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BOUNDEDNESS AND RANGE OF H-TRANSFORMATION ON
CERTAIN WEIGHTED £, SPACES

J. J. BETANCOR, C. JEREZ DIAZ

ABSTRACT. In this paper we study the behaviour of an integral transformation
containing in its kernel a Fox H-function on certain weighted £, spaces denoted
by L. Boundedness, representation and range of H-transformation on £, are
analyzed.

1. Introduction. In a series of papers P.G. Rooney ([13],[14],[15],[16]) and
P.G. Rooney and P. Heywood ([5],[6]) have investigated a lot of integral transformations
on certain weighted £, spaces. The above authors employed a procedure in which the
multipliers for the Mellin integral transformation play an important role. Also A.C.
McBride and W.J. Spratt ([8],[9],[10]) have studied Mellin multiplier transforms on
Fréchet spaces with seminorms of £, type.

In [16] P.G. Rooney studied those integral transformations 7 that formally have
the form:

(1 ) = [ g (m

at,...,ap

) ft)dt,

bi,....bg

at,...,ap

where Qg}én (z
b1 7---7bq

him [15] and constituted, for every v € R and 1<r < oo, by those Lebesgue-measurable
complex—valued functions f defined on (0,00) such that

1flly.r = {/OOO 27 f ()] d—x} < 0.

) denotes the Meijer function [4] on the spaces £, introduced by

X

He obtained results on the boundedness, representation and range for the transforma-
tion under consideration. Moreover, some cases in which (1) has an inverse in the same
formal form were analyzed.

In this paper we analyze integral transformations formally given by
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@ (1)) = [y (

(al 1 )7""(0'?’0‘?)
F(t)dt
(bl 7ﬁ1)7"'7(b%ﬁq)

(alyal)v"'v(apvo‘p)

on the spaces L, ;. Here H}"" (

) represents the Fox function [4]. So,
(bl,ﬂl)ﬂ---,(bqﬂq)
for the sake of simplicity we will denote this function by H(z). The method used to

study transformations (2) is analogous to that employed by P.G. Rooney in [16] but
our results can be seen as an extension of the one obtained in [16] because the Fox
function reduces to the Meijer function when all the a’s and the 3’s are equal to 1.
Transformations (2) are the so called H— transformations. We say that an integral
transformation T is formally defined by (2) when

mn (a1,01),..,(ap,ap)
(M) = s (s

) (MR -s)
for some s € C and f being in a certain £, ,. Here M denotes as usual the Mellin
transformation ([16], § 2) and

n

H (bj + Bjs) HF(l—aj—ajs)
1

) H 1—bj—ﬂj8) H F(aj—i-ozjs)

j=m+ j=n+1

ﬁm,n (a1,01),--,(ap,ap)
Y2 (b17ﬁ1)7 7(b¢Z7ﬁq)
where 0<m<q, 0<n<p,a; > 0anda;eRj=1,...,pand ; > 0and bjecRj=1,...,q.

)
to $H(s) when there is no possibility of confusion.

Our work is organized as follows. In Section 2 we present some properties of
functions H and $. Transformations (2) in £, are investigated in Section 3. Sec-
tions 4 and 5 are dedicated to the study of the boundedness and the range of the
$H-transformations on L., with 1 < r < oo. Finally in Section 6 we present some
interesting special cases for the developed theory.

Throughout this paper we will denote by r’ as usual the conjugate to r, that
is ' = L5, when 1 < r < oco. Cp will represent the set constituted by all those
continuous functions ¢ on (0,00) having compact support. We will denote by A the
class of multipliers introduced by P.G. Rooney [14]. We will say that me.A if there are
extended real numbers a(m) and f(m), with a(m) < B(m), such that:

(a) m(s) is holomorphic in the strip a(m) < R(s) < B(m);

(b) in every closed substrip o1 <R(s)<o9 , where a(m) < o1<09 < B(m), m(s)
is bounded; and

(alyal)v"'v(apvo‘p)

Here empty products are unity by convention, we abbreviate 9,"" <(b1 B0 (baBe)
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(c) for a(m) < o < B(m) |Lm(o + it) ‘ =0(]t|7!) as [t| — oo.

2. Some properties of function H and $. In this section we establish some
properties for functions H and $ that will be very useful in the sequel.

Let m,n,p,q € N, being 0<m<q, 0<n<p, and p + ¢ > 1; and let a; > 0,
a;€R, (j=1,...,p)and B; >0,b; € R, (j =1,...,q). We define the function

m

H (bj + Bjs) H (1—a; —ajs)

H F(l — bj — ﬁjs) H I‘(aj + ajs)

j=m+1 j=n+1

m,n [ (a1,01),...,(ap,ap)
(3) 9(s) = <<Zf,§f>~~,<b§ﬁo5

Here empty products, if any, must be understood as 1.

Some real parameters must be introduced to analyze the main properties of
$H-function. Next such parameters are given

b, .
a:{ max{—ﬂ—i_,]: ,...,m}, for m >0

—00, for m=0 ,

ﬁ_{min{lg;”,jzl,...,n}, for n>0

400, for n=0 ,

Jj=m+1
m
Y Bi— D o
=1 j=n+1
q



272 J. J. Betancor, C. Jerez Diaz

p q
n=1Le [1677.
j=1 j=1

Note that $;"(s) is holomorphic in the strip a < R(s) < 3.
In the following proposition boundedness properties for §) are proved.
Proposition 1. As [t| — oo
(4) |5’)(0’ —i—Zt | ~ 271' —c H ag+2 H B bj Q‘t‘I/+HU+P2 exp <——§‘t‘)
7=1

uniformly in o for o in any bounded subset of R. Also, as |t| — oo,

d
(5) %f)(a +it) = iH(o +it)x
p—q
X {,ulog |t| — logn + igf sgnt + % + O(t_2)}
for every o € R, with o < 0 < f3.
Proof. By using the formula [[3],1.18(6)]
(6) P +iy)| ~ @mElyl e ™%, as [t - oo

uniformly in x for x in any bounded subset of R, we can prove (4) without difficulty.
Moreover for every s € C' with a < R(s) < 3 one has

d
q P
+ Y BUA-b - Bis)— Y a¥(a;+ays) |,
j=m+1 j=n+1
I'(s) ) .
where as usual ¥U(s) = T(s) Hence since for every ¢ € C, 0 € R being o < R(¢)+0 <
s

A ([[3],1,18(7)))

_1
(7) U(c+ o+ it) = log(+it) + H"% O™, as |t — oo
1

we can conclude that (5) holds. O
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As in [16] in our next study the exceptional set of § that consists of all those
v such that @« <1 —+ < § and $(s) has zeroes on the line £(s) = 1 — v and plays an
important role.

The function H was introduced by Ch. Fox [4]. Now we specify some special
cases for which H is the Mellin transformation of function $.

Proposition 2. Let o <~ < (. If either:

(i) £€>0 or

(ii)fZO,H#OandV—|—M7_%(q_p)§O
holds, then

8 H(z) = Hmon [ @re)(apap) )y 1 [yHR g
( ) (Jj) - ''paq (b1,81),---5(bq,Bq) X _RI_IEO% i T (S) s,

for x> 0. Moreover if € =0, u =0 and v — %(q —p) <0, then (8) holds for every
x>0 except for x =n~L.

