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ABSTRACT. The generalized Wiener-Hopf equation and the approximation me-
thods are used to propose a perturbed iterative method to compute the solutions
of a general class of nonlinear variational inequalities.

1. Introduction, preliminaries and formulation. The field of inequality
problems has seen a considerable development in mathematics and unilateral mechan-
ics. Particularly, the theory of variational inequalities is now a well-developed theory
in mathematics. The mechanical meaning of a variational inequality is given by the
formulation of the principle of virtual work when a monotone stress-strain or reaction-
displacement condition hold. Equally important is the study of the random equations
involving the random operators in view of their need in dealing with probabilistic mod-
els in applied sciences. Motivated by a recent work of P. Shi [20] who established the
equivalence between variational inequalities and Wiener-Hopf equation and inspired by
a random version of this work which is due to Noor and Elsanousi [14], we investigate a
general class of nonlinear variational inequalities for the deterministic case. Using the
proximal technique, we show the equivalence between such variational inequalities and
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a generalized version of the so called Wiener-Hopf equation. This equivalence, along
with the concept of epiconvergence, allows us to suggest and study a new perturbed
iterative method for solving our general problem, which consists of coupling an iterative
scheme with a data perturbation.

Let H be a real Hilbert space, whose inner product and norm are denoted by
(+,+) and | - | respectively. For a given nonlinear operator A : H — H and a given lower
semicontinuous proper and convex function ¢ : H — R U {400}, we shall consider the
following general variational inequality:

Find v € H such that
1) (Au — Bu,v — u) > p(u) — p(v), Yo € H,

where B is a nonlinear continuous mapping on H.
We recall that the subdifferential operator d¢ is defined by

(@,y) € Op <= (&) = () + (y,§ —x) for all { € H.

The original problem (1) has an equivalent formulation in terms of generalized
equation:

Find v € H such that
(2) 0€ (A—B)u+ 9p(u).

Let us give some examples of problems which give raise to inequality (1) or
equivalently to (2).

(i) Let K be a nonempty closed convex subset of H. Note that if the operator B
is independent of u, that is, B(u) = f for all u € H and ¢ = Ik the indicator
function of the subset K, then (1) is equivalent to the following problem:

Find v € K such that
(3) (Au— f,o—u) >0, Yve K.

Inequalities like (3) are known as the classical variational inequalities and have
been extensively studied in the literature (see for instance [19] and references
quoted therein).

(ii) Let K be a closed convex cone of H, and let K* denote its positive polar, i.e.

K :={u" e H|(u" u)>0 Vue K}
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If ¢ := Ix and B is identically null, then problem (1) reduces to the so called
explicit complementarity problem given by

Find v € K such that
(4) Au € K* and (Au,u) = 0.

Such problems were introduced by Karamardian [10]. For further details we
refer, for example, to [9]. Nevertheless, such problems are encountered frequently
in several fields of applied mathematics such as for instance, mechanics, economic
equilibrium theory, elasticity theory.

(iii) Let J: H — R be a Gateaux differentiable convex function such that V.J(u) = Au
Vu € H and B identically null. Then (1) is equivalent to the convex optimisation
problem

() (J +¢)(@) = inf (J +¢)(v),

This problem has been studied for example in [11] among others.

inf
veEH

A large number of equilibrium problems arising in economics and transportation
sciences can be formulated as

(6) A(Pr(2)) + (2 = Pr(2)) = f

where P stands for the projection operator of H on the convex set K.
As quoted by S. Robinson [17] or [18] and P. Shi [20], equation (6) can be
derived from the variational inclusion

(7) f € Au+ 0Ik(u),

which is equivalent to problem (3). For the applications and more details of this type
of equation we refer to [22], [20] and references cited therein.
More generally, let us consider the following problem

Find z € H such that
1
(5) (A= B () + (= I)(z) =0,

where A > 0 is a constant, JY := (I + Adp) ! is the so called proximal mapping and I
stands for the identity operator on H.
Equation (8) is called the generalized Wiener-Hopf equation.
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Let us now give a characterization of the proximal mapping J ;\0 and let us state
its nonexpansiveness property.

