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SOME RESULTS ON THE COMMUTATIVE NEUTRIX
PRODUCT OF DISTRIBUTIONS

ADEM KILICMAN, BRIAN FISHER

ABSTRACT. Let f, g be distributions in D’ and let f,, = f * dpn, gn = g * On, Where
{6n} is a certain sequence converging to the Dirac delta-function. The neutrix
product fg is said to exist and be equal to A if

N—lim<fngn; ¢> = <h7 ¢>

n—oo

for all ¢ in D. Neutrix products of the form Inz,06¢)(z) and 2°06¢) (z) are
evaluated from which further neutrix products are obtained.

The following definition of a neutrix was given by van der Corput [1]:

Difinition 1. Let N be an additive group of functions defined on a set N’
with values in an additive group N" with the property that the only constant function
i N is the zero function. Then N is said to be a neutriz and the functions in N are
said to be negligible.

Example 1. Let N’ = N” = R, the real numbers and let N be the set of
real-valued functions of the form

N = {asinx + bcosx : a,b € R}.

Then N is a neutrix.

Now suppose N’ is a subspace of a topological space X having an accumulation
point y which is not in N’. Let N” = R (or C the complex numbers). Let N be an
additive group of real (or complex) valued functions defined on N’, with the property
that if NV contains a function v(z) which converges to a finite limit ¢ as z tends to y,
then ¢ = 0. Then N is a neutrix, since if f is in N and f(x) = ¢ for all  in N’ then
lim,_,, f(z) = c implies ¢ = 0.

This leads us to the following definition:
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Difinition 2. Let f be a real (or complex) valued function on N’ and suppose
there exists ¢ in R (or C) such that f(x) —c is in N. Then c is called the neutriz limit
of f(z) as x tends to y and we write

N—lim f(z) = ¢

r—Y

Notice that if a neutrix limit ¢ exists then it is unique, since if f(z) — ¢ and
f(z) — ¢ are in N, then
c—cdeN=c=/.

Also notice that if N is a neutrix containing the set of all functions which
converge to zero in the normal sense as x tends to y, then

lim f(z) =c¢= N—-lim f(z) =c.

=Y T—Y

From now on, the neutrix N we will use will have domain the positive integers,
range the real numbers with negligible functions finite linear sums of the functions

Pn" o, In"n: A>0, r=1,2,...

and all functions which converge to zero in the normal sense as n tends to infinity.
Example 2. The Gamma function I'(x) is defined for x > 0 by

o0
I'(x) :/ t* et dt,
0

but more generally we have

e}
'™ (z) = N—lim t* " te~t dt

n—oo J1/n

forz #0,-1,-2,... and r=0,1,2,... , see [7].
Example 3. The Beta function B(z,y) is defined for x,y > 0 by

1
Blay) = [ e 1— 0t

but more generally, if

ar-{—s
BT,S(xv y) = 8TxasyB($7 y)u
we have
1-1/n
B, s(7,y) = N—lim " n"t(1 — )Y 1 In®(1 — t) dt

n—oo J1/n
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for z,y #0,—1,-2,... and r,s = 0,1,2, ..., see [8].
Example 4. The distribution :L‘ﬁ‘r is defined

@ o@) = [ o) da

for x > —1 and by

@ho@) = [ o) -
for —m — 1 < A < —m and arbitrary ¢ in D, but more generally,

o0
(z In" z, ¢(2)) = N—lim 2 In" z¢(z) dz
n—oo J1/n
for A\ —1,-2,...and r =0,1,2,..., see [6].
We now let p(z) be any infinitely differentiable function having the following
properties:
(i) p(x) =0 for |x| > 1,
(i) plr) >0,
(iif) ~ p(z) = p(=2),
(iv) /1 p(z)de = 1.
Putting 4, (z) = np(nzx) for n = 1,2,... , it follows that {d,(x)} is a regular sequence
of infinitely differentiable functions converging to the Dirac delta-function §(z).
Now let D be the space of infinitely differentiable functions with compact sup-
port and let D’ be the space of distributions defined on D. Then if f is an arbitrary
distribution in D', we define

fa@) = (f % 0n)(x) = (f(t),0n(z — 1))

forn=1,2,.... It follows that {f,(z)} is a regular sequence of infinitely differentiable
functions converging to the distribution f.
The following definition for the product of two distributions was given in [3].

