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REPRESENTABLE BANACH SPACES

AND UNIFORMLY GÂTEAUX-SMOOTH NORMS

Julien Frontisi

Communicated by G. Godefroy

Abstract. It is proved that a representable non-separable Banach space does
not admit uniformly Gâteaux-smooth norms. This is true in particular for C(K)
spaces where K is a separable non-metrizable Rosenthal compact space.

1. Introduction. The family of spaces C(K) of continuous functions on a
compact space K plays a central role in the study of smoothness properties in Banach
spaces. First, they form a class which is rich enough to obtain very different results
depending on K and that provides many counter-examples. It is known for example
that if the Cantor derivativeK(ω1) ofK is empty, then C(K) has a Fréchet-differentiable
norm ([2]). On the other hand, Haydon ([8]) constructed trees T such that C(T̂ ) has no
Gâteaux differentiable norm. This is also true ([13]) for C(K) when K is the ‘two-arrow
space’ and this result solves the three-space problem for (uniformly) Gâteaux-smooth
norms. Also, using theorems of transfer, it is often easy to extend the results from
C(K) spaces to larger classes of Banach spaces (see for example [3] VII.4.10). The
reader is referred to [3] for further results and references on the topic.

Among compact spaces, the class of Rosenthal compact spaces (see §3) contains
many ‘natural’ examples and shares nice properties with metric spaces like angelicity.
Rosenthal separable non-metrizable compact spaces therefore yield a family of C(K)
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spaces that may seem close to separable C(K) spaces. However, their smoothness
properties can be quite different. Using martingale techniques, it has been proved by
Moltó and Troyanski ([10]) that C(K) has no UG norm if K is the space constructed in
([9]) and, more generally, for any scattered separable non-metrizable compact K. We
want here to prove this result for a wide class of Banach spaces, namely the class of
non-separable representable Banach spaces.

Rosenthal compact sets K have the property that C(K) is analytic in the topo-
logy of pointwise convergence σD on any countable subset D of K. Universally rep-
resentable and more generally representable Banach spaces (see definition below) are
then a natural extension of that class. It was shown in [6] that the analytic structure of
a representable space X allows to construct biorthogonal systems in X as in Stegall’s
[12], replacing w∗-compactness by analyticity. We use this result along with the proof
of Theorem 1 in [7].

We give the notation used here and recall some definitions. The set of positive
integers is noted ω, the set of finite (resp. infinite; of length n) {0, 1}-valued sequences
is 2<ω (resp. 2ω;2n). If b ∈ 2<ω or 2ω and n ∈ ω, b⌈n is the sequence of the first n
elements of b and b(n) is the n-th element of b. The set ωω is a Polish space and may
therefore be considered as a complete metric space. Given a set D, the set 2D = {0, 1}D

will be identified to the collection of subsets of D.

A metric space A is called analytic if there exists a continuous function φ : ωω →
A which is onto. A Banach space X is called representable if there exists a countable
subset D of X∗ which is norming (in the sense that the function |x|D = sup{f(x); f ∈
D} defines an equivalent norm on X) such that X is analytic in the topology σD.

A norm ‖ ‖ on a Banach space X is called uniformly Gâteaux-smooth (UG) if

for all h ∈ S(X,‖ ‖), lim
t→0

‖x+ th‖ − ‖x‖

t
exists and is uniform in x ∈ S(X,‖ ‖). The

norm ‖ ‖X∗ of X∗ is w∗-uniformly rotund (W*UR) if for all fn, gn ∈ S(X∗,‖ ‖X∗) that

satisfy lim
n→∞

(2‖fn‖
2
X∗ + 2‖gn‖

2
X∗ − ‖fn + gn‖

2
X∗) = 0, then w∗- lim

n→∞
(fn − gn)X∗ = 0.

The following duality holds: a norm on X is UG if and only if its dual norm on X∗ is
W*UR (see [3] chapter II).

2. The main result.

Theorem. Let X be a representable non-separable Banach space. Then no
equivalent norm on X is uniformly Gâteaux-smooth.

P r o o f. We follow Hájek’s proof that any space with a WUR norm is an
Asplund space [7]. The following crucial Lemma we are using is in [6]. Its proof is
similar to Stegall’s in [12]:

Lemma. Let X be a representable non-separable Banach space, and D a
countable norming subset of X∗ such that (X,σD) is analytic; let φ : ωω → (X,σD) be
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a continuous mapping onto. Then for all ε > 0, there exists a sequence An ⊂ ωω that
satisfy the following:

i) For all n ∈ ω, An = ∪
s∈2n

Bn
s , where Bn

s is a ball of radius less than
1

n
.

ii) For all n ∈ ω and s ∈ 2n+1, Bn+1
s ⊂ Bn

(s⌈n ).

iii) There exist fn
s ∈ span(D) with ‖fn

s ‖X∗ < 1 + ε such that

a) fn
s ⌈ϕ(Bn

s ) ≥ 1 −
ε

2n

b) |fn
s ⌈ϕ(Bn

s′
)| ≤

ε

2n
whenever s 6= s′ in 2n.

