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CALCULATION OF RELIABILITY CHARACTERISTICS FOR

REGENERATIVE MODELS

Vladimir Kalashnikov
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Abstract. If a regenerative process is represented as semi-regenerative, we derive
formulae enabling us to calculate basic characteristics associated with the first oc-
currence time starting from corresponding characteristics for the semi-regenerative
process. Recursive equations, integral equations, and Monte-Carlo algorithms are
proposed for practical solving of the problem.

1. Introduction. Paying tribute to Academician Nikola Obreshkov, one must
remember that not only he was an outstanding expert in algebra and calculus but he
had a deep interest to probability theory, numerical methods, mathematical statistics,
numbers theory, etc.

This contribution deals with topics which were in the sphere of action of Nikola
Obreshkov: random processes, numerical methods, mathematical statistics.

The setup arose in reliability theory. Although the results can be immediately
applied in risk theory and the theory of queues we will use reliability terminology, just
for definiteness.

Assume that we consider a redundant system and the reliability function (prob-
ability P(τ > x) that the first break-down time τ exceeds x, x > 0) should be either
calculated or estimated. Very often, the dynamics of the system can be described as a
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regenerative process (RP). This means that there exists a sequence S0 < S1 < . . . of
random times (regeneration times) which divide the process into independent identi-
cally distributed (i.i.d.) cycles (see Kalashnikov [6]). In this case, τ can be represented
as a random sum of lengths of i.i.d. cycles (the number of summands has a geometric
distribution) and, perhaps, one additional summand. Such a representation is typical in
reliability; we refer to Brown [3] and Kalashnikov [6, Chapter 4] for further references.
Owing to the representation of τ as a geometric sum one can approximate P(τ > x) by
various methods (see Kalashnikov [6, 7]). But every approximation is stated in terms of
the underlying RP. It is noteworthy that the desired characteristics of the RP are not
easy to obtain. Until now, there is no general method to solve this practical problem.

This paper shows that such a problem is fully tractable, assuming that the
underlying RP can be treated as a semi-regenerative process (SRP). In this case, we
propose various calculation methods based on solutions of relevant integral equations
and Monte-Carlo algorithms.

The paper is organized as follows. In Section 2, basic definitions associated
with RP and SRP are given. In particular, three main characteristics for estimation of
first occurrence times are stated. They are a probability q to fail during a regeneration
cycle, a conditional distribution function (d.f.) F of a length of a regeneration cycle
given there is no fail within it, and a conditional d.f. F1 of the first occurrence time
within a failed cycle. Similar characteristics are stated for SRP. If a RP is regarded as
a SRP, then the relations enabling us to find q, F , and F1 in terms of corresponding
characteristics of the SRP are derived in Section 3. With the relationships in the base,
Section 4 contains recurrence equations and Section 5 integral equations for finding
the characteristics indicated. Monte-Carlo algorithms to estimate q, F , and F1 are
proposed in Section 6.

2. Regenerative and semi-regenerative processes. We start with well-
known notions associated with regenerative processes (see Kalashnikov [6]). Let (z, S)
be a pair where z is a random process with a complete separable metric state space
(Z,B) evolving in time t ∈ T = [0,∞) and S = (S0, S1, . . . ) is an increasing sequence
of non-negative random times called renewals.

Let

N(t) = #{n : Sn < t, n ≥ 0}(2.1)

be a number of renewals occurring within [0, t) and

Dn = Sn − Sn−1, n ≥ 1,(2.2)

be successive inter-renewal times. Define a shift operator θs for (z, S) on time s onward:

θs(z, S) =
(

(z(s + t, ω))t≥0, (SN(s)+k − s)k≥0

)

.(2.3)
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Definition 1 . Random pair (z, S) is a RP if, for any n ≥ 0,
(i) θSn(z, S) are identically distributed;

(ii) θSn(z, S) does not depend on the prehistory (z(t))t<Sn , S0, . . . , Sn.

In the present form, Definition 1 was proposed by Thorisson [12], though it is
equivalent to the Smith classic definition (see Smith [10]). It follows that sequence Dn,
n ≥ 1, defined in (2.2) consists of i.i.d.r.v.’s that is (Sn)n≥0 comprises a renewal process.
Instants Sn are also called regeneration times and r.v.’s Dn, n ≥ 1, inter-regeneration

times.
Let us assume, for simplicity, that (z, S) is a zero-delayed RP that is S0 = 0.

Then regeneration times Sn, n ≥ 0, partition process (z, S) into a sequence of i.i.d.
cycles

Cn ≡ Cn(ω) =
(

(

θSn−1
z(t, ω

)

0≤t<Dn(ω)
, Dn(ω)

)

, n ≥ 1.(2.4)

Random elements Cn take their values from state space ZT × T and a corresponding
probability measure on this space

PC(A) = P (ω : Cn(ω) ∈ A) , A ⊂ ZT × T, n ≥ 1,(2.5)

does not depend on n ≥ 1 because all cycles are i.i.d.
Let us define the first occurrence time for RP. For this, we divide space ZT ×T

into two disjoint subsets
ZT × T = C+ ∪ C−,(2.6)

where C+ ∩ C− = Ø. A cycle C is called bad if C ∈ C−. Otherwise, C is called good .
Denote

Ω
(n)
− = {ω : Cn(ω) ∈ C−} , Ω

(n)
+ = {ω : Cn(ω) ∈ C+}(2.7)

and let
q = P(Ω

(n)
− )(2.8)

be the probability that cycle Cn is bad.
Let us designate a generic cycle by C = (z,D), where the meaning of the com-

ponents z and D is clear from (2.4). We define, for a bad cycle C ∈ C−, a nonnegative
r.v.

