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REALCOMPACTIFICATIONS, P–SPACES AND BAIRE

ISOMORPHISM OF TOPOLOGICAL SPACES

M. M. CHOBAN

Abstract. The concept of realcompactification which is based on the notoin of a
complete space of functions is applied to the problem of the Baire homeomorphism
of topological spaces and to the study of the Stone–Čech compactifications of P–
spaces. It is proved that realcompact P–spaces are homeomorphic if and only if
their Stone–Čech compactifications are homeomorphic.

Introduction. In the present paper we investigate the concept of realcom-
pactification of topological spaces. The definition of realcompactification of space X is
based on the following properties of Hewitt realcompactification νX of space X:

1. νX ⊆ βX;

2. νX is a realcompact space;

3. H ∩X 6= ∅ for every non–empty zero–set H of space νX.

The extension rX of space X is a realcompactification of X if is satisfies prop-
erties 2 and 3 (see Definition 2.1). This approach is justified by Theorems 3.2, 4.1, 5.5
and Example 5.7.

The notion of realcompactification is applied to the problem of an isomorphism
of Baire classes of functions and to the study of the Stone–Čech compactifications
of P–spaces. In particular, we shall prove that the realcompact P–spaces X and Y
are homeomorphc if and only if their Stone–Čech compactifications βX and βY are
homeomorphic.

The notion of complete space of functions enables to apply the Gelfand–Kolmo-
gorov and Stone–Weierstrass theorems to the study of the isomorphisms of the complete
algebras of functions.

1. Definitions and notations. We shall consider only Tychonov spaces. We
shall use the notations and terminology from [1, 4]. In particular, βX is the Stone–
Čech compactification of the space X, νX is the Hewitt realcompactification of space
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X, ω(X) is the weight of space X, the cardinality of a set Y is denoted by |Y |, cl H or
clXH denotes the closure of a set H in X, N = {1, 2, . . .}, R is the field of real numbers,
C(X) is the space of all continuous real–valued functions on a space X, C∗(X) presents
all bounded functions in C(X).

A space is realcompact if it is homeomorphic to a closed subspace of a product
of real lines.

Let S be a set, B(S) be the space of all real–valued functions on S and B∗(S) =
{f ∈ B(S) : f is bounded on S}. The sets B(S) and B∗(S) are lattice–ordered algebras
with respect to the pointwise operation. The space B(S) is a Banach algebra with the
supremum norm ||f || = sup{|f(x)| : x ∈ S}. If α ∈ R, then αS(x) = α for every x ∈ S.
If f ∈ B(S) and α ∈ R, then we put f ∨ α = f ∨ αS and f ∧ α = f ∧ αS .

If E ⊆ B(S), then TE is the topology on S generated by E and it has a base
consisting of all sets of the form ∩{f−1

i Ui : i = 1, . . . , n}, where n ∈ N, f1, . . . , fn ∈ E
and U1, . . . , Un are the open subsets of R. The space E separates the set S if for each
pair of distinct points x, y ∈ S there exists f ∈ E such that f(x) 6= f(y). The space
(S, TE) is Tychonov if and only if E separates the set S.

Let a subspace E of B(S) separate the set S. Then the mapping wE : S → RE,
where wE(x) = {f(x) : f ∈ E}, is an embedding of (S, TE) in RE. The closure νES
of the set S = wE(S) in RE is a realcompact space. The space νES is compact if and
only if E ⊆ B∗(S).

Let e1X and e2X be the extensions of space X. e1X > e2X means that there
exists a continuous mapping f : e1X → e2X such that f(x) = x for every x ∈ X.

A subspace E of B(S) is called a b–complete algebra of functions on S if it is a
Banach subalgebra of B∗(S) satisfying the following conditions:

1. E contains all constant functions;

2. E separates S.

A subspace E of B(S) is called a complete space of functions on S if it has the
following properties:

3. mE = E ∩B∗(S) is a b–complete algebra of functions on S;

4. If (f ∧ n) ∨ (−n) ∈ E for every n ∈ N , then f ∈ E;

5. If f ∈ E, then (f ∧ n) ∨ (−n) ∈ E for every n ∈ N .

Let E be a b–complete algebra or a complete space of functions on a set S. Let
βES = νmES.