Proof. Our assertion in this Proposition can be proved in a similar way to
Lemma 3.2 [16] by using the boundedness properties established in Proposition 1.0

By taking into account again Proposition 1 we obtain as an immediate conse-
quence of Proposition 2 the following

Corollary 1. Let a <~ < . If either
(i) €>0 or

(11) §:0,H7§0 andV—l—'U/y—%(q_p)<_1

holds, then
1 Y+i0o
(9) M) = o [ a0(s)ds
and
(10) (@) < Az~

for x > 0, where A is a suitable positive constant. Moreover, if £ = 0, p = 0 and

v— %(q —p) < —1 then, (9) and (10) hold for every x > 0 except for x =n~'.

3. The H - transformation on the spaces L,;. Now, we study the
behaviour of the H- transformation on the spaces L, 2.

Proposition 3. Let a <1—~v < (. If either:

(i) £€>0 or
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(i) € =0 and v+ p(l—7) —3(g—p) <0

holds, then there exists a one to one transformation T € [L. 2, L1-~2] such that for
every f € L2

o e =g (i

s) M =s), R(s)=1-—17.

Moreover T is onto provided that & = 0, v + u(l — ) — %(q —p) =0 and 7y does not
belong to the exceptional set of §. For every f,g € L2 we have

(12) | @p@g@as = [ 1) (Tg) (@)da.

Also if f € L2 then the transform T f of f is given by

- d > m,n _>\71’ ) 3eey )
(13) (Tf) (z)== A@xx\ﬂ/o Hp-{-l:;-ll—l (Ebl,ﬁl)),(.fl.,l(lf;l,)ﬁq),((aﬁai),l) a:t) f)ydt, a.e. z>0

provided A > —v,and

2 i [Z mtin (@), (apap)(-A1)
(14) (Tf) (2)=—2 2 /0 HL +1<(m,l)(bl,m),...,(bq,aq) a:t) ft)dt, ae. x>0
when A < —v. Finally, the transformation T is not depending on v in the following
sense: if 7 is such that o < 1—; < B and v+ p(l — ) — 3(¢ —p) <0, i=1,2,
and T; represents the transformation associated to v;, i=1,2, then T1f =I5 f, for each
fe [nyl,g N ﬁ»YQ’Q.

Proof. Let a < 1—~ < 3. Define w(t) = H(1 —y+it), t € R, w is continuous
on R because o < 1 — v < . Moreover, according to Proposition 1 w(t) = O(1), as
|t| — oo when either (i) or (ii) holds. Hence w € L (R) and by virtue of Lemma
4.1(b)[16] there exists a transformation T" € [L, 2, £1_,,2] such that for every f € L,

(MTF)(1—~+it) =w(t) (Mf)(y—1it), t€R.

Since $(s) is holomorphic on a < R(s) < [ and H(s) is not identically zero, then the
zeros of $(s) are isolated and w(t) # 0 a.e. t € R. This fact implies that T is one to
one.

On the other hand w(t) # 0 for every t € R, provided ~ is not in the exceptional
set of . From (4) we deduce that if £ = 0 and v + p(1 —v) — (¢ — p) = 0, then
L ¢ £(R). Lemma 4.1(c) [16] allows us to conclude that T is onto. Equality (12)

follows also from Lemma 4.1(c) [16].
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To prove the representation formula (13) we consider the function wi(t) =

H(1 —y+it)
Ay —it

unitary transformation from £i_, 2 onto La(R), the function

, t € R, with A\ > —v. It is clear that wy(t) € L2(R). Since M is an

1—v+iR S’j(S)

(15) k(x) = lim —/1 x~®

g
VTS W

where the limit is understood in the space £1_, 2, is in £1_, 2. Also we can write

H I'(b; + Bjs) H I'l—aj; —a;s)I'(1 — (=) —s)
: e

9(s) J=1 _
A+l1-s 1 P B
* i H F(l — bj — ﬁ]s)I‘(l - (—1 — )\) - 8) H F(aj + OéjS)

j=m+1 j=n+1

_ ﬁm,nJrl (_)\71)7((1170‘1)"")((1?70‘?)
- p+1’Q+1 (bl7/61)7~~~7(bq7/6q)7(17)‘71)

)

The parameters associated to the last function denoted by primes, are related

5) through: ¢ = 4,

to the corresponding ones for the function $,"" (Ezll 7;411)),'.'.'.,((5;755)

W=pv=v-118&=¢(d=a 0 =min{8,1+ A}, =n+1,m =m,p =p+1
and ¢’ = ¢ + 1. Hence by invoking Proposition 2 we obtain

n+1 (=\1),(a1,01)y..05(ap,ap)
(16)  Hyiigm <<b1,ﬁn,...,1<bql,ﬁq>,<—pl—§,1>

1—v+iR
l‘) = lim L/ xfsﬂds
1

R—o0 270 J1—~—iR A+1—s

for every x > 0 except, at most, for z = n~1.

Now combining (15) and (16) we conclude that

_ m,n+1 (_)‘71)7(0‘ 3 )7""( 3 )
k(x) = Hpiigia ((m,m),...,l(ilﬂq),(aplaiJ)

x)
and Lemma 4.1(b) [16] leads to the representation (13) for T'.
To establish (14) it is sufficient to write
9(s) HE(s—=A—-1)

At+l-s5 T(s— )

with A < —v, and to proceed as in the above case. Finally, assume that o« < 1—; < 3
and v + p(l — ;) — 3(g —p) < 0,i = 1,2. For A > max{—v1, —y2}, T; admits the
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representation (13) on L, 2,7 = 1,2. Hence, since the right hand side of (13) does not
depend on v, if f € Ly, 2N Ly, 2, then T1f =1T5f. O

Note that the conditions o < 1 —~ <  and v+ pu(1 —~) — %(q —p) <0 are
compatible provided that one of the three conditions

(i) p=0and v < 3(g—p)
(ii) ,u>0anda<i(%(q—p)—u)
(i) p<0and 8> L(5(¢—p) —v)

holds. Hence transformation 7" can be defined on £, » for some v € R when o < 3 and
some of the above three conditions are satisfied.
From Proposition 3 can be deduced the following

Corollary 2. Let a <1 —~ < 8. If either
(i) €>0 or
(i) €=0andv+p(l—7) - 3(g—p) < -1

holds, then T'f is given by (2) for f € L.