ξ(C) = ξ(z,D) ≤ D,(2.9)

naming this the first occurrence time within cycle C. Let

ξn = ξ(Cn(ω)), n ≥ 1.(2.10)

Evidently, all r.v.’s ξn are i.i.d. Moreover, they are defective, in general, because

P(ξn <∞) = P(Ω
(n)
− ) = q ≤ 1,
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and we do not define ξ(C) for good cycles C ∈ C+.
We now introduce the first occurrence time τ = τ(ω) for RP (z, S) as follows.

Let
ν(ω) = min{n : ω ∈ Ω

(n)
− , n ≥ 1}.(2.11)

Since all cycles are i.i.d. and because of (2.8),

P(ν = k) = q(1 − q)k−1, k ≥ 1.(2.12)

Put
τ(ω) = Sν(ω)−1(ω) + ξν(ω).

It is possible to represent τ as a geometric sum of i.i.d.r.v.’s. For this, we
consider independent r.v.’s Z, X1, X2, . . . and suppose that all Xi, i ≥ 1, are i.i.d. Let

X stands for a generic r.v., X
d
= X1 (

d
= denotes the equality in distribution). Let all

indicated r.v.’s do not depend on ν and have the following distribution functions

F1(x) = P(Z ≤ x) = P(ξ(C) ≤ x | C ∈ C−)(2.13)

and
F (x) = P(X ≤ x) = P(D ≤ x | C = (z,D) ∈ C+).(2.14)

Obviously,

τ
d
= Z +X1 + · · · +Xν−1.(2.15)

Then
P(τ ≤ x) = qF1(x) + (1 − q)F1 ∗Wq(x),

where Wq is the d.f. of a geometric sum X1 + · · · +Xν that is

Wq(x) =
∞
∑

k=1

q(1 − q)k−1F ∗k(x).(2.16)

Example 1. Let a redundant system consist of an operating element, N un-
loaded redundant elements, and a repairing unit. When operating, each element has
random lifetime with d.f. A(u) = 1− exp(−λu). Upon failure, it joins the queue before
the repairing unit if it is busy or starts repairing if the repairing unit is idle. After
restoration, the element joins the group of redundant elements if one of the elements is
operating or starts operating if all other elements failed. Repair times are i.i.d. having
the d.f. B(u). A failed element is instantly replaced by one of the redundant elements
(if any).

Let z(t) be a number of failed elements at time t. Assume that z(0) = 0 and

S0 = 0, Sn+1 = min{t : z(t) = 0, z(t− 0) 6= 0, t > Sn}, n ≥ 0.
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Then (z, S) is a RP. Define

τ = min{t : z(t) = N + 1}

as the first break-down time of the system. This defines the partition (2.6) and all
relations (2.8) through (2.16) are valid. But d.f.’s F and F1 as well as probability q are
difficult to define in terms of d.f.’s A and B.

A number of methods were developed to estimate d.f.Wq; see Brown [3], Kalash-
nikov [6, 7], and Soloviev [11]. But any bound should be necessarily expressed in terms
of d.f.’s F and F1 and probability q. The main purpose of this paper is to propose a
way of finding these parameters in the case where each regeneration cycle consists of
a sequence of simpler semi-regeneration cycles that is in the case where (z, S) can be
regarded as a SRP. The concept of semi-regeneration relates closely to the concept of
Markov renewal processes. The latter is discussed in Disney and Kiessler [4].

Let us construct a SRP with the help of a semi-Markov process. Suppose (E, E)
is a complete separable metric space and each α ∈ E is equipped with a r.v. Yα having
the d.f.

Gα(x) = P(Yα ≤ x).(2.17)

Let
K(α, x; A) = P(αn+1 ∈ A ∈ E | αn = α, Yα = x)(2.18)

be a transition probability that defines the dynamics of a random sequence

(αn, Y
(n)) ≡ (αn, Yαn), n ≥ 0,

as follows. If αn = α and Y (n) = x, then state αn+1 is a r.v. having the probabil-
ity distribution (2.18), while Y (n+1) is a r.v. independent of other characteristics and
distributed as

Gα′(x) = P(Yαn+1
≤ x | αn+1 = α′).

In order to complete the definition of the sequence, it is sufficient to fix the initial state
α0. The sequence (αn, Yαn) thus defined is called a semi-Markov process.

Semi-Markov process can be viewed as a continuous time random process with
piecewise-constant paths occupying state αn = α for random time Yα after which it
jumps to a new state αn+1 and r.v. αn+1 depends on only α and Yα. In each state α,
occupation time Yα depends on α only and has d.f. Gα, successive occupation times
(for a given state) being independent.

Apparently, (αn)n≥0 is a time-homogeneous Markov chain taking its values in
(E, E) and having a transition kernel

K(α;A) =

∞
∫

0

K(α, x;A) dGα(x).(2.19)
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Assume the chain to have a proper atom in the following sense: there exists a state
a ∈ E such that it is positive recurrent; that is, Eψa <∞ where

ψa = min{n : αn = a, n ≥ 1}, α0 = a,(2.20)

is the first recurrence time to state a.
We now construct a SRP. For this, assume that each state α ∈ E is equipped

with a random pair (Yα, zα) where Yα is an occupation time of this state and zα(t),
0 ≤ t < Yα, is a random process evolving over the occupation time. Both random
elements are dependent, in general. This means that there is a family of probability
measures

Pα(B) = P ((Yα, zα) ∈ B) , α ∈ E,(2.21)

serving as probability distributions of generic pairs (Yα, zα). In addition, for each α ∈ E
and each “value” of the pair (Y, z) we define a probability measure

Qα(A | Y, z), A ∈ E .(2.22)

Construct a sequence of random triples

(αn, Yαn , zαn) ≡
(

αn, Y
(n), z(n)

)

, n ≥ 0,

as follows. Let α0 = a and (Y (0), z(0)) be a random pair having a distribution Pa.
Given (αk, Y

(k), z(k)), 0 ≤ k ≤ n, r.v. αn+1 depends on (αn, Y
(n), z(n)) only and has a

conditional distribution

P
(

αn+1 ∈ A | (αk, Y
(k), z(k))0≤k≤n

)

= Qαn

(

A | Y (n), z(n)
)

.

