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PROBABILISTIC APPROACHES TO THE ROUNDING

PROBLEM

BESSY DIM. ATHANASOPOULOS

Abstract. Very often sums of proportions in reported sets of tables do not add to
unity. It occurs so frequently, that if the proportions were to add to exactly 1, one
begins to suspect the reporter of forcing the situation. In relation to this problem,
fundamental work was done by Mosteller, Youtz and Zahn (1967) and Diaconis
and Freedman (1979) who assessed the probability that a table of conventionally
rounded proportions adds to 1, as well as by Balinski and Rachev (1992) who
introduced some rules of rounding that can improve the conventional rule. Investi-
gating and developing further the so-called K-stationary divisor rules of rounding,
we compute, for several of these rules, the limiting probability that the rounded
percentages add to 100%.

Introduction. In this paper, we deal with the problem of developing and
comparing various rules—mainly probabilistic—of rounding percentages reported in
statistical tables. Surprisingly enough, the rounded percentages rarely add to 100%.

The importance and frequency of this problem has led to significant interest
and research within academia. Fundamental work was done, in 1967, by Mosteller,
Youtz and Zahn who investigated how frequently the rounded percentages fail to add
up correctly and what the distributions of sums of rounded percentages are for (1) an
empirical set of data, (2) the multinomial distribution in small samples, (3) spacings
between points dropped on an interval—the broken stick model—and (4) simulation for
several categories. They found that the probability that the sum of rounded percent-
ages adds to exactly 100% is certain for two categories, about three-fourths for three
categories, about two-thirds for four categories, and about

√

6/nπ for a larger number
n of categories.

In 1979, Diaconis and Freedman assessed the probability that a table of rounded
percentages adds to 100%. Extending the work of Mosteller, Youtz and Zahn, they gave
a mathematical treatment of this phenomenon when the table is drawn from a multino-
mial distribution or from a mixture of multinomial distributions. Their principal result
concerned the Mosteller, Youtz and Zahn broken-stick model.
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Balinski and Rachev (1992) continued the work of Diaconis and Freedman by
introducing the so-called stationary rules and considering vectors and matrices under
varying assumptions concerning the probabilistic structure of the data to be rounded.

In what follows we investigate a class of rounding rules, called divisor rules of
rounding, and in particular, we study the K-stationary divisor rules of rounding.

We first describe the vector problem (~p, h) and a variety of possible rounding
rules, with which we treat a particular case of the vector problem where ~p is uniformly
distributed on the simplex Sn.

We compute the limiting probability that the sum of the rounded percentages
equals the rounding of the sum of the percentages for different rules of rounding and
for various probabilistic models generating the data.

1. The vector problem of rounding: K-stationary divisor rules. We
start by investigating the so-called K-stationary divisor rules of rounding percentages.

Given a vector problem (~p = (p1, . . . , pn), h) and a K-stationary rule ~x(K) = ρ
(K)
t (~p),

we first try to evaluate the chance that x
(K)
N := x

(K)
1 + . . . + x

(K)
n = h and then we find

the particular rule which maximizes this chance.

This extends the works of Mosteller, Youtz and Zahn (1967), Diaconis and
Freedman (1979), and Balinski and Rachev (1992), who assessed the probability that
a table of rounded percentages add to 100%.

In Section 1.1 we define the vector problem of rounding and the K-stationary
divisor rules of rounding.

In Section 1.2, we show that the maximum of limt→∞ P [1− ∆
t ≤ x

(K)
N ≤ 1 + ∆

t ]
for every ∆ = 0, 1, 2, . . . does not change if, instead of rounding the pi’s, i = 1, . . . , n
with the best of 0-stationary divisor rule, we round them with the best of any other
K-stationary divisor rule (K ≥ 1).

In Section 1.3, we display several computer simulations to support our theoret-
ical results.

1.1 Notation and Preliminaries on the Vector Problem of Rounding.
A vector problem is a pair, (~p, h), where ~p = (pj), j ∈ N = {1, . . . , n} is a vector of real
numbers and h is a real number such that pN := p1 + . . . + pn = h. Unless otherwise
specified, we assume pj ≥ 0, j ∈ N and set pN = 1, which is not a restriction for h.

Given any positive real number t, a rule ρt of 1/t-rounding assigns to each

vector ~p a set {~x : ~x = ρt(~p)} ⊆ {~x = (xj) : xj =
kj

t , kj integer, j ∈ N}. For
example, if ~p = {0.32, 0.17, 0.25, 0.26} and t = 10, then ~x may be {1, 0, 0, 0} or
{0.3, 0.2, 0.2, 0.3} or {0.3, 0.2, 0.3, 0.3} or {0.2, 0.3, 0.1, 0.4}, etc. In our present work,
kj ∈ {[tpj] − 1, [tpj] , [tpj] + 1} , j ∈ N , where [tpj] denotes the largest integer contained
in tpj. Since the rule of 1

t -rounding does not depend on pN , it is important, first to
evaluate the change that the sum xN := x1 + . . . + xn is exactly pN , and then, find the
rule that maximizes this chance.
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A divisor rule ρt,d of 1
t -rounding assigns to each vector ~p a set of vectors {~xd :

~xd = ρt,d(~p)} ⊆ {~x : ~x = ρt(~p)} defined by:

(~xd)j:= [pj]t,d :=

{

(k + 1)/t if {k + 1/2 < tpj ≤ k + 1} or {k + 1/2 = tpj, k odd},
k/t if {k ≤ tpj < k + 1/2} or {k + 1/2 = tpj, k even},(1)

where for k ∈ Z, d(k) = k + C ∈ [k, k + 1] is said to be the divisor criterion.
In the literature of apportionment problems (see Balinski and Young (1982)),

we find the following divisor criteria: for k ∈ Z, Z = {0, ±1, ±2, . . .}

Adams : d(k) = k,
Dean : d(k) = k(k + 1)/(k + 1/2),
Hill : d(k) =

√

k(k + 1),
Webster : d(k) = k + 1/2,
Jefferson : d(k) = k + 1.

Mosteller, Youtz and Zahn (1967) were the first to discuss the conventional
rule (for short, MYZ-rule) of 1/t-rounding ~x = ρt(~p) for the problem (~p, 1). The
conventional rule rounds pj , j ∈ N , to the nearest k/t and, therefore, is the divisor rule
with d(k) = k + 1/2, that is,

xj ≡ (~xd)j := [pj ]t,k+1/2 :=



















(k + 1)/tif {k + 1/2 < tpj ≤ k + 1}
or {k + 1/2 = tpj, k odd},

k/t if {k ≤ tpj < k + 1/2}
or {k + 1/2 = tpj, k even},

(2)

Mosteller, Youtz and Zahn computed the probability that xN := x1 + . . . + xn = 1 for
several probability models generating ~p and found that the probability that xN = 1 is 1
for n = 2, about 3/4 for n = 3, about 2/3 for n = 4 and about

√

6/πn for n > 4. Their
argument is persuasive and backed by extensive empirical evidence (rounding behavior
of 565 tables in the National Halothane Study).