Proof. It is easy to see that

i pATImontl (=A1),(a1,01 )5, (ap,0p)
d.’E p+17Q+1 (bl7ﬁ1)7'"7(b¢I7ﬁq)7(717)‘71)

)] _

— x)\Hm,n ((al,al),---v(ap,ap) l‘) ae. >0

P9 (bly/al)w"y(bqv/@q)

with A > o — 1. From (13) one deduces

[e.e]
_ m,n (alval)v---’(apﬂap)
(Tf) (x) = /O My <(b1,ﬁl),...,(bq,ﬁq> ”) F@O)dt, € Los.
Differentiation under the integral sign is justified because according to Corollary 1 and
using Holder’s inequality for every v;,7 = 1,2, being a < y1 <1 — v < 79 < 3 we have

/oo Hm,n (ahal)y"'v(al’vap)
0

P9 <(b1n@l)7"'7(b%ﬂq) dt S

mt) f@)

1 00
< Mz ™™ / Y F(8)] dE + Mgafw/l 2| f(t)] dt <
0
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1 1
1 2 0o 2
< [Mlx—% {/ t2(1_7_“’1)_1dt} + Myz ™2 {/1 t2(1_“’_72)_1dt} ] [fll42 < 0o
0 1

for fe L. O

4.Boundedness and range of the H-transformation on £, , for £ = 0. In
the previous Section we established that there exists a transformation T' € [£4 2, £1—+ 2]
satisfying (11) provided that « < 1—y <, =0and v+ pu(l —~) — %(q—p) <0. We
now prove that 7" can be extended to £, as a member of [L,,,Li_ | for 1 <7 < 0o
and for suitable 1 < s < oco. Moreover the range T'(L,,) of T is described. Such
description is made in terms of the following operators:

(Mef) (2) = aff(x), €eC
(Nuf) (@)= f (=*) . a€R, a0
(Duf) (@) = flaz), a>0

(BN @ = f(5):

—a(c+b—1) ,z

(Lupef) (@) = 0 / (2 — 19" 9 f(dt, a >0, R(b) >0, ceC
0

(Japef) () = % /Oo (t* — )’ et D=l g (hat o >0, R(b) >0, ceC

(hasf) @) = [~ (@345, (Jal(@t)?) F(t)de, RO) > 1, a £ 0

where J, denotes the Bessel function of first kind and order b. The behavior of these
operators on L., was investigated in [16] (after Definition 2.2 and Theorem 5.1). We
will divide our study in several cases. In the sequel T will denote the transformation
defined in Proposition 3.

Proposition 4. Leta < 1-v <3, £=0,u=0,v—3(q—p) =0
and 1 < r < oco. Then T € [Ly2,L1—2] can be extended to L., as a member of
[EW,, El_%T]. T is one to one when either 1 < r < 2 or vy is not in the exceptional set
of $. Moreover if v does not belong to the exceptional set of §, then T (L) = L1—y-
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Equality (12) holds for every f € L., and g € L ,+. For each f € L, Tf is given by
(13) (respectively, (14)) provided X > —v (respectively, A < —~).

Proof. By virtue of Proposition 3 T € [L,2,L1_ 2] and for every f € L,
(MTf)(s) =9(s) Mf)(1=3s), R(s)=1-1.

We introduce the function L(s) = n°$9(s). It is clear that L is holomorphic on o <
R(s) < B. From Proposition 1 we infer that

L 1
Lo +it) ~ 2n) [[a;" 2 I8 72 Las |t — oo
j=1 j=1

uniformly in ¢ from a bounded subset of R, and

d N . —2\ _92
S Lo +it) =iL(o + it)0 (t2)=0(172), as |t| =00
for every a < 0 < 8. Hence L € A being a(L) = a and (L) = (. According to
Theorem 2.1 [16] there exists £ € [L,,] for every a <y < fand 1 < r < co. Also if
a<vy<pB, 1<r<2, then for every f € L,

(MES) (s) = L(s) (M) (s), R(s) =",

and £ is one to one in L ;..

We define £, = D, £ R . By using the Remark after Definition 2.2 in [16] we
conclude that £, € [£,,,L1—y,] when <1 —+v < B and 1 < r < oo, and for every
fELy, withl<r<2

(ML1f) (s) = H(s) (M[) (1 —s), R(s) =1-1.

In particular (Mg f)(s) = (MTf)(s), for R(s) = 1 —~ and f € L,2 .Therefore
T = £ on L,2 and £ is the unique extension of T' to L, ,. In the sequel we will
denote £; also by T'. Since D,, and R are one to one T is one to one on L., when
l<r<owanda<l—7vy<g.

The abscissae of the zeroes of L(s), that are the same ones of H(s), are reals
and they divide the interval (o, 3) in a finite numbers of intervals, let (a1, 31) be one

of such intervals. It is easy to see that ﬁ is holomorphic in a; < R(s) < f1,

1 ‘ S TT =L TT 5 —by4d

oy~ @0 [Lam2 [107772, st = oo,

‘L(J + it) joi o1
uniformly in ¢ when o is in a bounded subset of R and

d 1 B
LY /
dt L(o + it) O(2), as Il —oc
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for every ay < o < 1. By invoking again Theorem 2.1 [16] we obtain that for every
Il <r <ooand oy <y < B T is one to one and £(L,,) = L,,. Hence, since
R(Lyy)=Li—yyand Dy (Li1—vyy) = L1y, forevery 1 <r <ococandy € R, T (Ly,) =
L1 provided 1 <r < oo, a <1—+7 <3 and v is not in the exceptional set of $.

We now prove the equality (12). If f € L., and g € L,,, then Holder’s
inequality leads to

dx <

o |(Tf)(@)z' 7] |g(x)a7|
< /0 1

1 1
xr xr’

| @ n @y

< ||Tf||1f'y,r‘|9||%ﬂ < Cr,'nyH'y,THgH%r’

where C,  denotes the norm of T" as a member of [£, ., L1_+,]. Therefore the mapping

P: £W><£W/ —
(f,9)  — J(TH(@)g(z)dw

is bounded.
In a similar way we can prove that the mapping

T ,C%TX[,%T/ — C
(f.9) — Jo f@)(Tg)(x)dx

is bounded. By virtue of Proposition 3 P(f,g) = B(f,g), for every f,g € Cy. Hence
P = because ( is a dense subset of L, ;..
Assume that A > —v and consider for every x > 0 the function

t) A, O<t<z
9z(t) =
’ 0, t>x

Note that g, € L, ,, 1 <1 < oco. By using (13) we obtain

d z _
= A1 m,n+1 ( )‘71)7(0‘ & )7"'7(0' e’ )
(Tge)y) =y g v | ((bl,ﬁn,...,l(bql,ﬁq»(—pl—’i,l)

t) At =

a:y) , a.e. y>0.

yt) gu(t)dt =

o d [t [(—AD(an,a1),(apap)
=Yy Sy Tttt | (00,80)(b0.89).(-1-A0)

_ pAtlggmndtl (=A1),(a1,01),..,(ap,0p)
- p+17q+1 (bl7ﬁ1)7"'7(bqn8q)7(717A71)

In view of (12) for every f € L., one has

LY Al [ mmt1 [ (=3 (a1,01),.(ap,ap)
/O T f)(t)dt = z™F /0 Hp ¥ 011 | (b1, 50) oo (B (L)

a:t) f)ydt, >0
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and by differentiating with respect to x we conclude (13) for f € L. ,.
To prove (14) forf € L, it is sufficient to proceed as in the previous case by
considering the functions

hy (t) =

0, O<t<cz
A, t>ax

with > 0 and A\ < —~ instead of g,(t). O
Before stating the following Proposition we remark that m + n > 0 provided

p q
£ = 0. In effect if m = n = 0, then £ = —Zaj - Zﬂj < 0 because o; > 0,
j=1 j=1

j=1,...,p,and 3; > 0,5 =1,...,q.

