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REALCOMPACTIFICATIONS, P-SPACES AND BAIRE
ISOMORPHISM OF TOPOLOGICAL SPACES

M. M. CHOBAN

ABSTRACT. The concept of realcompactification which is based on the notoin of a
complete space of functions is applied to the problem of the Baire homeomorphism
of topological spaces and to the study of the Stone-Cech compactifications of P—
spaces. It is proved that realcompact P—spaces are homeomorphic if and only if
their Stone-Cech compactifications are homeomorphic.

Introduction. In the present paper we investigate the concept of realcom-
pactification of topological spaces. The definition of realcompactification of space X is
based on the following properties of Hewitt realcompactification v X of space X:

1. vX C BX;
2. vX is a realcompact space;
3. HN X # () for every non—empty zero—set H of space vX.

The extension X of space X is a realcompactification of X if is satisfies prop-
erties 2 and 3 (see Definition 2.1). This approach is justified by Theorems 3.2, 4.1, 5.5
and Example 5.7.

The notion of realcompactification is applied to the problem of an isomorphism
of Baire classes of functions and to the study of the Stone-Cech compactifications
of P—spaces. In particular, we shall prove that the realcompact P—spaces X and Y
are homeomorphe if and only if their Stone-Cech compactifications X and BY are
homeomorphic.

The notion of complete space of functions enables to apply the Gelfand—Kolmo-
gorov and Stone—Weierstrass theorems to the study of the isomorphisms of the complete
algebras of functions.

1. Definitions and notations. We shall consider only Tychonov spaces. We
shall use the notations and terminology from [1, 4]. In particular, 5X is the Stone-
Cech compactification of the space X, v.X is the Hewitt realcompactification of space
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X, w(X) is the weight of space X, the cardinality of a set Y is denoted by |Y|, ¢/ H or
clx H denotes the closure of a set H in X, N = {1,2,...}, R is the field of real numbers,
C'(X) is the space of all continuous real-valued functions on a space X, C*(X) presents
all bounded functions in C'(X).

A space is realcompact if it is homeomorphic to a closed subspace of a product
of real lines.

Let S be a set, B(S) be the space of all real-valued functions on S and B*(S) =
{f € B(S): f is bounded on S}. Thesets B(S) and B*(S) are lattice-ordered algebras
with respect to the pointwise operation. The space B(.S) is a Banach algebra with the
supremum norm || f|| = sup{|f(z)| : x € S}. If &« € R, then ag(x) = a for every z € S.
If fe B(S)and a € R, then we put fVa=fVagand fAa=fAag.

If E C B(S), then Tg is the topology on S generated by F and it has a base
consisting of all sets of the form ﬁ{f{lUi ci=1,...,n}, wheren € N, f1,...,fp € E
and Uy, ..., U, are the open subsets of R. The space E separates the set S if for each
pair of distinct points x,y € S there exists f € E such that f(z) # f(y). The space
(S,Tg) is Tychonov if and only if F separates the set S.

Let a subspace E of B(S) separate the set S. Then the mapping wg : S — RF,
where wg(z) = {f(z) : f € E}, is an embedding of (S,Tg) in RE. The closure vgS
of the set S = wg(S) in RF is a realcompact space. The space vgS is compact if and
only if £ C B*(S).

Let e1 X and es X be the extensions of space X. €1 X > es X means that there
exists a continuous mapping f : e; X — €2 X such that f(x) = z for every = € X.

A subspace E of B(S) is called a b—complete algebra of functions on S if it is a
Banach subalgebra of B*(S) satisfying the following conditions:

1. E contains all constant functions;

2. FE separates S.

A subspace E of B(S) is called a complete space of functions on S if it has the
following properties:

3. mE = EN B*(S) is a b—complete algebra of functions on S;

4. If (f An)V (—n) € E for every n € N, then f € E;

5. If f € E, then (f An)V (—n) € E for every n € N.

Let E be a b—complete algebra or a complete space of functions on a set S. Let
BES = vnmES.

1.1. Property. Let F C E C B(S) and F separates the set S. Then
veS > vpS.

Proof. Obvious.

1.2. Property. Let E C B*(S) separate the set S. Then vgS is the small-

est compactification of the space (S,Tg) such that all functions of E are continuously
extendable over vgS.



330 M. M. Choban

Proof. Obvious.

1.3. Property. (X = fox)X = vo«x)X and vX = Voix)X for every
space X.

Proof. Obvious.

1.4. Property. Let E be a b—complete algebra of functions on a set S. Then
the operator u : C(vgS) — B(S), where u(f) = f|X, is an isomorphism of C(vgS)
onto E.