1.1. Property. Let F ⊆ E ⊆ B(S) and F separates the set S. Then

νES > νFS.

P r o o f. Obvious.

1.2. Property. Let E ⊆ B∗(S) separate the set S. Then νES is the small-

est compactification of the space (S, TE) such that all functions of E are continuously

extendable over νES.
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P r o o f. Obvious.

1.3. Property. βX = βC(X)X = νC∗(X)X and νX = νC(X)X for every

space X.

P r o o f. Obvious.

1.4. Property. Let E be a b–complete algebra of functions on a set S. Then

the operator u : C(νES) → B(S), where u(f) = f |X, is an isomorphism of C(νES)
onto E.

P r o o f. Follows from Property 1.2 and the Stone–Weierstrass theorem ([1], p.
191).

1.5. Property. Let E be a complete space of functions on set S and mE =
E ∩B∗(S). Then:

1. νES > νmES = βES and the natural mapping π : νES → βES is an embed-

ding.

2. νES is the maximal subspace of βES such that all functions of E are contin-

uously extendable over νES.

3. νES = βES \ ∪{H ⊆ βES : H is a closed Gδ–subset of βES and

H ∩ S = ∅}.

4. For every f ∈ E there exist a minimal closed Gδ–subset H of βES and a

continuous function βEf : βES \H → R such that H ∩ S = ∅ and f = βEf |S.

5. E is uniformly closed in B(S).

6. If f ∈ E, then −f ∈ E.

7. If m ∈ N, f ∈ B(S), fm ∈ E and f ≥ 0, then f ∈ E.

8. If f ∈ E and f(x) 6= 0 for every x ∈ S, then g = 1/f ∈ E.

9. If E ∩ B∗(S) = C∗(S, TE), then E is an algebra of functions and E =
C(S, TE).

P r o o f. Let {fm : m ∈ N} ⊆ E, f ∈ B(S) and ‖f − fm‖ < 2−m. If gn =
(f ∧n)∨ (−n) and gmn = (fn ∧n)∨ (−n), then ‖gmn − gn‖ < 2−m and gmn, gn ∈ E for
all m,n ∈ N . Hence f ∈ E. Thus Assertion 5 is proved.

Let f ≥ 0 and fm ∈ E. Let fn = (f∧n)∨(−n). Then fm
n = (fm∧nm)∨(−nm) ∈

E and fn ∈ E. Hence f ∈ E. Thus Assertion 7 is proved.
Fix f ∈ E and suppose that f(x) 6= 0 for every x ∈ S. Let g = 1/f, fn = (f∧n)∨

(−n) and n,m ∈ N . Then fn ∈ mE. Consider functions fmn(x) = (fn(x) ∧ (−(m−1))
if fn(x) < 0 and fmn(x) = (fn(x) ∨ (m−1) if fn(x) > 0. By construction, fmn ∈ mE
and gmn 1/fmn ∈ mE. Denote (g ∧m) ∨ (−m) = gm. Then ‖gm − gmn‖ ≤ n−1. Hence
gm ∈ mE for every m ∈ N . This proves Assertion 8.

Fix f ∈ E and denote fn = (f ∧ n) ∨ (−n). Then for every n ∈ N there exists
a continuous function gn : βES → R such that fn = gn|S. Let Hn = g−1

n {−n, n} and
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H = ∩{Hn : n ∈ N}. If Un = g−1
n (−n, n), then S ⊆ ∪{Un : n ∈ N} = βES \H and

Un ⊆ Un+1 for every n ∈ N . If x ∈ Un, then we put βEf(x) = gn(x). Assertion 4 is
proved.

Let H be a closed Gδ–subset of βES and H ⊆ βES \ S. Then g−1(0) = H for
some g ∈ C(βES). Let f = g|S. Then f(x) 6= 0 for every x ∈ S and h = 1/f ∈ E. By
construction, βEh(x) = 1/g(x) for every x ∈ βES\H. This fact and Assertion 4 prove
Assertions 1, 2 and 3.

Let f ∈ E, fn = (f∧n)∨(−n), h = −f and hn = (h∧n)∨(−n). By construction,
hn = −fn for every n ∈ N . Therefore −f = h ∈ E. Assertion 6 is proved.