Proposition 5. Assume that £ = =0, v— %(q—p) <0,a<l—vy<pand
1 <r < oo. Transformation T € [L. 2, L1—~2] can be extended to L., as a member of
(L, L1~ | provided that r < s and % > % +v— %(q —p). If either 1 <r <2 or~ is
not in the exceptional set of $, then T is one to one. Moreover when v does not belong
to the exceptional set of $ then,

(17) T (E'%’r‘) = jl,*l/*‘r%(l]*]?),*a (Llffy’r) b} fOT « > _007
and
(18) T(Ly,) = Il,—u—l—%(q—p),,@ (Lizyy), for [ <400

while if v is in the exceptional set of $, T (L) is a subset of the set on the right hand
side of (17) and (18). Equality (12) holds for every f € L., and g € L., \ provided that
N>rand 2+ 1 <1-—v+3(qg—p). T admits the representation (13) (respectively
(14)) when X > —v (respectively X\ < —v) for f € Lo,. If v — 3(q —p) < —1, then T
is given by (2), for f € L, ;.
Proof. Assume firstly that m > 0 or, equivalently, that o > —oo. We define
the function ( )
P(s—a-v+ia—p)
L(s)=n° .
()= — 5(s)

It is clear that L is holomorphic on o < R(s) < . Moreover according to Proposition
1, we can obtain

p _gal 4 bh,o—L
L(o +it)| ~ 2m)° [[a; 2 [ 87 %, as [t| — oo,
j=1 j=1
uniformly in ¢ when o is in a bounded subset of R, and

d , i
%L(a—i-zt)—O(t ), as |t| — oo,
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for every a« < 0 < 8. Hence L € A and by virtue of Theorem 2.1 [16] there exists
g e [L,,] for every 1 < r < oo and a < v < (3, such that for each 1 < r < 2 and
a<y<p
(MLf) (s) = L(s) (M[) (s), R(s) =~
when f € L, .
We now introduce the operator

By taking into account the boundedness of the operators R, D,, and
J, vt d(g—p)—a O1 the spaces £, (Theorem 5.1(b)[16]) one establishes that £; €
b 2 k2
(L, L1-~,s] provided that 1 <r <oo,a <1—-7 <8, v— %(q —p) <0, £=p=0,
s> r and % >%—|—1/—%(q—p). Also, for every f € L, with 1 <r <2

(Merf)(s) = Hs-o) MID, £ R f] (s) =
F(s—a—y+ )
= e R £ () =
F(s—a—y+ )
= 9(s) M[R f](s) = H(s)M[f](1 — s5), R(s)=1-1.

In view of Proposition 3 for every f € Lyo (ME&1f)(s) = (MTf)(s), R(s) =1—7v
Then £,f = Tf, for every f € L2, and £ is the unique extension of T to L, ,
when the conditions are satisfied. In the sequel T" also will denote the above mentioned
extension £;.

The one to one property and the range of the transformation 7' can be studied
now in a way analogous as they were analyzed in Proposition 4.

We now aim to prove (12). Let f € £, and g € L£,; with ' > r and 2 + % <
1—v+ %(q — p). By using Hoélder’s inequality we can write

00 1= v
S/ (TH@F T lgl@)a] -
0 q;l/

,’L‘l

/ S (T F) (@) g(w)de

ST flli— gl < C 1 fllyrllglly

where C' denotes the norm of 7' as a member of [L,,L1_]. Hence the bilinear
mapping

P ,C%T X [,%l — C
(f.9) — 5 (@f)(@)g(x)dx
is bounded. In a similar way we can prove that the bilinear mapping

T EW,TXE%l — C
(f,9)  — Jo f@)(Tg)(x)dz
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is also bounded. Since Cj is a dense subset of £, and since (12) holds when f and g
are in Cp, equality (12) also is true for f € £, and g € L.

Representation formulas (13) and (14) can be seen as the corresponding ones
in Proposition 4.

Finally (2) follows from (13) and (14) when v — (¢ —p) < —1 by differentiating
under the integral sign as in Corollary 1.

To prove (18) we can proceed as in the proof of (17) by considering the function

T (8-v+ig—p)—s)
LB —s)

w(s) = 1° 9(s)

instead of L(s). O

Proposition 6. Let £ =0, p<0,1<r<oo anda; <1—vy<pf; where

1 - 1\ 2
a1 :max{a,—; (V+2%+’Y(T)—§) 7;/)} and

92 _
g =min {5~ (v 2004 p) |
o 2
with p > max{“—f,% (fy(r) - % —v— 1%) ,—Sa—v— 1%}. Then T € [Ly2,L1—~2]
can be extended to L, as a member of [Ly,,Li—~s] for every s > r being s >
-1
[% —p(l—v)—v— %} . If either v is not in the exceptional set of $H or 1 < r < 2,
then T is one to one on L. Also if v does not belong to the exceptional set of $ the
equality

2
m

(19) T(L,,) = (N M%(W%H) h2,u+¥+2p—1) (51——““2—”—%(1&%“) ,r)

while if v is in the exceptional set of $, then T (L) is a subset of the set on the
right hand side of (19). Equality (12) holds provided that f,g € L., with 1 <r <2

-1
and r > [% —pu(l—7)—v-— %} then (13) (respectively (14)) holds with A > —~
(respectively X < —v) for every f € L. ;.

Proof. Firstly note that v + (1 — v)u + 252 < 0 because v(r) > 2. Hence by
Proposition 3 T' € [£, 2, L1—,2] and for every f € L,

(MTf)(s) = H(s)(MF)(1 = s), R(s) =1—1.

Define the function
T'(p—§s)

L(s) =
F(V—i—p—gq—l-p—l-%s
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being a = |[5* n and p > max{“—f,% (fy('r) —1-v- %) ,—5a—v— 1%}. L is
holomorphic on ay = max {oz, %} < R(s) < B. Moreover L € A. Indeed, by using (4)
and (6) we obtain

_y_P=4

, as |t| — oo,

N =

J=1

P 1 4 1
. —a;+1 bh,o—L
|L(o +it)] ~ (27)° H a; ' * H B 2
j=1
uniformly in o when o is in a bounded subset of R, and from (5) and (7) one infers

%L(O’—i—it) :iL(U—i-it){—g (\IJ <p— g(a—l-it))) + U (V—FZ%‘FP‘F g(a—i—it))

v+ + P4
+loga + plog || —logn—l—# —|—O(t_2)} :O(t_Q), as [t| — oo
i

for every as < o < (3.
Since L € A with a(L) = ag and (L) = 3, Theorem 2.1 [16] allows to find for
every 1 <r <ooand ag < e < fagel[l,]suchthatif 1 <r <2 £isone toone and

(20) (MLf) (s) = L(s) (M) (s), R(s) =e

provided that f € L.
We now consider the function

)_F(V+p—2q+p+s)

o(s) = ot ( Y, e e

_ s
' v+EBi4+p 1-p

In notations used by P.G. Rooney [16] §3 the parameters associated with this &—function
areé@ :71@:])@:0, Q@:Q, m@:k@:Ll@:—l, V@ZV—F%—FL
ag = —v — 54— pand Bg = +oo. Note that if 1 —~ < min{ﬁ,—% (y—l—¥+p)},

then ag = —v - 51 —p < M<ﬁ@. AlsoQ(%—(l—@))—l—y@ < 1-

v(r) because 1 — v > a3 > —% (V + B 4 y(r) — %) Hence according to Theorem

6.3 [16] there exists T € [517%(177) ["‘(1—7),8} for every s > r such that s’ >

T 2

-1
[% —p(l—v)—v— %} . Moreover if either 1 < r < 2 or 7 is not in the exceptional

set of § (that implies 1 — §(1 — ) is not in the exceptional set of &, then Ty is one to

one and for each 1 <r <2 and f € El,%(l,y),r

(21) (MTg [f) (s) = &(s) (Mf) (1 =), R(s) = 5(1—7).