Diaconis and Freedman (1979) assessed the limit probability of xN = 1. They
showed that if ~p has an absolutely continuous distribution on the simplex Sn, n large,
and ~x is obtained by (2), then, as t → ∞, P{xN = 1} converges to the probability
that −1/2 ≤ V1 + V2 + . . .+ Vn−1 ≤ 1/2, where the Vj’s are independent and uniformly

distributed on [−1/2, 1/2]. In particular, as t → ∞, P{xN = 1} →
√

6
π(n−1) +O

(

1√
n3

)

.

Balinski and Rachev (1992) slightly extended the above theorem: They stated
that if ~p has an absolutely continuous distribution on the simplex Sn, n large, and ~x′

is obtained by (1) with d(k) = k + C, k ∈ Z, C ∈ [0, 1], then as t → ∞, P{x′
N = 1}

converges to the probability that C − 1 ≤ V1 + . . . + Vn−1 ≤ C, where the Vj ’s are
independent and uniformly distributed on [−C, 1 − C]. Taking C = 1/2, the limit is

maximized and, in this case, as t → ∞, P{x′
N = 1} →

√

6
π(n−1) + O

(

1√
n3

)

.
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A K-stationary divisor rule ρ
(K)
t of 1/t-rounding assigns to each vector ~p a set

{~x(K) : ~x(K) = ρ
(K)
t (~p)} ⊆ {~x : ~x = ρt(~p)} defined by (1) where, for k ∈ Z,

d(k) =

{

k + Ck,Ck ∈ [0, 1] if k < K,
k + C C ∈ [0, 1] if k ≥ K

(3)

Notice that {~xd : ~xd = ρt,d(~p)} ⊆ {~x(K) : ~x(K) = ρ
(K)
t (~p)} and, in fact {~xd} ≡ {~x(0)}.

Remark: The Mosteller, Youtz and Zahn divisor rule maximizes the lim P{xN =
1} as t → ∞, and therefore it is to be the best among all 0-stationary divisor rules in
that it maximizes the limit of P{xN = 1}.

We, further on, study the K-stationary divisor rules with K ≥ 1. Our primary
objective is to enquire if the K-stationary divisor rules can or cannot lead to a better
limiting probability of xN = 1.

1.2. K-stationary divisor rules (K ≥ 1) for the Vector Problem of

Rounding. We define the K-stationary divisor rule ~x(K) := ρ
(K)
t (~p) of 1/t-rounding of

a vector ~p by:

x
(K)
j := [pj]

K
t,d :=

{

k/t if {k ≤ pjt < d(k)} or {pjt = d(k), k even},
(k + 1)/t if {d(k) < pjt ≤ k + 1} or {pjt = d(k), k odd},(4)

where, for 0 ≤ k ≤ K − 1, d(k) = k + Ck, Ck ∈ [0, 1] and, for k ≥ K, d(k) = k + C,
C ∈ [0, 1].

Theorem 1.1. Suppose ~p is uniformly distributed on the simplex Sn(n > 1)
and ~x(K) is obtained by a K-stationary divisor rule, ~x(K) = ρK

t (~p) (see (4)). Then

max

{

lim
t→∞

P

(

1 − ∆

t
≤ x

(K)
N ≤ 1 +

∆

t

)

: ~x(K) = ρ
(K)
t (~p)

}

, ∆ = 0, 1, 2, . . .

is attained for any K-stationary rule (K ≥ 0) when C = 1/2 and Ck is any point in
[0, 1] for every 0 ≤ k ≤ K − 1. Moreover, if ~x = ρt(~p) (see (2)) then, ∀∆ = 0, 1, . . .

max lim
t→∞

P

(

1 − ∆

t
≤ x

(K)
N ≤ 1 +

∆

t

)

= lim
t→∞

P

(

1 − ∆

t
≤ xN ≤ 1 +

∆

t

)

.

We will later sketch the proof of the above theorem for K > 1. Next, we look
at the case K = 1 and prove theorem 1.2.

According to the definition of K-stationary divisor rule of 1/t-rounding, a 1-

stationary divisor rule ~x(1) = ρ
(1)
t (~p) of 1/t-rounding of a vector ~p is defined by

x
(1)
j := [pj ]

1
t :=



















k + 1/t, if k 6= 0 and k + C < pjt ≤ k + 1,
k/t if k 6= 0 and k ≤ pjt < k + C,
1/t if C0 < pjt ≤ 1 + C,
0 if 0 ≤ pjt ≤ C0,

(5)
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where C0, C ∈ [0, 1].

Theorem 1.2. Suppose ~p is uniformly distributed on the simplex Sn(n > 1).

There is no 1-stationary rule ~x(1) = ρ
(1)
t (~p) (see (5)) of 1/t-rounding that is “better”

than the Mosteller, Youtz and Zahn rule ~x = ρt(~p) (see (2)) in the sense that ~x(1)

cannot improve the limiting probability P (xN = 1) as t → ∞. In fact,

max

{

lim
t→∞

P

(

1 − ∆

t
≤ x

(1)
N ≤ 1 +

∆

t

)

: ~x(1) = ρ
(1)
t (~p)

}

= lim
t→∞

P

(

1 − ∆

t
≤ xN ≤ 1 +

∆

t

)

, ∆ = 0, 1, 2, . . . , .

For proof of Theorem 1.2 we need the following two lemmas:

Lemma 1.3. Let m1,m2, . . . ,mn−1 be positive integers whose sum is at most
t − n + 1 for t and n fixed, and t large enough. Denote by At(m1, . . . ,mn−1) the set

At(m1, . . . ,mn−1) =

{

(p1, . . . , pn−1) :
mi

t
≤ pi <

mi + 1

t
, i = 1, . . . , n − 1

}

and let At be the union of these At(m1, . . . ,mn−1) over all choices of m1, . . . ,mn−1.
Then:

(i) The probability of At tends to 1, as t → ∞.

(ii) Given At(m1, . . . ,mn−1), the random variables Ṽi := t(x
(1)
i − pi) (rounding

errors of a 1-stationary divisor rule), i = 1, . . . , n − 1 are conditionally independent
and uniformly distributed over the (n − 1)-fold Cartesian product ⊗n−1[−C, 1 − C].

