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ON GENERALIZED ABSOLUTE ALMOST SUMMABILITY

E. SAVAS

ABSTRACT. The purpose of this paper is to introduce and discuss the spaces
of generalized absolute almost summable sequences which are defined by using a
matrix information.

1. Introduction. Let [, be the set of all real or complex sequences x = (x,)
with the norm ||z|| = sup |z, | < co. A linear functional L on [ is said to be a Banach
limit if it has the properties:

(i) L(x) > 0if x > 0 (i. e. =, > 0 for all n)
(ii) L(e) = 1, where e = (1,1, ....),
(iii) L(Sz) = L(x),
where the shift operator S is defined by (Sz) = xy,41.
Let G be the set of all Banach limits on [,,. A sequence x is said to be almost

convergent to a number s if L(x) = s for all L € 3. Lorentz (1948) has shown that x
is almost convergent to s if and only if

Tm+1 + + Ttk

(1.1) tem(x) = P —s

as k — oo uniformly in m. Let us denote by f the set of all almost convergent
sequences. We write f —limz = s if x is almost convergent to s.

Let A = (anx) be an infinite matrix of real or complex numbers. We write
A = (Ap(x)) if A () = Xk ankak converges for each n.

Let X and Y be any two nonempty subsets of the set of all sequences with real
or complex terms. If z = (x;) € X implies that A, = (A,(x)) € Y, we say that A
defines a matrix transformation from X into Y and we denote it by A: X — Y. By
(X,Y) we mean the class of matrices A such that A : X — Y. Quite recently, some
new sequence spaces which arose naturally from the concept of almost convergence have
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been introduced by Savag (1990). If p = (pi) is a given bounded sequence of positive
real numbers, then we define (see,[4]),

(A,p) = {z: Z |tkm (Az)|P*  converges uniformly in m}
k

~

(A,p) = {a: s&pz [tkm (Az)|PF < oo},
k

where

tem(z) = Za(m,n, k),

n

1 k
and a(m,n, k) = Pl Z(Zm+i7n.
=0

It may be recalled that | A, p| and |4, p| spaces have been introduced and studied
by Nanda (1985) and are defined as

|/T,p\ ={x: Z [tkm (Ax) — ti—1m(Az)|P*  converges uniformly in m},
k
\E,p\ ={x: supz |thm(Az) — tg_1m(Az)[f < oo}
™ok

2. Generalized Absolute almost Summability. The object of this section
is to introduce the following sequence spaces.

We define
(e}

|wa,p| = {z: Z |diom (Az) — dj—1 m(Az)|P*  converges uniformly in m},
k=0

‘@A,p‘ = {.1‘ : Supz |dkm(Ax) - dk*l,m(Agj”Pk < OO},
"ok

where we set
1 n
Z tem (Az).

n+1k:0

dpm (Az) =

If p(p) is a constant sequence we write |4/, and \QADA|p instead of |@4, p| and |@4, p|
respectivelly.

The following inclusion relation holds.

Theorem 1. |wa,p| C @A,p|.

Proof. Let x € |Wa,p|. Then there is an integer M such that
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(2.1) > |dgm(Az) = di—1,m(Az)[PF <1 for each m.
k>M

Hence it is enough to show that for a fixed k£ and for each m
|derm (Ax) — d—1,m(Az)| < K.
But it follows from (2.1.) that
(2.2) | (Ax) = di—1,m(Ax)| < 1,

for every fixed k > M and each m. Since

n

(2.3) n(n + 1)(dpm(Az) — dp—1,m(Az)) = Z k (tkm(Ax) — ti—1,m(Ax)),
k=0

we have

n(n =+ 1)(dpm(Az) = dn—1,m(Az)) = (n = 1)(dn—1,m(Az) = dn—2,m(Az))

(2.4) = tpm(Ax) — t_1 m(Ax)
Hence it follows from (2. 2.) and (2. 4.) that
(2.5) [tnm(Az) — th_1m(Az| < K(n),

for every n > M and for all m, where K(n) is a constant depending upon n. Again
from the definition of t,,,(Az), we have

o 1 n
(26) tnm(Ax) - tm_l’m(A.’I)) = ];) m 1; ’l}am+y’k$k7
so that
[o¢]
o7 Z UmgnkTe = (N4 1) (tum(Az) =t 1.m(Ax))
(2.7) puart

— (1 = 1) (ta—1.m(AT) — tn_o.m(Ax)).