=
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) ve—1l=v+5EL42p-1> -1 becausep>—%(1/+}%+
%). Therefore if v does not belong to the exceptional set of $,

(22) T <£1_#(12—_7) ,T> = <M%(y+¥+1)h2,y+¥+2p—1) (£1_—“(12‘”)—l(y+%+1),r)

2
we introduce the operator
21 = N2 Tg RNy Djupr, £ R.
m 2 2 n

By taking into account the behavior of the operators N, D,, R (Definition 2.2 [16])
Tg and £ we conclude that £ € [£,,,, L1—,]. Moreover from (20) and (21) we deduce
that if f € £,

(M21£)(s) = M |Tes RNy Djypr, £ R f| (55) |3] =

= B (s

[MIES

) M |Ny Dpypr, £ R £ () 151 =

= B (s

[MIS

)M [D‘%|un£Rf] (s) =
= 6 (s§) |5 MIE R f](s) =

= 9(M[fI1—s), R(s)=1-17.

Then (Mg f)(s) = (MTf)(s), for R(s) =1 —~ and f € L. Hence £, =T on L,
and £ is the unique extension of 7" to £, as a member of [£,,, Li_- ). In the sequel
we will denote such an extension £; also by 7.

On the other hand if either v is not in the exceptional set of H or 1 < r < 2,
then T is one to one because the operators Ty and £ are one to one. Also if 7 is not in
the exceptional set of $, then (19) holds because (22) is true and £ (L1—+,) = L1, (
this last one can be seen as the corresponding property in Proposition 4. When + is in
the exceptional set of 9, £ (L£1_,) is a subset of £;_,, and hence T (L, ;) is a subset
of the set in the right hand side of (19).

The equality (12) and the representation formulas (13) and (14) can be proved
as the corresponding ones in Proposition 3. O

Proposition 7. Assume that { =0, p >0, 1 <r<ococanda; <1—7v <

2 _
alzmax{a,—l——(u—l—%—kp)}and
w

where
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1 — 1\ 1+2
ﬂlzmin{ﬂ,—— (V—l—u—i-’y(r)——), + p}with
Iz 2 2 Jz

o> mac {TEZ 2 (4 - 3 —v - 250) B - g - v - 231

The transformation T € [Ly2,L1—~ 2] can be extended to L., as a member of

-1
[Lr.r, L1-+,s] provided that s > r being s’ > [% —pu(l—7)—v— %} . If either ~ is

not in the exceptional set of $ or 1 <r < 2, T is one to one on L,. Also if v does
not belong to the exceptional set of § the equality

T(E%T) = <M—1—%NTQM71(V+¥+u+1)h—2,u+¥+,u+2p—l) (E%(V—F%-I—,u(l—v)—i—l),r)
(23)

while if v is in the exceptional set of $ then T (L, ,) is a subset of the set in the right
hand side of (23). Equality (12) is satisfied when f,g € L, with 1 <r <2 and r >

-1 —1
[%—u(l—y)—y—%} . Moreover, if 1 <r <2 andr > [%—u(l—fy)—y—p—gq} ,

then (13) (respectively (14)) holds with X > —~ (respectively A < —v) for every f € L .

Proof. Since 1 —v < —% (u—i— B y(r) — %) and y(r) > 5, p(1 =) + v+
£54 < 0 and according to Proposition 3 T' € [£4,2, L1—+,2] and for every f € L

(MTf) (s) = 9(s)(M[)(1 =), R(s) =1 —1.

We define L(s) = $H(1—s), for 1— 3 < R(s) < 1—a. Note that L is also a function of (3)
type. The parameters associated with L, which we will denote by prime, are related to
the corresponding numbers for § through: & =&, 4/ = —p, ¥ =9~ 1, vV =v+p—q+u,
V=q¢d=pm=nn=mp =a;,b=1-a—qa; (j=1,...,p), o) = f,
ay=1-bj—B;,(j=1,...,9),d =1-aand f’' = 1- . Also e is in the exceptional set
of L if, and only if, 1 — € is in the exceptional set of §. Hence according to Proposition
6 for every 1 <r <oo o) <1—e€< ], where

1 f— 1\ 2
o) :max{o/,——, (1/’+p q +7(r) — —) ,—p} and
7 2 2) p

2 A )
(] = min {ﬁ/,——, (y/-|- Z% —l—p)} with
1
1! / / ! !
wp1 1 P —q o
p>maX{ 2 75(7(7‘)_5_”,_ 2 )7_

;11 —1
s > [% —p(l—e)—v — 1%} , there exists £ € [Le,, L1—c,] such that if f € L.,
and 1 < r < 2 then

(24) (Mef) (s) = L(s)(MF)(1 —5) R(s) =1 —e.

/ p—d
- —
2 2

}; and s > r being
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Note that the conditions which we have just listed agree with our hypotheses when e
is replaced by 1 — ~.

Introduce now the operator £ = R £ R. According to our hypotheses £; €
(L, L1-~,s]. Moreover by (24) if f € £, and 1 <1 < 2, then

(Me1f) (s) = (MERf) (1=5) = L(1—5) (MRf) (s5) = H(s) (M) (1=s), R(s) = 1—7.

