Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

bpJIrapcko MaremMaru4ecko
CITMCAHUE

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



SERDICA — Bulgaricae
mathematicae publicationes

20 (1994) 351-363

OPERATIONAL CALCULS FOR MODIFIED ERDELYI-KOBER
OPERATORS

J. A. ALAMO, J. RODRIGUEZ

ABSTRACT. In this paper an operational calculus for the operators A5y = t_ﬁ"YDgtﬁ’Y
and A5y = t‘ﬁw—ﬁ‘ngtm*ﬂé is developed, following an algebraic process similar
to the one given by Mikusinski and obtaining operational rules to them.

d
1. Introduction. In 1949, J. Mikusinski [11] used the operator D = 7

as a basis of Operational Calculus. Since then, this theory has been extended to
more general operators, but its development has always implied the construction of an
algebraic framework in which the considered operator is included. In this sense, and
related to the Bessel type operators, we mention, among others, the papers of V. A.
Ditkin and A. P. Prudnikov [7], E. L. Koh [9], I. H. Dimovski [4], J. Rodriguez [12], and
J. J. Betancor [3]. Recently, V. Kiryakova [8] has applied this method to the modified
operator of Erdélyi-Kober:

_ B8 _ =By 748
L(5)—t Iﬁ =1 ’Yfﬁt’y

in the space of functions
Cpy+1) = {f(t) =t f(t)lp > —B(y+1) and f(t) € C ([0, oo))} ,

where Ig’é = t*ﬁ'yfﬁ‘slgtm and Ig is the generalized Riemann-Liouville operator of
fractional integration [13].

In this work, we study the operational calculus for the operators A s) = t‘ﬁVDgtﬁV
and Ags) = t*ﬁ'Y*MDngﬁ'YJrﬁ‘S following an algebraic process similar to J. Mikusinski’s.

2. Fractional Integration and Differentiation Operators. The Riemann-
Liouville fractional integral operator of order 6 > 0 is defined [13] by:

(2.1) Ift)=— /0 t(t—oé—lf(s)ds (6>0)
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I°f(t) = f(t) (6=0)
and its corresponding fractional derivative of order § > 0 by:
(2.2) DO f(t) = D™ I"Of(t) (n—1<4d<n).

On the other hand, there exists the generalized integral operator Ig (8> 0,0 >0),
defined by

5 gt 5—100-1
(2.3) 130 = 55 [ @ =)t e 6> 0

and its generalized fractional derivative of order § > 0, like:
(2.4) DEF(t) = DL f(t) (n—1<d<n), (8>0)

Going on in this generalization, we have finally the Erdélyi-Kober operator of fractional
integration with 8 > 0,9 > 0 and v € R given by

75 — —
[g ft) =t By ﬁéjgtﬁ'yf(t)

(2.5) P ) ,
:mt By ﬁé/o(tﬁ_gﬁ)é 1§ﬂ'y+ﬁ 1f(§)d§, (6> 0)

=1 =0

and the operator used by V. Kiryakova [8]:
(2.6) Ay =t 71Dy,

Moreover, we use another type of operators, the argument power operator given by

(2.7) TPf(t) = f(t"),  (BERT), (f:[0,00) — C),
whose main properties are:
(2.8) ToTP =T8T = T8
1 1
(2.9) I = TﬁllgTﬁ, Iy =TPI°T% 1
(2.10) D® =T#D4TP, D§=TPDT?.

For more details see [1].
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3. The extension of Cg;_,_1) to the quotient field. Given § >0, § > 1
and v € R, we define the function spaces:

(0.]
Co(5-y—1) = {f(t) = Z apt® =771 absolutely convergent
(3.1) k=1
on compact subsets of]0, oo)}

and Cs_1, introduced in [1] and given by

(0. ]
(32) Cs_1 = {f(t) = Z at?~" absolutely convergent
3.2 k=1

on compact subsets of]0, oo)}

If we take into account that the linear operators A and DY are linear au-

1
tomorphisms acting on 65(577,1) and Cs_ respectively, that the operator T5t%7 is a
linear isomorphism from Cg(5_,_1) to Cs_1, that by (2.10)

TH Ay = DT

and that * is the convolution for the operator D° defined by

(33) Fepn = o [ Fe-oa©e Foees

then, according to Meller’s similarity theorem [5], we can state the following

Proposition 3.1. The operation ® defined by
® 1 C6-9-1) X Cp6-1) — Cp(5—9-1)

F(t)@g(t) = D17 [(T%tmf(t)) . (T%tmg(t))}

is a convolution for the operator As).