Assertion 9 is obvious. The proof is complete.

1.6. Corollary. Let E be a b–complete algebra of functions on a set S. Then

E is complete if and only if H ∩ S = φ for every non–empty Gδ–subset H of νES.

1.7. Corollary. Let E be a complete space of functions on a set S such that

(S, TE) is pseudocompact. Then E is a b–complete algebra of functions on S.

1.8. Corollary. Let E be a b–complete algebra or a complete space of

functions on a set S. Then E is a sublattice of lattice B(S).

Fix a space X. Let BO(X) = C(X) and inductively define the α Baire class
Bα(X) for each α ≤ Ω (Ω denotes the first uncountable ordinal) to be the space of
pointwise limits of sequences of functions in ∪{Bβ(X) : β < α}.

For every function f : X → R we denote Z(f) = f−1(0) and CZ(f) = X \Z(f).

We put Zα(X) = {Z(f) : f ∈ Bα(X)} = {f−1F : f ∈ Bα(X)andF ∈
Z0(X)}, CZα(X) = {CZ(f) : f ∈ Bα(X)}, Zα(X) ∩ CZα(X) = Aα(X).

The class Zα(X) (class CZα(X) ) is a multiplicative (additive) class α of Baire
sets of the space X. The sets Aα(X) are called the sets of ambiguous Baire class α.
The sets in Z0(X) are called the zero–sets of space X.

Let PX be the set X with the topology generated by the Gδ–sets in the space
X. The topology of PX is called Baire topology of the space X. For every α ≤ Ω the
classes Zα(X), CZ1+α(X), A1+α(X) are open bases of the space PX.

A space X is called a P–space if X = PX.

For every α ≤ Ω we denote ναPX = νBα(X)X and βαPX = βBα(X)X =
νB∗

α
(X)X, where B∗

α(X) = Bα(X) ∩B(X).

1.9. Property. For every α ≤ Ω and every space X the set Bα(X) is a

complete algebra of functions on a set X.

P r o o f. Obvious.

1.10. Property. Let E be a complete space of continuous functions on a

Lindelöf space X and TE be the topology of X. If E is an additive semigroup, then

E = C(X).
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P r o o f. Fix the closed and disjoint subsets H and F of X. Denote by H1

and F1 the closures of H and F in bX = βEX. Then P1 = H1 ∩ F1 is a compact
subset of bX \ X. Since X is Lindelöf, there exists a subset P ∈ Z0(bX) such that
P1 ⊆ P ⊆ bX \ X. Then there exist continuous functions f1 : bX → [0, 1] and
g1 : bX → [0, 2] such that g−1

1 (0) = f−1
1 (0) = P, g1(x) = 2−1 · f1(x) for every x ∈ H1

and g1(x) = 2 · f1(x) for every x ∈ F1. Let f = f1|X and g = g1|X. Then f(x) 6= 0
and g(x) 6= 0 for every x ∈ X. Hence 1/f ∈ E and −1/g ∈ E. By assumption E is an
additive semigroup and ϕ = (1/f) − (1/g) ∈ E. By construction, H ⊆ ϕ−1(−∞,−1]
and F ⊆ ϕ−1[2−1,∞). Hence P1 = ∅, bX = βX and mE = E∩B∗(X) = C∗(X). From
Property 1.5 E = C(X). The proof is complete.

2. Realcompactifications.

2.1. Definition. A space Y is called a realcompactification of a space X if Y
is realcompact, X is a dense subspace of Y and H ∩X 6= ∅ for every non–empty subset

H ∈ Z0(Y ).

2.2. Proposition. Let bX be a realcompact or a compact extension of space

X and rX = bX \ ∪{H ∈ Z0(bX) : H ∩X = ∅}. Then rX is a realcompactification of

X generated by the extension bX.

P r o o f. By virtue of ([1], Theorem 3, 11.10), rX is a realcompact space. By
construction, X is dense in rX and X∩H 6= ∅ for every non–empty subsetH ∈ Z0(rX).
The proof is complete.

2.3. Proposition. Let E be a complete space of continuous functions on space

X and TE be the topology of X. Then νEX is a realcompactification of X generated by

the compactification βEX of X.