In particular (Mg f)(s) = (MTf)(s) , for f € L2, and R(s) = 1 — . Hence
Li1f =Tf, f € Ly2, and £; is the unique extension of T' to £, , as a member of
(L, L1-,s]. T also will denote in the sequel to such extension. The one — to — one
property follows without difficulty from Proposition 6. Also by taking into account
that v is in the exceptional set of § if, and only if, 1 — ~ is in the exceptional set of L
and the relations R N, = My_1 Ny R, RM,=M_, R, Rhgp=h_qp R, (19) leads
to

T (L)

=|RN=2M h _ L
( % %(V/+¥+l) 2,1/+¥+2p71 17“2ﬁ7%(y/+#+1),r
- (M—N—M(—)h—) (5—(—))

= (M1§N% Mfé(qu%Jr,qul) h2,u+P—;‘1+u+2p1) <['§ (v+252+pu(1—7)+1) ,r)

(25)

provided that v is not in the exceptional set of §. Moreover if v is in the exceptional
set of §, then T' (L, ) is a subset of the last set in (25) because

C .
£(L1yr) € (N% M% (z/+#+1) h2,1/+%+2p1) (El“;—”% (u'+#+1) ,r)

Equality (12) and representation formulas (13) and (14) can be established in
the usual way. O

5. Boundedness and range of the H—transformation on £, , for £ > 0.
We established in Proposition 3 and Corollary 2 that if £ > 0 and a < 1 —~ < 3, then
the transformation 7' defined by

_ o m, (al ,Ot]),...,(a ey )
(Tf)(.T) - A Hpvqn <(bl 7ﬁ1)7"'7(bqpvﬁqp)
is in [£, 2, L1—+2] and for each f € L, 5

(26) (MTf)(s) = 9(s) Mf) (1 —s), R(s)=1-7.

xt) f(t)dt, for feLl,,
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In this section we prove that for every 1 < r < co and o < 1—+ < (3 this transformation
T can be extended to L., as a member of [L,,, L1, ] when £ > 0 and s is suitable.
We also analyze the range T'(L,,) of T' on L,,. T (L,,) is described through the
operators defined at the beginning of Section 4 and a modified Laplace transformation
defined by

1
a

(Lapf) (z) = /Ooo(xt)"b'e‘““‘“) Fft)dt, a#0and beR.

The behavior of L, on L, is investigated in Theorem 5.1,(d)[16].

Proposition 8. Let & >0, a<1—v< B and 1 <r < s < oo. Then the
transformation T' € (L 2, L1—~ 2] can be extended to L, as a member of (L y, L1—~s].
T is one to one provided that 1 < r < 2. Moreover equality (12) holds for every f € L.,
and g € L g .

Proof. Let a <1 —~ < 3. We choose €;, i =1,2, such that a < ¢1 <1 —7v <
€2 < . According to (10) for every 1 <[ < oo one has

/OO ‘xlfVH(x)‘l d <C {/1 gI=r=el=lgy 4 /OO x(l'YeQ)llda:} < 00
0 0 1

x

here C' denotes a suitable positive constant. Hence H € £;_,; and by virtue of Lemma
5.1(b)[16] the transformation T" defined by (2) is in [£,,,, L1—,s] when 1 <r < s < o0.
Moreover if f € L, with 1 <7 < 2, then

(MTf) (s) = 5(s) (Mf) (1 —s), R(s)=1-7.

Since the zeros of $(s) are isolated T'f = 0 implies that (Mf)(s) = 0 except, at
most, when s is an isolated set. By invoking well-known properties of the Mellin
transformation we obtain that f = 0 if and only if, Tf = 0. Then T is one to one
provided that 1 < r < 2.

To prove (12) for f € L., and g € L, it is sufficient to apply Holder’s
inequality and to take into account that (12) holds for each f,g € Cy. O

We now investigate the range T'(L£,,) of T on L, when o <1 —~v < 8 and
1 < r < oo. Our study is divided in five cases.

Proposition 9. Assume that £ > 0, p1 <0, po >0, a <1 —v < B and
1 <r < oo. If either v is not in the exceptional set of § or 1 < r < 2, then T is one
to one. If w=14+ poax+ 18 +v — %(q —p) and vy is not in the exceptional set, then

(27) T (Lys) = (Lysa L,W,ﬁﬂ_wl) (L1_ys), when w>0

and

(28) T (Lyy) = (jiﬁw’_“?al)“?,a Lm,lﬁ) (Li—yr), when w<0

H2
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Moreover if v is in the exceptional set of § the range T (L. ) of T on L, is a subset
of the set on the right hand side of (27) and (28).

Proof. Note that m > 0 because po > 0 and n > 0 because p; < 0. Hence
a > —oo and (8 < 4o0.
Assume firstly w = 14+ poa+p1 5+ v — %(q—p) > 0. We introduce the function

s) = pa(s—a)-1, pi(s—PB)+w—1 s 57—7(8) a s
L(s) = pb (—pg)Prs=0F lnF(#z(S—Oz))F(ul(s—ﬁ)+w)’ <R(s) < B.

By taking into account that & = po — 1 and pu = po + p1, from Proposition 1 and the
properties (6) and (7) for the I'-function we deduce

q

P 1 1
—a;i+= b, —=
Hajaj QHﬂjJ 27 as |t|—>OO
j=1 j=1

N|—=

(20)  |L(o +it)] ~ (2m)" " (—papz)

uniformly in ¢ when o is in a bounded subset of R, and

LL(o+it)=iL(o + it){ug log pa + g1 log (—p1) + log n—

(30) —H2¥ (p2(o +it — ) = =¥ (1 (o +it — B) + w) + plog[t| — log n+

v+ o + B4
1

+0 (1)} =0(t2), as [t — oo,

Therefore L € A being a(L) = o and § (L) = . Then by virtue of Theorem 2.1 [16]
for every 1 < r < 0o and a < € < 3 there exists a transformation £ € [L,] such that
for every f € £, with 1 <r<2anda<e<pf

(MES) (s) = L(s) (M) (s), R(s)=e .

Moreover £ is one to one on L, provided that 1 < r <2 and o < € < 3 because the

1
zeroes of L(s) are isolated. Also if — € A, then £ is one to one and onto £, with

1 1
1 < r < oo and max (oz,a (f)) < € < min (ﬁ,ﬁ (f)) L(s) has at most a finite

numbers of zeros on the strip a < R(s) < 4. By {o;};_, we denote the family of zeros
of L on the strip a« < R(s) < B, where 0; < 0441, @ =1,...,n — 1. We understand
n = 0 when L has no zeros on o < R(s) < 8. If v is in the exceptional set of §, then
0; < 1—7 <041, for some i = 0,...,n, being oy = o and 0,41 = . Moreover from

1 1 1
(29) and (30) we infer that 7€ A with « (f) = o0; and (3 (f) = 0441, for each



‘H—transformation 289

i =0,...,n. Hence T is one to one from £;_, , onto £;_, , provided that + is not in
the exceptional set of .

. w
Define now £, = Lu27aL_“1,1_ﬁ+ﬁ Dy,£R. Since g <1 —v-p0B+ E) > 0 and
po(l—v—a) >0, & €Ly, L1+ when 1 <7 < s < co. Also £ is one to one.

Moreover by virtue of Theorem 5.1 (d) [16] for every f € L2 one has

(ML f)(s) = Llpals —2)) (ML—“l,l—IB_FﬁDnSRf) (1—y9)

,U/lgm (s—a)—1

T (pa(s = @) D (pua(s = ) +w)
(31) = Mg’;‘j(sa)l oyt ae M DyeRI] (5

I (pa(s — ) T (pa (s — B) + w)

#gg(s—a)—l (_Ml)ul (s—B)+w—1

n MILR[](s)

= 9(MfI(1—s), R(s)=1-7.

Hence from (26) and (32) we deduce that £, f = T'f, for every f € Cy. Then since Cy
is a dense subset of £, and £ and T € [L,,,Li—~s], £1=T.