Proof. Follows from Property 1.2 and the Stone-Weierstrass theorem ([1], p.
191).

1.5. Property. Let FE be a complete space of functions on set S and mE =
E N B*(S). Then:

1. vgS > vmeS = BeS and the natural mapping © : vpS — PBrS is an embed-
ding.

2. vpS is the mazximal subspace of BgS such that all functions of E are contin-
wously extendable over vpsS.

3. vgS = PeS\U{H C BgS : H is a closed Ggs—subset of fpS  and
HNS =0}

4. For every f € E there exist a minimal closed Gs—subset H of BgpS and a
continuous function Bgf : BpS\ H — R such that HN S =0 and f = Brf]|S.

5. E is uniformly closed in B(S).

6. If fe E, then —f € E.

7.IfmeN,feB(S),f"eE and f >0, then f € E.

8. If f € E and f(x) # 0 for every x € S, then g=1/f € E.

9. If EN B*(S) = C*(S,Tg), then E is an algebra of functions and E =
C(S,Tk).

Proof. Let {fs, : m e N} C E,f € B(S) and ||f — fml| < 27™. If g, =
(fAn)V (=n) and gmn = (fa An)V (=n), then [|gmn — gnll < 27™ and gmn, gn € E for
all m,n € N. Hence f € E. Thus Assertion 5 is proved.

Let f > 0and f™ € E. Let f,, = (fAn)V(—n). Then f* = (f™An™)V(—n™) €
FE and f, € E. Hence f € E. Thus Assertion 7 is proved.

Fix f € E and suppose that f(z) # Oforeveryxz € S. Let g = 1/f, f, = (fAn)V
(—n) and n,m € N. Then f, € mE. Consider functions f,(z) = (fu(z) A (—=(m™1))
if fo(z) <0 and fon(x) = (fu(z) vV (m~Y) if fu(x) > 0. By construction, f, € mFE
and gmn 1/ fmn € mE. Denote (g Am)V (—=m) = gm. Then ||gm — gmnl| < n~!. Hence
gm € mE for every m € N. This proves Assertion 8.

Fix f € FE and denote f,, = (f An)V (—n). Then for every n € N there exists
a continuous function g, : BgS — R such that f, = g,|S. Let H, = g,'{—n,n} and
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H=n{H,:n € N}. fU, =g, (-n,n), then S CU{U, : n € N} = BgS\ H and
U, C Up4 for every n € N. If x € U,, then we put fgf(z) = gn(x). Assertion 4 is
proved.

Let H be a closed Gs-—subset of 8gS and H C 35S\ S. Then g~ 1(0) = H for
some g € C(BgS). Let f = g|S. Then f(x) # 0 for every x € S and h=1/f € E. By
construction, Sph(z) = 1/g(x) for every x € SpS\H. This fact and Assertion 4 prove
Assertions 1, 2 and 3.

Let f € E, f, = (fAn)V(—n),h = —f and h,, = (hAn)V(—n). By construction,
hp = —fy for every n € N. Therefore —f = h € E. Assertion 6 is proved.

Assertion 9 is obvious. The proof is complete.

1.6. Corollary. Let E be a b—complete algebra of functions on a set S. Then
E is complete if and only if HN S = ¢ for every non-empty Gs—subset H of vgS.

1.7. Corollary. Let E be a complete space of functions on a set S such that
(S,Tk) is pseudocompact. Then E is a b—complete algebra of functions on S.

1.8. Corollary. Let E be a b—complete algebra or a complete space of
functions on a set S. Then E is a sublattice of lattice B(S).

Fix a space X. Let Bo(X) = C(X) and inductively define the a Baire class
B,(X) for each v < Q (€ denotes the first uncountable ordinal) to be the space of
pointwise limits of sequences of functions in U{Bg(X) : 8 < a}.

For every function f : X — R we denote Z(f) = f~1(0) and CZ(f) = X\ Z(f).

We put Zo(X) = {Z(f) : f € Bo(X)} = {f7'F : f € By(X)andF €
Zo(X)}, CZa(X) = {CZ(f) | € BalX)}, Za(X) N CZa(X) = Ag(X).

The class Z,(X) (class CZ,(X) ) is a multiplicative (additive) class « of Baire
sets of the space X. The sets A,(X) are called the sets of ambiguous Baire class .
The sets in Zp(X) are called the zero—sets of space X.

Let PX be the set X with the topology generated by the Gs—sets in the space
X. The topology of PX is called Baire topology of the space X. For every a < () the
classes Z,(X),CZ110(X), A1+ (X) are open bases of the space PX.