P r o o f.

(i) From the definition of At, we obtain as t → ∞

P (At) =
t

t
· t − 1

t
· t − 2

t
· · · t − n + 2

t
=

t(t − 1) · · · (t − n + 2)

tn−1
−→ 1.

(ii) The distribution of (p1, . . . , pn−1) is uniform over the region

{

x
(1)
i ≥ 0, 1 ≤ i ≤ n − 1,

n−1
∑

i=1

x
(1)
i ≤ 1

}

.

Also, the hypercube defining At(m1, . . . ,mn−1) is wholly contained in this re-
gion. So given At(m1, . . . ,mn−1), the first n − 1 of pi’s are independent, each being
uniformly distributed over [mi/t, (mi + 1)/t] (over its edge of the hypercube). Next,
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we show that if pi is uniformly distributed over [mi/t, (mi + 1)/t] then Ṽi := t(x
(1)
i −pi)

is uniformly distributed over [−C, 1−C]. By the definition of 1-stationary divisor rule

x
(1)
i := [pi]

1
t =































(mi + 1)/t if (mi + C)/t < pi ≤ (mi + 1)/t

or

{

pi = (mi + C)/t and mi is odd

}

,

mi/t if mi/t ≤ pi < (mi + C)/t

or

{

pi = (mi + C)/t and mi is even

}

.

Therefore, for 0 < τ ≤ 1 − C,

P (0 ≤ Ṽi < τ) = P (0 ≤ t(x
(1)
i − pi) < τ) = P

(

0 ≤ t

(

mi + 1

t
− pi

)

< τ

)

= P

(

0 ≤ mi + 1

t
− pi <

τ

t

)

= P

(

mi + 1

t
− τ

t
< pi ≤

mi + 1

t

)

=
τ

t
· t = τ.

Similarly, for −C ≤ τ < 0,

P
(

τ < Ṽi ≤ 0
)

= P
(

τ < t
(

x
(1)
i − pi

)

≤ 0
)

= P

(

τ

t
< x

(1)
i − pi ≤ 0

)

= P

(

τ

t
<

mi

t
− pi ≤ 0

)

= P

(

mi

t
≤ pi <

mi

t
− τ

t

)

= −τ

t
· t = −τ.

Therefore, for any τ ≥ 0,

P
(

−C < Ṽi < τ
)

= P
(

−C < Ṽi < 0
)

+ P
(

0 ≤ Ṽi < τ
)

= C + τ

and, for any τ < 0

P
(

−C < Ṽi < τ
)

= P
(

−C < Ṽi < 0
)

− P
(

τ < Ṽi ≤ 0
)

= C − (−τ) = C + τ.

Thus Ṽ1, Ṽ2, . . . , Ṽn−1 are uniformly distributed over ⊗n−1[−C, 1 − C] and,
given At(m1, . . . ,mn−1), are conditionally independent. �Further on, we denote by I
the indicator function, i.e.,

I(S) =

{

1 if S is true,
0 otherwise.

Lemma 1.4. (i) For every real σ2, the 1-stationary rule of 1/t-rounding [•]1t
gives

[σ2

t

]1
t

= 1
t [σ2]

1
1.

(ii) For every integer σ1 6= 0 and every real σ2 the 1-stationary rule of 1/t-
rounding [•]1t gives the following:
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(a) For C ≤ C0, assuming that σ2 6= −σ1, 1

[

σ1 + σ2

t

]1

t
=

σ1

t
+

1

t
[σ2]

1
1 −

1

t
I{σ1 + σ2 ∈ (C,C0]} +

1

t
I{σ2 ∈ (C,C0)}.

(b) For C > C0, assuming that σ2 6= −σ1, 1,

[

σ1 + σ2

t

]1

t
=

σ1

t
+

1

t
[σ2]

1
1 +

1

t
I{σ1 + σ2 ∈ (C0, C]} − 1

t
I{σ2 ∈ (C,C0)}.

P r o o f.
(i) From the definition of 1-stationary divisor rule of 1/t-rounding [•]11, we obtain

[

σ2

t

]1

t
=



















(k + 1)/t if k 6= 0, k + C < σ2 ≤ k + 1,
k/t if k 6= 0, k ≤ σ2 ≤ k + C,
1/t if C0 < σ2 ≤ 1,
0 if 0 ≤ σ2 ≤ C0,

=
1

t



















k + 1 if k 6= 0, k + C < σ2 ≤ k + 1,
k k 6= 0, k ≤ σ2 ≤ k + C,
1 if C0 < σ2 ≤ 1,
0 if 0 ≤ σ2 ≤ C0,

=
1

t
[σ2]

1
1 .

(ii) Let σ1 ∈ Z and σ1 6= 0. Then by the definition of 1-stationary divisor rule
of 1/t-rounding [•]1t , we obtain

[

σ1 + σ2

t

]1

t
=



















(k + 1)/t if k 6= 0, k + C < σ1 + σ2 ≤ k + 1,
k/t if k 6= 0, k ≤ σ1 + σ2 ≤ k + C,
1/t if C0 ≤ σ1 + σ2 ≤ 1,
0 if 0 ≤ σ1 + σ2 ≤ C0,

=
σ1

t
+

1

t
·



















k + 1 − σ1 if k 6= 0, 1, k − σ1 + C < σ2 ≤ k + 1 − σ1,
k − σ1 if k 6= 0, 1, k − σ1 ≤ σ2 ≤ k − σ1 + C,
1 − σ1 if C0 − σ1 < σ2 ≤ 1 − σ1,
−σ1 if − σ1 ≤ σ2 ≤ C0 − σ1,

=
σ1

t
+

1

t
· I {σ2 /∈ [−σ1, 1 − σ1]} ·

{

k + 1 − σ1 if k − σ1 + C < σ2 ≤ k + 1 − σ1,
k − σ1 if k − σ1 ≤ σ2 ≤ k − σ1 + C,

+
1

t
(1 − σ1)·I {σ2 ∈ (C0 − σ1, 1 − σ1]}
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+
1

t
(−σ1) · I {σ2 ∈ [−σ1, C0 − σ1]}

=
σ1

t
+

1

t
· A +

1

t
· B +

1

t
· C,

where

A := I {σ2 /∈ [−σ1, 1 − σ1]} ·
{

k − 1 − σ1 if k − σ1 + C < σ2 ≤ k + 1 − σ1,
k − σ1 if k − σ1 ≤ σ2 ≤ k − σ1 + C,

B := (1 − σ1)I {σ2 ∈ (C0 − σ2, 1 − σ1]} and C := (−σ1)I {σ2 ∈ [−σ1, C0 − σ1]} .