Difinition 3.  Let f and g be distributions in D' and let f, = f * 6, and
gn = g * 0. We say that the neutriz product fOg of f and g exists and is equal to the
distribution h on the interval (a,b) if

N_lim<fngn> ¢> = <h? ¢>

n—oo
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for all functions ¢ in D with support contained in the interval (a,b). If
lim (fugu. 6) = (h. ),
we simply say that the product f.g exists and equals h, see [2].

This definition of the neutrix product is clearly commutative. A non—commu-
tative neutrix product, denoted by f o g, was considered in [5].
We now prove the following theorem.

Theorem 1. Let f and g be distributions in D' and suppose that the neutrix
products fOg® exist on the interval (a,b) fori=0,1,...,7. Then the neutriz products
f®0g exist on the interval (a,b) and

k
(1) FMog Z() ) [f0g )¢

k=1,2,...,r.

Proof. Let ¢ be an arbitrary function in D with support contained in the
interval (a,b) and suppose that the neutrix products fOg(") exist on the interval (a, b)
fori=0,1,...,r . Put

Jn=1Ff*0n, Ggn=g*n.

Then
<ng’ ¢> = lelgom<fmgn¢>a
(f0d',¢) = N—lim(f,g,é).
Further
((fOg),¢) = —(fOg,¢) Z—N—lim<fmgn¢'>
= N hm(fnv (gn¢) - giz¢>
Nl f).gu6) + N-lim{ . 51)
and so

N—lim(f;, .9) = ((/09)',6) = (fOg',6).

This proves that the neutrix product f'Og exists and satisfies equation (1) for the case
k = 1. Thus

(2) (fOg)" = f'Og+ fO¢'.



Some Results on the Commutative Neutrix Product. . .

261

Now suppose that equation (1) holds for some k < r. Then by our assumption,

the neutrix product f*)0g exists and using equation (2) we have

[FPog’ = & Yog+ fM0g
_ ) Dg+z<k> (1) [fOgli+D] k=)
. =0
= Z() ) [fog@)EED,
1=0
Thus
(k+1) N0 T TRt S < (0 I WO RO A
D D W (G VR +2 |, ) D10
=0 i=1
k+1
- (’”1)< 1)/ [f0g )i,
i—0 \ !

Equation (1) now follows by induction.
The following two theorems hold, see [4] and [12] respectively.

Theorem 2. The neutriz product x',006®) (z) exists and

3) 2,000 (z) = %5“—” (2),

forr=0,1,2,...ands=r+1,r+2,....

Theorem 3. The neutriz product z~"00) (z) exists and

(4) 27"06%) (2) = 607 (1),
where (1)1

Crs = m/ o™t pl)( / In v — u|p™ (u) du dv,
forr=1,2,... and s =0,1,2,... In particular
(5) 260 (2) = (_(2172;;"!5@”)(3;),
forr=1,2,... . Further,

(1t

Cp— 1)!5(”+3_1)($),

(6) (iil)lz!x_TDé(S_l)(x) " é‘_ﬂ}yﬁmﬂ%”(@ -



262 Adem Kiligman, Brian Fisher

forr,s=1,2,....

Note that in the following, the distributions 7" and x_" are defined by

_1\r—1

for r =1,2,... and not as in Gel’fand and Shilov [9].
The neutrix product 23067~V (x) was considered in [3] where it was proved
that

e —1)"r! g,
2060 (2) = %5(2 ()

forr=1,2,...
We now prove the following generalization of this result.