P r o o f. Follows from Property 1.5.

2.4. Proposition. Let rX be a realcompactification of space X. Then there

exists a maximal complete space E of functions on the set X such that:

1. E is an algebra of continuous functions on the space X.

2. rX = νEX and βrX = βEX.

P r o o f. Let E = {f |X : f ∈ C(rX)} and mE = {f |X : f ∈ C∗(rX)} = {f |X :
f ∈ C(βrX)}. Then, by virtue of ([1], Theorem 3.11.10), rX = βrX\∪{H ∈ Z0(βrX) :
H ∩ rX = ∅} = βrX \ ∪{H ∈ Z0(βrX) : H ∩X = ∅}, the realcompactification rX is
generated by βrX and mE is a b–complete algebra of functions on X. Let f ∈ B(X)
and fn = (f ∧ n) ∨ (−n) ∈ mE for every n ∈ N . By construction, fn = gn|X for some
gn ∈ C(rX). We put g−1

n {−n, n} = Hn and H = ∩{Hn : n ∈ N}. Then H ∈ Z0(rX)
and H ∩X = ∅. Hence H = ∅. The function g, where g|(rX \Hn) = gn|(rX \Hn) for
every n ∈ N , is continuous and g|X = f . Therefore f ∈ E and E is a complete algebra
of functions on X. By construction, rX = νEX and βrX = βEX. It is clear that E is
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a maximal complete space of functions on a set X for which rX = νEX. The proof is
complete.

2.5. Proposition. Let the realcompactification rX of a space X be generated

by the compactification bX of X. We put mE = {f |X : f ∈ C(bX)} and E = {f ∈
B(X) : (f ∧ n) ∨ (−n) ∈ mE for every n ∈ N}. Then rX = νEX and bX = βEX.

P r o o f. By construction, mE = E ∩ B∗(X), E ⊆ C(X) and νEX ⊆ βEX =
νmEX = bX. Hence, by virtue of Property 1.5, rX = νEX. The proof is complete.

2.6. Corollary. If eX is an extension of the space X, then the following

assertions are equivalent:

1. eX is a realcompactification of X.

2. eX = νEX for some complete space E of functions on X.

3. eX = νEX for some complete algebra E of functions on X.

2.7. Proposition. The space X has an unique realcompactification if and

only if X is Lindelöf or |βX \X| ≤ 1.

P r o o f. Let X be a Lindelöf space and bX be a compactification of X. For
every compact subset F of bX \X there exists a compact subset H ∈ Z0(bX) such that
F ⊆ H ⊆ bX \X (see [1], Problem 3.12.24). Hence X is an unique realcompactification
of space X.

Let |βX \X| ≤ 1. Then νX = βX is the unique realcompactification of X.

Let X be not a Lindelöf space and |βX \X| > 1. Then there exists a compact
subset F of βX \X such that |F | > 1 and for every compact subset H ∈ Z0(βX), where
H ⊆ βX \ X, we have F \ H 6= ∅. Consider the continuous mapping h : βX → bX
onto a compactification bX of X such that h(F ) is a singleton set and h(x) = x for
every x ∈ X. Then rX = bX \ ∪{H ∈ Z0(bX) : H ∩X = ∅} is a realcompactification
of X,h(F ) ⊆ rX, rX 6= νX. The proof is complete.

2.8. Example. Let X be a locally compact non–Lindelöf space. Then the
Alexandrov one–point compactification αX of X is a realcompactification of X.

2.9. Example. Let X be a locally Lindelöf non–Lindelöf space. Then there
exists an extension lX of X such that lX is Lindelöf, every closed Lindelöf subspace
of X is closed in lX and lX \X is a singleton set. The space lX is called a one–point
lindelöfication of X. The space lX is a realcompactification of X.

2.10. Example. The space X is almost Lindelöf if at least one of any pair of
disjoint zero–sets is Lindelöf [5].

Let X be an almost Lindelöf space. Then X is locally Lindelöf. If X is not
Lindelöf, then, by virtue of Proposition 5.4 [5], we have νX = lX.

