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ON SUPERCONNECTED SPACES

JULIAN DONTCHEV

ABSTRACT. A topological space is called an S-space (or has the S-topology)
if every subset which contains a non-void open subset is open. In this paper we
study the class of connected S-spaces‘, which is a specification of the classical notion
of connected spaces. We show that superconnected spaces are exactly the spaces
where all non-void open sets form a filter. We prove that a space is superconnected
if and only if it is an irreducible a-space or equivalently if and only if it is a
connected semi-space. Dense in themselves superconnected spaces are investigated
as well as spaces, where the non-void open subsets form an ultrafilter.

Preliminaries. Throughout this paper we consider spaces on which no sepa-
ration axioms are assumed unless explicitly stated. The word ”iff” means ”if and only
if”, a ”space” will always mean a topological space and the symbol O is used to indicate
the end or omission of a proof. The topology of a space is denoted by 7 and (X, 7) will
be replaced by X if there is no chance for confusion.

Next we recall some definitions.

For A C X, the closure and the interior of A in X are denoted by A and IntA,
respectively. Recall that A is said to be regular open (resp. preopen [8], semi-open [5])
if A =IntA (resp. A C IntA, A C IntA). In [10], a topology 7, has been introduced by
defining its open sets to be the a-sets, that is the sets A C X with A C IntIntA. Such
sets are usually called a-open. The complement of a regular open set (resp. preopen,
semi-open, a-open) is called regular closed (resp. preclosed, semi-closed, a-closed).

A space X will be called an a-space (resp. semi-space) iff every a-open (resp.
semi-open) subset of X is open.

We denote the set of all accumulation points of A by d(A). A set with no
accumulation points will be called non-accumulative. Recall that a set A C X is called
dense in itself (in sich dicht, dense en soi) [3] if A C d(A) or equivalently if A has no
isolated points.
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A non-void space X is irreducible [1] if every two non-void open subset of X
intersect or equivalently if every non-void (semi-)open subset of X is dense. An irre-
ducible space is called sometimes hyperconnected. The space X is called submazimal [2]
if every dense subset of X is open. A space X is extremally disconnected (or extremal)
iff the closure of each open subset of X is open or equivalently iff every semi-open set
is preopen. It is called an S-space (or has the S-topology) [7] if every subset which
contains a non-void open subset is open. A space in which every set is either open or
closed is called a door space.

Given a set X, a non-empty collection Z of subsets of X is called an ideal if
(1) A€ Z and B C A implies B € 7 (heredity), and (2) A € Z and B € Z implies
AU B € T (finite additivity).

Superconnectedness.

Definition 1. A space X is called superconnected iff it is a connected
S-space.

Theorem 2.1. For a space X the following are equivalent:
(1) X is superconnected.

(2) X is a connected semi-space.

(3) X is an irreducible a-space.

(4) X is an irreducible S-space.

Proof. (1) = (2) Let A be a non-void semi-open subset of X. Then for some
non-void and open U in X we have U C A C U. Since X is an S-space, then A is open.
This shows that X is a semi-space. (J

(2) = (3) Since every a-open set is semi-open, then X is an a-space. Let A
and B be two non-void open subsets of X. We need to show that they intersect. Since
X is extremally disconnected, then A is open and since X is connected, then A is X
itself or equivalently A is dense. Thus B meets A.

(3)= (1) Let U € A C X, where U is non-void and open. Since X is irreducible,
then U = X and thus U C A C U. Hence A is semi-open. Since every irreducible space
is extremally disconnected, then A is a-open and hence open, since X is an a-space.
Thus X is an S-space. On the other hand every irreducible space is connected.

(1) & (4) follows from above and from the fact that every irreducible space is
connected. O

Theorem 2.2. For a non-void space X the following are equivalent:
(1) X is superconnected.

(2) All non-void open subsets of X form a filter on X.

(3) For some filter F on X, FU{0} = 7.
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(4) The family of all proper closed subsets of X form a topological ideal on X .

Proof. (1) = (2) Let F = 7\ {0}. Since X is non-void, then X € F. If U
and V € F, then U NV € F, since X is irreducible by Theorem 2.1. If U € F and
UCV C X, then V € F, since X is an S-space again by Theorem 2.1. Thus F is a
filter.

(2) = (3) is trivial.

(3) = (1) Assume that X is not connected. Let U be a proper non-void clopen
set. Then U and X \U € 7\ {0} = F and thus ) = UN (X \U) € F. By contradiction
X is connected. Now let A be a non-void semi-open subset of X. Then IntA # () and
hence IntA € 7\ {0} = F. Thus A € F. This shows that A is open and hence X is a
semi-space. Hence X is superconnected by Theorem 2.1.

(2) & (4) is trivial. O

Theorem 2.3. For a space X with cardinality at least two the following are
equivalent:

(1) X is superconnected.

(2) X is non-discrete S-space.

Proof. (1) = (2) It is enough to show that X is not discrete. But this is clear
since, every discrete space with at least two points is disconnected.