In turn, (Y (n+1), z(n+1)) is a random pair only depending on αn+1 and having distri-
bution

P
(

(Y (n+1), z(n+1)) ∈ B | (αk, Y
(k), z(k))0≤k≤n, αn+1 = α

)

= Pα(B).

These constructions define a random sequence (αn, Y
(n), z(n)), n ≥ 0, uniquely in dis-

tribution. Sequence (αn, Y
(n)), n ≥ 0, forms a semi-Markov process while αn, n ≥ 0,

is a Markov chain. Let

σ0 = 0, σ1 = Yα0
, . . . , σn = Yα0

+ · · · + Yαn−1

and
σ = (σ0, σ1, . . . ).(2.23)

Random times σn, n ≥ 0, can be called semi-regeneration times. Define a random
process

z(t) = zαn(t− σn), σn ≤ t < σn+1, n ≥ 0.(2.24)
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Definition 2 . Random pair (z, σ) with sequence σ defined in (2.23) and process

z defined in (2.24) is called a SRP.

Let us call the pair (Yα, zα) a generic semi-regeneration cycle associated with
state α or simply α-cycle. Markov chain (αn)n≥0 is called accompanying . Denote by

S0 = σ0 = 0, Sn+1 = min{σk : σk ≥ Sn, αk = a}, n ≥ 0,(2.25)

successive semi-regeneration times at which the accompanying Markov chain returns
to state a. Apparently, (z, S) is a RP because of the imposed restrictions. Therefore,
(z, S) is a RP induced by SRP (z, σ). Should state space E consist of a single element
a, SRP (z, σ) is reduced to a RP (z, S). In this case, σi ≡ Si, i ≥ 0.

We now introduce the first occurrence time for SRP (z, σ). Let us view ZT ×T
as a space of possible “values” of semi-regeneration cycles. For each α ∈ E, we partition
ZT × T into two subsets

ZT × T = C(α)
+ ∪ C(α)

−

and call α-cycle Cα = (zα, Yα) bad if it belongs to C(α)
− and good otherwise. Let

q(α) = P
(

Cα ∈ C(α)
−

)

(2.26)

be the probability that an α-cycle is bad. Given bad Cα, define a r.v. ξα ≤ Yα treated
as the first occurrence time within α-cycle Cα. If

κ = min
{

n : Cαn ∈ C(αn)
−

}

(2.27)

is the number of the earliest bad cycle, then the first occurrence time is equal to

τ = σκ−1 + ξακ .(2.28)

SRP (z, σ) is more convenient for analysis than RP (z, S) just because quantities (2.17),
(2.18), and (2.26) can easily be calculated in many practical cases.

Example 2. Let us return to the system considered in Example 1 and define

σ0=0, σn+1= min {t : {z(t)=0, z(t − 0)6=0} ∪ {z(t)=z(t− 0) − 1}, t > σn} , n ≥ 0.

Then, evidently, (z, σ) is a SRP, where E = {0, 1, . . . }. One can take a = 0 as a proper
atom. Then

G0(x) = 1 − exp(−λx); Gi(x) = B(x), 1 ≤ i ≤ N + 1;
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K(0, x; j) = δj,1; K(i, x; j) =
(λx)j−i+1

(j − i+ 1)!
e−λx, i− 1 ≤ j ≤ N, 1 ≤ i ≤ N ;

K(i, x;N + 1) =
∑

j≥N+1

(λx)j−i+1

(j − i+ 1)!
e−λx, 1 ≤ i ≤ N ; K(N + 1, x; j) = δj,N ;

q(0) = 0; q(i) =
∑

j≥N+1

∫ ∞

0

(λx)j−i+1

(j − i+ 1)!
e−λx dB(x), 1 ≤ i ≤ N,

where δi,j is the Kronecker delta. Thus, all “governing parameters” of SRP is written
in an explicit form. And the problem is how to express the desired characteristics of
RP from Example 1 in terms of the above characteristics of SRP. The paper is devoted
exactly to this problem.

3. RP in terms of SRP. In contrast to r.v. ν from (2.11) and (2.12), r.v.
κ (see (2.27)) does not have a geometric distribution. Nevertheless, it is still possible
to transform the first occurrence time τ from (2.28) to a geometric sum. Such a
transformation is useful for mathematical treating the problem. To this end, we can
use a representation of (z, σ) as a RP (z, S). Let us say that a generic regeneration
cycle is good if all semi-regeneration cycles comprising it are good and bad otherwise.
According to this, we can define quantities of RP (z, S) in terms of characteristics of
SRP (z, σ) in the following way.