Hence it follows from (2. 5.) that for each fixed n > M

00
Z Am+n,kTk
k=0

(2.8) < K(n) for each m.
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Now choose n =p+ 1. Let

K =max{K(p+1),

Z A2k Tk

g eeey

Hence it follows from (2. 8.) that

o0
> agay

k=0

(2.9) < K forall v

and K is independent of v. It now follows from (2. 6.) that
(2.10) [tnm (Az) — tp—1m(Az)| < K for all n and m
And from (2. 3.) and (2. 10.) that

|dim (Az) — d—1,m(Ax)| < K

for all n and m.
This completes the proof.

Theorem 2. |wWa,p| is a linear topological space paranomed by the function

(2.11) 9(2) = Sup(>. [dim (A) — dy_1pm(Ax) P5)1

M k=0

where M = max(1,sup pg). The space |1ADA,p| is paranormed by (2.11).

Proof. The proof is a routine verification by using standard techniques and
therefore we omit it.

Theorem 3. Let p = (pm),q = (gm) and 0 < py, < Gm. Then

(1) ‘@Aap| - ‘@A>Q|7
(ii) [Wa,p| C |Wa,ql

Proof. (i) Suppose that, z € |wa,p|. Then there exists an integer M such
that

(2.12) i | (AT) — djy1 i (Az)[** < 1.
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Hence
|dim (Ax) — dk_lﬂm(Ax)\p’“) <1

for £ > M and for all m. This implies that

(2.13) |djem (Ax) — d—1,m (Az)|T* < |dim (Az) — dig—1 1 (Ax)[P*.
The uniform convergence of Z |diem (Az) — di—1,m(Ax)|? now follows from
k=0

(2.13) by the uniform convergence of

o0

Z |dem (Az) — di—1 m (Az)|P*
k=0

(ii) The proof of (i7) differs from the proof of (i), as we cannot assert (2.12).
Suppose that = € |wW4,p| . Then there is a constant K > 1 such that

> ldim (Az) = di 1 n(Az)P* < K,
k=0
and hence

|dm (Az) = di—1 m(Az)| < K76 < K10

where p > 0 > 0.
Hence,

|dkm(‘4x) - dkfl,m(Ax”qk =
|dkm (Az) — di—1,m (AD)[P* |dpen (A) — dp—1 4 (A) [P
< K(pk*q’v)/‘;\dkm(Ax) — djy_ 1 (Az)[P*

(2.14) < K P3| d (Ax) — di 1 m(Az)[PF.

The result now follows from (2,14) by taking the sum with respect to k and
then taking the supremum with respect to m.

Theorem 4.

(i) ‘A‘p - ‘@A|pv

(ii) |Alp C |Walp
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Proof. (i) Letz € |/T\p. By Holder’s inequality for p > 1 and trivially for
p =1 it can be easily verified that

n
SR [t (A) — th 1 m(Az)[?
k=1

1
_ P -
(A (42) = dnrm(AD) < ooy

Hence,

o 00 > 1
i (AT) = dg—1,m(AT) P < D7 K [t (Az) =ty 1 m(A2) P Y- ——
> dnm(Az) — dg—1,m(Az)| 7;::1 [tkm (Az) — tg1,m(AT)| En(n+1)p

(2.14) < [tk (Az) =ty m(Az)P.
k=l

Now the uniform convergence of Z |dpm (Ax) — dpy—1 m(Az)|P follows from the

n
uniform convergence of Z |tkm (Az) — tg—1.m(Az)" and this completes the proof.

k
(ii) The proof of (ii) follows from the inequality (2.14) by taking the supremum
with respect to m.
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