In particular, for the case of power function of the type (3.1) the convolution
turns out to be

o o I'(k6)['(md) 1)
B(kd—~y—1) o 1B(md—y—1) Blé(k+m—1)—y—1]
t ®t = o[k 1)5]15 (k,m € N)
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and satisfies the following properties for f,g and h € Cg5_y_1) :

) feg=gaf
) (feg)®h = fe(geh)
iti)  fe(g+h) = feg+ feh
) PO Ve () = f(t)
) feg=0 <= f=0o0rg=0.

With this, we can state:

Proposition 3.2.  (Cgiu_y_1),+,®) is a unitary commutative ring without
divisors of zero.

The above condition allows us to extend 85(577,1) to its quotient field

Mi5-1-1) = Cos—-1) X (Ca5-7-1) = {0}) / ~
where the equivalence relation ~ is defined as usual by
(f,9) ~ (h,p) < fep=g®h.

According to Mikusinski, we interprete as operators the elements of Mﬂ((;_ﬂ,_l)
and in what follows, we will denote the pair (f,g) by f/g.

If we define in Mﬁ((;,,y,l) the usual operations of addition, multiplication, and
product by scalars by

£+ﬁ _ fep+g®h
g p g®p
f oo _ feh
g p g®p
VLA

g g

then Mﬁ((g_W_D turns out to be an algebra.
The quotient set Mg(s_-_1) contains a subset M,/@(5—"/—1) which is isomorphic
to Cg(5—y—1), via the mapping:

Ms—-1) € Mpgs—3-1) — Co—-1)

tﬁ((S*'Y*l)@f(t) f(t)
B~ poan 4 (t).
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f()
tB(6—y—1)

4. An Operational Calculus. To prove that the operator As) defined in
. elongs to _~—1) We will use the modified operator of Erdélyl-Kober |8|:
2.6) bel Mps—y—1 ill h dified f Erdélyi-Kober [8

Therefore, the operators of the form constitute a subring of Mg(5__1).-

(4.1) Ly = P13 =t 15
which is the right inverse operator of Ay, i. e,
(4.2) ALy f =1,

for every f € Cgi5_y—1)-
But in general, we have:

Proposition 4.1.  For each f(t) € Cgs_y—1), the following equality holds

(4.3) F(8) = LisyAgs) () + [P0 f(t)}tzotﬂ(t;—v—l)‘
Proof.
L((;)A((;)f(t) = t*ﬁ’Y[gtﬁvt*ﬁ'yDgIg—étﬁ'yf(t)

o
— TSP TETO DM TS TO IO TE ¢ < 3 aktﬂ(k5_7_1)>
k=1

o0 o
=t prm? ( > aktk“) =178 D ( > aktk“)
k=1 k=1

o 00
— t_IB’YTﬂ < Z aktk6_1 _ a1t5—1) — Z aktﬁ(ké—'y—l) _ altﬂ(ﬁ—'y_l)
k=1

= f(t) - [ —B0O—=1) £(¢ )} #B(6—=1)

t=0

To generalize this proposition, we define
(44) £3(0) = [t7207 DG f (1)

and then we obtain by induction on m the next assertion

t=0

Proposition 4.2. For f € Cg5_,_1) and m € N the following equality holds,

(4.5) ft) =L, ZLJ Lfi(0)tP0==
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Proposition 4.3. For f € Cg5__1), we have

(4.6) %tﬁ(%ﬁyl)@f@) = L) f(D).

Proof. From the definition of ® we have,

%tﬁ(%'yl)@f@) — ¢ Byb {(T%tﬁv%tﬁ(zawl))* (T%tmf(t))]

_ L) o5 1
_ BB 26-1_ % 1By
71 {I‘(%)t 5t f(t)}
but, by (2.5) of [1], we obtain,

PITPOTE A f (1) = t ISP F () = Lisy f (1)
Proposition 4.4. If f € Cgi5__1) and k € N, then

(47) Ll(gé)f(t) _ - F((S) t,@(k5+5—"/—1)®f(t)

(ko + 0)

and therefore, the operators L](%) belong to Mﬁ(5_7_1).