(2) = (1) Assume that X is disconnected. Let U be a non-void proper clopen
subset of X. Let A C X. Since X is an S-space, then U U A and (X \ U) U A are
open sets. Then A = (UUA)N ((X \U)U A) is open and hence X is discrete. By
contradiction X is connected. Thus X is superconnected. O

Remark 2.4. Note that the notion of superconnectedness is independent from
the notion of ultraconnectedness defined in [9] and in [11]. By definition, a space X
is wltraconnected iff every two non-void closed subsets of X intersect. For example the
space X = {a,b, c}, where the only non-trivial open subset is {a} is ultraconnected, but
not superconnected. On the other hand the same space X = {a,b, c}, where the non-
trivial open subsets are {a}, {a,b} and {a, ¢} is superconnected, but not ultraconnected.
Ultraconnected spaces are studied in [4] and in [6] under the name of strongly connected
spaces.

Theorem 2.5. Let F be a filter on X and 7 = F U {00} the corresponding
superconnected topology. Then the following conditions are equivalent:

(1) (X, 7) is a Ty-space.

(2) {A | A € F} is either empty or a singleton.

Also the following conditions are equivalent:

(a) (X, 1) is a Ty-space.

(b)y {A| Ae F} =0 (i-e. F is a free filter).
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Proof. (1) = (2) Assume that the set T = N{A | A € F} contains two
different points @ and b. If ) # U € 7, then U € F and thus {a,b} C U. Hence (X, 7)
is not a Ty-space. Thus by contradiction condition (2) is satisfied.

(2) = (1) By (2) for some p € X, we have T' C {p}. If a and b # p, and a # b,
then for some U € F, we have a ¢ U. Thus UU{b} is a neighbourhood of b, which does
not contain a and U U {p} is a neighbourhood of p, which does not contain a. Hence
(X, 7) is a Ty-space.

(a) = (b) Let p € X. For every a # p, there exists by (a) a set U € F such
that p ¢ U and a € U. Then T C U and hence p € T. Thus T = {).

(b) = (a) Let a and b be two different points in X. Then by (b) for some
U € F, we have a ¢ U. Hence U U {b} is an open neighbourhood of b, which does not
contain a. This shows that (X, 7) is a Tj-space. O

2.6. Let F be a filter on X and 7 = FU{D} the corresponding superconnected
topology. Then the following conditions are equivalent:

(1) (X, 7) is not dense in itself.

(2) F is the point generated ultrafilter p={A C X | p € A}.

If the condition (1) = (2) holds, then the space (X, T) has exactly one isolated
point and this point is p itself.

Proof. (1) = (2) By (1) the space (X, 7) has at least one isolated point. If a
and b are isolated points in X, then {a} and {b} € F and hence {a} N {b} € F. Since
this set is non-void, then a = b. Hence X has exactly one isolated point p. Thus {p} is
a non-void open subset of X and it belongs to the filter 7. Hence p = F.

(2) = (1) Since @ # {p} € F, then {p} € 7 and thus p is an isolated point of
X. Hence X is not dense in itself. O

Theorem 2.7. Let F be a filter on X and let 7 = FU{0}. If A € F, then
X \ A is a non-accumulative subset of (X, ), i.e. it is closed and discrete.

Proof. Since A is open, then X \ A is closed. If x € X \ A, then (AU {z})N
(X\A) ={z} and AU{z} € F C 7. Thus X \ A is also discrete. O

Corollary 2.8. Let F be an ultrafilter on X and let 7 = FU{0}. Every subset
of X = (X, 1) is either open or non-accumulative. Particularly X is a door space.

Proof. Since F is an ultrafilter, then either A € F or X \ A € F. In the
first case A is open and in the second non-accumulative by Theorem 2.7. Thus every
subspace of X is either open or closed or equivalently X is a door space. O

Theorem 2.9. Let F be an ultrafilter on X and let T = F U {0}. Then F
is the collection D(X) of all dense subsets of (X, 7) and thus X is submazimal. Every
non-void dense in itself subset of X belongs to the ultrafilter F. If F is a free ultrafilter,
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then it is the collection of all non-void dense in themselves subsets of X and in this
case X is a maximally dense in itself space.

Proof. If A € F, then A is open and non-void and hence dense, since X is
irreducible. Assume now that A is a dense subset of X. If A is not open then it is
closed by Corollary 2.8. Then X = A = A and thus X is not open. By contradiction A
is open. Since on the other hand A is non-void, then A € F. Hence F is the collection
of all dense subsets of X.

Next let A be dense in itself and non-void, i.e. ) # A C d(A). Then d(A) #
and A is open by Theorem 2.7. Hence A € F.

Finally let F be a free ultrafilter. Let A € F. Since F is free, then card(A4) > 2
(A is actually infinite) and X is dense in itself by Theorem 2.6. Since every open subset
of a dense in itself space with at least two points is dense in itself, then A is dense in
itself. O

Theorem 2.10. Fvery irreducible submaximal space X 1is superconnected.

Proof. Let A be a-open. Then A is clearly preopen and so A C IntA.
Since A is dense in A and A is submaximal (every subspace of a submaximal space is
submaximal), then A is open A, hence also in IntA. Thus A is open in X, since IntA
is open in X. Hence X is an a-space. Thus by Theorem 2.1 X is superconnected. OJ

Next we give an example of a superconnected space that is not submaximal,
not even T\.

Example 2.11. Let X = {a,b,c}, where the only non-trivial open subset is
{a,b}. X is not submaximal, since the dense subset {b,c} is not open. It is not a
To-space, since the points a and b have common neighborhoods. But X is clearly
superconnected.
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