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Let X be a Banach space equipped with norm || ||. We say that || -|| is Gateaux
differentiable at x if for every h € Sx(|| - ),
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exists. We say that the norm ||-|| is Gateaux differentiable if || || is Gateaux differentiable
at all z € Sx (]| - ||). Suppose the limit in (x) exists uniformly in 2 € Sx(|| - ||) for every
h € Sx(]|-|), we say that || - || is uniformly Gateaux differentiable (UG for short). A
point = € Sx(]|-||) is said to be a smooth point if the norm || || is Gateaux differentiable
at . A smooth point z is said to be a preserved smooth point if the bidual norm is
also Gateaux differentiable at x. The norm || - || is said to be octahedral if there exists
au e X\ {0} such that ||z + ul| = ||z| + ||u| for all z € X.

B. V. Godun [3] has shown that a separable Banach space is reflexive if and
only if each smooth point is preserved in each equivalent norm. On the other hand,
the dual version of the above result has also been obtained in another paper of B.
V. Godun (cf., [4]), which says that a Banach space is reflexive if and only if for
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each equivalent norm the extreme points of the unit ball are preserved. P. Morris
[6] has shown that a separable Banach space has a subspace isomorphic to ¢y if and
only it admits an equivalent strictly convex norm in which no element on the sphere
is a preserved extreme point. Some other related results on extreme points are also
contained in [5].

It is clear that if a Gateaux differentiable norm || - || is octahedral, then every
point on the sphere Sx (|| -||) is not a preserved smooth point. It is unknown whether a
separable space that contains l; necessarily admits a Gateaux differentiable octahedral

norm. However, in this note, we show the following:

Theorem. Let X be a separable Banach space containing an isomorphic copy
of li. Then X admits a uniformly Gateauz differentiable LUR norm such that its bidual
norm is nowhere Gateauz differentiable at points of X.

At the end of the paper, we show by elementary methods (without using oc-
tahedrality of norms) that [; has also such a property. We refer the readers to [1] for
some unexplained notions and results used in this note. We also refer to [2] for more
related results.

Proof of Theorem. Since X contains /1, it admits an octahedral norm || - ||
(cf. [2]). Let {x,} be a countable dense set of Sx(|| - ||). Define an equivalent dual

= i)t
norm |- | on X* by |f| = ||f|l + p(f), where p(f) = <ZQ—Z> . The norm | - | is
=0

w*-lower semicontinuous and weak™ uniformly rotund (W*UR). Therefore its predual
is uniformly Gateaux differentiable (cf. [1, I1.6.7]).

Let z € Sx(|-1]), f = |-/(x) € Sx«(|-])- By octahedrality of || - || there
exists a u € X*™* such that u has no point of continuity on (||f||Bx=(]| -||),w*) (cf. [1,
I11.2.4]). Therefore, there exists a sequence {f,} C || f||Bx=(|| - ||) such that f, — f in
the w*-topology but u(f,) does not converge to u(f).

We note that |f,| — |f|- Indeed, since p is w*-continuous, p(f,) — p(f);

furthermore || f,|| — ||f]| as || - || is w*-lower semicontinuous. Hence, according to the
Smulyan’s lemma (cf. [1, 1.1.4]), the dual norm of | - | is not Gateaux differentiable at
x.

Finally, let | - |y be an equivalent locally uniformly rotund (LUR), uniformly
Gateaux differentiable norm on X. The norm ||| - ||| = [| - |? + | - |2]% is LUR and
uniformly Gateaux differentiable on X but its bidual is not differentiable at points of
X. O

Using a different method, we show that [; admits a uniformly Gateaux differ-
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entiable norm such that its bidual norm is nowhere differentiable at points of /7.

Proof. We show that the norm in [7, p.86] is a required norm. Define || - || on

y_z'2 2
9i
its predual is uniformly Gateaux differentiable. Let € Si, (|| - ||) and y = || - ||'(x) €

loo by Yl = llylloc + p(y) where p(y) = . The norm || - || is W*UR, thus

S )(Il - 1)- We shall construct a sequence y* such that ||y*|| — |||, ¥*(x) — y(z), but
y* does not converge to y weakly. We may write y = (y1,¥y2,¥3,...) and consider two

cases:
Case I. If y, — 0.
1
Then there exists an integer N such that |y,| < 1 for all n > N. We, define y*
for k> N:
.
k — if n>m
Yn =19 2
Yn oOtherwise,
We note the following:
[ee]
1
(1) " 2) = (2) = D anlyn —5) = (y2) =1L as k — oo,
n=~k
o0 2
yr—1/4
(2) P°(y") = *(y) = D (%) — p(y) as k — cc.
2
n=~k
3) 17"l = l1ylloc as 1= [yl < 2[|ylloo-
(2) and (3) imply that ||y*|| — [ly||.
However, y* does not converge weakly to y, since any convex combination of
{y*} has distance at least ~ from y. Therefore by the Smulyan’s lemma, | - || is not

differentiable in [1* at z.
Case II. If y,, does not converge to zero.
Then there exists e > 0 and a subsequence {y,, } such that |y,, | > 2¢ for all £.
Define y™ as follows:
m_ { 0 if n>m
Yn =\ y. otherwise.

As in case I, ||y — |ly|| as m — oo, but y"™ does not coverge to y weakly. O
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