Lemma 1.1. [6]
(i) u=J{(z) <= A\ Hz—u,v—u) <o) —pu) YveH.
(i) The proximal mapping Jf s nonexpansive, that is:

|JE (w) — JL ()] < Jlu—v| Vu, :ve H.

We also need the following standard concepts.

Definition 1.1. An operator T : H — H is said to be:

1. strongly monotone, if there exists a constant o > 0 such that

(Tu — Tv,u —v) > alu —v|?.

2. Lipschitz continuous, if there exists a constant k > 0 such that

|Tu — To| < k|lu —v|.

2. Equivalence. Using the general abstract duality principle of Attouch &
Théra [4], we show the equivalence between problem (1) and the generalized Wiener-
Hopf equation (8).

Theorem 2.1. The general variational inequality (1) has a solution v € H if
and only if the generalized Wiener-Hopf equation (8) has a solution z € H, where

9) z =u — AN Au — Bu),
and
(10) uw=J{(z).

Proof. Let us consider the equivalent formulation of problem (1):

Find v € H such that
(11) 0€ (A—B)(u)+ dp(u).
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For A\ > 0, we have
0 € XA — B)(u) + Adp(u).

By adding and subtracting u to equation (12), we obtain
(12) 0€ —u+ MNA-—B)(u)+u+ Adp(u).
By setting,
Au = (=1 + M(A — B))u,
Tu:= (I + Xp)(u),

equation (12) becomes,
Au+Tu > 0.

By applying the general abstract duality principle of H. Attouch and M. Théra [4], we
get
2+ AT Y2) 20, withz¢€ Tu.

Noticing that 71(2) = (I + Adp)~1(z) = J{(z) we finally obtain
z+ (=1 +XA-B))J{(z) =0,

or equivalently,

(13) (A—B)J{(z) + %(I —J{)(z) = 0.
Since z € T (u), we have
u=J{(2).

Which completes the proof. O
Remark 2.1. This theorem generalized results obtained by P. Shi [19] and
A. M. Noor [13] in the case where ¢ = I and B(u) = f for all u € H.

3. A perturbed iterative method. The equivalence established above plays
an important role from numerical and approximation point of views and will be used
in what follows to obtain algorithms for solving the general variational inequality (1).

Adopting the point of view of variational convergence, we perturb problem (1),
at each iteration n € N, by replacing the original function ¢ by an approximate function
™ to get a new problem

Find u,, € H such that
(14) (Auy, — Bup,v — up) > ¢"(up) — ¢"(v), Yo € H.
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We assume that the sequence {¢" | n € N} of lower semicontinuous convex and proper
functions converges to ¢ in the sense of Mosco, that is

Vu € H, Y{u,|n € N} such that u, = u, then ¢(u) < liminf ©" (un),
n—-100
Vu € H, FHuy|n € N} such that u, > u and o(u) > limsup ¢" (uy).
n—-+o0o
We adopt the notation " M ©, to denote the Mosco-epiconvergence of ™ to
¢, and we recall [3] that if ¢ M ¢, then

an(u) % J{(u) forall A >0 and u € H.

For more details concerning the Mosco-epiconvergence we refer to the book of H.
Attouch [3].
We illustrate the perturbation scheme (14) by the following examples.

Example 3.1. Penalty for Constrained Variational Inequalities. Let
us consider the problem (3) with K := {u € H | h(u) < 0}, where h : H — R is a
differentiable and convex function. Let p : H — R be a penalty function, that is p is
lower semicontinuous and convex function satisfying

p(u) >0 Yu € H and p(u) =0 <= u € K.
Consider the sequence of functions {¢" | n € N} defined by
©"(u) = rpp(u) Yu € H.

It has been shown [5] that, if 0 < r, < r,41 and r, — 400, then " M ®.
In this case, the perturbed problem (14) becomes the penalty variational in-
equality with parameter r,. We note that such problems have been studied in [7].

Example 3.2. Nonlinear Complementarity Problem and Galerkin
Method. Let us consider the explicit complementarity problem (4).

If K is a Galerkin cone, that is there exists a countable family of convex subcones
{K,|n € N} of K such that:

(i) K, is locally compact for every n € N

(ii) if n < m then K,, C K,,
(il) K = J Kn,

n>0
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then by taking the perturbed function ¢" := Ig,, we have ¢" M ¢ = Ig. Such
approximation scheme has been studied in [9].