For each n ≥ 0, we divide a bad regeneration cycle into n+1 semi-regeneration
cycles. First n of these cycles are supposed to be good and the (n + 1)th bad. With
the help of the total probability formula, we arrive at the relation

q =
∞
∑

n=0

q(n),(3.1)

where

q(0) = q(a); q(n) =

∫

α6=a

q(α)Kn(a; dα), n ≥ 1,(3.2)

probabilities q(α) are defined in (2.26) and

K0(a;A) = 1A(a), K1(a;A) = K(a;A),(3.3)

Kn(a;A) =

∫

α1 6=a

· · ·
∫

αn−1 6=a

K(αn−1;A)
n−2
∏

j=0

K(αj ; dαj+1), n ≥ 1.(3.4)

Kernel K(α;A) is given by

K(α;A) =

∫ ∞

0
K+(α, u;A) dGα(u),(3.5)
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where

K+(α, u;A) = P
(

αn+1 ∈ A, Cα = (zα, u) ∈ C(α)
+ | αn = α, Yα = u

)

(3.6)

can be found from distributions Pα and Qα (see (2.21) and (2.22)). Kernel K(α;A)
is equal to the probability for the accompanying Markov chain to jump from state
αn = α to αn+1 ∈ A in such a way that the (n+ 1)th semi-regeneration cycle is good.
Apparently, K can be viewed as a contraction operator and hence, series

K
∞

(α;A) ≡
∞
∑

n=0

Kn(α;A)

converges for each α ∈ E and represents a finite measure on (E, E). This can be
used either for numerical estimation of q in terms of eigenvalues of operator K or for
statistical estimates of q by Monte-Carlo methods. Quantity q(n) in (3.2) is equal to
the probability that a regeneration cycle is bad and consists of more than n semi-
regeneration cycles (first n are good and the (n+ 1)th is bad).

Let (see (2.14))

R+(x) ≡ P(D ≤ x, C ∈ C+) =
∞
∑

n=0

R
(n)
+ (a, x),(3.7)

where functions R
(n)
+ (α, x), α ∈ E, are defined recursively:

R
(0)
+ (α, x) =

∫ x

0
K+(α, u; a) dGα(u),(3.8)

R
(n+1)
+ (α, x) =

∫ x

0

∫

β 6=a

R
(n)
+ (β, x− u)K+(α, u; dβ) dGα(u), n ≥ 0.(3.9)

Evidently, R
(n)
+ (α, x) is the joint probability that a generic regeneration cycle consists

of n + 1 good semi-regeneration cycles and the total length of these cycles does not
exceed x provided that the accompanying Markov chain starts from state α. Therefore,
the d.f. F (x) from (2.14) can be defined as

F (x) =
R+(x)

1 − q
.(3.10)

We now introduce a function (cf. (2.13))

R−(x) = P(ξ(C) ≤ x, C ∈ C−) =
∞
∑

n=0

R
(n)
− (a, x),(3.11)
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where, for α ∈ E,

R
(0)
− (α, x) = P(ξα ≤ x, Cα ∈ C(α)

− ),(3.12)

R
(n+1)
− (α, x) =

∫ x

0

∫

β 6=a

R
(n)
− (β, x− u)K+(α, u; dβ) dGα(u), n ≥ 0,(3.13)

and kernel K+ is given in (3.6). Function R
(n)
− (α, x) is the joint probability that a

generic regeneration cycle consists of more than n semi-regeneration cycles (first n are
good and the (n+ 1)th is bad) and the first occurrence time within regeneration cycle
does not exceed x given the accompanying chain starts from state α.

Evidently, d.f. F1(x) from (2.13) is equal to

F1(x) =
R−(x)

q
.(3.14)

The relations above can be used in numerical methods for seeking q, F (x), and F1(x).
When seeking these quantities, we assume probabilities q(α) from (2.26), kernel K+

from (3.6), and joint probability R
(0)
− from (3.12) to be known. They all characterize

the behavior of (z, σ) within separate semi-regeneration cycles.

4. Recurrence equations. Let us retrace the results of Section 3 to allow
for a recursive algorithm enabling us to calculate q, F (x), and F1(x). There are at
least three features of formulae from Section 3 deserving additional attention. First,
those relations are not equipped with a stopping rule. Second, for our purposes, it is
often sufficient to know the moments of the d.f.’s F and F1 not the d.f.’s themselves.
Therefore, the relations derived can be reduced to a simpler form resulting in the desired

information. Third, successive terms q(n), R
(n)
+ , and R

(n)
− are not monotone, and this

is a drawback from a practical standpoint. In this section, we will deal with the first
and third problems, and leave the second one for the following section.

In order to step to monotone characteristics, let us consider partial sums

q(n) =
n

∑

j=0

q(j), n ≥ 0,(4.1)

R
(n)
+ (α, x) =

n
∑

j=0

R
(j)
+ (α, x), n ≥ 0,(4.2)

R
(n)
− (α, x) =

n
∑

j=0

R
(j)
− (α, x), n ≥ 0.(4.3)
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All sequences q(n), R
(n)
+ , and R

(n)
− , n ≥ 0, are monotone increasing. Probability q(n)

can be calculated with the help of formulae (3.2) and (3.4). It follows from definition
of q(n) that

q − q(n) = pn+1,(4.4)

where pn+1 is the probability that a generic regeneration cycle is bad, consists of more
than n + 1 semi-regeneration cycles, and the first bad semi-regeneration cycle has the
number n + 2 or higher. In order to calculate pn+1 we have to process an infinite
number of iterations because such a calculation requires finding probabilities q(j). But,
it is possible to estimate this probability in terms of n+1 iterations only. For example,
the following inequality holds true

pn+1 ≤ P(Bn+1),(4.5)

where Bn+1 is the event that a generic regeneration cycle consists of more than n+ 1
cycles. In turn, the probability P(Bn+1) can be expressed as a taboo probability for
the accompanying Markov chain:

P(Bn+1) = P(αk 6= a, 1 ≤ k ≤ n+ 1 | α0 = a)=

∫

α1 6=a

· · ·
∫

αn+1 6=a

n
∏

j=0

K(αj ; dαj+1).(4.6)

Despite the fact that bound (4.5) can be inaccurate, it can be recommended for accuracy
control since it is expressed explicitly in terms of the accompanying Markov chain.

