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ON SUPERCONNECTED SPACES

JULIAN DONTCHEV

Abstract. A topological space is called an S-space (or has the S-topology)
if every subset which contains a non-void open subset is open. In this paper we
study the class of connected S-spaces‘, which is a specification of the classical notion
of connected spaces. We show that superconnected spaces are exactly the spaces
where all non-void open sets form a filter. We prove that a space is superconnected
if and only if it is an irreducible α-space or equivalently if and only if it is a
connected semi-space. Dense in themselves superconnected spaces are investigated
as well as spaces, where the non-void open subsets form an ultrafilter.

Preliminaries. Throughout this paper we consider spaces on which no sepa-

ration axioms are assumed unless explicitly stated. The word ”iff” means ”if and only

if”, a ”space” will always mean a topological space and the symbol � is used to indicate

the end or omission of a proof. The topology of a space is denoted by τ and (X, τ) will

be replaced by X if there is no chance for confusion.

Next we recall some definitions.

For A ⊂ X, the closure and the interior of A in X are denoted by A and IntA,

respectively. Recall that A is said to be regular open (resp. preopen [8], semi-open [5])

if A = IntA (resp. A ⊂ IntA, A ⊂ IntA). In [10], a topology τα has been introduced by

defining its open sets to be the α-sets, that is the sets A ⊂ X with A ⊂ IntIntA. Such

sets are usually called α-open. The complement of a regular open set (resp. preopen,

semi-open, α-open) is called regular closed (resp. preclosed , semi-closed , α-closed).

A space X will be called an α-space (resp. semi-space) iff every α-open (resp.

semi-open) subset of X is open.

We denote the set of all accumulation points of A by d(A). A set with no

accumulation points will be called non-accumulative. Recall that a set A ⊂ X is called

dense in itself (in sich dicht, dense en soi) [3] if A ⊂ d(A) or equivalently if A has no

isolated points.
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A non-void space X is irreducible [1] if every two non-void open subset of X

intersect or equivalently if every non-void (semi-)open subset of X is dense. An irre-

ducible space is called sometimes hyperconnected. The space X is called submaximal [2]

if every dense subset of X is open. A space X is extremally disconnected (or extremal)

iff the closure of each open subset of X is open or equivalently iff every semi-open set

is preopen. It is called an S-space (or has the S-topology) [7] if every subset which

contains a non-void open subset is open. A space in which every set is either open or

closed is called a door space.

Given a set X, a non-empty collection I of subsets of X is called an ideal if

(1) A ∈ I and B ⊂ A implies B ∈ I (heredity), and (2) A ∈ I and B ∈ I implies

A ∪ B ∈ I (finite additivity).

Superconnectedness.

Definition 1. A space X is called superconnected iff it is a connected

S-space.

Theorem 2.1. For a space X the following are equivalent:

(1) X is superconnected.

(2) X is a connected semi-space.

(3) X is an irreducible α-space.

(4) X is an irreducible S-space.

P r o o f. (1) ⇒ (2) Let A be a non-void semi-open subset of X. Then for some

non-void and open U in X we have U ⊂ A ⊂ U . Since X is an S-space, then A is open.

This shows that X is a semi-space. �

(2) ⇒ (3) Since every α-open set is semi-open, then X is an α-space. Let A

and B be two non-void open subsets of X. We need to show that they intersect. Since

X is extremally disconnected, then A is open and since X is connected, then A is X

itself or equivalently A is dense. Thus B meets A.

(3) ⇒ (1) Let U ⊂ A ⊂ X, where U is non-void and open. Since X is irreducible,

then U = X and thus U ⊂ A ⊂ U . Hence A is semi-open. Since every irreducible space

is extremally disconnected, then A is α-open and hence open, since X is an α-space.

Thus X is an S-space. On the other hand every irreducible space is connected.

