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ABSTRACT. It is proved that for every k there exist k triples of positive integers
with the same sum and the same product.

In this paper we solve the problem D.16 from the book [1] by proving the
following

Theorem. For every k there exist infinitely many primitive sets of k triples
of positive integers with the same sum and the same product.
(A set S of triples is called primitive if the greatest common divisor of all elements of
all triples of S is 1.)

Lemma. The system of equations
(1) T1+ 2o + x3 = 12223 = 6

has infinitely many solutions in rational numbers x; > 0.

Proof. The equation f(z) = 23 — 9z +9 = y? has the solution (z,y) = (7,17),
which does not satisfy Nagell’s condition y?|A, where A = 3% is the discriminant of
f. Hence (see [2], Chap. V, p. 78, Satz 12a) the equation has infinitely many rational
solutions and in virtue of the theroem of Poincaré and Hurwitz (see ibid. Satz 11) it
has infinitely many rational solutions in every neighbourhood of any one of them. Since
the solution (z,y) = (0, 3) satisfies the inequality

ly| < 6 —3x
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there are infinitely many rational solutions of f(z) = y? satisfying this inequality; hence

also x < 2. Put such solutions
6 . _6-3z+y
3—z 73—z

We have x; > 0, moreover

_6—-3r—y
- 3—z

T = I3

1 +29+2x3=20

6((6 —32)* —y®) _ 6((6 —32) — f())
(3 —x)? (3 —x)?

To different solutions (x,y) correspond different (ordered) triples (z1,z2,z3),
which proves the lemma. O

Proof of the theorem. Take any k solutions (z;1, %2, x;3), where x;; <
xio < w43 of the system (1) in rational numbers x; > 0 and let d be the least common
denominator of all the numbers z;; (i <k, j < 3). Thus

= 6.

T1T2X3 =

Lij = %7 aij € N, <g-9~d-az‘j,d> =1
7/7]

We have
3 3
(2) Z aij = 6d, H al-j6d3 (’L S ,IC),
j=1 j=1
hence g.c.d. a;; = 1.
Z"j
If for two sets of solutions {(z;1,zi2,xi3) : 1 < i < k} and (2}, xly, x%3)

1 < i < k} the sets of triples (ai1,ai2,a;3) : 1 < i < k} and (a}y,aly,als) : 1 <
i < k} coincide, we have by (2) d = d’, hence the sets of solutions themselves coincide.
Since there are infinitely many choices of k elements from an infinite set the theorem
follows. O
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