Let us sum up equations (3.8) and (3.9) to arrive at the recursive equation

R
(n+1)
+ (α, x) = R

(0)
+ (α, x) +

∫ x

0

∫

β 6=a

R
(n)
+ (β, x− u)K+(α, u; dβ) dGα(u), n ≥ 0,(4.7)

where

R
(0)
+ (α, x) = R

(0)
+ (α, x) =

∫ x

0
K+(α, u; a) dGα(u).(4.8)

Quite similarly to (4.5) we have an accuracy estimate

R+(x) −R
(n)
+ (a, x) ≤ P(Bn+1).(4.9)

In a like manner, from (3.12) and (3.13),

R
(n+1)
− (α, x) = R

(0)
− (α, x) +

∫ x

0

∫

β 6=a

R
(n)
− (β, x− u)K+(α, u; dβ) dGα(u), n ≥ 0,(4.10)

where
R

(0)
− (α, x) = R

(0)
− (α, x) = P

(

ξα ≤ x, Cα ∈ C(α)
−

)

.(4.11)



536 Vladimir Kalashnikov

Because of the definition of R
(n)
− (α, x) it is possible to use the same accuracy estimate

R−(x) −R
(n)
− (a, x) ≤ P(Bn+1).(4.12)

Let us emphasize that inequalities (4.5), (4.9), and (4.12) can be refined, but their
present form is extremely simple for calculations.

The derived recurrent relations can be solved by various numerical and Monte-
Carlo methods. In some cases, these relations can be simplified. For instance, if an
accompanying Markov chain is finite (as in Example 2), then integrals over β 6= a in
equations (4.7) and (4.10) can be replaced by finite sums.

5. Integral Equations. We now focus on deriving integral equations contain-
ing unknown quantities q, F , and F1 and we start with probability q. The following
representation follows from (3.1) through (3.2)

q =
∞
∑

n=0

∫

α6=a

q(α)Kn(a; dα).(5.1)

Let an auxiliary homogeneous Markov chain (α̃n)n≥0 taking its values in E be defined
by the following transition probabilities

P(α̃n+1 ∈ A | α̃n = α) = K̃(α;A),(5.2)

where
K̃(α;A) = K(α;A) + q(α)1A(a), A ∈ E , α ∈ E.(5.3)

The fact that the right-hand side of (5.3) is a transition probability is quite evident.
This Markov chain is associated with (αn)n≥0 in the following manner. Let α0 = α̃0 = a.
One can set α̃n = αn until the instant ϕ when αϕ initiates a bad cycle of the SRP (the
probability of this is equal to q(αϕ)). In this case, chain (α̃n)n≥0 returns to state a
(that is α̃ϕ+1 = a) where starts anew. It follows that

K̃n(a;A) = Kn(a;A), a /∈ A, n ≥ 0.(5.4)

Hence, we can rewrite (5.1) in the form

q =
∞
∑

n=0

∫

α6=a

q(α) K̃n(a; dα).(5.5)

But K̃n is an n-step taboo probability for Markov chain (α̃n)n≥0. Therefore, equality
(5.5) can be rewritten as

q =
∞
∑

n=0

E
(

q(α̃n); ψ̃α > n
)

= E
∑

n<ψ̃a

q(α̃n),(5.6)
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where

ψ̃α = inf {n : α̃n = a, n > 0 | α̃0 = α} , α ∈ E.(5.7)

Let

m̃α = Eψ̃α

be a mean recurrence time to state a for chain (α̃n)n≥0. By our earlier convention,
state a is positive recurrent for the accompanying Markov chain (αn)n≥0. Owing to the
fact that state a is even “more” recurrent for (α̃n)n≥0 than for (αn)n≥0,

m̃a ≤ ma <∞.(5.8)

Regarding (α̃n)n≥0 as a RP with regeneration times nested at recurrence times to state
a, we have, from the Smith ergodic theorem (see Kalashnikov [6, Section 3.4])

q = m̃a

∫

E

q(α) π̃(dα),(5.9)

where π̃ is the stationary distribution of chain (α̃n)n≥0 that exists due to (5.8). Distri-
bution π̃ is defined uniquely by the following integral equation

π̃(A) =

∫

E

K̃(α;A) π̃(dα), π̃(E) = 1,(5.10)

which can be rewritten in terms of kernel K as

π̃(A) =

∫

E

K(α;A) π̃(dα), a /∈ A; π̃(E) = 1.(5.11)

In turn, expectations m̃α can be found from equations

m̃α = 1 +

∫

β 6=a

m̃β K̃(α; dβ) = 1 +

∫

β 6=a

m̃βK(α; dβ), α ∈ E.(5.12)

Equations (5.9) through (5.12) define probability q in terms of q(α), α ∈ E.