(1) ⇔ (4) follows from above and from the fact that every irreducible space is

connected. �

Theorem 2.2. For a non-void space X the following are equivalent:

(1) X is superconnected.

(2) All non-void open subsets of X form a filter on X.

(3) For some filter F on X, F ∪ {∅} = τ .
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(4) The family of all proper closed subsets of X form a topological ideal on X.

P r o o f. (1) ⇒ (2) Let F = τ \ {∅}. Since X is non-void, then X ∈ F . If U

and V ∈ F , then U ∩ V ∈ F , since X is irreducible by Theorem 2.1. If U ∈ F and

U ⊂ V ⊂ X, then V ∈ F , since X is an S-space again by Theorem 2.1. Thus F is a

filter.

(2) ⇒ (3) is trivial.

(3) ⇒ (1) Assume that X is not connected. Let U be a proper non-void clopen

set. Then U and X \U ∈ τ \ {∅} = F and thus ∅ = U ∩ (X \U) ∈ F . By contradiction

X is connected. Now let A be a non-void semi-open subset of X. Then IntA 6= ∅ and

hence IntA ∈ τ \ {∅} = F . Thus A ∈ F . This shows that A is open and hence X is a

semi-space. Hence X is superconnected by Theorem 2.1.

(2) ⇔ (4) is trivial. �

Theorem 2.3. For a space X with cardinality at least two the following are

equivalent:

(1) X is superconnected.

(2) X is non-discrete S-space.

P r o o f. (1) ⇒ (2) It is enough to show that X is not discrete. But this is clear

since, every discrete space with at least two points is disconnected.

(2) ⇒ (1) Assume that X is disconnected. Let U be a non-void proper clopen

subset of X. Let A ⊂ X. Since X is an S-space, then U ∪ A and (X \ U) ∪ A are

open sets. Then A = (U ∪ A) ∩ ((X \ U) ∪ A) is open and hence X is discrete. By

contradiction X is connected. Thus X is superconnected. �

Remark 2.4. Note that the notion of superconnectedness is independent from

the notion of ultraconnectedness defined in [9] and in [11]. By definition, a space X

is ultraconnected iff every two non-void closed subsets of X intersect. For example the

space X = {a, b, c}, where the only non-trivial open subset is {a} is ultraconnected, but

not superconnected. On the other hand the same space X = {a, b, c}, where the non-

trivial open subsets are {a}, {a, b} and {a, c} is superconnected, but not ultraconnected.

Ultraconnected spaces are studied in [4] and in [6] under the name of strongly connected

spaces.

Theorem 2.5. Let F be a filter on X and τ = F ∪ {∅} the corresponding

superconnected topology. Then the following conditions are equivalent:

(1) (X, τ) is a T0-space.

(2) ∩{A | A ∈ F} is either empty or a singleton.

Also the following conditions are equivalent:

(a) (X, τ) is a T1-space.

(b) ∩{A | A ∈ F} = ∅ (i.e. F is a free filter).
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P r o o f. (1) ⇒ (2) Assume that the set T = ∩{A | A ∈ F} contains two

different points a and b. If ∅ 6= U ∈ τ , then U ∈ F and thus {a, b} ⊂ U . Hence (X, τ)

is not a T0-space. Thus by contradiction condition (2) is satisfied.

(2) ⇒ (1) By (2) for some p ∈ X, we have T ⊂ {p}. If a and b 6= p, and a 6= b,

then for some U ∈ F , we have a 6∈ U . Thus U ∪{b} is a neighbourhood of b, which does

not contain a and U ∪ {p} is a neighbourhood of p, which does not contain a. Hence

(X, τ) is a T0-space.

(a) ⇒ (b) Let p ∈ X. For every a 6= p, there exists by (a) a set U ∈ F such

that p 6∈ U and a ∈ U . Then T ⊂ U and hence p 6∈ T . Thus T = ∅.

