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ON GENERALIZED ABSOLUTE ALMOST SUMMABILITY

E. SAVAŞ

Abstract. The purpose of this paper is to introduce and discuss the spaces
of generalized absolute almost summable sequences which are defined by using a
matrix information.

1. Introduction. Let l∞ be the set of all real or complex sequences x = (xn)
with the norm ‖x‖ = sup |xn| < ∞. A linear functional L on l∞ is said to be a Banach
limit if it has the properties:

(i) L(x) ≥ 0 if x ≥ 0 (i. e. xn ≥ 0 for all n)

(ii) L(e) = 1, where e = (1, 1, ....),

(iii) L(Sx) = L(x),

where the shift operator S is defined by (Sx) = xn+1.

Let β be the set of all Banach limits on l∞. A sequence x is said to be almost
convergent to a number s if L(x) = s for all L ∈ β. Lorentz (1948) has shown that x

is almost convergent to s if and only if

(1.1) tkm(x) =
xm+1 + · · · + xm+k

k + 1
−→ s

as k −→ ∞ uniformly in m. Let us denote by f the set of all almost convergent
sequences. We write f − lim x = s if x is almost convergent to s.

Let A = (ank) be an infinite matrix of real or complex numbers. We write
Ax = (An(x)) if An(x) =

∑
k ankxk converges for each n.

Let X and Y be any two nonempty subsets of the set of all sequences with real
or complex terms. If x = (xk) ∈ X implies that Ax = (An(x)) ∈ Y , we say that A
defines a matrix transformation from X into Y and we denote it by A : X −→ Y . By
(X,Y ) we mean the class of matrices A such that A : X −→ Y . Quite recently, some
new sequence spaces which arose naturally from the concept of almost convergence have
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been introduced by Savaş (1990). If p = (pk) is a given bounded sequence of positive
real numbers, then we define (see,[4]),

(Â, p) = {x :
∑

k

|tkm(Ax)|pk converges uniformly in m}

(
̂̂
A, p) = {x : sup

m

∑

k

|tkm(Ax)|pk < ∞},

where

tkm(x) =
∑

n

a(m,n, k)xn

and a(m,n, k) =
1

k + 1

k∑

i=0

am+i,n.

It may be recalled that |Â, p| and |
̂̂
A, p| spaces have been introduced and studied

by Nanda (1985) and are defined as

|Â, p| = {x :
∑

k

|tkm(Ax) − tk−1,m(Ax)|pk converges uniformly in m},

|
̂̂
A, p| = {x : sup

m

∑

k

|tkm(Ax) − tk−1,m(Ax)|pk < ∞}.

2. Generalized Absolute almost Summability. The object of this section
is to introduce the following sequence spaces.

We define

|ŵA, p| = {x :
∞∑

k=0

|dkm(Ax) − dk−1,m(Ax)|pk converges uniformly in m},

| ̂̂wA, p| = {x : sup
m

∑

k

|dkm(Ax) − dk−1,m(Ax)|pk < ∞},

where we set

dnm(Ax) =
1

n + 1

n∑

k=0

tkm(Ax).

If p(pk) is a constant sequence we write |ŵA|p and | ̂̂wA|p instead of |ŵA, p| and | ̂̂wA, p|
respectivelly.

The following inclusion relation holds.

Theorem 1. |ŵA, p| ⊂ | ̂̂wA, p|.

P r o o f. Let x ∈ |ŵA, p|. Then there is an integer M such that
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(2.1)
∑

k>M

|dkm(Ax) − dk−1,m(Ax)|pk ≤ 1 for each m.

Hence it is enough to show that for a fixed k and for each m

|dkm(Ax) − dk−1,m(Ax)| ≤ K.

But it follows from (2.1.) that

(2.2) |dkm(Ax) − dk−1,m(Ax)| ≤ 1,

for every fixed k > M and each m. Since

(2.3) n(n + 1)(dnm(Ax) − dn−1,m(Ax)) =
n∑

k=0

k (tkm(Ax) − tk−1,m(Ax)) ,

we have

n(n + 1)(dnm(Ax) − dn−1,m(Ax)) − (n − 1)(dn−1,m(Ax) − dn−2,m(Ax))

(2.4) = tnm(Ax) − tn−1,m(Ax)

Hence it follows from (2. 2.) and (2. 4.) that

(2.5) |tnm(Ax) − tn−l,m(Ax| ≤ K(n),

for every n > M and for all m, where K(n) is a constant depending upon n. Again
from the definition of tnm(Ax), we have

(2.6) tnm(Ax) − tm−l,m(Ax) =
∞∑

k=0

1

n(n + 1)

n∑

v=1

vam+v,kxk,

so that

(2.7)

∞∑

k=0

am+n,kxk = (n + 1)(tnm(Ax) − tn−1,m(Ax))

−(n − 1)(tn−1,m(Ax) − tn−2,m(Ax)).