A space X is called a P—space if X = PX.

For every a < Q we denote v, PX = vp, (x)X and B, PX = fp,(x)X =
vps:(x)X, where B;(X) = B,(X) N B(X).

1.9. Property. For every a < Q and every space X the set By(X) is a
complete algebra of functions on a set X.

Proof. Obvious.

1.10. Property. Let E be a complete space of continuous functions on a

Lindelof space X and Ty be the topology of X. If E is an additive semigroup, then
E=C(X).
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Proof. Fix the closed and disjoint subsets H and F' of X. Denote by H;
and F} the closures of H and F in bX = BgX. Then P, = Hi N F} is a compact
subset of bX \ X. Since X is Lindeldf, there exists a subset P € Zy(bX) such that
P, C P C bX \ X. Then there exist continuous functions f; : bX — [0,1] and
g1 : bX — [0,2] such that g;*(0) = f;71(0) = P,gi(x) = 271 - fi(x) for every x € H;
and gi(x) = 2- fi(z) for every x € Fy. Let f = f1|X and g = ¢1/X. Then f(x) # 0
and g(x) # 0 for every z € X. Hence 1/f € E and —1/g € E. By assumption F is an
additive semigroup and ¢ = (1/f) — (1/g) € E. By construction, H C ¢~ !(—o00, —1]
and F C ¢~ 1271 00). Hence P; = (,bX = X and mE = ENB*(X) = C*(X). From
Property 1.5 E = C(X). The proof is complete.

2. Realcompactifications.

2.1. Definition. A space Y is called a realcompactification of a space X if Y
is realcompact, X is a dense subspace of Y and HNX # 0 for every non—empty subset
H e Zy(Y).

2.2. Proposition. Let bX be a realcompact or a compact extension of space
X and rX =bX \U{H € Zy(bX) : HN X = 0}. Then rX is a realcompactification of
X generated by the extension bX.

Proof. By virtue of ([1], Theorem 3, 11.10), X is a realcompact space. By
construction, X is dense in rX and XNH # () for every non—empty subset H € Zy(rX).
The proof is complete.

2.3. Proposition. Let E be a complete space of continuous functions on space
X and Tg be the topology of X. Then vgX is a realcompactification of X generated by
the compactification X of X.

Proof. Follows from Property 1.5.

2.4. Proposition. Let rX be a realcompactification of space X. Then there
exists a maximal complete space E of functions on the set X such that:

1. E is an algebra of continuous functions on the space X.
2.rX =vgX and prX = fpX.

Proof. Let E={f|X: fe C(rX)} and mE ={f|X: fe C*(rX)} ={f|X:
f € C(BrX)}. Then, by virtue of ([1], Theorem 3.11.10), rX = BrX\U{H € Zy(frX) :
HnrX =0} =prX \U{H € Zy(frX) : HN X = 0}, the realcompactification rX is
generated by frX and mFE is a b-complete algebra of functions on X. Let f € B(X)
and f, = (f An)V (—n) € mE for every n € N. By construction, f, = g,|X for some
gn € C(rX). We put g, '{-n,n} = H, and H = N{H,, : n € N}. Then H € Zy(rX)
and H N X = (. Hence H = (). The function g, where g|(rX \ Hy,) = g»|(rX \ H,) for
every n € N, is continuous and g|X = f. Therefore f € E and FE is a complete algebra
of functions on X. By construction, rX = vgX and 6rX = GgX. It is clear that F is



Realcompactifications, P—Spaces and Baire . .. 333

a maximal complete space of functions on a set X for which rX = vgX. The proof is
complete.

2.5. Proposition. Let the realcompactification r X of a space X be generated
by the compactification bX of X. We put mE = {f|X : f € C(bX)} and E = {f €
B(X):(fAn)V (—n) € mE for everyn € N}. ThenrX =vgX and bX = fpX.

Proof. By construction, mE = EN B*(X),E C C(X) and vgX C fgX =
vmpeX = bX. Hence, by virtue of Property 1.5, rX = vgX. The proof is complete.

2.6. Corollary. If eX is an extension of the space X, then the following
assertions are equivalent:

1. eX is a realcompactification of X.
2. eX =vgX for some complete space E of functions on X.

3. eX =vgX for some complete algebra E of functions on X.

2.7. Proposition. The space X has an unique realcompactification if and
only if X is Lindelof or |fX \ X| < 1.

Proof. Let X be a Lindelof space and bX be a compactification of X. For
every compact subset F' of bX \ X there exists a compact subset H € Z,(bX) such that
F C H CbX\X (see [1], Problem 3.12.24). Hence X is an unique realcompactification
of space X.