To evaluate A, recall that σ1 6= 0, σ1 ∈ Z. Then we have:

A = I {σ2 /∈ [−σ1, 1 − σ1]} ·
{

k + 1 − σ1if k 6= σ1 and k − σ1 + C < σ2 ≤ k + 1 − σ1,
k − σ1 if k 6= σ1 and k − σ1 ≤ σ2 ≤ k − σ1 + C,

+I {σ2 /∈ [−σ1, 1 − σ1]} ·
{

k + 1 − σ1if k = σ1 and k − σ1 + C < σ2 ≤ k + 1 − σ1,
k − σ1 if k = σ1 and k − σ1 ≤ σ2 ≤ k − σ1 + C,

= A1 + A2.
Now A1 can be evaluated as follows:

A1= I {σ2 /∈ [−σ1, 1 − σ1]}
{

k + 1 − σ1if k 6= σ1 and k − σ1 + C < σ2 ≤ k + 1 − σ1,
k − σ1 if k 6= σ1 and k − σ1 ≤ σ2 ≤ k − σ1 + C,

= [σ2]
1
1 I {σ2 /∈ [−σ1, 1 − σ1]} I {σ2 /∈ (0, 1)}

= [σ2]
1
1 − [σ2]

1
1 I {σ2 /∈ (0, 1) ∪ [−σ1, 1 − σ1]}

= [σ2]
1
1 − I {σ2 ∈ (C0, 1)} − (1 − σ1)I {σ2 ∈ (−σ1 + C, 1 − σ1]}

−(−σ1)I {σ2 ∈ [−σ1, σ1 + C]} .

As for A2, since σ1 6= 0, we obtain

A2= I {σ2 /∈ [−σ1, 1 − σ1]} ·
{

k + 1 − σ1if k = σ1 and k − σ1 + C < σ2 ≤ k + 1 − σ1,
k − σ1 if k = σ1 and k − σ1 ≤ σ2 ≤ k − σ1 + C,

= I {σ2 /∈ [−σ1, 1 − σ1]} ·
{

1 if C < σ2 ≤ 1,
0 if 0 ≤ σ2 ≤ C,

= I {σ2 ∈ (C, 1]} , since σ1 6= 0.

Summing the expressions for A1 and A2, we obtain the following for A = A1 + A2:

A = [σ2]
1
1 − I {σ2 ∈ (C0, 1)} − (1 − σ1)I {σ2 ∈ (−σ1 + C, 1 − σ1]}

−(−σ1)I {σ2 ∈ [−σ1,−σ1 + C]} + I {σ2 ∈ (C, 1]} .
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Therefore, taking into account the values of A, B and C we obtain:

[

σ1 + σ2

t

]1

1
=

σ1

t
+

1

t
[σ2]

1
1 −

1

t
(1 − σ1)I {σ2 ∈ (−σ1 + C, 1 − σ1]}

+
1

t
(1 − σ1)I {σ2 ∈ (−σ1 + C0, 1 − σ1]} −

1

t
(−σ1)I {σ2 ∈ (−σ1,−σ1 + C]}

+
1

t
(−σ1)I {σ2 ∈ [−σ1,−σ1 + C0]} −

1

t
I {σ2 ∈ (C0, 1)} +

1

t
I {σ2 ∈ [C, 1]} .

Therefore:
(a) For C ≤ C0, since σ2 6= −σ1, 1

[

σ1 + σ2

t

]1

t
=

σ1

t
+

1

t
[σ2]

1
1 −

1

t
(1 − σ1)I {σ2 ∈ (−σ1 + C,−σ1 + C0]}

+
1

t
(−σ1)I {σ2 ∈ (−σ1 + C,−σ1 + C0]} +

1

t
I {σ2 ∈ (C,C0]}

=
σ1

t
+

1

t
[σ2]

1
1 −

1

t
I {σ1 + σ2 ∈ (C,C0]} +

1

t
I {σ2 ∈ (C,C0]} .

(b) Similarly for C > C0, we obtain

[

σ1 + σ2

t

]1

t
=

σ1

t
+

1

t
[σ2]

1
1 +

1

t
(1 − σ1)I {σ2 ∈ (−σ1 + C0,−σ1 + C]}

−1

t
(−σ1)I {σ2 ∈ (−σ1 + C0,−σ1 + C]} − 1

t
I {σ2 ∈ (C0, C]}

=
σ1

t
+

1

t
[σ2]

1
1 +

1

t
I {σ1 + σ2 ∈ (C0, C]} − 1

t
I {σ2 ∈ (C0, C]} .

P r o o f of Theorem 1.2. By the definition of the 1-stationary divisor rule of
1/t-rounding [•]1t and the corresponding “rounding errors” Ṽi, we obtain

x
(1)
i = [pi]

1
t = pi +

1

t
Ṽi, i = 1, . . . , n − 1 and, therefore,

pn = 1 −
n−1
∑

i=1

pi = 1 −
n−1
∑

i=1

x
(1)
i +

1

t

n−1
∑

i=1

Ṽi =
1

t

[(

t − t
n−1
∑

i=1

x
(1)
i

)

+
n−1
∑

i=1

Ṽi

]

.

Using Lemma 1.4, with σ1 = t − t
∑n−1

i=1 x
(1)
i 6= 0 and σ2 =

∑n−1
i=1 Ṽi 6= 1, −σ1, we

obtain

x(1)
n = [pn]1t = 1 −

n−1
∑

i=1

x
(1)
i +

1

t

[

n−1
∑

i=1

Ṽi

]1

1

+
1

t
R
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= 1 −
n−1
∑

i=1

(

pi +
1

t
Ṽi

)

+
1

t

[

n−1
∑

i=1

Ṽi

]1

1

+
1

t
R

= pn +
1

t

[

n−1
∑

i=1

Ṽi

]1

1

+
1

t

n−1
∑

i=1

Ṽi +
1

t
R.

According to Lemma 1.4, if C0 ≥ C, the remainder R = Rt in the above expression
equals

Rt = I{σ1 + σ2 ∈ (C,C0]} + I{σ2 ∈ (C,C0]}.