We now consider d.f.’s F and F1. These functions are defined by equalities
(3.10) and (3.14) correspondingly. Therefore, to determine them, it is sufficient to find
functions R+(x) ≡ R+(a, x) and R−(x) ≡ R+(a, x) satisfying

R+(α, x) = R
(0)
+ (α, x) +

∫ x

0

∫

β 6=a

R+(β, x − u)K+(α, u; dβ) dGα(u), α ∈ E,(5.13)



538 Vladimir Kalashnikov

and

R−(α, x) = R
(0)
− (α, x) +

∫ x

0

∫

β 6=a

R−(β, x − u)K+(α, u; dβ) dGα(u), α ∈ E,(5.14)

which are immediate consequences of (4.7) and (4.10) respectively. It can be easily
proved by mathematical induction that the desired functions R+ and R− are minimal
nonnegative solutions of (5.13) and (5.14) correspondingly. Those linear integral equa-
tions contain convolution terms. Equations of this type are widely used. Usually, they
can be solved in terms of the Laplace-Stieltjes transform. We do not discuss such a pos-
sibility but limit ourselves to deriving equations for moments of F and F1 (considering
only first moments, for brevity). Denote

r+(α) =

∫ ∞

0
x dxR+(α, x), r

(0)
+ (α) =

∫ ∞

0
x dxR

(0)
+ (α, x),(5.15)

R+(α) = lim
x→∞

R+(α, x), R
(0)
+ (α) = lim

x→∞
R

(0)
+ (α, x),(5.16)

k+(α;A) =

∫ ∞

0
xK+(α, x;A) dGα(x),(5.17)

r−(α) =

∫ ∞

0
x dxR−(α, x), r

(0)
− (α) =

∫ ∞

0
x dxR

(0)
− (α, x),(5.18)

R−(α) = lim
x→∞

R−(α, x), R
(0)
− (α) = lim

x→∞
R

(0)
− (α, x)(5.19)

and recall that
∫ ∞

0
K+(α, x;A) dGα(x) = K(α;A).(5.20)

Comparing (3.8) with (5.16), (5.17), and (5.20), we see that

R
(0)
+ (α) = K(α; a)(5.21)

and
r
(0)
+ (α) = k+(α; a).(5.22)

In these terms,

f1 ≡
∫ ∞

0
x dF (x) =

r+(a)

1 − q
(5.23)

and

fζ1 ≡
∫ ∞

0
x dF1(x) =

r−(a)

q
.(5.24)

Therefore, for determining f1 and fζ1, it is sufficient to find r+(a) and r−(a). In order to

do this, we note that quantities r
(0)
+ (α), R

(0)
+ (α), k+(α;A), K+(α;A), r

(0)
− (α), R

(0)
− (α)
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can be calculated from initial data and must be regarded as known. Quantities r+(α)
and r−(α) satisfy the following equations which are direct consequences of (5.13), (5.14),
(5.21), and (5.22):

r+(α) = k+(α; a) +

∫

β 6=a

r+(β)K(α; dβ) +

∫

β 6=a

R+(β) k+(α; dβ), α ∈ E,(5.25)

r−(α) = r
(0)
− (α) +

∫

β 6=a

r−(β)K(α; dβ) +

∫

β 6=a

R−(β) k+(α; dβ), α ∈ E.(5.26)

Similarly, it is possible to obtain equations for moments of higher orders but we stop
here.

In order to solve equations (5.25) and (5.26), it is necessary and sufficient to
know R+(β) and R−(β), β 6= a. Equations for these quantities are consequences of
(5.13) and (5.14):

R+(α) = K(α; a) +

∫

β 6=a

R+(β)K(α; dβ), α ∈ E,(5.27)

R−(α) = R
(0)
− (α) +

∫

β 6=a

R−(β)K(α; dβ), α ∈ E.(5.28)

All linear integral equations (5.12) and (5.25) through (5.28) are of the Volterra type
(of the second kind) with the same kernel K. So, they can be written in the following
general form

X(α) = Y (α) +

∫

β 6=a

X(β)K(α; dβ), α ∈ E,

where Y (α) is the only term reflecting the specific of the equation. Fitting Y (α), we
arrive at any of the listed equations. Because of this, it is possible to determine a
general solution of the equation above in the form

X = (I −K)−1Y,

where inverse operator (I − K)−1 has a standard meaning and the crucial point in
the solution is the determination of this operator. A variety of numerical methods for
solving such equations are covered in Baker [2] and Kantorovich and Krylov [8, Chapter
2].

Let us note, in conclusion, that one must solve the equations stated above very
carefully because some terms of their solution can take extremely small values which are
beyond the least significant computer digit. Because of this, it is desirable to employ
numerical methods accounting for the specific features of these equations.
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Example 3. For system indicated in Examples 1 and 2, the following asymp-
totic approximation of the probability q is often used in reliability (see Soloviev [11])

q ∼ q0 ≡ λN−1bN−1

(N − 1)!
, λb1 → 0,

where bk =
∫

xk dB(x).

If we use the relations presented in this section and in Example 2, then it is
easy to calculate q explicitly. The following table contains values of the relative error
|q − q0|/q for N = 2 and three forms of d.f. B(x):

B1(x) = 1 − exp

(

− x

b1

)

,

B2(x) = 1 − (1 + 2x/b1) exp

(

−2x

b1

)

,

B3(x) = 1(x− b1).

λb1 B1(x) B2(x) B3(x)

0.1 1.0 · 10−1 8.0 · 10−2 5.1 · 10−2

0.05 5.0 · 10−2 3.8 · 10−2 2.5 · 10−2

0.01 1.0 · 10−2 7.5 · 10−3 5.0 · 10−3

0.001 1.0 · 10−3 7.5 · 10−4 5.0 · 10−4

It is seen that the relative error is noticeable (up to 10 %) for λb1 = 0.1 and even for
λb1 = 0.05. This shows that asymptotic approximations must be used very carefully in
calculations.