Proof. We can see this by induction on k. For k = 1, it was proved in Prop.
4.3. For k # 1, it is as follows

Lis) (L5 £ (1)) :%tmaﬂ_l)@ %
()
Fﬂk+na+ﬂ

t,@(k5+5—'~/—1) ®f(t)

(00301 () = L4 5 (1),

We will call V' the inverse operator of L) for ® on Mﬂ(é—«,—lw i. e.

1(26) t80-7-1)

(48) - F((S) tB8(26—y—1)

and V* the k" iteration of V,

[(k6 +6) t80==1)

k_
(4.9) Vi= T(6) (P71
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For operator (4.8) we can state the following

Proposition 4.5. If f(t) € Cg5_y_1), then

(4.10) VI(t) = Ay () + [t*ﬁWH) f(t)] V.

t=0

Proof. Applying V' to both sides in (4.3) we arrive at (4.10).
Its generalization will be deduced in the next proposition just applying V k
times to (4.5).

Proposition 4.6. Ifk € N and f(t) € Cgis_y—1), then
k .
(4.11) ‘”ﬂﬂzA&ﬂﬂ+§;M®V“*%
]:

giwen f;(0) by (4.4).
5. Operational rules. Al-Bassam proved in [2] that (D% 4+ a)f(t) =0, a > 0,

are two differential equations with solutions

. © (_1)ig n—1 p§—1
0= s (' 1) = 3 LU

n=1

i=1,2,

the so-called Mittag—Leffler functions.
A similar result for the operator As) = t*ﬁ'yDgtﬁ'y is:

Proposition 5.1. The differential equations with a > 0

(5.1) (A —a)f(t)=0
and
(5.2 (A +a)f(t) =0

have the following solutions

o0 g 14B(nd—y—1)
(5.3) yi(t) = Fy(a, t7) = TP Es(a, 1) Zt—

n 1tﬁ(n6 v—1)

) 9

64)  lt) = F(—a, ) = 7T By(—a, ) = >
n=1
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called generalized Mittag—Leffler functions.

Proof. By applying A to Fs(a, t) and using (2.10), we have for the first
case

A(5)F5(a, tﬁ) = t‘ﬂngT’gEg(a, t) = t_’ngﬁDéEg(a, t) =
=t P TPaEs(a, t) = aFy(a, t°).
In an analogous way, we can prove it for the other case.
Since
1

; — Tin 1B(6—7—1) —
(5.5) lim f1 () = lin t 1) = o0

(
and  Vf(t) = Ay f(t) + f1(0)V,
we obtain by (5.1), (5.2) and (5.5) that

~—

v
A — —p B
(5.6) a) v afo—D = L)t ""Es(a, t7)
Vv
S R — BVE(—q. 1P
(5.7) ) vy = L) Es(—a, 7).
By a straightforward calculus, we can verify the vality of the following formulas:
o—y—1
0 O ey Vo
V + atfo=7-1) V + atf0-7=1)"
o—y—1
) M — 806——1) _ N A
V — atBf0—-1) V — atf—-1)’
V2 L) 1,5 B | ep 5
6) V2 — qtB6—-1) = 2 [t ’YE(;((% t )+t 'YE6(_Q7 t )} >
aV ~ T(9)

D ey = 5 |1 Bsla t9) =t Bs(—a, 7).

6. The extension of C_,_;) to the quotient field. With g >0, § > 1
and v € R, we consider the set of functions

6.1) Co(—y—1) = {f(t) = Z aptPl=10=7=1 4hsolutely convergent
: k=1

on compact subsets of [0, oo)}

and the operator
—By—B6 N 5
(6.2) Ay = t P17 Do,

Since A5y and D? are linear automorphisms on the spaces Cp(—y—1) and Cs5_4

1
(see (3.2)) respectively, and since T5¢%1% is a linear isomorphism between them,
satisfying by (2.10)



Operational Calculus . .. 359

(6.3) THPH A 5 = DOTHH+60

and since # is a convolution for D° on C;5_; ( see (3.3)), we can apply Meller’s theorem
[5] to the diagram

Aw)
Co(—-1) Co—r-1)
T 49v+65 t=Pr=pors
65,1 G671
D5

to establish

Proposition 6.1.  The operation ® :  Cg_y_1) X Cg_y_1) — Cg_y_1)
defined by:

(6.4) Ft)dg(t) =t PP {(T%WW‘S f(t))*(T%tﬂ7+ﬁ‘sg(t))]

is a convolution for the operator As).