By Lemma 1.3, σ2 :=
n−1
∑

i=1

Ṽi is, conditionally on At, a continuous random variable, so

without loss of generality we can assume that σ2 /∈ {−σ1, 1}. Consequently, as t → ∞,
with probability 1,

Rt = −I

{

t − t

(

n−1
∑

i=1

x
(1)
i − 1

t

n−1
∑

i=1

Ṽ1

)

∈ (C,C0]

}

+ I

{

n−1
∑

i=1

Ṽi ∈ (C,C0]

}

= −I {tpn ∈ (C,C0]} + I

{

n−1
∑

i=1

Ṽi ∈ (C,C0]

}

−→ I

{

n−1
∑

i=1

Vi ∈ (C,C0]

}

where, by Lemma 1.3, Vi’s are i.i.d. uniforms on [−C, 1 − C].

Since
1

t
Ṽi := x

(1)
i − pi and, thus,

1

t

n−1
∑

i=1

Ṽi =
n−1
∑

i=1

x
(1)
i −

n−1
∑

i=1

pi, we obtain x
(1)
n =

pn+ 1
t

[

∑n−1
i=1 Ṽi

]1

1
−∑n−1

i=1 x
(1)
i +

∑n−1
i=1 pi+

1
t Rt. Since x

(1)
N :=

n
∑

i=1

x
(1)
i and

n
∑

i=1

pi = 1, we,

finally, conclude that x
(1)
N = 1+

1

t

[

n−1
∑

i=1

Ṽi

]1

1

+
1

t
Rt, or else, t

{

x
(1)
N − 1

}

=

[

n−1
∑

i=1

Ṽi

]1

1

+Rt.

By virtue of Lemma 1.3 and since σ1 6= 0 means
n−1
∑

i=1

x
(1)
i 6= 1, we conclude that

t
{

x
(1)
N − 1

}

I

{

n−1
∑

i=1

x
(1)
i 6= 1

}

w−→
[

n−1
∑

i=1

Vi

]1

1

+ I

{

n−1
∑

i=1

Vi ∈ (C,C0]

}

and

t
{

x
(1)
N − 1

}

I

{

n−1
∑

i=1

x
(1)
i = 1

}

w−→
[

n−1
∑

i=1

Vi

]1

1
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where Vi’s are i.i.d. uniforms over [−C, 1 − C].

In particular, as t → ∞,

lim P
(

x
(1)
N = 1

)

= lim P

(

x
(1)
N = 1,

n−1
∑

i=1

x
(1)
i 6= 1

)

+ lim P
(

x
(1)
N = 1, x(1)

n = 0
)

= lim P

(

x
(1)
N = 1,

n−1
∑

i=1

x
(1)
i 6= 1

)

.

Therefore,

P
(

x
(1)
N = 1

)

−→ P





[

n−1
∑

i=1

Vi

]1

1

= 0,
n−1
∑

i=1

Vi /∈ (C,C0]



 ,

+P





[

n−1
∑

i=1

Vi

]1

1

= −1,
n−1
∑

i=1

Vi /∈ (C,C0]



 ,

where, obviously, P





[

n−1
∑

i=1

Vi

]1

1

= −1,
n−1
∑

i=1

Vi /∈ (C,C0]



 = 0

Hence,

P
(

x
(1)
N = 1

)

−→
t→∞

P

(

−1 + C <
n−1
∑

i=1

Vi < C0,
n−1
∑

i=1

Vi /∈ (C,C0)

)

= P

(

−1 + C <
n−1
∑

i=1

Vi < C

)

and, therefore, the limiting probability does not depend on C0.

Similarly, if C0 < C, with σ1 = t − t
n−1
∑

i=1

x
(1)
i 6= 0 and σ2 =

n−1
∑

i=1

Ṽi, we obtain

Rt= I {σ1 + σ2 ∈ (C0, C]} − I {σ2 ∈ (C0, C]}

= I {tpn ∈ (C0, C]} − I

{

n−1
∑

i=1

Ṽi ∈ (C0, C]

}

−→
t→∞

−I

{

n−1
∑

i=1

Vi ∈ (C0, C]

}

.

Therefore,

t
{

x
(1)
N − 1

}

I

{

n−1
∑

i=1

x
(1)
i 6= 1

}

w−→
[

n−1
∑

i=1

Vi

]1

1

− I

{

n−1
∑

i=1

Vi ∈ (C0, C]

}
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and

t
{

x
(1)
N − 1

}

I

{

n−1
∑

i=1

x
(1)
i = 1

}

w−→
[

n−1
∑

i=1

Vi

]1

1

,

where Vi’s are i.i.d. uniforms on [−C, 1 − C].
In particular, as t → ∞,

lim P
(

x
(1)
N = 1

)

= lim P

(

x
(1)
N = 1,

n−1
∑

i=1

x
(1)
i 6= 1

)

+ lim P
(

x
(1)
N = 1, x(1)

n = 0
)

= lim P

(

x
(1)
N = 1,

n−1
∑

i=1

x(1)
n 6= 1

)

.

Hence, as t → ∞,

Pr
{

x
(1)
N = 1

}

−→ P





[

n−1
∑

i=1

Vi

]1

1

= 1,
n−1
∑

i=1

Vi ∈ (C0, C]





+P





[

n−1
∑

i=1

Vi

]1

1

= 0,
n−1
∑

i=1

Vi /∈ (C0, C]





= P

(

C0 <
n−1
∑

i=1

Vi < C

)

+ P

(

−1 + C <
n−1
∑

i=1

Vi < C0

)

= P

(

−1 + C <
n−1
∑

i=1

Vi < C

)

and therefore, once again the limiting probability does not depend on C0.
Next, we wish to find the optimal C that maximizes

{

P

(

−1 + C <
n−1
∑

i=1

Vi < C

)

: 0 ≤ C ≤ 1, Vi
′s are i.i.d. uniforms on [−C, 1 − C]

}

.

Define Ui := Vi + C − 1
2 . Then the above maximum becomes

max
C∈[0,1]

{

P

[

−1 + C <
n−1
∑

i=1

(

Ui − C +
1

2

)

≤ C

]

,

Ui
′s are i.i.d. uniforms on

[

−1
2 , 1

2

]

}

= max
C∈[0,1]

{

P

[

−1 + C + (n − 1)C − n − 1

2
<

n−1
∑

i=1

Ui ≤ C + (n − 1)C − n − 1

2

]

,
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Ui
′s are i.i.d. uniforms on

[

−1
2 , 1

2

]

}

.

Since
n−1
∑

i=1

Ui has a symmetric distribution around zero, the optimal C is de-

termined by the equation −
(

−1 + C + (n − 1)C − n − 1

2

)

= C + (n − 1)C − n − 1

2
,

which results in C =
1

2
.

Therefore, the limiting probability of
{

x
(1)
N = 1

}

, for a 1-stationary rule, ~x(1) =

ρ
(1)
t (~p) attains its maximum for the rule with divisor points C0 and C, where C0 is any

point on [0, 1] while C =
1

2
.

