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ABSTRACT. An example of an infinite dimensional and separable Banach
space is given, that is not isomorphic to a subspace of [; with no infinite
equilateral sets.

Introduction. A subset S of a Banach space X is said to be equilateral
if there exists a constant A > 0 such that ||z — y|| = A, for z,y € S with x # y.

The question whether an infinite dimensional Banach space contains an
infinite equilateral set has been answered in the negative by Terenzi in [5],
who constructed an equivalent norm ||| - ||| on /; such that the Banach space
({1, ||l - ||) contains no infinite equilateral sets. We note that quite recently have
also been proved some positive results, every renorming of ¢y [4] and every uni-
formly smooth Banach space [2], admits an infinite equilateral set.

2010 Mathematics Subject Classification: Primary 46B20; Secondary 46B04.
Key words: equilateral set.
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In this note, we produce some further examples of (infinite dimensional)
Banach spaces not admitting infinite equilateral sets. To this end, we follow the
method of Terenzi’s proof in [5]. (For the sake of completeness, we give a more
elaborate description of the involving parts of his arguments.) Actually, we con-
sider a sequence of (real) finite dimensional Banach spaces (X, )n>1 each having
an l-unconditional basis, and we prove, in almost the same way, as Terenzi in his

o0
original proof (in this case, X,, = R, for n > 1) that the space Z = (Z @Xn>
=1

n—=
has an equivalent (dual) norm ||| - ||| such that the space (Z,]]-|||) does not admit
any infinite equilateral sets (Theorem 2.2). As an easy consequence of Theorem
2.2 and standard results [1] and [7], we get an example of a separable Banach
space not isomorphic to a subspace of /1, having no infinite equilateral sets. The
note is divided in two sections. The first section is devoted to the construction
and the basic results concerning the norm ||| ||| and the second section is devoted
to the proof of our main result.

1. Let (X, [||l,,)n>1 be a sequence of Banach spaces. By coo((Xn)) we

o

denote the vector space U {(z1,...,2,0,...) s xp € X, for k=1,2,...,n} and
n=1

we shall write (z1,...,z,) instead of (x1,...,2,,0,...). We also denote by Z the

oo
Banach space (Z DX,

n=1 1
We define, by induction, a norm on the vector space coo((Xy,)) as follows:
let n € Nand z, € X, for k=1,...,n then,

|1, zn)ll = lzally, =1
and
1
[(z1,...,zn)] = - ([lznll, + I(z1, .- zn—1) )+

1 x
+n+1maX{H ;””,||<x1,...,xn1>||}7

for n > 2. We now let (X, ||-]|) be the completion of the space (coo((Xn)),|-])-

Proposition 1.1. Let m € N and x,, € X,,, form=1,...,m. Then

m

1 e 1 i
— < 1—-— < < .
> gl <3 (1 g ) ol < oozl 3 el

n=1
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Proof. It is direct that for any m € N,

m m
1 1
> 5l <3 (1= 57 ) el
n=1 n=1

m m
. 1
It remains to prove that nz:l <1 - n——i-1> lznll, < Iz, ., 2m)] < zjl lznll,,

for any m € N. Both inequalities are proved inductively. For m = 1 the first

inequality apparently holds. We assume that the inequality holds for some m > 1.
Then

1
o1 tmme] 2 (1= =) (ol + o)
1
+m—+2 (@1, zm)]|
1
— (1 255 Mometln + o1

By the inductive step we get that,

1@t s T = (1 - —) T Z (1 - —) 2l

as desired.
The second inequality also holds for m = 1. We now assume that the
inequality holds for some m > 1. Then,

1
I amemin)| < (1——) (zmsallyey + @12l +

m+ 2
1 [zmst g 1

1

U #milling

m+2 m+1
(m+1)2+1
= e Dy 1ol 4ol
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< ||xm+1||m+1 + (@1, 2wl -

As before we get the conclusion by the inductive step. O

Remark 1.2. Should we have that Z |znll,, > 0, it can be proved that

n=1

(@1, > Z (1 - o) ol

Indeed, let k be the first non zero coordinate of the vector (x1,...,2;,), then

1 L [kl
.. = (1- —

1
> <1 - m) llzelly, -

Now we proceed inductively to finish the proof.

By Proposition 1.1 it can be proved that the spaces Z and X are
2-isomorphic, which is the content of the following proposition.

Proposition 1.3. The spaces Z and X are 2-isomorphic.

Proof. It follows immediately from Proposition 1.1, since coo((X,)) is
a dense subspace in both Z and X. (Actually, we defined an equivalent norm on
Z.) O

Proposition 1.4. The sequence (Xy)n>1 15 a monotone Schauder de-
composition of each of the spaces X and Z, furthermore, it is 1-unconditional
decomposition X and Z.