2.11. Example. Let X be a Lindelöf space and bX be a compactification of
X. We put F = mE = {f |X : f ∈ C(bX)} and E = {f ∈ B(X) : (f ∧ n) ∨ (−n) ∈ F
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for every n ∈ N}. Then E is a complete space of functions, νEX = X and βEX = bX.
If bX = βX, then E is a complete algebra of functions and E = C(X).

Let E be a complete algebra of functions on a set X. From Property 1.10
we have E = C(X). Hence E is a complete algebra of functions on X if and only if
E = C(X) and bX = βX. In particular, if bX 6= βX, then E is a complete space of
functions and E is not an algebra of functions.

2.12. Example. Let Q be a space of rational numbers of [0, 1],mE = {f |Q :
f ∈ C([0, 1])} and E = {f ∈ B(Q) : (f ∧n)∨ (−n) ∈ mE for every n ∈ N}. Then E is
a complete space of functions on the set Q and E is not an algebra of functions on the
set Q.

3. Isomorphism of spaces of functions.

3.1. Definition. Let E ⊆ B(X) and F ⊆ B(Y ). The mapping h : E → F is

called a homomorphism if it satisfies the following conditions:

1. If f, g ∈ E and f + g ∈ E, then h(f + g) = h(f) + h(g);

2. If f ∈ E and −f ∈ E, then h(−f) = −h(f);

3. If f, g ∈ E and f · g ∈ E, then h(f · g) = h(f) · h(g).

The mapping h : E → F is called isomorphism if h maps E onto F in a

one–to–one way and h, h−1 are the homomorphisms.

3.2. Theorem. Let E be a complete space of functions on a set X,F be a

complete space of functions on a set Y and h : E → F be an isomorphism. Then there

exists an unique homeomorphism ψ : βEX → βEY such that:

1. ψ(Z(βEf)) = Z(βFh(f)) for every f ∈ E.

2. ψ(νEX) = νFY .

P r o o f. Let mE = E ∩ B∗(X),mF = F ∩ B∗(Y ), E+ = {f ∈ E : f ≥ 0} and
F+ = {g ∈ F : g ≥ 0}. By Property 1.5, E+ = {f · f : f ∈ E}. Hence h(E+) = F+.
If f, g ∈ E and f ≤ g, then g − f ∈ E+ and h(f) ≤ h(g). Therefore h is a lattice
isomorphism. It is clear that h(1X ) = 1Y . Hence h(αX) = αY for every α ∈ R,
where αX(X) = α. If f ∈ mE, then −nX < f < nX for some n ∈ N . Therefore
−nY < h(f) < nY and h(mE) = mF .

For every maximal ideal J of the ring mE there exists an unique point x(J) ∈
βEX such that J = {f |X : f ∈ C(βEX) and f(x(J)) = 0}. For every maximal ideal
H of the ring mF there exists an unique point y(H) ∈ βFY such that H = {g|Y :
g ∈ C(βFY ) and g(y(H)) = 0} (see [2], Chapter 4). Then there exists an unique
one–to–one mapping ψ : βEX → βFY such that ψ(x(J)) = y(h(J)) for every maximal
ideal J of mE. If f ∈ C(βEX), then Z(f) = {x(J) : J is a maximal ideal of mE and
f |X ∈ J}. Hence Z(βEf) = Z(βE((f ∧ 1) ∨ (−1)) and Z(βFh(f)) = ψ(Z(βEf)) for
every f ∈ E.
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Let H ∈ Z0(βEX) and H ⊆ βEX \X. Then there exists a continuous function
f ∈ C(βEX) such that H = Z(f). Then f1 = f |X ∈ mE and g = 1/f1 ∈ E. Let
g1 = βFh(g). Then 1 = g1(y) · h(f)(y) for every y ∈ Y . Therefore g1(h(x)) = 1/f(x)
for every x ∈ βEX \ H and h(H) ⊆ βFY \ Y . Hence ψ(νEX) = νFY . The proof is
complete.

3.3. Example. Let X be a locally compact non–Lindelöf space. By Y = αX
we denote the one–point Alexandrov compactification of X,F = C(Y ) and E = {f |X :
f ∈ F}. The mapping h : F → E, where h(f) = f |X, is an isomorphism, E is a
complete algebra of functions on the set X and F is a complete algebra of functions
on the set Y . The spaces X and Y are not homeomorphic. If X is a discrete space of
cardinality continuum, then X is realcompact.