Thus, we have proven Theorem 1.2 for ∆ = 0. Next, we let ∆ ∈ {1, 2, . . .} be

fixed and we consider the limit of P
(

1 − ∆
t ≤ x

(1)
N ≤ 1 + ∆

t

)

, as t → ∞. Assuming

C ≤ C0, we have seen that

t
{

x
(1)
N − 1

}

I

{

n−1
∑

i=1

x
(1)
i 6= 1

}

w−→
[

n−1
∑

i=1

Vi

]1

1

+ I

{

n−1
∑

i=1

Vi ∈ (C,C0]

}

and

t
{

x
(1)
N − 1

}

I

{

n−1
∑

i=1

x
(1)
i 6= 1

}

w−→
[

n−1
∑

i=1

Vi

]1

1

,

where Vi’s are i.i.d. uniforms on [−C, 1 − C].

In particular, as t → ∞,

lim P

(

1 − ∆

t
≤ x

(1)
N ≤ 1 +

∆

t

)

=

lim P

(

1 − ∆

t
≤ x

(1)
N ≤ 1 +

∆

t
,
n−1
∑

i=1

x
(1)
i 6= 1

)

+

lim P

(

1 − ∆

t
≤ x

(1)
N ≤ 1 +

∆

t
,
n−1
∑

i=1

x
(1)
i = 1

)

=

lim P

(

1 − ∆

t
≤ x

(1)
N ≤ 1 +

∆

t
,
n−1
∑

i=1

x
(1)
i 6= 1

)

.

Hence,

P

(

1 − ∆

t
≤ x

(1)
N ≤ 1 +

∆

t

)

−→
t→∞

P (−∆ ≤ Ln ≤ ∆)
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where

Ln :=

[

n−1
∑

i=1

Vi

]1

1

+ I

{

n−1
∑

i=1

Vi ∈ (C,C0]

}

.

If ∆ = 1, then

P (−∆ ≤ Ln ≤ ∆) = Pr(−1 ≤ Ln ≤ 1) =

= P





[

n−1
∑

i=1

Vi

]1

1

= −1,
n−1
∑

i=1

Vi /∈ (C,C0]



+ P





[

n−1
∑

i=1

Vi

]1

1

= 0,
n−1
∑

i=1

Vi /∈ (C,C0]





+P





[

n−1
∑

i=1

Vi

]1

1

= −1,
n−1
∑

i=1

Vi ∈ (C,C0]



+ P





[

n−1
∑

i=1

Vi

]1

1

= 1,
n−1
∑

i=1

Vi /∈ (C,C0]





+P





[

n−1
∑

i=1

Vi

]1

1

= 0,
n−1
∑

i=1

Vi ∈ (C,C0]





= P





[

n−1
∑

i=1

Vi

]1

1

= −1



+ P





[

n−1
∑

i=1

Vi

]1

1

= 0,
n−1
∑

i=1

Vi /∈ (C,C0]





+P





[

n−1
∑

i=1

Vi

]1

1

= 1



+ P

(

n−1
∑

i=1

Vi = 0,
n−1
∑

i=1

Vi ∈ (C,C0]

)

= P

(

−2 + C <
n−1
∑

i=1

Vi < −1 + C

)

+ P

(

−1 + C <
n−1
∑

i=1

Vi < C

)

+P

(

C0 <
n−1
∑

i=1

Vi < 1 + C

)

+ P

(

−1 + C <
n−1
∑

i=1

Vi < C0

)

= P

(

−2 + C <
n−1
∑

i=1

Vi < 1 + C

)

.

Similarly, for ∆ ≥ 2, we obtain

P

(

−1 +
∆

t
≤ x

(1)
N ≤ 1 +

∆

t

)

−→
t→∞

Pr(−∆ ≤ Ln ≤ ∆)

= P

(

−∆ − 1 + C ≤
n−1
∑

i=1

Vi ≤ ∆ + C

)

.

Therefore, ∀∆ ≥ 1, the limiting probability of
(

1 − ∆
t ≤ x

(1)
N ≤ 1 + ∆

t

)

, as t → ∞,

does not depend on C0. Next, we wish to find the C which maximizes the limiting
probability.
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Recall the definition Ui := Vi + C − 1
2 . Then

max

{

P

(

−∆ − 1 + C ≤
n−1
∑

i=1

Vi ≤ ∆ + C

)

: C ∈ [0, 1],

V ′
i s are i.i.d. uniforms on [−C, 1 − C]

}

= max

{

P

(

−∆ − 1 + C ≤
n−1
∑

i=1

(

Ui − C +
1

2

)

≤ ∆ + C

)

: C ∈ [0, 1],

Ui’s are i.i.d. uniforms on
[

−1
2 , 1

2

]

}

= max
C∈[0,1]

{

P

(

−∆ − 1 + C + (n − 1)(C − 1

2
)

)

≤
n−1
∑

i=1

Ui ≤ ∆ + C + (n − 1)(C − 1

2
) :

Ui’s are i.i.d. uniforms on
[

−1
2 , 1

2

]

}

. Since
∑n−1

i=1 Ui has a symmetric distribution, the

optimal C in the above maximum is determined by the equation

−∆ − 1 + C + (n − 1)(C − 1

2
) = −

[

∆ + C + (n − 1)(C − 1

2
)

]

,

that is, C = 1
2 .

Therefore,

max lim
t→∞

P

(

1 − ∆

t
≤ x

(1)
N ≤ 1 +

∆

t

)

= P

(

−∆ − 1 +
1

2
≤

n−1
∑

i=1

Vi ≤ ∆ +
1

2

)

= P

(

−∆ − 1

2
≤

n−1
∑

i=1

Vi ≤ ∆ +
1

2

)

,

where Vi’s are i.i.d. uniforms on
[

−1
2 , 1

2

]

. Hence, if ~x is obtained by the Mosteller-

Youtz-Zahn divisor rule ~x = ρt(~p),

max lim
t→∞

P

(

1 − ∆

t
≤ x

(1)
N ≤ 1 +

∆

t

)

≡ lim
t→∞

P

(

1 − ∆

t
≤ xN ≤ 1 +

∆

t

)

,

∀∆ = 0, 1, 2, . . .
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Remark: For the Mosteller-Youtz-Zahn divisor rule of rounding and, thus, for
the best of the 1-stationary divisor rules (with C = 1/2), as t → ∞, we obtain

lim P

(

1 − 1

t
≤ xN ≤ 1 +

1

t

)

= P

(

−1 ≤
[

n−1
∑

i=1

Vi

]

1

≤ 1

)

= P

(

−2 +
1

2
≤

n−1
∑

i=1

Vi ≤ 1 +
1

2

)

(

Vi
′s are i.i.d. uniforms on

(

−1

2
,
1

2

))

= P















−3

2
√

(n − 1) 1
12

≤

n−1
∑

i=1

Vi

√

(n − 1) 1
12

≤
3

2
√

(n − 1) 1
12















= P

(

−
√

27√
n − 1

≤ Z ≤
√

27√
n − 1

)

(Z is standard normal)

=

∫

√

27
√

n−1

−

√

27
√

n−1

1√
2π

e
x2

2 dx ≃
√

54

π(n − 1)
+ O

(

n− 3

2

)

. �

Next, we will sketch the proof of Theorem 1.1. First, we need the following two
lemmas.

