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ABSTRACT. It is proved that a representable non-separable Banach space does
not admit uniformly Gateaux-smooth norms. This is true in particular for C(K)
spaces where K is a separable non-metrizable Rosenthal compact space.

1. Introduction. The family of spaces C(K) of continuous functions on a
compact space K plays a central role in the study of smoothness properties in Banach
spaces. First, they form a class which is rich enough to obtain very different results
depending on K and that provides many counter-examples. It is known for example
that if the Cantor derivative K1) of K is empty, then C(K) has a Fréchet-differentiable
norm ([2]). On the other hand, Haydon ([8]) constructed trees T' such that C/(7") has no
Gateaux differentiable norm. This is also true ([13]) for C(K) when K is the ‘two-arrow
space’ and this result solves the three-space problem for (uniformly) Gateaux-smooth
norms. Also, using theorems of transfer, it is often easy to extend the results from
C(K) spaces to larger classes of Banach spaces (see for example [3] VII.4.10). The
reader is referred to [3] for further results and references on the topic.

Among compact spaces, the class of Rosenthal compact spaces (see §3) contains
many ‘natural’ examples and shares nice properties with metric spaces like angelicity.
Rosenthal separable non-metrizable compact spaces therefore yield a family of C(K)
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spaces that may seem close to separable C'(K) spaces. However, their smoothness
properties can be quite different. Using martingale techniques, it has been proved by
Molté and Troyanski ([10]) that C(K') has no UG norm if K is the space constructed in
([9]) and, more generally, for any scattered separable non-metrizable compact K. We
want here to prove this result for a wide class of Banach spaces, namely the class of
non-separable representable Banach spaces.

Rosenthal compact sets K have the property that C'(K) is analytic in the topo-
logy of pointwise convergence op on any countable subset D of K. Universally rep-
resentable and more generally representable Banach spaces (see definition below) are
then a natural extension of that class. It was shown in [6] that the analytic structure of
a representable space X allows to construct biorthogonal systems in X as in Stegall’s
[12], replacing w*compactness by analyticity. We use this result along with the proof
of Theorem 1 in [7].

We give the notation used here and recall some definitions. The set of positive
integers is noted w, the set of finite (resp. infinite; of length n) {0, 1}-valued sequences
is 29 (resp. 2¥;2"). If b € 2<¥ or 2¥ and n € w, by, is the sequence of the first n
elements of b and b(n) is the n-th element of b. The set w* is a Polish space and may
therefore be considered as a complete metric space. Given a set D, the set 2 = {0, 1}”
will be identified to the collection of subsets of D.

A metric space A is called analytic if there exists a continuous function ¢ : w* —
A which is onto. A Banach space X is called representable if there exists a countable
subset D of X* which is norming (in the sense that the function |x|p = sup{f(z); f €
D} defines an equivalent norm on X) such that X is analytic in the topology op.

A norm || || on a Banach space X is called uniformly Gateauz-smooth (UG) if

th|| —
for all h € S(X 1D hr%w

norm || [|x+ of X* is w*uniformly rotund (W*UR) if for all fy,gn € Six+ | |x.) that

satisfy lim (2] ful% + 2llgnlX- = Ifa + gulk-) = 0, then w* lim (fu — ga)x+ = 0.
The following duality holds: a norm on X is UG if and only if its dual norm on X* is
WH*UR (see [3] chapter II).

exists and is uniform in z € Sx ). The

2. The main result.

Theorem. Let X be a representable non-separable Banach space. Then no
equivalent norm on X is uniformly Gateauz-smooth.

Proof. We follow Hajek’s proof that any space with a WUR norm is an
Asplund space [7]. The following crucial Lemma we are using is in [6]. Its proof is
similar to Stegall’s in [12]:

Lemma. Let X be a representable non-separable Banach space, and D a
countable norming subset of X* such that (X,op) is analytic; let ¢ : w* — (X,0p) be
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a continuous mapping onto. Then for all € > 0, there exists a sequence A, C w* that
satisfy the following:

1
i) For alln € w, A, = U B", where BY is a ball of radius less than —.
n

i1) For alln € w and s € 2”+1 Bl B(s )
iii) There exist fI' € span(D) with ||f2||x= < 1+ € such that

£
)fs[ n) >1_2_n

€
b) 121, (%) | < o whenever s # s' in 2™.
We therefore obtain in w* a Cantor set A = Q A,. We now claim the following:
ncw

Claim. Foralld >0,b€ 2%, | € w, there are my > np > 1 in w and fp, gp in
X* of norm less than 1+ ¢ of the form for= >, ayn f(b and gy = >,  [On fb[n

I<n<ng np<n<my

where 0 < oy, Bn <1 and > a,=> B, =1, and such that

20 foll% + 2lgell = 1fo + gol%- < 6.

