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ON QUASIDIAGONAL OPERATIONS

S. C. ARORA, SHIV KUMAR SAHDEV

Abstract. For any operator T on a Hilbert Space H , a distance function Qd(T ) is
introduced and studied. The properties of another distance function qd(T ) known
as modulus of quasidiagonality are also discussed. It is proved that if TM is the
compression of T to a subspace M of finite co-dimension in H , then

qd(T ) = qd(TM ) and Qd(T ) = Qd(TM ).

It is also shown that the unitary equvalence in the calkin algebra preserves the
values of qd and QD.

An operator T on a Hilbert Space H is said to be quasidiagonal if there exists an
increasing sequence {Pn}

∞
n = 1 of finite rank orthogonal projections such that Pn → I,

the identity operator, strongly and ||TPn − PnT || → 0, as n → ∞. The notion of
quasidiagonality was introduced by P.R.Halmos [5] in 1970. D.A.Herrero [6] defined
the notion of modulus of quasidiagonality qd(T ) of any operator T on H as

qd(T ) = Lim ||TP − PT ||
P ∈ P(H)

P → I

where P(H) denotes the directed set of all finite rank (orthogonal) projections on H
under the usual ordering. From [5, 902], it follows that T is quasidiagonal if and only if
qd(T ) = 0. the purpose of the present paper is to introduce and study a new distance
function Qd and also to discuss the notion of modulus of quasidiagonality.

Troughout the paper H denotes an infinite-dimensional separable complex
Hilbert space and B(H), the set of all bounded linear operators on H. K(H) denotes
the ideal of compact operators on H and π is the natural mapping of B(H) onto quotient
algebra B(H)/K(H). The class of all quasidiagonal operators in B(H) is denoted by

[QD].
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For any operator T on H we introduce (see also [4]) the following

Qd(T ) = Lim ||TP − PT ||
P ∈ P(H)

P → I

= Inf Sup ||TPM − PMT ||,
N ∈ τ(H) M ∈ τ(H)

M ⊃ N

Qd(T ) = Lim ||TP − PT || P ∈ P (H) P → I

= Inf Sup ||TPM − PMT ||, N ∈ τ(H)M ∈ τ(H)M ⊃ N

where PM denotes the projection on the closed linear subspace M of H and τ(H) is
the collection of all finite - dimensional closed linear subspaces of H. We also define

d(T ) = Inf ‖T − S‖.
S ∈ [QD]

One can easily vertify that the map T → QD(T ) is continuous and QD is a semi-norm.
In [2,Corollary 2.2] it is found that T is thin (an operator T is said to be thin if it
is of the form λI + K, for a scalar λ and for a compact operator K on H) if and
only if Qd(T ) = 0, and Qd(T ) = d(T, [T ]) [2,Theorem2.3], where d(T, [T ]) denotes the
distance of T to the c∗-algebra [T ] of all thin operators on H.

D.A.Herrero [6, Theorem 6.13] proved the following

Lemma A. For any T in B(H), qd(T ) = d(T ). We make use of Lemma A to

prove the following

Theorem 1. If M is a closed linear subspace of H with finite co-dimension,

then for any operator T in B(H),

qd(T ) = qd(TM ),

where TM denotes the compression of T to M .

P r o o f. Let ε > 0. Then by definition, there exists an operator S in [QD] such
that

‖T − S‖ < d(T ) + ε.

Since dim M⊥ < ∞, [7, Theorem 4] implies that SM also belongs to [QD].
Therefore using Lemma A

qd(TM ) = d(TM ) ≤ ‖TM − SM‖ ≤

‖T − S‖ < d(T ) + ε = qd(T ) + ε
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Since ε > 0 is arbitrary, we get

qd(TM ) ≤ qd(T ).

To prove the reverse inequality, we consider any ε > 0. Then by definition,
there exists a quasidiagonal operator R in B(M) satisfying

‖TM − R‖ < d(TM ) + ε.

Since dim M⊥ < ∞ it can now be easily seen that F ⊕ 0 is a quasidiagonal operator
on H. Also

d(TM ⊕ 0) ≤ ‖TM ⊕ 0 − F ⊕ 0)‖

= ‖TM − R‖ ≤ d(TM ) + ε.

Again, since dimM⊥ < ∞, qd(TM ⊕ 0) = qd(T ) Hence by Lemma A, we get

qd(T ) ≤ qd(TM ).

The desired conclusion follows.
In [3], Douglas proved that if U is a non-unitary isomery in B(H), then U =

S+K, where S is a unilateral shift of suitable multiplicity and K is a compact operator.
The following collorary is a slight extention of this result.