The operators R, D, and L, are one to one. Therefore 7' is one to one when,
and only when, £ is one to one. This holds either for 1 < r < 2 or for v not belonging
to the exceptional set of $. Moreover if v is not in the exceptional set of §, then
£(L1—y,y) = L1, for 1 <7 < 0o. Hence if 7 does not belong to the exceptional set
of $ (27) holds because R (L) = L1, and D, (L,,) = L, for every 1 < r < oo.
On the other hand if « is in the exceptional set of $ and 1 < r < 0o T'(L,,) is a subset
of the set on the right hand side of (27) because £ (L1—v,) € L1,

Now let w < 0. To see (28) we consider the function

Q(s) = pa(s—a)=1,  \ui(s—F)—1,s F(HQ(S_C“) _w)ﬁ(s) . a<R(s :
() =™ o) TG —a)PTue—p) &~ <p

and we proceed as in the previous case.  is in A with () = o and () = .
Hence according to Theorem 2.1 [16] for every 1 < r < oo and o < € < 3 there exists
a transformation W € [L. ;] such that for each 1 <r <2and a <e< 3

=3

(32) (MW]) (s) = Q(s) (M[f) (1 =), R(s)=e
By virtue of Theorem 5.1 (b) and (d) [16] and by (32) the operator W, defined by

(33) Wi=JL o o Lma B LygRDyWE



290 J. J. Betancor, C. Jerez Diaz

coincides with 7" on L, provided that 1 < r < oo and o < 1 — v < 3. The range
T (Ly,)of T on L, can be now analyzed by means of (33). O

Proposition 10. Let £ >0, u1 =0, po >0, a<l—y<Fand 1 <r < oco.
Then T is one to one on L., provided that either -y is not in the exceptional set of $
or 1 <r <2. Moreover if w = poo + 3 + v — (¢ — p) and 7 is not in the exceptional
set of $ then

(34) T (Lyy) = Lm,a,‘% (Lyr), when w>0
2
and
(35) T(E0r) = (T yue Tane) () when 0 <0
2

while if vy is in the exceptional set of § the range T (L.,) of T on L., is a subset of
the set on the right hand side of (34) and (35).

Proof. Note that @« < —oo because pus > 0. Suppose firstly that w > 0 and
define the function

_  h2(s—o)tw—1 s 5’)(8)
L(S)—/.Lg n F(/.LQ(S—OZ)—FW)’ Oé<§R(S)<ﬁ

Proposition 1 and the properties (6) and (7) allow to prove that L € A being «(L) = «
and $(L) = 3. Hence, by virtue of Theorem 2.1 [16] for every 1 <r < coand a < e < 3
we can find a transformation £ € [L,] such that for each f € L, with 1 <r <2 and
a<e<p

(36) (MLf) (s) = 5(s) (M) (s), R(s) =e.

From (36) we infer that £ is one to one on L., provided that 1 <7 <2 and a <e < 3
because the zeros of H(s) on a < R(s) < [ are isolated. Moreover if « is not in the
exceptional set of §, then 07 < 1 — v < 09 where o1 and o9 are two consecutive zeros
of L(s). Hence according to Theorem 2.1 [16] £ is one to one from L;_, , onto itself
when 1 < r < co and 7 is not in the exceptional set of 9.

We now introduce the operator £, = L, 7a,‘:u_2RD,7£R . By using Theorem

5.1 (d) [16] we conclude that £; € [£,, Li_~s], for 1 <r < s < co. Also for every
f € L2 one has

Merf)(s) = 26 F) p oppya )

Mgg(s—a)-{—w—l

(37) - (:jf(i;)‘ili”) W MERS) (5) = 5(s) (M) (1 - 5),
2
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From (26) and (37) it follows that £,f = T'f for f € Cy. Then since £, and T €
[Lyr Lysl,forl<r<s<oo, & =TonL,,.

Therefore if either ~ is not in the exceptional set of $ or 1 < r < 2, T is one to
one because then T is a composition of one to one operators. Moreover

T(Ly) = (s o B Dy £) (L1m0) € Ly 0 (Lor)

K2

and the equality holds provided that v does not belong to the exceptional set of §.
To prove (35) for w < 0 we must consider the function

Ofs) = res—o-1 T (pa(s — a) —w) H(s)
o [T (a5 — o))

instead of L(s) and to proceed as in the proof of (34). O

Proposition 11. Assume that £ > 0, p1 <0, po =0, a <1 —7v < 3 and
1 <r <oo.ThenT is one to one on L., when either v is not in the exceptional set of
$H orl <r <2. Moreover if w = 13+ % +v-— %(q —p) and vy is not in the exceptional
set of $, then
(38) T(Ly,) = Lm”g_ﬁ (Lyr), when w>0

and

(39) T(Ly,) = (ji o e Mo LM> (Ly,), when w <0,

uy

while if vy is in the exceptional set of § the range T (L.,) of T on L., is a subset of
the set on the right hand side of (38) and (39).

Proof. To establish these assertions we can employ a procedure similar to
the one used in the proof of Proposition 7. According to Proposition 10 the function
$(1—s) has associated a transformation £ € [£1_,, L] provided that 1 <r < s < 00
and o < 1 —~ < . Mellin integral transformation leads to T'= R £ R and by using
Proposition 10 the proof can be completed. O

Proposition 12. Let & >0, py >0, a<1l—vy < and 1 <r < oco. Then
T is one to one on L., provided that either vy is not in the exceptional set of $ or
1<r<2 IffB< oo, choosewz&c—%—u—l—%(q—p) > %+2u15 with ¢ > —a and
then choose b < —f + ﬁ and b < a. When v is not in the exceptional set of $

(10 T(er) = (My_ o o comomo L coge ) (L3 )

while if y is in the exceptional set of 9, T (L) is a subset of the set in the right hand
side of (40). If B = o0, choose w =&c— 3 —v+3(q—p) > 5421 (1 —7) with ¢ > —a
and b < « being w > p1(1 — vy +b). Then (40) holds provided that v is not in the
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exceptional set of ), while if v belongs to the exceptional set of §, then T (L) is a
subset of the set on the right hand side of (40).

Proof. Suppose firstly that § < oo and define

s) = 2Hrs—wel(ste)—1 s I'(w—p1(b+s))9H(s)
H = G ) T e+ 8

where b < —f + .= with w = {c — T —v+3(g—p) and ¢ > —a. It is clear that
I'(w = p1(b + s)) is a holomorphic function on R(s) > —b+-=. Hence, since —b+-% > 3
L(s) is holomorphic on the strip o < R(s) < 3. Moreover by invoking again Proposition
1 and by (6) and (7) we obtain that

\L(o + it)| ~ (27)7~3 *%H CIETIAY T, as |t — oo

uniformly in ¢ when ¢ is in a bounded subset of R; and

%L(U +it) = L(o + it) {logn + 2p1 log 11 + log & — 1 [ (w — pa (o + it + b)) +
F (o + it — )] — €8 (E(c + ) + plog [f] — logn + % & log 1]+

P
—i—%—i—@(t_?)} O (%), as |t| — oc.

for every o < o < 3. Therefore L € A with o(L) = o and B(L) = .
According to Theorem 2.1 [16] there exists a transformation £ € [L,,] when
I<r<ooand a<e<f, suchthatif 1 <r <2and a <e<f, forevery f € L,,

(41) (Mef) (s) = L(s) (MF) (), R(s) = e

and £ is one to one.

