . , r.

P r o o f. Let φ be an arbitrary function in D with support contained in the
interval (a, b) and suppose that the neutrix products f�g(i) exist on the interval (a, b)
for i = 0, 1, . . . , r . Put

fn = f ∗ δn, gn = g ∗ δn.

Then

〈f�g, φ〉 = N−lim
n→∞

〈fn, gnφ〉,

〈f�g′, φ〉 = N−lim
n→∞

〈f, g′nφ〉.

Further

〈(f�g)′, φ〉 = −〈f�g, φ′〉 = −N−lim
n→∞

〈fn, gnφ
′〉

= −N−lim
n→∞

〈fn, (gnφ)′ − g′nφ〉

= N−lim
n→∞

〈f ′n, gnφ〉 + N−lim
n→∞

〈fn, g
′

nφ〉

and so

N−lim
n→∞

〈f ′n, gnφ〉 = 〈(f�g)′, φ〉 − 〈f�g′, φ〉.

This proves that the neutrix product f ′�g exists and satisfies equation (1) for the case
k = 1. Thus

(2) (f�g)′ = f ′�g + f�g′.
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Now suppose that equation (1) holds for some k < r. Then by our assumption,
the neutrix product f (k)

�g exists and using equation (2) we have

[f (k)
�g]′ = f (k+1)

�g + f (k)
�g′

= f (k+1)
�g +

k
∑

i=0

(

k

i

)

(−1)i[f�g(i+1)](k−i)

=
k
∑

i=0

(

k

i

)

(−1)i[f�g(i)](k−i+1).

Thus

f (k+1)
�g =

k
∑

i=0

(

k

i

)

(−1)i[f�g(i)](k−i+1) +
k+1
∑

i=1

(

k

i− 1

)

(−1)i[f�g(i)](k−i+1)

=
k+1
∑

i=0

(

k + 1

i

)

(−1)i[f�g(i)](k−i+1).

Equation (1) now follows by induction.

The following two theorems hold, see [4] and [12] respectively.

Theorem 2. The neutrix product xr
+�δ(s)(x) exists and

(3) xr
+�δ(s)(x) =

(−1)rs!

2(s− r)!
δ(s−r)(x),

for r = 0, 1, 2, . . . and s = r + 1, r + 2, . . ..

Theorem 3. The neutrix product x−r
�δ(s)(x) exists and

(4) x−r
�δ(s)(x) = crsδ

(r+s)(x),

where

crs =
(−1)s−1

(r − 1)!(r + s)!

∫ 1

−1
vr+sρ(s)(v)

∫ 1

−1
ln |v − u|ρ(r)(u) du dv,

for r = 1, 2, . . . and s = 0, 1, 2, . . . In particular

(5) x−r.δ(r−1)(x) =
(−1)rr!

(2r)!
δ(2r−1)(x),

for r = 1, 2, . . . . Further,

(6)
(−1)s

(s− 1)!
x−r

�δ(s−1)(x) +
(−1)r

(r − 1)!
x−s

�δ(r−1)(x) =
(−1)r+s

(r + s− 1)!
δ(r+s−1)(x),
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for r, s = 1, 2, . . . .

Note that in the following, the distributions x−r
+ and x−r

−
are defined by

x−r
+ =

(−1)r−1

(r − 1)!
(lnx+)(r), x−r

−
= −

1

(r − 1)!
(lnx−)(r)

for r = 1, 2, . . . and not as in Gel’fand and Shilov [9].

The neutrix product x−r
+ �δ(r−1)(x) was considered in [3] where it was proved

that

x−r
+ �δ(r−1)(x) =

(−1)rr!

2(2r)!
δ(2r−1)(x)

for r = 1, 2, . . .

We now prove the following generalization of this result.

Theorem 4. The neutrix products lnx+�δ(s)(x), lnx−�δ(s)(x), ln |x|�δ(s)(x),
x−r

+ �δ(s)(x) and x−r
−

�δ(s)(x) exist and

lnx+�δ(s)(x) = bsδ
(s)(x)

= (−1)s lnx−�δ(s)(x)

= 1
2 ln |x|�δ(s)(x),

where

bs =
1

s!

∫ 1

−1
vsρ(s)(v)

∫ v

−1
ln(v − u)ρ(u) du dv

for s = 0, 1, 2, . . . and

x−r
+ �δ(s)(x) = 1

2 crsδ
(r+s)(x)

= (−1)rx−r
−

�δ(s)(x)

for r = 1, 2, . . . and s = 0, 1, 2, . . . . In particular

(12) x−r
+ �δ(r−1)(x) =

(−1)rr!