Lemma 1.5. Let ~m = (m1, . . . ,mn−1) be a vector of integers mi ≥ K whose
sum is at most t − n + 1 for t and n fixed, n > 1 and t large enough. Let

At(~m) =

{

(p1, . . . , pn−1) :
mi

t
≤ pi <

mi + 1

t
, i = 1, . . . , n − 1

}

and At =
⋃

~m At(~m). Then Pr(At) → 1, as t → ∞. Moreover, given ~p ∈ At, the
random variable

Ṽi = V ~m,t
i := t(x

(K)
i − pi), i = 1, . . . , n − 1

(rounding errors of a K-stationary rule of rounding ~x(K) = ρ
(K)
t (~p)), are independent

and uniformly distributed on [−C, 1 − C].

The proof parallels that of Lemma 1.3. Note that mi’s were assumed to be
greater than 0, while here mi ≥ K. Clearly, as t → ∞, the probability for a proportion
pi to be in the interval [0,K/t] is negligible.

Lemma 1.6. For every integer σ1 /∈ {0,−1, . . . ,−K+1} and every continuous

random variable, the K-stationary rule of 1/t-rounding ~x(K) = ρ
(K)
t (~p) (4), gives the

following:

[

σ1 + σ2

t

]K

t
=

σ1

t
+

1

t
[σ2]

K
1 +

1

t

K−1
∑

j=0

(I {σ2 ∈ [j, j + Cj]} − I {σ2 ∈ [j, j + C]})
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+
1

t

K−1
∑

j=0

(I {σ1 + σ2 ∈ [j, j + C]} − I {σ1 + σ2 ∈ [j, j + Cj ]}) .

In particular, if C ≤ Cj, j = 0, . . . ,K − 1, then

[

σ1 + σ2

t

]K

t
=

σ1

t
+

1

t
[σ2]

K
1 +

1

t

K−1
∑

j=0

I {σ2 ∈ (j + C, j + Cj ]}

+
1

t

K−1
∑

j=0

I {σ1 + σ2 ∈ (j + C, j + Cj ]} .

The proof parallels the proof of Lemma 1.4.

S k e t c h o f p r o o f of Theorem 1.1. Applying Lemma 1.6, and using the ex-

pression x
(K)
i = [pi]

K
t = pi + 1

t Ṽi, i = 1, . . . , n − 1 we obtain the following expression

for x
(K)
n :

x(K)
n = [pn]Kt =

[

1 −
n−1
∑

i=1

x
(K)
i +

1

t

n−1
∑

i=1

Ṽi

]K

t

=





(

t − t
∑n−1

i=1 x
(K)
i

)

+
∑n−1

i=1 Ṽi

t





K

t

= 1 −
n−1
∑

i=1

x
(K)
i +

1

t

[

n−1
∑

i=1

Vi

]K

1

+
1

t
Rt,

where for Rt we have the following:
If C ≤ Cj, j = 0, 1, . . . ,K − 1 (the general case can be handled in the same

way) and σ1 /∈ {0,−1, . . . ,−K + 1},

Rt =
K−1
∑

j=0

I {σ2 ∈ (j + C, j + Cj ]} −
K−1
∑

j=0

I {σ1 + σ2 ∈ (j + C, j + Cj]} ,

where σ1 = t − t
∑n−1

i=1 x
(K)
i and σ2 =

∑n−1
i=1 Ṽi. Consequently, σ1 + σ2 = tpn and,

as t → ∞,
∑K−1

j=0 I {σ1 + σ2 ∈ (j + C, j + Cj ]} → 0, with probability 1. On the other
hand, by Lemma 1.5, as t → ∞

K−1
∑

j=0

I {σ2 ∈ (j + C, j + Cj]} −→
K−1
∑

j=0

I







K−1
∑

j=0

Vi ∈ (j + C, j + Cj ]







,

where Vi’s are i.i.d. uniforms on [−C, 1 − C]. Summing up all expressions of xi,
i = 1, . . . , n, we obtain

x
(K)
N =

n−1
∑

i=1

x
(K)
i = 1 +

1

t

[

n−1
∑

i=1

Vi

]K

1

+
1

t
Rt
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and consequently,

t
{

x
(K)
N − 1

}

=

[

n−1
∑

i=1

Vi

]K

1

+ Rt.

Recall that, to apply Claim 1.5, we must assume σ1 = t−t
n−1
∑

i=1

x
(K)
i /∈ {0,−1, . . . ,−K +

1}. Then, as t → ∞,

lim P (x
(K)
N = 1) = lim P

(

x
(K)
N = 1,

n−1
∑

i=1

x
(K)
i 6= 1 − ∆

t
, ∀∆ ∈ {0, 1, . . . ,K − 1}

)

+ lim P

(

x
(K)
N = 1,

n−1
∑

i=1

x
(K)
i = 1 − ∆

t
, for some∆ ∈ {0, 1, . . . ,K − 1}

)

.

The probability of the second term on the right-hand side is, in fact, equal to the

P (x
(K)
N = 1, x

(K)
n = ∆

t for some ∆ ∈ {0, 1, . . . ,K − 1}) and, as t → ∞, it converges to
0, since ~p is uniformly distributed on the simplex Sn. Therefore,

lim
t→∞

P
(

x
(K)
N = 1

)

= lim
t→∞

P
(

t
{

x
(K)
N − 1

}

= 0, σ1 /∈ {0,−1, . . . ,−K + 1}
)

= P





[

n−1
∑

i=1

Vi

]K

1

+
K−1
∑

j=0

I

{

n−1
∑

i=1

Vi ∈ (j + C, j + Cj]

}

= 0



 .