Moreover if L(e+it) # 0, t € R, then £ is one to one from L., onto itself. Note
that L(1 —~ +1it) #0, t € R, provided that ~ is not in the exceptional set of §.

We now introduce the operator

£ = M%*ﬁ houy | w—1—2416 L,5,0+%+2z1 M - £ D, R. Since o <

l—v<fandl <r < oo, M_ 1o £ D, R € [Lvr,ﬁg Cw r} Also by the
211 ’ 277 2y

Theorem 5.1 (d) [16] L_§7C+%+2¢: € [ﬁg MR ﬁv—%—kﬁ | forevery 1 <r < oo

and a < 1 — v < 3 because

1 w 1 w
—5(’7—5‘1‘%_0_5—2—[“):§(C+1—7)>f(_0¢+1_7)>0-



‘H—transformation 293

Moreover, since w > % + 21103, 1 — v < B and b < « the inequalities y(r) < 2uq(y —
1) +w— 3 <w+ 3 — 2u1b hold. Hence from Theorem 5.1 [16] we deduce that

h2#1 L w—1-2ub € [["y%Jri T ‘C% —5 ,s]

-1
provided that 1 < r < s < oo and §' > (2;“(7— 1) +w-— %) . Therefore £; €

Ly, Li1—~] under the imposed conditions.

By taking into account the behavior of the Mellin transformation on the oper-
ators that appear in the definition of £; (Theorem 5.1 (d) [16]) and by (41) we get for
every f € Ly, with 1 <r <2

(Mglf) (8) = (MhZ,ul,w12,u1bL_§7C+%+LM_%+L£Dan> s+ % - L) =

2pq 2p1

_ r ( (5 — b)) . y
— 2p1stw 1251 I oy D ) <_ 1 —) )

i (G R I
M Tw—mr st

1w
MM_l_i_LSDan) (3 i _) _

20 2

T T g MEDRS) ()=

_ H;2u18+w£—§(s+c)+1 T (#;((i__bl)lfb(i(z);' C)) T]iSL(S) (Mf) (1 _ 8) —

=9(s) M[f)(1—=s), R(s)=1-17.

Hence in particular for each f € Cy (MEf)(s) = (MTf)(s), R(s) =1-—r, and
then for every f € Cy £ = Tf. Since £, and T € [L,, Li_, ] and Cj is dense on
£’y7r7 T = 21 on ["y,r-

Remainder of the proof for § < 400 follows as in the previous Propositions.
When (8 = +o0o the results can be proved in a similar way. O

Proposition 13. Assume that £ >0, po <0, a<1l—vy < f and 1 <r < oo.
Then T' is one to one on L., when either v is not in the exceptional set of $ or
1<r<2 Fora>-o0,letw=~E—3—v—p—31p—q >1—2u(1—a) with
c>pfB—1landletb<a—1-— % and b < 1— (3. Then when ~ is not in the exceptional
set of §

1o 2pg

while if vy is in the exceptional set of ), T (L) is a subset of the set on the right hand
side of (42). For o = —00, w = §c—%—u—u—%(p—q) > %—Q;Lg'y with ¢ > -1 and
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b<1-—p beingw > —pua(y+b), (42) holds provided that y is not in the exceptional set
of $, while if v belongs to the exceptional set of $, then T (L) is a subset of the set
on the right hand side of (42).

Proof. Our assertions in this proposition can be inferred from Proposition 12
by studying the operator R T" R as in the proof of Proposition 7. O

6. Some special transformations Now we apply the theory developed in
previous Sections to study some special integral transformations.
I.- E. Kratzel [7] introduced the integral transformation defined by:

(L1) @) = [ A @y

where

1
z>0, neN-{0} and v>-1+—.
n

The L{"-transformation reduces to the i, transformation([11] [12]) when n = 2.

The Mellin integral transform of A s (see [7])

(n—1)

M (2)] (s) = (27;)%1 Fr(iizyi 1F _(i)) B

3=

)

01

(n—1)
(2m)" 2 2.0 <(u+1%

+nv D12 (nv, 1)

Hence, by virtue of Propositions 8 and 10 we immediately deduce the following

1
n2

Corollary 3. Let maz{-nv , 0} <1 —vy and 1 <r < s < oco. Then the

transformation L,(,n) €Ly, r, Li—y, s and for every f € Ly , and g € L ¢ one has

| 1) @gtade = [ @) (L8 g) (w)do.

L,(,n) is one to one on L, , when either 1 <r < 2 or vy is not in the exceptional set of
9. Moreover if v does not belong to the exceptional set of 9, then

1
L'(/n) (EV’T) = Ll , —nvtv+1-2 (EW,T) , for v> E s
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1
Ly (ﬁv,r):«71,u(17n)+17%,oLl,O(['%T) , Jor 0<v< )’

1
Ll(,n)(ﬁvw):\71,114-1—%,111/[’1,0(5%7“) , for 1_E<V<0

while L,(,n) (L, r) is, in each case, a subset of the set on the right hand side of the last
equalities when v is in the exceptional set of h.

II.- The generalized Hankel transformation defined by
(43) (H)\ Mf / k)\ H l‘t t)dt s

) and J’; denotes a generalized Bessel function

where k) ,(2) = 27* A J“(4
8]), was introduced by R. P. Agarwal [1]. Taking

usually called Wright function ([1
= 1in (43) we obtain

(10 (@) = () (@) = [ Vet

i.e. the well-known Hankel transformation. Here J) represents, as usual, the Bessel
function of the first kind and order A .The hy—transformation was investigated on L
spaces by P. G. Rooney [15].

The Mellin integral transformation of ky  , is given by (see [15])

BRI CICEST)
Mlky u(2)](s) = 2 I‘(1+)\—‘%(5+/\+%))

1,0
= 9’ 5.
M((%(H%)é) (BO+1 =2 ) )
Therefore, by taking into account Definition 2 [16], Propositions 8 and 12 lead to.
Corollary 4. Let0 < pu <1 A > — ,—%()\+%)<1—7and1<r§

s < 00. Then the transformation Hy , € [L, », L1—y 4| and for every f € L, , and
g € E,y , s’

[T ) e = [ 1) 0 ) ()

H)  , is one to one on L., , provided that either 1 < r < 2 ory is not in the exceptional
set of $. Moreover if v does not belong to the exceptional set of $ by choosing ¢ >

Hey).

1—pu 1 1 W 1
= —— A+ =-EX+ D)+ A>= 1—
w c+ 2(+2> 2( +1)+ _2+u( v)
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and b < —3 (A—i—%) being w > 5 (1 —~ +D), then

(44) H)\,u([”y,r) =M h,u,w—l—,ub L}%l C+%+£ <»C%,y£7r)

N

while if y is in the exceptional set of $, Hy , (L, ) is a subset of the set on the right
hand side of (44).

Results presented in Corollary 4 improve the ones obtained in [2].
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