Collorary 2. If U is a non-unitary isomery in B(H) and M is a subspace of

finite co-dimension in H, then UM = S +K where S is a unilateral shift in B(M), and

K is a compact operator.

P r o o f. From Theorem 1. we have

1 = qd(U) = qd(UM ) ≤ ‖UM‖ ≤ 1.

Since qd(UM ) = ‖UM‖ = 1, [4, Theorem 2] implies that UM = V + L, where V is
a non-unitary isometry and L is a compact operator. The above mentioned result of
Douglas states that V = S + J , where S is a unilateral shift and J is compact. Since
S + J is compact, the proof is completed.

Theorem 3. For any operator T on H, there exists a sequence {Mn}
∞
n=1 in

τ(H) of increasing subspaces of H such that

(i) {PMn
} → I strongly,

(ii) ‖TPMn
− PMn

T‖ → Qd(T ), and

(iii) Qd(T ) = sup{lim ||TPNnN − PNn
T || : {Nn} ⊂ τ(H)
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and {PNn
} → I strongly }.

P r o o f. Let N be any subspace of H in τ(H) and {Nn} be a sequence of
subspaces in τ(H), such that the corresponding sequence {PNn

} of projections converges
to the identity operator strongly. Then by [1, Lemma 1.5], there exists a sequence {Mm}
of subspaces in τ(H) satisfying

(i) Mn ⊃ N for each n,

(ii) ‖PNn
− PMn

‖ → 0 as n → ∞.

Now

Sup
M ∈ τ(H)
M ⊃ N

‖PMT − TPM‖ ≥ Lim ‖PMn
T − TPMn

‖

≥ Lim ‖PNn
T − TPNn

‖.

Consequently

Qd(T ) = Inf
N ∈ τ(H)

Sup
M ∈ τ(H)

M ⊃ N

‖PMT − TPM‖

≥ lim‖PNn
T − TPNn

‖.

As the sequence {Nn} in τ(H) satisfying {PNn
} → I strongly is arbitrary, we get

Qd(T ) ≥ Sup {lim ‖PNn
T − TPN‖ : {Nn} ⊂ τ(H) and {PNn

} → I strongly}.

By the definition of Qd(T ), there exists a sequence {Nn} of subspaces in τ(H)
such that

lim
n→∞























Sup
M ∈ τ(H)
M supNn

‖PMT − TPM‖























= Qd(T ).

Since Sup
M ∈ τ(H)

M ⊃ Nn

‖PM t − TPM‖ decreases with the increase of the subspaces Nn, we

may assume, without loss of generality, that

(i) Nn ⊂ Nn+1 for each n,



302 S. C. Arora, Shiv Kumar Sahdev

(ii) {PNn
} → I strongly.

Setting N1 = M1, we can determine by induction a sequence {Mn} in τ(H) of
increasing subspaces of H such that

Mn+1 ⊃ Nn+1 + Mn

and
‖PMn+1

T − TPMn+1
‖ > Sup ||PMT − TPM || − 1

n
.

M ∈ τ(H)
M ⊃ Nn+1 + Mn

We also have

‖PMn+1
T − TPMn+1

‖ ≤ Sup ||PMT − TPM ||.
M ∈ τ(H)
M ⊃ Mn

Therefore

Sup ||PMT − TPM || − 1
n
≤ ‖PMn+1

T − TPMn+1
‖ ≤

M ∈ τ(H)
M ⊃ Nn+1 + Mn

≤ Sup ||PMT − TPM ||
M ∈ τ(H)
M ⊃ Mn

Passing to the limits, we get

Qd(T ) ≥ lim
n→∞

||PMn+1
T − TPMn+1|| ≥ Qd(T ).

Hence
Qd(T ) = lim

n→∞
||PMn+1

T − TPMn+1||,

which implies

Qd(T ) ≤ sup{lim ‖PNn
T − TPN‖ : {Nn} ⊂ τ(H) and {PNn

} → I strongly}.

Corollary 4. If M is a subspace of H with finite co-dimension, then for any

operator T on H,

Qd(TM ) = Qd(T ).

P r o o f. By Theorem 3 (ii) there exists a sequence {Pn} ∈ B(H) of finite rank
projections converging to the identity operator strongly and satisfying

Qd(TM ) ≥ lim
n→∞

‖TMPn − PnTM‖.
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With respect to the decomposition H = M ⊕ M⊥, write Qn = Pn ⊕ I; then
{Qn} is a sequence of finite rank projections on H converging to the identity operator
strongly and satisfying

lim
n→∞

||(TM ⊕ 0)Qn − Qn(TM ⊕ 0)|| = lim
n→∞

||(TMPn − PnTM || = Qd(TM ).