4. Realcompactification of P–spaces.

4.1. Theorem. Let rX be a realcompactification of a P–space X generated

by a compactification bY, rY be a realcompactification of a P–space Y generated by a

compactification bY and ψ : bX → bY be a homeomorphism. Then ψ(rX) = rY .

P r o o f. Let H ∈ Z0(bX) and H 6= ∅. If H ∩ X = ∅, then int H = ∅. If
H ∩X 6= ∅, then int H 6= ∅. Therefore ψ(rX) = rY .

4.2. Corollary. Let rX be a realcompactification of a P–space X, rY be a

realcompactification of a P–space Y , E be a maximal complete algebra of functions on

X for which rX = νEX and F be a maximal complete algebra of functions on Y for

which rY = νFY . Then the following assertions are equivalent:

1. E and F are isomorphic.

2. rX and rY are homeomorphic.

3. βrX and βrY are homeomorphic.

4.3. Corollary. Let X and Y be realcompact P–spaces. The compactifications

βX and βY are homeomorphic if and only if spaces X and Y are homeomorphic.

4.4. Corollary. Let X and Y be P–spaces. The compactifications βX
and βY are homeomorphic if and only if the realcompactifications νX and νY are

homeomorphic.

5. Baire isomorphisms. Let X and Y be spaces. The mapping ϕ : X → Y
is called a Baire isomorphism of class (α, β) if ϕ(Zα(X)) = Zβ(Y ).

5.1. Lemma. If X is a realcompact space, then PX is realcompact, too.

P r o o f. The space PR is discrete and realcompact (see [1,2]). Hence PX is a
closed subspace of a realcompact space (PR)C(X).

5.2. Lemma. Let X be a dense subspace of a realcompact P–space Y . Then

Y is a realcompactification of X.
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P r o o f. . Let H ∈ Z0(Y ) and H 6= ∅. Then H is an open subset of Y and
H ∩X 6= ∅. The proof is complete.

5.3. Lemma. PνX is a realcompactification of PX.

P r o o f. Follows from Lemmas 5.1 and 5.2.

5.4. Lemma. ναPX = PνX for every α ≥ 1.

P r o o f. Follows from Lemma 5.1 and P. R. Mayer’s theorem ([3], Theorem 7).

5.5. Theorem. Let X and Y be spaces and α, µ ≥ 1. The following assertions

are equivalent:

1. Bα(X) and Bµ(Y ) are ring isomorphic.

2. B∗

α(X) and B∗

µ(Y ) are ring isomorphic.

3. βαPX and βµPY are homeomorphic.

4. There exists a Baire isomorphism ϕ : νX → νY of class (α, µ).

P r o o f. Implications 1 → 2 → 3 → 2 and 4 → 1 are obvious. Let ψ : βαPX →
βµPY be a homeomorphism. From Theorem 4.1 we have ψ(ναPX) = νµPY . Let ϕ =
ψ|ναPX. From Lemma 5.4. ναPX = PνX and νµPY = PνY . Let H ∈ Aα(PνX).
Then H = PνX ∩H1 for some open and closed subset H1 βαPX. The set ψ(H1) is
open and closed in βµPX and ϕ(H) = ψ(H1) ∩ νY ∈ Aµ(νY ). Hence ϕ : νX → νY
is a Baire isomorphism of class (α, µ). This proves implication 3 → 4. The proof is
complete.

5.6. Corollary (J. E. Jayne [4]). Let X and Y be realcompact spaces and

α, µ ≥ 1. The following assertions are equivalent:

1. Bα(X) and Bµ(Y ) are ring isomorphic.

2. B∗

α(X) and B∗

µ(Y ) are ring isomorphic.

3. BαPX and BµPY are homeomorphic.

4. There exists a Baire isomorphism ϕ : X → Y of class (α, µ).

5.7. Example. Let X be a first countable space and νX 6= X. Then PX is
a discrete realcompact space, PνX is a realcompactification of space PX,PX = νPX
and νPX 6= PνX.
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