Let [6X \ X| < 1. Then vX = X is the unique realcompactification of X.

Let X be not a Lindelof space and |X \ X| > 1. Then there exists a compact
subset F of X \ X such that |F'| > 1 and for every compact subset H € Zy(3X), where
H C X \ X, we have F'\ H # (). Consider the continuous mapping h : X — bX
onto a compactification bX of X such that h(F) is a singleton set and h(z) = z for
every x € X. Then rX = bX \ U{H € Zy(bX) : HN X = (} is a realcompactification
of X,h(F) CrX,rX # vX. The proof is complete.

2.8. Example. Let X be a locally compact non—Lindel6f space. Then the
Alexandrov one—point compactification aX of X is a realcompactification of X.

2.9. Example. Let X be a locally Lindel6f non—Lindeltf space. Then there
exists an extension (X of X such that [X is Lindelof, every closed Lindel6f subspace
of X is closed in [ X and [ X \ X is a singleton set. The space [X is called a one-point
lindel6fication of X. The space [ X is a realcompactification of X.

2.10. Example. The space X is almost Lindelof if at least one of any pair of
disjoint zero—sets is Lindelof [5].

Let X be an almost Lindel6f space. Then X is locally Lindelof. If X is not
Lindel6f, then, by virtue of Proposition 5.4 [5], we have v.X = [X.

2.11. Example. Let X be a Lindeldf space and bX be a compactification of
X. Weput F=mE={f|X:feCbX)}and E={f e B(X):(fAn)V(-n)€eF
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for every n € N}. Then F is a complete space of functions, vg X = X and fpX = bX.
If bX = X, then FE is a complete algebra of functions and £ = C(X).

Let E be a complete algebra of functions on a set X. From Property 1.10
we have E = C(X). Hence E is a complete algebra of functions on X if and only if
E = C(X) and bX = BX. In particular, if bX # X, then F is a complete space of
functions and FE is not an algebra of functions.

2.12. Example. Let @ be a space of rational numbers of [0, 1], mE = {f|Q :
feC(0,1))} and E={f € B(Q) : (f An)V (—n) € mE for every n € N}. Then E is
a complete space of functions on the set ) and F is not an algebra of functions on the

set Q.

3. Isomorphism of spaces of functions.

3.1. Definition. Let E C B(X) and F C B(Y). The mapping h: E — F is
called a homomorphism if it satisfies the following conditions:

1. If ffge E and f+g € E, then h(f +g) = h(f) + h(g);
2. If fe E and —f € E, then h(—f) = —h(f);
3. If f,ge E and f-g € E, then h(f -g) = h(f) - h(g).

The mapping h : E — F is called isomorphism if h maps E onto F in a
one-to—one way and h,h~™' are the homomorphisms.

3.2. Theorem. Let E be a complete space of functions on a set X, F be a
complete space of functions on a set’Y and h : E — F be an isomorphism. Then there
exists an unique homeomorphism 1 : BpX — BrY such that:

L. (Z(Bef)) = Z(Brh(f)) for every f € E.
2. Y(vpX) =vrY.

Proof. Let mE = ENB*(X),mF =FNB*(Y),Et ={f € E: f>0}and
Ft={g€ F:g>0}. By Property 1.5, E* ={f-f: f € E}. Hence h(E") = F™.
If f,g € Eand f < g, then g — f € ET and h(f) < h(g). Therefore h is a lattice
isomorphism. It is clear that h(lx) = ly. Hence h(ax) = ay for every a € R,
where ax(X) = a. If f € mE, then —nx < f < nx for some n € N. Therefore
—ny < h(f) <ny and h(mE) = mF.

For every maximal ideal J of the ring mFE there exists an unique point z(J) €
BrX such that J = {f|X : f € C(BgX) and f(z(J)) = 0}. For every maximal ideal
H of the ring mF there exists an unique point y(H) € BrY such that H = {g|Y :
g € C(BrY) and g(y(H)) = 0} (see [2], Chapter 4). Then there exists an unique
one-to—one mapping ¢ : g X — BrY such that ¢(x(J)) = y(h(J)) for every maximal
ideal J of mE. If f € C(BpX), then Z(f) = {z(J) : J is a maximal ideal of mFE and

fIX € J}. Hence Z(Bpf) = Z(Be((f A1)V (=1)) and Z(Brh(f)) = (Z(Bef)) for
every f € E.
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Let H € Zy(BpX) and H C fpX \ X. Then there exists a continuous function
f € C(BpX) such that H = Z(f). Then fi = f|X € mE and g = 1/f; € E. Let
= fBrh(g). Then 1 = ¢1(y) - h(f)(y) for every y € Y. Therefore g;(h(z)) = 1/f(x)
for every x € fpX \ H and h(H) C BrY \ Y. Hence ¢(vgX) = vpY. The proof is
complete.