6. Monte-Carlo Algorithms. Simulation is a common instrument often used
for evaluation of basic characteristics of models. Our idea is to use simulation for finding
q, F , and F1. However, it is almost impossible to do so without additional “tricks”
since these values are associated with rare events which cannot be detected directly, by
the inspection of paths of the model. In order for simulation to work in such situations,
so-called importance samples are often used (see Asmussen and Rubinstein [1]).

In our case, the importance sampling means that we ought to generate paths
of RP belonging to bad cycles. There is no formal criteria to compare the efficiencies
of different importance samplings. Actually, the most serious problem is the choice of
the probability measure in accordance with which the sampling is generated. But the
greater the probability of belonging to a desired set (for example, to a bad cycle), the
better the sampling is.
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We propose algorithms that allow us to estimate the aforementioned character-
istics and use the semi-regenerative structure of underlying processes. To start with,
let probabilities q(α), α ∈ E, and kernel K(α;A), α ∈ E, A ∈ E , (see (3.5)) be given,
kernel K̃(α;A) be defined by formula (5.3) and Markov chain (α̃n) by formula (5.2).
We assume that there exists a computer program generating paths of chain (α̃n)n≥0,
α̃0 = a. Define successive recurrence times

T0 = 0, Tk+1 = min{n : n > Tk, α̃n = a}, k ≥ 0

and denote
q̂(k) =

∑

Tk≤n<Tk+1

q(α̃n), k ≥ 0.(6.1)

Evidently, r.v.’s q̂(k) are i.i.d.,

q̂(k)
d
=

∑

n<ψ̃a

q(α̃n),

and, therefore, by (5.6),
Eq̂(k) = q.(6.2)

From the i.i.d. property of r.v.’s q̂(k) and equality (6.2) it follows that

q̂N =
1

N

N−1
∑

k=0

q̂(k), N ≥ 1,(6.3)

is a strong consistent unbiased point estimate of probability q that is q̂N → q with
probability one as N → ∞ and Eq̂N = q. The accuracy of this estimate can be
estimated with the help of the central limit theorem. Let Φ is a standard normal d.f.
and σ2(q) is a common variance of r.v.’s q̂(k). Then 100(1 − 2γ)% confidence interval
for q has the form

Î(q,N) = [q̂N − ∆N (q, γ), q̂N + ∆N (q, γ)],(6.4)

where

∆N (q, γ) =
σ(q)√
N

Φ−1(1 − γ), 0 < γ <
1

2
.(6.5)

The relations above yield the following Monte-Carlo algorithm that builds the point
estimate q̂N and corresponding 100(1 − 2γ)% confidence interval for given γ and N .

Algorithm 1.

(i) Set α̃0 = a and k = 0;
(ii) simulate α̃n, Tk ≤ n ≤ Tk+1;
(iii) calculate q̂(k) by formula (6.1);
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(iv) if k < N − 1 then k := k + 1 and goto (ii);

otherwise goto (v);

(v) form the point estimate q̂N by formula (6.3);

form the interval Î(q,N) by formulae (6.4) and (6.5);

end.

Algorithm 1 requires generating an auxiliary Markov chain (α̃n) and deals with
no rare event. It works if σ(q) is known. In practice, it is possible to replace σ(q) by a
sample variance.

As we have mentioned, it is desirable to use simulation programs written for
generating paths of process z(t) for estimation of q, F , and F1. Basing on Algorithm
1, let us show how we can do this with respect to q. Let z(t) be a SRP with successive
semi-regeneration times σj, j ≥ 0 and regeneration times Sk, k ≥ 0. Assume that
probabilities q(α), α ∈ E, are known and that there exists a simulation algorithm
producing paths of z(t) provided t = 0 is a regeneration epoch. Let us fix successive
instants σj, j ≥ 0, (σ0 = 0) as well as successive states αj of the accompanying Markov
chain in the course of the simulation. The following algorithm is designed to form
both point estimate q̂N by formula (6.3) and confidence interval by formulae (6.4) and
(6.5). It does not require knowledge of an explicit form of K(α;A). In Algorithm 2,
integer k counts a number of simulated regeneration cycles while j counts a number of
semi-regeneration cycles simulated within the current regeneration cycle. Constants N
and γ have the same meaning as in Algorithm 1.

Denote the jth semi-regeneration cycle by C(j) and call it bad if C(j) ∈ C(αj)
− .

Algorithm 2.

(i) Set k = 0;

(ii) if k ≤ N − 1 then q̂(k) := 0; α0 = a and j = 0;

otherwise goto (vi);

(iii) simulate z(t) for σj ≤ t ≤ σj+1;

(iv) if C(j) is good then q̂(k) := q̂(k) + q(αj);

form αj+1;

if αj+1 = a then set k := k + 1 and goto (ii);

otherwise set j := j + 1 and goto (iii);

(v) if C(j) is bad then set k := k + 1 and goto (ii);

(vi) form the point estimate q̂N by formula (6.3);

form the interval Î(q,N) by formulae (6.4) and (6.5);

end.

We now estimate of d.f.’s F and F1. In fact, we limit ourselves to estimation
of mean values f1 and fζ1 as defined by (5.23) and (5.24). Let µ be the mean inter-
regeneration time

µ = ES1 <∞.