Proof. Set My(n) = inf{||f||x=, f € 2 A} where

={f= > f(ib[i) 0<% <L) vi=1}
n<i<m

Clearly, My(n) < 14+ and M, is a non-decreasing function on w. For every p > 0, one
can find n, greater than [ that satisfies My(n,) > sup My(k) — p. We choose now my, >
kew

ny > n,and fy € AR, gy € A with || fpllx < My(ny)+p and ||gollx+ < My(n,)+2p
(since My(myp) < supr(k) < My(n,) + p). We have then || fy + gpl|x= > 2My(n,).
kew

Hence, if p is small enough, 2| f|%+ + 2llgsl%+ — || f5 + 9b]|%+ < &. This concludes the
proof of the claim. O

Let us choose now a sequence d, \, 0. For bl in 2¥, we take ni, mi, fi,
g1 respectively equal to ny,, mp,, fp,, gp, from the claim with [ =1 and § = §;. We
construct by induction n;, m; in w, fi, g; in X* and b in 2* as follows: if these elements
are chosen for i < k, we find b**1 in 2¢ such that v**1, = 0¥, and bFT1(n;, +1) #
V¥ (ng+1) and ngi1, Mer1, frtr1, gral are again given by the claim for b = bF*1 [ = ny,
and § = 1. We then get: 2| fill3- + 2/l % — [l fx + gxll5%- — 0.

If b € 2¢ is the sequence such that b[,, = b¥,, for all k € w, then let 0, € A C
w* be such that o} € ngw Bﬁn and let xp = ¢(0p,) € X. We have:

Ji(p) — ge(ap) = Y. g Fior,, (@) = Y. Fior,,) (@)

Nne_1<n<ng nep<n<mg
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> Z an(l_%)_ Z ﬂn2in21_€
N —1<nN<ng nE<nmg
We deduce that || || y. cannot be W*UR, so that || ||y is not UG. O
In [5], biorthogonal subsets of cardinality ¢ have been constructed in similar
classes of closed subspaces of £ (w), assuming supplementary determinacy axioms. If
Det(T1}) is the axiom meaning that every IT. game on the integers is determined, the
proof above still applies to show:

Corollary. In ZFC + Det(I1} ), if X is any non-separable subspace of o (w)
which is XL for the w*-topology o ({0, 1), then X does not have an equivalent UG
norm.

Examples. Let {f,}new be a dense family in the unit ball of C'(2¥). The
mapping (As)se2e — (2 Asfn(s)),>; defines an isometry u from £;(2%) to loo(w)
s€2% -

which is w*continuous, with the identification ¢1(2¥) C C(2¥)*. Let S be a subset of
2¢. We identify 2¢ and the set of Dirac measures A = {J;,s € 2¥} C (C(2¥)*,w™*).
Since Xg = spanl |(u(9)) satisfies Xg Nu(A) = u(S), if we choose a subset S of 2
that is =1 and not !, we obtain a closed subspace Xg of /o (w) that belongs to the
same class.

On the other hand, assuming the continuum hypothesis (independent from
Det(I1})), let Koy be Kunen’s compact set. Recall that under CH, Kj is a separa-
ble non-metrizable compact set such that if F' is any uncountable family of C(K)),
then there is f € F such that f € conoll I(F\ {f}) (see [11] and references therein;
see also in [5] Remark 2.6). Hence C'(Kp) does not contain any biorthogonal subset of
cardinality ¢. However, since K is scattered, we know from [10] that C'(K() admits no
equivalent UG norm.

Remark. By the transfer method, we know ([3] Theorem II.6.8) that if X
and Y are Banach spaces such that there is a bounded linear map 7' : X — Y with
dense range, and if X has a UG norm, then Y has a UG norm. Since for any set I,
the space ¢o(I') has a UG norm, then there is no such map from ¢y(I') to X, for any
nonseparable representable space X.

3. Application to Rosenthal compact sets. We recall (see [1]):
Definition. A compact set K is called Rosenthal compact if it is homeomorphic
to a set of first Baire-class functions on a Polish space, with the pointwise topology 7).