One can see that by using this notion of perturbation, the approximate varia-
tional inequality may have quite different computational properties.

Coupling formulations (9) and (10) with the concept of epi-convergence, we
suggest the following perturbed iterative algorithm for solving our general problem (1).

The General Algorithm:

(i) At iteration n = 0, start with some initial point zy € H.

(ii) At iteration n, compute the new point z,41 by the iterative scheme:

(15) Up = an (Zn),
(16) Znt1 = Up — AMAuy, — Buy,).

(iii) If |21 — 20| < ¢, for a given € > 0, then stop. Otherwise, repeat (ii).

Remark 3.1. If the operator A is linear and A~! exists (B(u) = f for all
u € H), then the generalized Wiener-Hopf equation (8) becomes:

(17) z= (I - XTAHI - I () + ATf

Indeed by (8), we have
NIz = J{(z) — 2+ A,
which is equivalent to
JE() = ATAT () - At AT AT
Hence
z= I - XTAHI - J0)(z)+ AT f

Using the fixed point formulation (17), we can replace step (ii) in the general algorithm
by the following;:

(ii)’ Zpi1 = (I = ATPATY (T = I ) (20) + A7V

Pitonyak, Shi and Shillor [21] have presented some numerical examples for solu-
tions to obstacle problems by using algorithm (ii)’ with ¢™ = Ix. The results obtained
are encouraging.
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Remark 3.2. In the case of the convex optimization problem (5), the iteration
procedure takes the form:

o f
Uy, = argmin § @ ) Zn
Zp+l1 = Up — /\VJ(un)

As a particular case, if we set ¢" = Ixn» where {K™|n € N} is a family of closed convex
subset approximating the nonempty closed convex subset K. Then the iterative scheme

{ Uy, = Pgn(zn)

reduces to

Zntl = Up — AVJ(uy)
Now, let us state the convergence result for the general algorithm.

Theorem 3.1. Let A : H — H be a strongly monotone and Lipschitz
continuous operator. Assume that " M @ and B is Lipschitz continuous. Then the
sequence {z,|n € N} generated by the general algorithm converges strongly to the exact
solution z of (8), for
2(or— p)
3% — p?
where « s the strong monotonicity constant of A and B, p are the Lipschitz constants

A< and p < a,

of A and B respectively.

Proof. Let z € H satisfy the generalized Wiener-Hopf equation (8). From (9)
and (15), we get

|Zn+1 — 2| = |up —u — AN(Au,, — Buy,) + A(Au — Bu))|
= |up —u— AN(Au,, — Au) + N(Bu,, — Bu)|
< |up —u — A(Auy, — Au)| + A\|Bu,, — Bul.

Since A is strongly monotone and Lipshitz continuous, we have

|un, —u — NMAu, — Au)| < \/1 — 2 a + N232|uy, — ul.

By setting

HA) = /1 — 2ha + A262 + Ap,

where g is the Lipschitz constant of B, we have

(18) |Zn+1 — 2| < t(A)|up — ul.
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From (10) and (15), we get
[un = ul = [ I (z0) = J{(2)]
By introducing the term an (2), we get
[ =l < IS (n) = I ()] + 1S (2) = T (2)1-
Since Jj\pn is nonexpansive, we obtain
lun, — ul < |z — 2| + €n,

where &, := |J{" (2) — J{(2)| which converges to 0, since " Mo
Hence

un —u| < |zn — 2| + €n,
which combined with (18), yields
|zn+1 — 2| <t(N)|zn — 2| + t(N)en.
Thus
(19) |2n41 — 2| < Olzn — 2| + €,

where 6 := t(\) and €], ;= t(\)ey,.
The condition on the parameter A implies that # < 1. From (19), we derive

n
|Zni1 — 2| < O™z — 20 + > e
j=1

The required result follows from [15], page 399. O

Remark 3.3. We note that when B is identically null, then the condition on
the parameter A in Theorem 3.1 reduces to

20

)\<@,

where a and (3 are respectively the strong monotonicity and the Lipschitz constants of
the operator A.