Calculation of reliability characteristics for regenerative models 543

Evidently,

µ = (1 − q)f1 + qfζ1.(6.6)

Since probability q is small, the estimate

f1 ≤ µ

1 − q

is accurate enough for implementation in practical calculations where µ can be esti-
mated in the course of regenerative simulation (see Shedler [9]). The sample mean

µ̂N =
SN
N

is a strong consistent unbiased estimate of µ. Its 100(1 − 2γ)% confidence interval is
defined by the equalities

Î(µ,N) = [µ̂N − ∆N (µ, γ), µ̂N + ∆N (µ, γ)],(6.7)

∆N (µ, γ) =
σ(µ)√
N

Φ−1(1 − γ), 0 < γ <
1

2
,(6.8)

and σ2(µ) is the variance of S1.

Such a straightforward approach fails for estimation of fζ1 because the inequal-
ity fζ1 ≤ µ/q is too crude. In order to determine fζ1 let us use (3.13) and the probability

interpretation of the summands R
(n)
− (α, x) from there. Assume we have a Monte-Carlo

algorithm that generates a sequence of random triples

(αn, Yαn , zαn(u)) , 0 ≤ u < Yαn ,

and suppose that we can analytically obtain the following conditional distributions

G+(α, x) = P(Yα ≤ x | C ∈ C(α)
+ ) =

R
(0)
+ (α, x)

1 − q(α)
;

G−(α, x) = P(ξα ≤ x | C ∈ C(α)
− ) =

R
(0)
− (α, x)

q(α)
;

K+(A | α, x) = P(αn+1 ∈ A | αn=α, Yα=x, (zα, x) ∈ C(α)
+ ) ≡ K+(α, x;A)

1 − q(α, x)
, A ∈ E ;

aK+(A | α, x) =
K+(A | α, x)
K+(E\a | α, x) , a /∈ A;

q(α, x) = P(((zα, x) ∈ C(α)
+ ) ≡ K+(α, x;E),
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where α ∈ E. We also assume that, for each α ∈ E, we have generators producing the

following random variables (
d∼ stands for “distributed as”):

Y+(α)
d∼ G+(α, x), x ≥ 0,(6.9)

ξ−(α)
d∼ G−(α, x), x ≥ 0,(6.10)

φ+(α)
d∼ aK+(A | α, x), A ∈ E .(6.11)

We propose a Monte-Carlo algorithm to estimate the quantity

r
(n)
− (α) =

∫ ∞

0
x dR

(n)
− (α, x).

By definition of R
(n)
− (α, x), r

(n)
− (α) is equal to a partial expectation of the sum of

lengths of n successive semi-regeneration cycles and the first occurrence time within
the (n+ 1)th semi-regeneration cycle. This partial expectation is taken over the event
that the accompanying Markov chain starting from α does not hit state a during the
defined period and that the first n cycles are good while the (n+1)th cycle is bad. The

algorithm is based on this interpretation of r
(n)
− (α) and results in a sample value of a

r.v. denoted by Ψ(n) = Ψ(n)(α) and satisfying the equality

EΨ(n) = r
(n)
− (α).

R.v. Ψ(n) has the form
Ψ(n) = Π(n)L(n),

where L(n) is a sample length of the aforementioned sum of n + 1 r.v.’s and Π(n) is a
“sample probability” of the event which the partial expectation is taken over.

In the algorithm, integer n ≥ 0 is fixed and relates to an upper index in r
(n)
− (α)

and integer k ≥ 0 counts the current number of good semi-regeneration cycles with
understanding that r.v.’s from relations (6.9) through (6.11) are independent when
they are generated at different steps of the algorithm. The algorithm generates lengths
of n successive good semi-regeneration cycles and the first occurrence time over the
(n + 1)th bad cycle with the help of corresponding transition probabilities. In order

to obtain the estimate r̂
(n)
− (α), it is necessary to get N sample values of Ψ(n) with the

help of Algorithm 3 and take their average.
Using Algorithm 3 for different n ≥ 0 and summing up respective results, we

can estimate fζ1. Of course, it is impossible to calculate an infinite sum of r
(n)
− (α) over

n. Therefore, there arises the problem of estimation of the remainder of this sum. This

can be done either heuristically (stopping at such n where r̂
(n)
− (α) is relative “stable”

with respect to n; such an approach is widely used in simulation) or with the help of
bounds such as (4.5), estimating probabilities P(Bn+1) by simulation.
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Algorithm 3.

(i) Set k = 0; αk := a; L(n) := 0; Π(n) := 1;

(ii) generate Y+(αk); set L(n) := L(n) + Y+(αk);
(iii) if k ≤ n− 1 then set Π(n) := Π(n)(1 − q(αk))(1 −K+(a | αk, Y+(αk)));
generate φ+ := φ+(αk, Y+(αk));

k := k + 1; αk := φ+;
goto (ii);

(iv) if k = n then generate ξ−(αk);
set L(n) := L(n) + ξ−(αk);
set Π(n) := Π(n)q(αk); Ψ(n) := Π(n)L(n);

end.

Algorithms 1 through 3 were programmed in Turbo Pascal 5.5 to be used for
investigation of various redundant systems (with several repairing units, arbitrary dis-
tributions of lifetimes, etc.). Typical processing time for each algorithm was approxi-
mately 1 sec per 1000 samples (for IBM-AT/286). This time seems quite acceptable.

We regard these algorithms only as examples illuminating virtual possibilities
of Monte-Carlo methods for calculation of characteristics associated with rare events.
Such algorithms can be matched with the needs of specific problems in accordance with
the input data available. Let us emphasize the following feature of the above algorithms:
their running time does not depend on the values of the “small probabilities”. So, it is
possible to use them in models with as small probabilities q(α) as necessary.
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