For any Banach space X that does not contain ¢;(w), the space (Bx,w") is
Rosenthal compact. Other examples are the ‘two-arrow space’ : [0,1] x {0,1} with the
lexicographical order topology, Helly’s compact space of non-decreasing functions from
[0,1] to [0,1], or the space constructed in [9]. It has been shown in [4] that if K is a
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Rosenthal compact set, then C'(K) is representable. We give here a proof, for the sake
of completeness:

Let K C By(P) be a 1)-compact set of first Baire-class functions on a Polish
space P and let D = {uy}new C P be a dense countable subset. For n € w, let 9, be
the mapping from P" x w to 2P*P defined by ¢y, (x1, 72, . .., 2n, k) = {(ug, up), jwi(z;) —
up(z;)| < + Vi < n}. Since basic open sets of 2°*P are of the form Oup =1X C
D x D, (u,up) € X} or Uypy = {X C D x D, (u,up) ¢ X}, it is not difficult to see
that the 1,,’s are Borel functions, since the u,’s are Borel. Hence, the sets ¢, (P" X w)
are analytic in 2P*P. So is their union A. Let Up be the filter on 2P*P generated by
A. Using the continuity of intersection and the fact that {(X,Y), X C Y} is closed in
2P%D e deduce that Up itself is an analytic subset of 2P*P.

We now want to show that C'(K) is analytic in the op-topology. The mapping
¢ : f = (f(un)),e, defines an isomorphism from C(K) to a closed subspace Cp of
l+(D) that transforms op into the product topology 7, (= 0(¢sc, £1)). It is enough to
show that Cp is analytic in ({so(D), 7). But Cp is the set of elements f of o (D) that
are Up-uniformly continuous, in the sense that for all € > 0, there exists U € Up such
that if (u,v) € U, then |f(u) — f(v)| < e (since K is compact).

Let L, = [-n,n]P x 2P*P_ The set F, = {(f,X) € L, ,|f(s) — f(t)| <

1
Z V(s,t) € X} is closed in L,,. We have that f € CpN[—n,n]” if and only if for all k,

there is U € Up such that (f,U) € Fj. Hence, calling 7 the natural projection from
loo(D) x 2P%P to ¢, (D), we obtain that Cp N [—n,n]” = kgl 71 (([=n,n]P xUp) U Fy,)

is analytic. Whence Cp = L>J1 (Cp N [-n,n]P) is analytic.
n>

From this result and from the theorem, we obtain immediately:

Corollary. If K is a separable non-metrizable Rosenthal compact set, then
C(K) does not have any equivalent uniformly Gateauz-smooth norm.

Remark. The separability assumption is needed. If K is the one-point

compactification of a discrete set I' of cardinality ¢, then K is a non-separable Rosenthal
compact space. But C(K) is isomorphic to ¢o(I') and thus has an equivalent UG norm.

REFERENCES

[1] J. BoUuRGAIN, D. H. FREMLIN and M. TALAGRAND. Pointwise Compact Sets
of Baire-measurable functions. Amer. J. Math., 100 (1978), 845-886.

[2] R. DEVILLE. Problémes de renormage. J. Funct. Anal., 68 (1986), 117-129.



38

[3]

Julien Frontisi

R. DEVILLE, G. GODEFROY and V. ZIZLER. Smoothness and Renormings in Ba-
nach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics,
vol. 64, Longman Scientific & Technical, Harlow, 1993.

G. GODEFROY. Compacts de Rosenthal. Pacific J. Math., 91 (1980), 293-306.

G. GODEFROY and A. LOUVEAU. Axioms of Determinacy and Biorthogonal Sys-
tems. Israel J. Math., 67 (1989), 109-116.

G. GODEFROY and M. TALAGRAND. Espaces de Banach représentables. Israel
J. Math., 41 (1982), 321-330.

P. HAJEK. Dual Renormings of Banach Spaces. Comment. Math. Univ. Carolin.,
to appear.

R. HAYDON. Trees in Renorming Theory, to appear.

A. Mortd. On a Theorem of Sobczyk. Bull. Austral. Math. Soc., 43 (1991),
123-130.

A. MoLT6 and S. TROYANSKI. On Uniformly Gateaux Differentiable Norms in
C(K). Mathematika, 41 (1994), 233-238.

S. NEGREPONTIS. Banach Spaces and Topology. Handbook of Set-theoretic
Topology, North-Holland, 1984, 1045-1142.

C. STEGALL. The Radon-Nikodym Property In Conjugate Banach Spaces. Trans.
Amer. Math. Soc., 206 (1975), 213-223.

M. TALAGRAND. Renormage de quelques C(K). Israel J. Math., 54 (1986), 327-
334.

Equipe d’Analyse:

Tour 46-0 — Boite 186 — Université Paris-6

4, place Jussieu

75252 Paris Cedex 05

France Received July 13, 1995
e-mail: juf@ccr.jussieu.fr Revised November 11, 1995