Proceeding in the same way as in Section 3, we can conclude:

Proposition 6.2. With the operation + and ®, Gﬁ(,,y,l) 1S a unitary
commutative Ting without divisors of zero.

Therefore, Cg(_,_1) can be extended to the fraction field Mg(_,_1), which be-
comes an algebra.
There is a subset M/ﬁ(—w—l) of Mg(—y—1) isomorphic to €5_,_1) via the mapping

Miy(—y1) € Mg(y1) — Caq)

t
A )

f(t)

and therefore, the operators of the form ———
tB(=y=1)

can be identified with f(¢).
Let fR((;) be the operator given by

constitute a subring of Mg _,_1 that

6 — Bry—
(6.5) j{(é) = ['ﬁy’ B0 — =B 55Igtﬁ'y+ﬁ5'
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It is easy to see that this operator is the right inverse operator of A(s). However, in
general it is not its left inverse operator, since it turns out that

ft) =RpAwp) f(t) + art?Pr=D

(6.6) — R((;)A((;)f(t) [tﬁ 7+ § } tB(=7—

Through a similar process to that employed in Prop. 4.3 and 4.4, we can express the
operators Rs) and RI&) by

T(5)

S—~—
(66) R((S) - mtﬂ( v 1) S M,@(—’y—l)
k I'(9) kb—y—
(67) R((g) — mtﬂ( v 1) S M,@(—’y—l)'

If we consider the operator

r'(26) t#(=7=1

(6.9) V= T() Po—-1)

which is the inverse one of iR((;) in Mﬁ(,,y,l), we have

Proposition 6.3. If f(t) € Cg_y_1), then

(6.10) V() = A f(t) + [P0V (1)) V.

t=0

Proof. By (6.6) we know that

F(t) = Ry A f(0) + [P0V ()] 777D

t=0

and applying the operator V to both sides we get

(6.11) V() = A f(8) + [P0V (1] V.

t=0

7. Operational rules related to A(s). For the differential equations with
a>0

(7.1) (A —a)f(t) =0

(7.2) (A((;) +a)f(t)=0
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one can see easily that they have as solutions

(7.3) f(t) =t Es(a, °)
(7.4) [ty =t PP Es(=a, 1°)
and since

1
(7.5) %E}% tﬁ(’YJrl)f(t) — m

we have by (7.1), (7.2) and (7.5) that

— —By—B6 B
a) V _— atB—-1) F(d)t E&(aa t )
A%
b)) 7———— =
V + atf(=7-1)
Likewise, by a straightforward calculation, one can state

(6t P Ey(—a, t7).

c ﬂ — B(=—1) _ v
V + atP=7-1) V + atP(=r-1)
Y sy VO
V — qtb(=r—1) V — qtb(=r-1)
V? '(6)
_ ~By—p5 g a8
) s = ! (Es(a, 17) + Es(—a, %)
aV I C) 5 5
e =zt Bsla #) = Byf-a, )],
Remark 1. Since the following diagram
A
Co(—-1) Co(—y-1)
tﬂé t—,@5
Co(6—v-1) C6—v-1)
Ae)

verifies the hypotesis of Meller’s theorem, the operation ® defined as

£0) @ gl6) = | (7150w (17910))|

is a convolution for the operator Ag. We could use this convolution instead of that
introduced by (6.4) to reach the same results.
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Remark 2. Since the Dzrbasjan—Gelfond-Leontiev operator (see [6])

o=

1 M_l’
lp,,u = tp(ﬂ—l)[lg’tp(ﬂ—l) - tIp —_ L( )

1
P

that is to say,
t 1 1 1
buuf (1) = 55 [ (L= )3 ot o )do
F(IB) 0
is an integral operator acting on the functions f(¢) of Gp(;_”), being due to (4.2) the
P

right inverse operator of (2.6):
A(%) — t—p(u—l)Détp(u—l),
we can establish that the following operation
Ft)@g(t) = t—p(u—l)Tp[(T%tp(u—l)f(t)) « (T%tp(“_l)g(t))}

where * is given by (3.3), is a convolution of the Dzrbasjan—Gelfond-Leontiev opera-
tor on the space C p(L—p) Convolutions of operators [, were found by Dimovski and

P
Kiryakova [6], Kiryakova [8] using alternative approaches.
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