(b) ⇒ (a) Let a and b be two different points in X. Then by (b) for some

U ∈ F , we have a 6∈ U . Hence U ∪ {b} is an open neighbourhood of b, which does not

contain a. This shows that (X, τ) is a T1-space. �

2.6. Let F be a filter on X and τ = F ∪{∅} the corresponding superconnected

topology. Then the following conditions are equivalent:

(1) (X, τ) is not dense in itself.

(2) F is the point generated ultrafilter p̂ = {A ⊂ X | p ∈ A}.

If the condition (1) = (2) holds, then the space (X, τ) has exactly one isolated

point and this point is p itself.

P r o o f. (1) ⇒ (2) By (1) the space (X, τ) has at least one isolated point. If a

and b are isolated points in X, then {a} and {b} ∈ F and hence {a} ∩ {b} ∈ F . Since

this set is non-void, then a = b. Hence X has exactly one isolated point p. Thus {p} is

a non-void open subset of X and it belongs to the filter F . Hence p̂ = F .

(2) ⇒ (1) Since ∅ 6= {p} ∈ F , then {p} ∈ τ and thus p is an isolated point of

X. Hence X is not dense in itself. �

Theorem 2.7. Let F be a filter on X and let τ = F ∪ {∅}. If A ∈ F , then

X \ A is a non-accumulative subset of (X, τ), i.e. it is closed and discrete.

P r o o f. Since A is open, then X \ A is closed. If x ∈ X \ A, then (A ∪ {x}) ∩

(X \ A) = {x} and A ∪ {x} ∈ F ⊂ τ . Thus X \ A is also discrete. �

Corollary 2.8. Let F be an ultrafilter on X and let τ = F∪{∅}. Every subset

of X = (X, τ) is either open or non-accumulative. Particularly X is a door space.

P r o o f. Since F is an ultrafilter, then either A ∈ F or X \ A ∈ F . In the

first case A is open and in the second non-accumulative by Theorem 2.7. Thus every

subspace of X is either open or closed or equivalently X is a door space. �

Theorem 2.9. Let F be an ultrafilter on X and let τ = F ∪ {∅}. Then F

is the collection D(X) of all dense subsets of (X, τ) and thus X is submaximal. Every

non-void dense in itself subset of X belongs to the ultrafilter F . If F is a free ultrafilter,
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then it is the collection of all non-void dense in themselves subsets of X and in this

case X is a maximally dense in itself space.

P r o o f. If A ∈ F , then A is open and non-void and hence dense, since X is

irreducible. Assume now that A is a dense subset of X. If A is not open then it is

closed by Corollary 2.8. Then X = A = A and thus X is not open. By contradiction A

is open. Since on the other hand A is non-void, then A ∈ F . Hence F is the collection

of all dense subsets of X.

Next let A be dense in itself and non-void, i.e. ∅ 6= A ⊂ d(A). Then d(A) 6= ∅

and A is open by Theorem 2.7. Hence A ∈ F .

Finally let F be a free ultrafilter. Let A ∈ F . Since F is free, then card(A) ≥ 2

(A is actually infinite) and X is dense in itself by Theorem 2.6. Since every open subset

of a dense in itself space with at least two points is dense in itself, then A is dense in

itself. �

Theorem 2.10. Every irreducible submaximal space X is superconnected.

P r o o f. Let A be α-open. Then A is clearly preopen and so A ⊂ IntA.

Since A is dense in A and A is submaximal (every subspace of a submaximal space is

submaximal), then A is open A, hence also in IntA. Thus A is open in X, since IntA

is open in X. Hence X is an α-space. Thus by Theorem 2.1 X is superconnected. �

Next we give an example of a superconnected space that is not submaximal,

not even T0.

Example 2.11. Let X = {a, b, c}, where the only non-trivial open subset is

{a, b}. X is not submaximal, since the dense subset {b, c} is not open. It is not a

T0-space, since the points a and b have common neighborhoods. But X is clearly

superconnected.
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