We therefore obtain in ωω a Cantor set ∆ = ∩
n∈ω

An. We now claim the following:

Claim. For all δ > 0, b ∈ 2ω, l ∈ ω, there are mb > nb > l in ω and fb, gb in
X∗ of norm less than 1 + ε of the form fb =

∑
l<n<nb

αn f
n
(b⌈n) and gb =

∑
nb<n<mb

βn f
n
(b⌈n)

where 0 ≤ αn, βn ≤ 1 and
∑
αn =

∑
βn = 1, and such that

2‖fb‖
2
X∗ + 2‖gb‖

2
X∗ − ‖fb + gb‖

2
X∗ < δ.

P r o o f. Set Mb(n) = inf{‖f‖X∗ , f ∈ ∪
m∈ω

Am
n } where

Am
n = {f =

∑

n<i<m

γi f
i
(b⌈i)

| 0 ≤ γi ≤ 1,
∑

γi = 1}.

Clearly, Mb(n) ≤ 1+ε and Mb is a non-decreasing function on ω. For every ρ > 0, one
can find nρ greater than l that satisfies Mb(nρ) ≥ sup

k∈ω

Mb(k)− ρ. We choose now mb >

nb > nρ and fb ∈ Anb
nρ

, gb ∈ Amb
nb

with ‖fb‖X∗ < Mb(nρ)+ρ and ‖gb‖X∗ < Mb(nρ)+2ρ
(since Mb(mb) ≤ sup

k∈ω

Mb(k) ≤ Mb(nρ) + ρ). We have then ‖fb + gb‖X∗ ≥ 2Mb(nρ).

Hence, if ρ is small enough, 2‖fb‖
2
X∗ + 2‖gb‖

2
X∗ − ‖fb + gb‖

2
X∗ < δ. This concludes the

proof of the claim. �

Let us choose now a sequence δn ց 0. For b1 in 2ω, we take n1, m1, f1,
g1 respectively equal to nb1 , mb1 , fb1, gb1 from the claim with l = 1 and δ = δ1. We
construct by induction ni, mi in ω, fi, gi in X∗ and bi in 2ω as follows: if these elements
are chosen for i ≤ k, we find bk+1 in 2ω such that bk+1⌈nk

= bk⌈nk
and bk+1(nk + 1) 6=

bk(nk +1) and nk+1, mk+1, fk+1, gk+1 are again given by the claim for b = bk+1, l = nk

and δ = δk+1. We then get: 2‖fk‖
2
X∗ + 2‖gk‖

2
X∗ − ‖fk + gk‖

2
X∗ → 0.

If b ∈ 2ω is the sequence such that b⌈nk
= bk⌈nk

for all k ∈ ω, then let σb ∈ ∆ ⊆
ωω be such that σb ∈ ∩

n∈ω
Bn

b⌈n
and let xb = ϕ(σb) ∈ X. We have:

fk(xb) − gk(xb) =
∑

nk−1<n<nk

αn f
n
(bk

⌈n)(xb) −
∑

nk<n<mk

βn f
n
(bk

⌈n )(xb)
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≥
∑

nk−1<n<nk

αn(1 −
ε

2n
) −

∑

nk<n<mk

βn
ε

2n
≥ 1 − ε.

We deduce that ‖ ‖X∗ cannot be W*UR, so that ‖ ‖X is not UG. �

In [5], biorthogonal subsets of cardinality c have been constructed in similar
classes of closed subspaces of ℓ∞(ω), assuming supplementary determinacy axioms. If
Det(Π1

n) is the axiom meaning that every Π1
n game on the integers is determined, the

proof above still applies to show:

Corollary. In ZFC + Det(Π1
n), if X is any non-separable subspace of ℓ∞(ω)

which is Σ1
n for the w∗-topology σ(ℓ∞, ℓ1), then X does not have an equivalent UG

norm.

Examples. Let {fn}n∈ω be a dense family in the unit ball of C(2ω). The
mapping (λs)s∈2ω 7→ (

∑
s∈2ω

λsfn(s))n≥1 defines an isometry u from ℓ1(2
ω) to ℓ∞(ω)

which is w∗-continuous, with the identification ℓ1(2
ω) ⊆ C(2ω)∗. Let S be a subset of

2ω. We identify 2ω and the set of Dirac measures ∆ = {δs, s ∈ 2ω} ⊆ (C(2ω)∗, w∗).
Since XS = span‖ ‖(u(S)) satisfies XS ∩ u(∆) = u(S), if we choose a subset S of 2ω

that is Σ1
n and not Σ1

n−1, we obtain a closed subspace XS of ℓ∞(ω) that belongs to the
same class.