4. A weak convergence result. In this section, we consider the following
problem

Find v € H such that
(20) (Au— f,o—u) > o(u) —p(v), Yv e H.
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Using Theorem 2.1, problem (20) is equivalente to
(21) AT () + 5T = T)(=) =
We introduce the following operator 17" defined by
T(z) := (I — XA)JL(z) + \f.
We note that fixed points of the operator 7" are solutions of the equation (21).

In the following definition, we introduce the notion of co-coercive mappings as
defined by Tseng [23] and also studied by Mataoui [12].

Definition 4.1. The operator A : H — H is co-coercive if there exists A > 0
such that 1
(Au — Av,u —v) > K\Au — Av]?,
for all u, v € H.
Remark 4.1.

(i) If A is strongly monotone with modulus « and Lipschitz continuous with constant

ﬂ2

G, then A is co-coercive with modulus A =

(ii) A co-coercive operator is monotone and Lipschitz.

The following lemma will be usefull

Lemma 4.1. If the operator A is co-coercive with modulus A > 0 and A < I
then the operator
T(z):= I — XA)JL(2) + Af

18 MONeTpansive.

Proof. Let z; and 29 in H, we have
|Tz1 —Tzo|> = |J{z1 — I 20 — MAJ{ 21 — AJL20)?

2
§|KQ—H%F—MK—MMKQ—AK@R

2
Since the proximal mapping J{ is nonexpansive and A < e the result of the Lemma
follows. O
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Lemma 4.2. [Browder| Let H be a Hilbert space and C a closed conver and
bounded subset of H. Assume that an operator T : C' — C' is nonexpansive. For any
s €10,1[ and zo € H, define the following iterative method

Znt1 = Szp + (1 — 8)Tzp.

Then the sequence {z,|n € N} converges weakly to a fixed point of T and |zp4+1—2n| — 0

as n — +0o0.

We suggest the following iterative algorithm with relaxation:
ALG2:

(i) At iteration n = 0, start with 29 € H.
(ii) For s €]0, 1], zp+1 is given by

Zng1 = 82p + (1= 8)(I = AA) I (2n) + (1 — ).

(iii) If |2pg1 — 20| < ¢, for a given € > 0, then stop. Otherwise, repeat (ii).

We have the following convergence result:

Theorem 4.3.  Suppose that (20) has a solution. If the operator A is co-
coercive with modulus A > 0 and A < —. Then the sequence {z, | n € N} generated by
the algorithm ALG2 converges weakly to a solution z* of the equation (21).

Proof. Let @ be a solution of (20). By using Theorem 2.1

7 =T — AT — \f,

is a solution of the equation (21).
Set
C:={veH:|v-=2 <l|z-7z|}
By Lemma 4.1 T is nonexpansive and thus 7" maps C' into C.
Lemma 4.2 yields that the sequence {z,} weakly converges to a fixed point z* of T,
which is a solution of (21). This completes the proof. O

Example 4.1. Let us consider the following boundary value problem with
discontinuous nonlinearities:

Find u € H?(Q) such that
(P)< 0€ —Au(x)+ 0J(z,u(x)) a.e. in Q
u =0 on 0f2
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Here § is an open subset of R with boundary 0§ sufficiently smooth and J : QxR — R
is a continuous convex and subquadratic function with respect to the second variable,
i.e.

(22) J(z,s) < g\s\2+b, V(z,s) €A xR, a< A,

where A\ is the first eigenvalue of the homogeneous Dirichlet problem for the operator
—A.

It is easy to see that (P) can be rewritten in the form (20) with H = H}(Q) and

(Au,v) :/ VuVudz.
Q

We choose A > — where « is determinated by the Poincaré’s inequality.

Q@
In this case, the iterative algorithm ALG2 becomes
(23) Zni1 = sz + (1= ) (I = ATTATH(I = (9)x) (2n),

where

(07)x(u) = argmin {J(-,v) + %Hu — o3}

From a computational point of view, the preceding algorithm (23) is not expensive
since at each step, it only requires the calculus of the operator A~! which is given by
the Green representation

A w(z) = / G, y)w(y)dy, w e LX(Q).
Q

This can be easily achieved if we perform previously a tabulation of the function (9.J).
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