2(2r)!
δ(2r−1)(x),

for r = 1, 2, . . . Further,

(13)
(−1)s

(s− 1)!
x−r

+ �δ(s−1)(x) +
(−1)r

(r − 1)!
x−s

+ �δ(r−1)(x) =
(−1)r+s

(r + s− 1)!
δ(r+s−1)(x),

for r, s = 1, 2, . . .
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P r o o f. We put

(lnx+)n = lnx+ ∗ δn(x) =

∫ x

−1/n
ln(x− t)δn(t) dt

on the interval (−1/n, 1/n). Then

∫ 1/n

−1/n
(ln x+)nδ

(s)
n (x)xi dt =

∫ 1/n

−1/n
xiδ(s)(x)

∫ x

−1/n
ln(x− t)δn(t) dt dx

= ns−i
∫ 1

−1
viρ(s)(v)

∫ v

−1
ln(v − u)ρ(u) du dv − ns−i lnn

∫ 1

−1
viρ(s)(v)

∫ v

−1
ρ(u) du dv,

on making the substitutions nt = u and nx = v, for i = 0, 1, 2, . . .

It follows that

(14) N−lim
n→∞

∫ 1/n

−1/n
(lnx+)nδ

(s)
n (x)xi dx = 0,

for i = 0, 1, 2, . . . , s− 1 and

(15) N−lim
n→∞

∫ 1/n

−1/n
(ln x+)nδ

(s)
n (x)xs dx =

∫ 1

−1
vsρ(s)(v)

∫ v

−1
ln(v − u)ρ(u) du dv = s!bs,

(16) lim
n→∞

∫ 1/n

−1/n
(lnx+)nδ

(s)
n (x)xs+1 dx = 0.

Now let φ be an arbitrary function in D. Then

φ(x) =
s
∑

i=0

φ(i)(0)

i!
xi +

φ(s+1)(ξx)

(s+ 1)!
xs+1,

where 0 < ξ < 1. Using equations (14), (15) and (16), it follows that

N−lim
n→∞

〈(lnx+)nδ
(s)
n (x), φ(x)〉 = bsφ

(s)(0) = bsδ
(s)(x),

proving equation (7) for s = 0, 1, 2, . . .
Equation (8) follows on replacing x by −x in equation (7) and equation (9) then

follows on noting that ln |x| = lnx+ + lnx−.

Theorem 1 now shows us that the neutrix product x−r
+ �δ(s)(x) exists and

x−r
+ �δ(s)(x) =

r
∑

i=0

(

r

i

)

(−1)r+i−1

(r − 1)!
bs+iδ

(r+s)(x)

= (−1)rx−r
−

�δ(s)(x)
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on replacing x by −x. From equation (4) we have

x−r
�δ(s)(x) = x−r

+ �δ(s)(x) + (−1)rx−r
−

�δ(s)(x) = crsδ
(r+s)(x).

Equations (10), (11), (12) and (13) now follow and further we have

crs = 2
r
∑

i=0

(

r

i

)

(−1)r+i−1

(r − 1)!
bs+i

for r = 1, 2, . . . and s = 0, 1, 2, . . . In particular

r
∑

i=0

(

r

i

)

(−1)r+i−1

(r − 1)!
br+i−1 =

(−1)rr!

2(2r)!
,

for r = 1, 2, . . ., since

cr,r−1 =
(−1)rr!

2(2r)!
.

Thus each b2s+1 can be solved as a linear sum of b0, b2, . . . , b2s and so each crs is a linear
sum of b0, b2, . . . , b2s, . . .

Theorem 5. The neutrix products x−r
+ �xs

−
and x−r

−
�xs

+ exist and

x−r
+ �xs

−
=

r
∑

i=s+1

(−1)r−s+is!

(r − 1)!
bi−s−1δ

(r−s−1)(x)

= (−1)r−s−1x−r
−

�xs
+,

for r = 1, 2, . . . and s = 0, 1, . . . , r − 1.

P r o o f. The product of lnx+ and xs
−

is a straightforward product of locally
summable functions, see [2], and

(19) lnx+.x
s
−

= 0

for s = 0, 1, 2, . . . Putting g(x) = xs
−
, we have

g(i)(x) =











(−1)is!

(s − i)!
xs−i
−
, 0 ≤ i ≤ s,

(−1)s+1s!δ(i−s−1)(x), i > s.

Thus, by equation (19) we have

lnx+.g
(i)(x) = 0
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for i = 0, 1, . . . , s and by equation (7) we have

lnx+�g(i)(x) = (−1)s+1s!bi−s−1δ
(i−s−1)(x)

for i = s+ 1, s+ 2, . . . It now follows from equation (1) that

(lnx+)(r)�g(x) = (−1)r−1(r − 1)!x−r
+ �xs

−

=
r
∑

i=0

(

r

i

)

(−1)i[lnx+�g(i)(x)](r−i)

=
r
∑

i=s+1

(

r

i

)

(−1)s+i−1s!bi−s−1δ
(r−s−1)(x).

Equation (17) follows immediately and equation (18) follows on replacing x by −x.

Theorem 6. The neutrix products x−r
+ �xs

+, x−r
−

�xs
−
, x−r

�xs
+ and x−r

�xs
−

exist and

x−r
+ �xs

+ = x−r+s
+ − (−1)r+sψ(r − s− 1) + ψ(r − 1)

(r − s− 1)!
δ(r−s−1)(x) +

−
r
∑

i=s+1

(−1)r+is!