Theorem 4. The neutriz products In z .06 (x), Inz_06) (), In |z|06®) (),
27"06%) () and x="06C) (z) ewist and

Inz, 00 (2) = b6® (z)
(=1)%Inz_06% (z)
= %ln|x\D(5(s)(ﬁv),

bs = '/ v®p¥)( / In(v — u)p(u) du dv
s

fors=0,1,2,... and

where

a:;TD(S(S) (x) = %crsd(rH) (x)
= (=1)" 2= 06" ()
forr=1,2,... and s =0,1,2,... . In particular
—1)"pr!
(12) 27060 (z) = &5(27’—1)@)7

2(2r)!

forr=1,2,... Further,

_15 _17’ 1r+s
(13) i )1:(;:"D<s<sl>(x)+§ S sty = S Ut (),
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Proof. We put
T

(Inzy)y, =Inzy x 0, (x) = /—1/n In(z — t)d,(t)dt

on the interval (=1/n,1/n). Then

1/n . 1/n . T
/ (In 24 )6 (2)a dt = / 2160 () / In(x — £)5, (1) dt da

—-1/n 1/n —1/n

) 1 v
_ nsfz/ ) (s / ln U . ’LL )du dv — ns¢ lIlTL/ ,UZP(S) (’l))/ p(u) du dU,

-1 -1

on making the substitutions nt = v and nz = v, for i =0,1,2,...
It follows that

1/n

(14) N—lim (In 24 )68 (2)2 da = 0,
n—oo J_1/n
fori=0,1,2,...,s — 1 and
1/n
(15) N—lim (In 24 )0 (z)2® da = / *pl)( / In(v — u)p(u) dudv = slbs,
n—oo J_1/n
1/n
(16) lim (In 24 ), 0% ()25 dz = 0.

n—o0 J_1/p
Now let ¢ be an arbitrary function in D. Then

L ¢0(0) ; ¢t (r) |
) I i R

¢(z) =

1=0

where 0 < £ < 1. Using equations (14), (15) and (16), it follows that

N—lim{(In 2, )n0%) (z), p(z)) = by¢®) (0) = b6 (),

n—oo

proving equation (7) for s =0,1,2,...

Equation (8) follows on replacing x by —x in equation (7) and equation (9) then
follows on noting that In|z| =lnz; +Inx_.

Theorem 1 now shows us that the neutrix product 23 "05(*)(x) exists and

r r\ (—1)" i—1
xjrrljé(s)(x) = Z()%bs+25(r+s)(fx)

i—0 \’

= (=1)"2="06®) (z)



264 Adem Kiligman, Brian Fisher
on replacing x by —x. From equation (4) we have
2708 (2) = 277060 (2) + (=1)"22"060) (2) = .50 ().

Equations (10), (11), (12) and (13) now follow and further we have
r r (_1)r+i71
—9 S A A
rs g <’L> (r—11 "
forr=1,2,... and s =0,1,2,... In particular

N N B G U

7

i=0
forr =1,2,..., since
(=1)"r!
Crp_1 = ——r.
nr 2(2r)!
Thus each bos 11 can be solved as a linear sum of by, b, ..., bas and so each ¢, is a linear
sum of by, b, ..., bog, ...

Theorem 5. The neutriz products x7"Ux® and x~”"0Ox? exist and

z "0z = Z ) 2y
= (-1 taT 02t

forr=1,2,... and s=0,1,...,r — 1.

Proof. The product of Inz, and x* is a straightforward product of locally
summable functions, see [2], and

(19) Inzi.x? =0

for s =0,1,2,... Putting g(x) = z° , we have
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fori =0,1,...,s and by equation (7) we have
Iz OgW () = (=1)* slb g 160757 (@)
fori=s+1,s+2,... It now follows from equation (1) that

(nz)MOg(z) = (=1 (r — Dl O2®

= > () (~ 1)z g ()
=0

1
_ r s+i—1_1p. (r—s—1)
= Z . (—1) 3!62_5_1(5 (.1‘)
1=s+1 t
Equation (17) follows immediately and equation (18) follows on replacing = by —z.

