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A NOTE ON PRESERVED SMOOTHNESS

Wee-Kee Tang∗

Communicated by G. Godefroy

Let X be a Banach space equipped with norm ‖·‖. We say that ‖·‖ is Gâteaux

differentiable at x if for every h ∈ SX(‖ · ‖),

(∗) lim
t→0

‖x + th‖ − ‖x‖

t

exists. We say that the norm ‖·‖ is Gâteaux differentiable if ‖·‖ is Gâteaux differentiable

at all x ∈ SX(‖ · ‖). Suppose the limit in (∗) exists uniformly in x ∈ SX(‖ · ‖) for every

h ∈ SX(‖ · ‖), we say that ‖ · ‖ is uniformly Gâteaux differentiable (UG for short). A

point x ∈ SX(‖·‖) is said to be a smooth point if the norm ‖·‖ is Gâteaux differentiable

at x. A smooth point x is said to be a preserved smooth point if the bidual norm is

also Gâteaux differentiable at x. The norm ‖ · ‖ is said to be octahedral if there exists

a u ∈ X∗∗ \ {0} such that ‖x + u‖ = ‖x‖ + ‖u‖ for all x ∈ X.

B. V. Godun [3] has shown that a separable Banach space is reflexive if and

only if each smooth point is preserved in each equivalent norm. On the other hand,

the dual version of the above result has also been obtained in another paper of B.

V. Godun (cf., [4]), which says that a Banach space is reflexive if and only if for
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each equivalent norm the extreme points of the unit ball are preserved. P. Morris

[6] has shown that a separable Banach space has a subspace isomorphic to c0 if and

only it admits an equivalent strictly convex norm in which no element on the sphere

is a preserved extreme point. Some other related results on extreme points are also

contained in [5].

It is clear that if a Gâteaux differentiable norm ‖ · ‖ is octahedral, then every

point on the sphere SX(‖ · ‖) is not a preserved smooth point. It is unknown whether a

separable space that contains l1 necessarily admits a Gâteaux differentiable octahedral

norm. However, in this note, we show the following:

Theorem. Let X be a separable Banach space containing an isomorphic copy

of l1. Then X admits a uniformly Gâteaux differentiable LUR norm such that its bidual

norm is nowhere Gâteaux differentiable at points of X.

At the end of the paper, we show by elementary methods (without using oc-

tahedrality of norms) that l1 has also such a property. We refer the readers to [1] for

some unexplained notions and results used in this note. We also refer to [2] for more

related results.

P r o o f o f T h e o r em. Since X contains l1, it admits an octahedral norm ‖ · ‖

(cf. [2]). Let {xn} be a countable dense set of SX(‖ · ‖). Define an equivalent dual

norm | · | on X∗ by |f | = ‖f‖ + p(f), where p(f) =

(

∞
∑

i=0

f(xi)
2

2i

)

1/2

. The norm | · | is

w∗-lower semicontinuous and weak∗ uniformly rotund (W ∗UR). Therefore its predual

is uniformly Gâteaux differentiable (cf. [1, II.6.7]).

Let x ∈ SX(| · |), f = | · |′(x) ∈ SX∗(| · |). By octahedrality of ‖ · ‖ there

exists a u ∈ X∗∗ such that u has no point of continuity on (‖f‖BX∗(‖ · ‖), w∗) (cf. [1,

III.2.4]). Therefore, there exists a sequence {fn} ⊂ ‖f‖BX∗(‖ · ‖) such that fn → f in

the w∗-topology but u(fn) does not converge to u(f).

We note that |fn| → |f |. Indeed, since p is w∗-continuous, p(fn) → p(f);

furthermore ‖fn‖ → ‖f‖ as ‖ · ‖ is w∗-lower semicontinuous. Hence, according to the

Šmulyan’s lemma (cf. [1, I.1.4]), the dual norm of | · | is not Gâteaux differentiable at

x.

Finally, let | · |1 be an equivalent locally uniformly rotund (LUR), uniformly

Gâteaux differentiable norm on X. The norm ‖| · ‖| = [| · |21 + | · |2]
1

2 is LUR and

uniformly Gâteaux differentiable on X but its bidual is not differentiable at points of

X. �

Using a different method, we show that l1 admits a uniformly Gâteaux differ-
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entiable norm such that its bidual norm is nowhere differentiable at points of l1.

P r o o f. We show that the norm in [7, p.86] is a required norm. Define ‖ · ‖ on

l∞ by ‖y‖ = ‖y‖∞ + p(y) where p(y) =

(

∑ y2

i

2i

)
1

2

. The norm ‖ · ‖ is W ∗UR, thus

its predual is uniformly Gâteaux differentiable. Let x ∈ Sl1(‖ · ‖) and y = ‖ · ‖′(x) ∈

Sl∞)(‖ · ‖). We shall construct a sequence yk such that ‖yk‖ → ‖y‖, yk(x) → y(x), but

yk does not converge to y weakly. We may write y = (y1, y2, y3, . . .) and consider two

cases:

Case I. If yn → 0.

Then there exists an integer N such that |yn| <
1

4
for all n > N . We, define yk

for k ≥ N :

yk
n =







1

2
if n > m

yn otherwise,

We note the following:

(1) (yk, x) = (y, x) −
∞
∑

n=k

xn(yn −
1

2
) → (y, x) = 1 as k → ∞.

(2) p2(yk) = p2(y) −
∞
∑

n=k

(

y2
n − 1/4

2n

)

→ p2(y) as k → ∞.

(3) ‖yk‖∞ = ‖y‖∞ as 1 = ‖y‖ ≤ 2‖y‖∞.

(2) and (3) imply that ‖yk‖ → ‖y‖.

However, yk does not converge weakly to y, since any convex combination of

{yk} has distance at least
1

4
from y. Therefore by the Šmulyan’s lemma, ‖ · ‖ is not

differentiable in l∗∗
1

at x.

Case II. If yn does not converge to zero.

Then there exists ǫ > 0 and a subsequence {ynk
} such that |ynk

| > 2ǫ for all k.

Define ym as follows:

ym
n =

{

0 if n > m
yn otherwise.

As in case I, ‖ym‖ → ‖y‖ as m → ∞, but ym does not coverge to y weakly. �
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