(r − 1)!
bi−s−1δ

(r−s−1)(x),

x−r
−

�xs
−

= x−r+s
−

+
ψ(r − s− 1) + ψ(r − 1)

(r − s− 1)!
δ(r−s−1)(x) +

+
r
∑

i=s+1

(−1)s+is!

(r − 1)!
bi−s−1δ

(r−s−1)(x),

x−r
�xs

+ = x−r+s
+ − (−1)r+sψ(r − s− 1) + ψ(r − 1)

(r − s− 1)!
δ(r−s−1)(x) +

−
r
∑

i=s+1

2(−1)r+is!

(r − 1)!
bi−s−1δ

(r−s−1)(x),

x−r
�xs

−
= (−1)rx−r+s

−
+ (−1)r

ψ(r − s− 1) + ψ(r − 1)

(r − s− 1)!
δ(r−s−1)(x) +

+
r
∑

i=s+1

2(−1)r+s+is!

(r − 1)!
bi−s−1δ

(r−s−1)(x),

for r = 1, 2, . . . and s = 0, 1, . . . , r − 1.

P r o o f. The product of x−r
+ and the infinitely differentiable function xs is given

by

x−r
+ .xs = x−r+s

+ − (−1)r+sψ(r − s− 1) + ψ(r − 1)

(r − s− 1)!
δ(r−s−1)(x),
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for r = 1, 2, . . . and s = 0, 1, . . . , r − 1, see [9]. It follows that

x−r
+ �xs

+ = x−r
+ .xs − (−1)sx−r

+ �xs
−

= x−r+s
+ − (−1)r+sψ(r − s− 1) + ψ(r − 1)

(r − s− 1)!
δ(r−s−1)(x) +

−
r
∑

i=s+1

(−1)r+is!

(r − 1)!
bi−s−1δ

(r−s−1)(x)

proving equation (20).

Equation (21) now follows from equation (20) on replacing x by −x. Equation
(22) follows from equations (18) and (20) and then equation (23) follows from equation
(22) on replacing x by −x.

Theorem 7. The neutrix products (xr
+ lnx+)�δ(s)(x), (xr

−
lnx−)�δ(s)(x) and

(xr ln |x|)�δ(s)(x) exist and

(xr
+ lnx+)�δ(s)(x) =

(

s

r

)

(−1)rr!b0δ
(s−r)(x) +

+
s
∑

i=r+1

(

s

i

)

1
2 (−1)r(i− r − 1)!ci−r,0δ

(s−r)(x),

(xr
−

lnx−)�δ(s)(x) =

(

s

r

)

r!b0δ
(s−r)(x) +

s
∑

i=r+1

1
2 r!ci−r,0δ

(s−r)(x),

(xr ln |x|)�δ(s−r)(x) =

(

s

r

)

(−1)rr!b0δ
(s−r)(x) +

+
s
∑

i=r+1

(−1)r(i− r − 1)!ci−r,0δ
(s−r)(x),

for r = 0, 1, 2, . . . and s = r, r + 1, . . .

P r o o f. We define the function f(x+, r) by

f(x+, r) =
xr

+ lnx+ − ψ(r)xr
+

r!

and it follows easily by induction that

f (i)(x+, r) = f(x+, r − i),

for i = 0, 1, . . . , r. In particular,

f (r)(x+, r) = lnx+,
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so that
f (i)(x+, r) = (−1)i−r−1(i− r − 1)!x−i+r

+ ,

for i = r + 1, r + 2, . . . Now f (i)(x+, r) is a continuous function which is zero at the
origin for i = 0, 1, . . . , r − 1 and so

(27) f (i)(x+, r).δ(x) = 0,

for r = 0, 1, . . . , r − 1. Using equation (7) we have

(28) f (r)(x+, r)�δ(x) = b0δ(x)

and using equation (10) we have

(29) f (i)(x+, r)�δ(x) = − 1
2(−1)i−r−1(i− r − 1)!ci−r,0δ

(i−r)(x)

for i = r + 1, r + 2, . . .
Using equations (1), (27), (28) and (29) we have

f((x+, r)�δ
(s)(x) =

s
∑

i=0

(

s

i

)

(−1)i[f (i)(x+, r)�δ(x)]
(s−i)

=
s
∑

i=r

(

s

i

)

(−1)i[f (i)(x+, r)�δ(x)]
(s−i)

=

(

s

r

)

(−1)rb0δ
(s−r)(x) +

+
s
∑

i=r+1

(

s

i

)

1
2(−1)r(i− r − 1)!ci−r,0δ

(r−s)(x).

Thus
(xr

+ lnx+)�δ(s)(x) = r!f(x+, r)�δ
(s)(x) + ψ(r)xr

+�δ(s)(x)

and equation (24) follows on using equation (3).
Equation (25) now follows from equation (24) on replacing x by −x and equation

(26) follows on noting that

xr ln |x| = xr
+ lnx+ + (−1)rxr

−
lnx−.

For further related results, see Gramchev [10], and for a survey of recent results
and theories in the product of distributions, see Oberguggenberger [11].
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