3.3. Example. Let X be a locally compact non—Lindel6f space. By Y = aX
we denote the one—point Alexandrov compactification of X, F' = C(Y) and E = {f|X :
f € F}. The mapping h : F' — E, where h(f) = f|X, is an isomorphism, F is a
complete algebra of functions on the set X and F' is a complete algebra of functions
on the set Y. The spaces X and Y are not homeomorphic. If X is a discrete space of
cardinality continuum, then X is realcompact.

4. Realcompactification of P—spaces.

4.1. Theorem. LetrX be a realcompactification of a P—space X generated
by a compactification bY, rY be a realcompactification of a P-space Y generated by a
compactification bY and 1 : bX — bY be a homeomorphism. Then ¥(rX) =rY.

Proof. Let H € Zy(bX) and H # 0. If HN X = (), then int H = (. If
HNX #0, then int H # (. Therefore ¢(rX) =Y.

4.2. Corollary. Let rX be a realcompactification of a P-space X, rY be a
realcompactification of a P—space Y, E be a mazximal complete algebra of functions on
X for which rX = vgX and F be a maximal complete algebra of functions on'Y for
which rY = vrY . Then the following assertions are equivalent:

1. E and F are isomorphic.
2. rX and rY are homeomorphic.

3. OrX and BrY are homeomorphic.

4.3. Corollary. Let X andY be realcompact P—spaces. The compactifications
BX and BY are homeomorphic if and only if spaces X and Y are homeomorphic.

4.4. Corollary. Let X and Y be P-spaces. The compactifications BX
and BY are homeomorphic if and only if the realcompactifications vX and vY are
homeomorphic.

5. Baire isomorphisms. Let X and Y be spaces. The mapping p : X — Y
is called a Baire isomorphism of class (a, ) if ¢(Z4(X)) = Zg(Y).

5.1. Lemma. If X is a realcompact space, then PX is realcompact, too.
Proof. The space PR is discrete and realcompact (see [1,2]). Hence PX is a
closed subspace of a realcompact space (PR)C(X ).

5.2. Lemma. Let X be a dense subspace of a realcompact P—space Y. Then
Y is a realcompactification of X.
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Proof. . Let H € Zp(Y) and H # (). Then H is an open subset of Y and
H N X # (). The proof is complete.
5.3. Lemma. PvX is a realcompactification of PX.

Proof. Follows from Lemmas 5.1 and 5.2.

5.4. Lemma. vr,PX = PvX for every a > 1.

Proof. Follows from Lemma 5.1 and P. R. Mayer’s theorem ([3], Theorem 7).

5.5. Theorem. Let X andY be spaces and o, u > 1. The following assertions
are equivalent:

1. Bo(X) and B, (Y) are ring isomorphic.

2. B(X) and Bj(Y) are ring isomorphic.

3. BoPX and B,PY are homeomorphic.

4. There exists a Baire isomorphism ¢ : vX — vY of class («, p).

Proof. Implications 1 — 2 — 3 — 2 and 4 — 1 are obvious. Let ¢ : B, PX —
B, PY be a homeomorphism. From Theorem 4.1 we have ¢ (v PX) = v, PY. Let ¢ =
Y|vePX. From Lemma 5.4. v,PX = PvX and v,PY = PvY. Let H € A,(PvX).
Then H = PvX N H; for some open and closed subset H; [,PX. The set ¥(Hy) is
open and closed in 3,PX and p(H) = ¢(H;) NvY € A,(vY). Hence ¢ : vX — vY
is a Baire isomorphism of class («a, p). This proves implication 3 — 4. The proof is
complete.

5.6. Corollary (J. E. Jayne [4]). Let X and Y be realcompact spaces and
a, > 1. The following assertions are equivalent:
. Bo(X) and B,(Y) are ring isomorphic.
. B(X) and B}, (Y) are ring isomorphic.
. BoPX and B,PY are homeomorphic.
4. There exists a Baire isomorphism ¢ : X — Y of class (a, ).
5.7. Example. Let X be a first countable space and v X # X. Then PX is

a discrete realcompact space, PrX is a realcompactification of space PX, PX =vPX
and vPX # PvX.

W N =
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