Hence it follows from (2. 5.) that for each fixed n > M

(2.8)

∣∣∣∣∣
∞∑

k=0

am+n,kxk

∣∣∣∣∣ ≤ K(n) for each m.
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Now choose n = p + 1. Let

K = max{K(p + 1),

∣∣∣∣∣
∞∑

k=0

a1kxk

∣∣∣∣∣ ,
∣∣∣∣∣
∞∑

k=0

a2kxk

∣∣∣∣∣ , ...,
∣∣∣∣∣
∞∑

k=0

ap+1xk

∣∣∣∣∣}

Hence it follows from (2. 8.) that

(2.9)

∣∣∣∣∣
∞∑

k=0

avkxk

∣∣∣∣∣ ≤ K for all v

and K is independent of v. It now follows from (2. 6.) that

(2.10) |tnm(Ax) − tn−1,m(Ax)| ≤ K for all n and m

And from (2. 3.) and (2. 10.) that

|dkm(Ax) − dk−1,m(Ax)| ≤ K

for all n and m.

This completes the proof.

Theorem 2. |ŵA, p| is a linear topological space paranomed by the function

(2.11) g(x) = sup
m

(
∞∑

k=0

|dkm(Ax) − dk−1,m(Ax)|pk)1/M

where M = max(1, sup pk). The space | ̂̂wA, p| is paranormed by (2.11).

P r o o f. The proof is a routine verification by using standard techniques and
therefore we omit it.

Theorem 3. Let p = (pm), q = (qm) and 0 < pm ≤ qm. Then

(i) |ŵA, p| ⊂ |ŵA, q|,

(ii) | ̂̂wA, p| ⊂ | ̂̂wA, q|.

P r o o f. (i) Suppose that, x ∈ |ŵA, p|. Then there exists an integer M such
that

(2.12)
∞∑

k=M

|dkm(Ax) − dk−1,m(Ax)|pk < 1.
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Hence
|dkm(Ax) − dk−1,m(Ax)|pk) < 1

for k ≥ M and for all m. This implies that

(2.13) |dkm(Ax) − dk−1,m(Ax)|qk ≤ |dkm(Ax) − dk−1,m(Ax)|pk .

The uniform convergence of
∞∑

k=0

|dkm(Ax) − dk−1,m(Ax)|qk now follows from

(2.13) by the uniform convergence of

∞∑

k=0

|dkm(Ax) − dk−1,m(Ax)|pk .

(ii) The proof of (ii) differs from the proof of (i), as we cannot assert (2.12).
Suppose that x ∈ | ̂̂wA, p| . Then there is a constant K > 1 such that

∞∑

k=0

|dkm(Ax) − dk−1,m(Ax)|pk ≤ K,

and hence

|dkm(Ax) − dk−1,m(Ax)| ≤ K1/pk ≤ K1/δ

where pk ≥ δ > 0.
Hence,

|dkm(Ax) − dk−1,m(Ax)|qk =

|dkm(Ax) − dk−1,m(Ax)|pk |dkm(Ax) − dk−1,m(Ax)|pk−qk

≤ K(pk−qk)/δ |dkm(Ax) − dk−1,m(Ax)|pk

(2.14) ≤ Ksup pk/δ|dkm(Ax) − dk−1,m(Ax)|pk .

The result now follows from (2, 14) by taking the sum with respect to k and
then taking the supremum with respect to m.

Theorem 4.

(i) |Â|p ⊂ |ŵA|p,

(ii) |
̂̂
A|p ⊂ | ̂̂wA|p
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P r o o f. (i) Let x ∈ |Â|p. By Hölder’s inequality for p > 1 and trivially for
p = 1 it can be easily verified that

|dnm(Ax) − dn−1,m(Ax)|p ≤
1

n(n + 1)p

n∑

k=1

kp |tkm(Ax) − tk−1,m(Ax)|p .

Hence,

∞∑

k=0

|dnm(Ax) − dd−1,m(Ax)|p ≤
∞∑

k=1

kp |tkm(Ax) − tk,1,m(Ax)|p
∞∑

n=k

1

n(n + 1)p

(2.14) ≤
∞∑

k=l

|tkm(Ax) − tk−1,m(Ax)|p.

Now the uniform convergence of
∑

n

|dnm(Ax) − dn−1,m(Ax)|p follows from the

uniform convergence of
∑

k

|tkm(Ax) − tk−1,m(Ax)|p and this completes the proof.

(ii) The proof of (ii) follows from the inequality (2.14) by taking the supremum
with respect to m.
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