Theorem 6. The neutriz products x7"Ox’, x_"0Ox®, 27 "0z% and 2~ "Ox®
erist and

risPr—s =1 +9(r —1)

—r _ —r+s (r—s—1)
e "0z = a7 (-1 r—s—1) o (@) +
r—l—z
- Z 8' 2 sflé(risil)(x%
i=s+1 T _1
_ _ Y(r—s—=1)+¢vr—1)
TOps = r+s (r—s—1)
zZ"0x% x4 (r 1) 0 () +
s+zs| e
+ Z ’I” — 1 z sflé(r 2 (.I),
i=s+1
—r s _ —7’+s [ q1\r+s ¢(T — 85— 1) + ¢(T B 1) (r—s—1)
z "0z, = x (-1) —s_1) ) (x) +
r+18[
-3 2 o b T @),
1=s5+1
—Tr.S . (_\T TS o rw(r —S5— 1) + w(T — 1) (r—s—1)
x"02% = (—1)"z27+ (1) —s_1) 5 (x) +
"L 2(=1)rtstisl

bis18775 Y (a),
i=s+1 (r=nt
forr=1,2,... and s=0,1,...,r — 1.

Proof. The product of 27" and the infinitely differentiable function z* is given
by
—r+s _ (_1)r+s w(T — s 1) + w(T — 1)5(r—s—1)($)

Tyt =y (r—s—1)!
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forr=1,2,...and s =0,1,...,7 — 1, see [9]. It follows that

r"0xf = 2] .2® — (=1)% "0z
r s W(r—s—=1)+9%(r—-1) _._
= xy +S_(_1) 4 ( (T_S)_l)$ )5( 1)(.T)—|—
r+zs|
_ Z T - 1 3_15(T_3_1)(.1‘)
1=s+1

proving equation (20).
Equation (21) now follows from equation (20) on replacing x by —z. Equation

(22) follows from equations (18) and (20) and then equation (23) follows from equation
(22) on replacing x by —zx.

Theorem 7. The neutriz products (x', In 2, )05 (z), (2" Inz_ )06 (z) and
(2" In|2))O6®) () exist and

(milanDd(s)(x) = (i)(—l)rrlboé(s_”(@')"‘

+ Z ()% (i — 1 — Dlei 00 (2),

i=r+1

(z" ln:z:,)Dé(s)(a:) = <r>rlbo5(s T) Z Lole, To(g(s T)( ),

i=r+1

(@[OS (@) = () (1) 1B () +
Y

) (i —r—1leim 7'0(5( (z),
i=r+1

forr=0,1,2,... and s=r,7r+1,...
Proof. We define the function f(z4,r) by

1 _ 'S
o) = DT 0

and it follows easily by induction that

f(@r,r) = flag,r =),

fori=0,1,...,r. In particular,

f(r)(erar) = an:Jra
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so that '
FOeyr) = (17— = Dl
fori =r+1,7+2,... Now f® (z4+,r) is a continuous function which is zero at the
origin for t =0,1,...,r — 1 and so
(27) FO(as,m).6(2) =0,

for r=0,1,...,r — 1. Using equation (7) we have

(28) FO) 2y, m)08(2) = bod(x)

and using equation (10) we have
(29) FO (., r)06(x) = — L(=1)7 7 i — 1 — 1)lei_n000 ) ()

fori=r+1,r+2,...
Using equations (1), (27), (28) and (29) we have

S

) (—1) [f(i) (24, T)D(S(x)](sfi)

1

Fl(ze,1)269 (2) = Y

|
(

3

i=r

3 (e

(27 Inz )06 (x) = rif (x4, )08 (2) + ¢ (r)27.06) (z)

and equation (24) follows on using equation (3).
Equation (25) now follows from equation (24) on replacing = by —x and equation
(26) follows on noting that

j)<—1>"[f<i><x+,r>ma<x>1<s“

) (i —r—1Dlej—y 05(T ) ().

l\?l»—\

Thus

' Infz| =2 Inxy +(-1)"2" Inz_.

For further related results, see Gramchev [10], and for a survey of recent results
and theories in the product of distributions, see Oberguggenberger [11].
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