Also

Qd(TM ⊕ 0) ≥ lim
n→∞

||(TM ⊕ 0)Qn − Qn(TM ⊕ 0)|| = Qd(TM ).

Since dimM⊥ < ∞, we have Qd(T ) = Qd(TM ⊕ 0) and therefore

Qd(TM ) ≤ Qd(T ).

To prove the reverse inequality, let {Pn} be a sequence of finite rank projections con-
verging to the identity operator strongly, then by [1, Lemma 1.5], there exists a sequence
{Sn} of finite fank projections such that

lim
N→∞

||Pn − Sn|| = 0

and for each n, Sn ≥ P , where P is the projection onto M⊥. Let {Rn} be any sequence
of finite rank projections in B(M) converging to the indentity operator strongly and
Sn = Rn ⊕ I. Then

‖(TM ⊕ 0)Pn − Pn(TM ⊕ 0)‖

= ‖(TM ⊕ 0)(Pn − Sn + Sn) − (Pn − Sn + Sn)(TM ⊕ 0)‖

≤ ‖(TM ⊕ 0)Sn − Sn(TM ⊕ 0)‖ + 2‖Pn − Sn‖ ‖TM ⊕ 0)‖.

= ||TMRn − RnTM || + 2||Pn − Sn|| ||TM ⊕ 0||

Therefore

lim‖(TM ⊕ 0)Pn − Pn(TM ⊕ 0)‖ ≤ lim ‖TMRn − RnTM‖ ≤ Qd(TM ),

according to Theorem 3. Since the sequence {Pn} is arbitrary, Theorem 3 again implies

Qd(TM ⊕ 0) ≤ Qd(TM ).

Since dimM⊥ < ∞, Qd(TM ⊕ 0) = Qd(T ). Hence the result follows.

Remark. It is possible to give a shorter proof of the preceding corollary by
using the distance formula [2, Theorem 2.3] which states that Qd(t) = d(T, [T ]) and 2
matrix method.
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Theorem 5. For any two operators T and S. if π(T ) and π(S), are equivalent

elements of the algebra B(H)/K(H), then

qd(T ) = qd(S) and Qd(T ) = Qd(S).

P r o o f. By the hypothesis there exists an operator U on H such that π(U)
is a n unitary element of B(H)/K(H), satisfying π(U)π(T ) = π(S)π(U). Since π(U) is
invertible, it is a Fredholm operator and hence by [3, Theorem 3.1], U is a compact
perturbation of a unitary operator , a non-unitary isometry or a non-unitary coisometry,
according to whether index (U) = 0, index (U) < 0 or index (U) > 0 respectively.

Assume index (U) < 0. Let K be a compact operator on H such that V = U+K
is a non-unitary isometry. Let M be the range of V . Since the null space of V is {0},
therefore dimM⊥ < ∞. Let P be the projection onto M , tjen I − P is of finite rank
and hence compact. Now π(U)π(T ) = π(S)π(U) implies UT − SU = K1 , where K1 is
compact. Now as V is isometry

T = V ∗V T = V ∗(U + K)T = V ∗UT + V ∗KT = V ∗(K1 + SU) + V ∗KT =
V ∗K1 + V ∗SU + V ∗KT .

On adding and subtracting V ∗PSU and V ∗PSK this gives

T = V ∗PS(U + K) + V ∗(I − P )SU − V ∗PSK + V ∗KT + V ∗K1

= V ∗PSV + V ∗(I − P )SU − V ∗PSK + V ∗KT + V ∗K1.

As V ∗(I − P )SU − V ∗PSK + V ∗KT + V ∗K1 is a compact operator and V ∗PSV is
unitarily equivalent to SM , we get

qd(T ) = qd(V ∗PSV ) = qd(SM ).

Making use of Theorem 1. and Corollary 4, the desired conclusion follows. The case
index U ≥ 0 can be proved similarily by taking adjoints.

The following consequence can easily be obtained.

Corollary 6. If (T ) is a Fredholm operator on H and if T = UP denotes the

polar decomposition of T⊥ then

qd(UP ) = qd(PU) and Qd(UP ) = Qd(PU).

The authors are extremly thankful to Prof. B. S. Yadav for his help in prepa-
ration of the paper. We also take this opportunity to thank the referee for his valuable
comments and suggestions to improve the original version of the paper.
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