On the other hand, assuming the continuum hypothesis (independent from
Det(Π1

n)), let K0 be Kunen’s compact set. Recall that under CH, K0 is a separa-
ble non-metrizable compact set such that if F is any uncountable family of C(K0),
then there is f ∈ F such that f ∈ conv‖ ‖(F \ {f}) (see [11] and references therein;
see also in [5] Remark 2.6). Hence C(K0) does not contain any biorthogonal subset of
cardinality c. However, since K0 is scattered, we know from [10] that C(K0) admits no
equivalent UG norm.

Remark. By the transfer method, we know ([3] Theorem II.6.8) that if X
and Y are Banach spaces such that there is a bounded linear map T : X → Y with
dense range, and if X has a UG norm, then Y has a UG norm. Since for any set Γ,
the space c0(Γ) has a UG norm, then there is no such map from c0(Γ) to X, for any
nonseparable representable space X.

3. Application to Rosenthal compact sets. We recall (see [1]):

Definition. A compact set K is called Rosenthal compact if it is homeomorphic
to a set of first Baire-class functions on a Polish space, with the pointwise topology τp.

For any Banach space X that does not contain ℓ1(ω), the space (BX∗∗ , w∗) is
Rosenthal compact. Other examples are the ‘two-arrow space’ : [0, 1]×{0, 1} with the
lexicographical order topology, Helly’s compact space of non-decreasing functions from
[0, 1] to [0, 1], or the space constructed in [9]. It has been shown in [4] that if K is a
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Rosenthal compact set, then C(K) is representable. We give here a proof, for the sake
of completeness:

Let K ⊆ B1(P ) be a τp-compact set of first Baire-class functions on a Polish
space P and let D = {un}n∈ω ⊂ P be a dense countable subset. For n ∈ ω, let ψn be
the mapping from Pn×ω to 2D×D defined by ψn(x1, x2, . . . , xn, k) = {(ul, up), |ul(xi)−
up(xi)| ≤

1
k

∀i ≤ n}. Since basic open sets of 2D×D are of the form O(l,p) = {X ⊆
D × D, (ul, up) ∈ X} or U(l,p) = {X ⊆ D ×D, (ul, up) 6∈ X}, it is not difficult to see
that the ψn’s are Borel functions, since the un’s are Borel. Hence, the sets ψn(Pn ×ω)
are analytic in 2D×D. So is their union A. Let UD be the filter on 2D×D generated by
A. Using the continuity of intersection and the fact that {(X,Y ),X ⊆ Y } is closed in
2D×D, we deduce that UD itself is an analytic subset of 2D×D.

We now want to show that C(K) is analytic in the σD-topology. The mapping
φ : f 7→ (f(un))n∈ω defines an isomorphism from C(K) to a closed subspace CD of
ℓ∞(D) that transforms σD into the product topology τp (= σ(ℓ∞, ℓ1)). It is enough to
show that CD is analytic in (ℓ∞(D), τp). But CD is the set of elements f of ℓ∞(D) that
are UD-uniformly continuous, in the sense that for all ε > 0, there exists U ∈ UD such
that if (u, v) ∈ U , then |f(u) − f(v)| < ε (since K is compact).

Let Ln = [−n, n]D × 2D×D. The set Fk = {(f,X) ∈ Ln , |f(s) − f(t)| ≤
1

k
∀(s, t) ∈ X} is closed in Ln. We have that f ∈ CD ∩ [−n, n]D if and only if for all k,

there is U ∈ UD such that (f, U) ∈ Fk. Hence, calling π1 the natural projection from
ℓ∞(D)×2D×D to ℓ∞(D), we obtain that CD ∩ [−n, n]D = ∩

k≥1
π1(([−n, n]D ×UD)∪Fk)

is analytic. Whence CD = ∪
n≥1

(CD ∩ [−n, n]D) is analytic.

From this result and from the theorem, we obtain immediately:

Corollary. If K is a separable non-metrizable Rosenthal compact set, then
C(K) does not have any equivalent uniformly Gâteaux-smooth norm.

Remark. The separability assumption is needed. If K is the one-point
compactification of a discrete set Γ of cardinality c, then K is a non-separable Rosenthal
compact space. But C(K) is isomorphic to c0(Γ) and thus has an equivalent UG norm.
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