The latter probability can be expressed as a sum of K terms, say T0, . . . , TK−1 where

T0 = P

([

n−1
∑

i=1

Vi

]K

1

= 0 and I

{

n−1
∑

i=1

Vi ∈ (j + C, j + Cj ]

}

= 0 ∀j ∈ {0, . . . ,K − 1}
)

T1 = P

([

n−1
∑

i=1

Vi

]K

1

= −1, I

{

n−1
∑

i=1

Vi ∈ (j0 + C, j0 + Cj0]

}

= 1,

for some j0 ∈ {0, . . . ,K − 1}
)

and I

{

n−1
∑

i=1

Vi ∈ (j + C, j + Cj]

}

= 0 ∀j 6= j0, j ∈ {0, . . . ,K − 1}
)

and so on,

TK−1 = P

([

n−1
∑

i=1

Vi

]K

1

= −K and I

{

n−1
∑

i=1

Vi ∈ (j + C, j + Cj]

}

= 1
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∀j ∈ {0, . . . ,K − 1}
)

Note that T1 = T2 = . . . = Tk−1 = 0. Consequently,

lim P
(

x
(K)
N = 1

)

= P

(

−1 + C <
n−1
∑

i=1

Vi < C0 and
n−1
∑

i=1

Vi /∈ (j + C, j + Cj) ,

∀j ∈ {0, 1, . . . ,K − 1}
)

= P

(

−1 + C <
n−1
∑

i=1

Vi < C

)

.

Hence the limiting probability does not depend on C0, . . . , CK−1.
The rest of the proof parallels that of Theorem 1.2 and leads us to the following

conclusion:
The limiting probability of

{

x
(K)
N = 1

}

for a K-stationary divisor rule ~x(K) =

ρ
(K)
t (~p) attains its maximum for the rule with divisor points C0, C1, . . . , Ck−1, C where

Cj , 0 ≤ j ≤ K − 1 may be any point on [0, 1] while C = 1
2 . Moreover, the maximum of

the lim
t→∞

P

(

1 − ∆

t
≤ x

(K)
N ≤ 1 +

∆

t

)

, ∀∆ = 0, 1, 2, . . . is attained by the K-stationary

rule with divisor point C0, C1, . . . , CK−1, C as described above.
In addition, if ~x is obtained by the Mosteller-Youtz-Zahn divisor rule ~x = ρt(~p),

then

max lim
t→∞

P

(

1 − ∆

t
≤ x

(K)
N ≤ 1 +

∆

t

)

= lim
t→∞

P

(

1 − ∆

t
≤ xN ≤ 1 +

∆

t

)

. �

1.3. Simulation Studies. Simulation studies have been conducted to support
our theoretical results: Suppose p̃ = (p1, . . . , pn) is uniformly distributed over the sim-

plex Sn and ~x(MY Z) = (x1, . . . , xn), ~x(1) =
(

x
(1)
1 , . . . , x

(1)
n

)

and ~x(2) =
(

x
(2)
1 , . . . , x

(2)
n

)

are the 1/t-roundings of ~p obtained by the Mosteller-Youtz-Zahn rule, 1-stationary and

2-stationary rules respectively. Then, if x
(•)
N = x

(•)
1 + . . . + x

(•)
n ,

lim
t→∞

P
(

x
(MY Z)
N = 1

)

= lim
t→∞

P
(

x
(1)
N = 1

)

= lim
t→∞

P
(

x
(2)
N = 1

)

=

√

6

π(n − 1)
+ O

(

1√
n3

)(6)

where the second term of the sum is equal to −
√

3

2π(n − 1)3
+ O

(

1√
n5

)

.
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Our simulations (see Tables 1.1–1.5) show that for n ≥ 100, the numerical
results approach the theoretical results of (6) when we round in the sixth or seventh
decimal point, that is, for t = 106 or t = 107. If we wish to obtain precision up to the
second term on the right-hand side of (6), we need, first, to consider for rounding at
least 106 vectors ~p and second, to round at least to the 10th decimal point.

In our simulations, the C0 of the 1-stationary rule and the C0, C1 of the 2-
stationary rule have been assigned values taken from the interval [0.35, 0.65]. The
further from 0.5 these values are, the larger the rounding number t should be, in order
to obtain the first and second equality in (6). In order to get the desired results in the
cases where C0 and C1 take values outside the interval [0.35, 0.65], we need, once more,
to round at least to the 10th decimal.

The expected results in (6) change subject to changes on the number n of
components that each vector ~p consists of. The following table displays the values of
√

6

π(n − 1)
and

√

3

2π(n − 1)3
for several values of n:

n
√

6
π(n−1)

√

3
2π(n−1)3

100 0.1389 0.000701662
500 0.0619 0.000062005

1000 0.0437 0.000021889
1500 0.0357 0.000011909
2000 0.0309 0.000007733

In rounding five thousand vectors ~p = (p1, . . . , pn) for each n ∈ {100, 500, 1000,
1500, 2000} we obtain the following Tables:

TABLE 1.1: n = 100

t P (x
(MY Z)
N = 1) P (x

(1)
N = 1) P (x

(2)
N = 1)

103 0.1340 0.1332 0.1240
104 0.1362 0.1346 0.1322
105 0.1378 0.1366 0.1360
106 0.1380 0.1380 0.1376
107 0.1382 0.1382 0.1380
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TABLE 1.2: n = 500

t P (x
(MY Z)
N = 1) P (x

(1)
N = 1) P (x

(2)
N = 1)

103 0.0200 0.0102 0.0224
104 0.0536 0.0528 0.0506
105 0.0582 0.0590 0.0594
106 0.0616 0.0614 0.0618
107 0.0618 0.0614 0.0616

TABLE 1.3: n = 1000

t P (x
(MY Z)
N = 1) P (x

(1)
N = 1) P (x

(2)
N = 1)

103 0.0000 0.0000 0.0034
104 0.0405 0.0314 0.0342
105 0.0416 0.0414 0.0393
106 0.0425 0.0420 0.0418
107 0.0436 0.0435 0.0436

TABLE 1.4: n = 1500

t P (x
(MY Z)
N = 1) P (x

(1)
N = 1) P (x

(2)
N = 1)

103 0.0000 0.0000 0.0000
104 0.0225 0.0225 0.0128
105 0.0325 0.0325 0.0315
106 0.0345 0.0340 0.0340
107 0.0355 0.0355 0.0355

TABLE 1.5: n = 2000

t P (x
(MY Z)
N = 1) P (x

(1)
N = 1) P (x

(2)
N = 1)

103 0.0000 0.0000 0.0000
104 0.0165 0.0165 0.0018
105 0.0260 0.0260 0.0268
106 0.0290 0.029? 0.0280
107 0.0300 0.030? 0.0290
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