Proof. Itis clear that for every n € N the space X, is a closed subspace
of both X and Z. Now it is direct from the definition of the norms of X and
Z that for every o = (z1,...,Zn,...) € coo((Xn)), every (&)i>1 € {—1, 1}N and
each m € N we have

lE1zss s emam) || = (@1, zm) | < l(21,- - Zmga) || and

H(Elxh s 7mem)”1 = H(J:h s 7xm)||1 < H(J:h s 7xm+1)||1 :
So we are done. O
It should be mentioned here that by Proposition 1.1 the Schauder decom-
position (Xj,),>1 of the space X is equivalent to itself, considered as a Schauder
decomposition of Z.
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Proposition 1.5. i) Let m > 1 and x, € X,, forn = 1,...,m with

m
Z |zyl,, > 0. Then there exist 1 > di,...,dw, > 0 such that

n=1

m
(1, zm)ll = dn [z,
n=1

ii) Let ¢ = (x1,...,2,...) € X. We assume that there exist ¢ > 0 and k € N

such that lzal, <c<|(x1,...,zx)|, for every n > k. Then
n
> 1
Joll = or ool + Y (1= g ) ol
n+1
n=k+1
ii1) Let x = (x1,...,%k,...) be a non zero vector of X, then there exists k € N
such that
i 1
Izl = @1,z + D> (1= —]llzall,
n+1
n=k+1

Proof. i) For m = 1, we have nothing to prove. We assume now that
the conclusion holds for some m > 1. Let now z,, € X,,, forn=1,...,m+1. By
the inductive step there exist d},...,d], > 0 such that

m
n=1

Now we have that

||xm+1||m+l

||xm+1||m+l
m-+1 Tmr1 S l@:

o ooy

> H(xlvamm)u or

By the definition of the norm in the first case we take that

N I (= LR L

1 1
1—
" ( m+2 " (m+ 1)(m+2)> lmalbnsa

m
= Z (1 — —> d' ||xn||
m + 2

n=1
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1 1
1— .
+< mt2 (m+1)(m+2)> e 1ll 42

In the second case, the definition of the norm gives that

m 4+ 2

= 1
Sl + (1 g ) el

i1) Firstly, we observe that by the definition of the norm

1
L) lenees )] = N o el + (1 - —) loksillos -

1
I emi)l = ||<x1,...,xm>||+(1——) TN

k+2
Further, for any s > k we have that

(x1,...,2zs)|| > ||(x1,...,2x)||, by Proposition 1.4

> ¢ ||x8+1||s+1‘
s+1
Again, the definition of the norm gives that
1
1) o)l = e ol + (1= =5 ) el

Combining (1.1) and (1.2), we take that for any s > k

lor ozl = Nz + 3 (1 - #> Izall,

it n+1

Now we let s — oo to take the conclusion.
ii1) Let x € X with x # 0. Since z also belongs to Z, by the definition
of the norm of Z, there exists M > 0 such that |[z,|,, < M, for every n € N.
M
Now we have that — — 0 and (by Proposition 1.4) ||(z1,...,z,)| — |z] > 0.
n
So there exists k € N such that
M
Il > — > Ionlly o overy n > k.
n

Then by Proposition 1.4, we have that

[nl,

I(x1,...,zm)ll > (@1, ... z0)|| > , for every k <m < n.

Now ii) gives the conclusion. O
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Corollary 1.6. Let x = (x1,...,%n,...) be a non zero vector of X, then
1
there exist k > 2 and (dn)n>1 C (0,1] such that d,, = (1 T 1>, forn >k
= n

and
o0
Izl =" dn lznll,,
n=1

Proof. The proof is immediate from 4) and i) of Proposition 1.5. O

Definition 1.7. Let x,y € X. We will say that the norms of the vectors
x and y ! have the same representatwn if there exist (dyp)n>1, (Sn)n>1 C (0, 1] with

x|l = Zd llznll,, and ||ly|| = an \lynll,, such that d,, = s,, for every n € N.
n=1
We wzll wrzte x ~ y, when the norms of the vectors x and y have the same

representation.

We now consider the following example. Let k > 1, we choose z,, € X,

1
for every n < k—1, such that |[(z1,...,zk-1)] = % and zj, € X, with ||z, = 1.

x
Firstly, we observe that max { | ZHk (e, .. ,xk1)||} can be either of the terms

x
il and ||(x1,...,2x—1)||, so for the first n coordinates of = the coefficients d,

can be chosen in either of the ways described in i) of Proposition 1.5, hence the

representation of the norm of the vector z = (x1,...,x) is not unique. Further,

we consider the vectors y = (z1,...,Tk—1,y%) and z = (z1,...,Tk_1, 2%), Where

12 | [yl
k

Yk, 2k € X such that < |(z1y .. xpm1)| < . Then we have that

x ~ 9y, T ~ z, but is not true that y ~ z.

Remark 1.8. Let z = (x1,...,Zn,.-.), ¥ = (Y1,---Yn,...) € X and
k > 2. Let also

[#n+1ll11 Ynt1llni1
T e T e
and [@n41]| [yntall
Tpa1 Yn+1
(@1, wn) | < ———2= = [|(u1, )| < ——=

n+1 n—+1

for every 1 <n < k.
Then, whenever one of the following holds, x ~ y.

i) x, = 0=y, for every n > k.
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2M

ii , < M and ey , ey > —.
i) [l llyll < M and [y, -zl M-l > =

Indeed, i) is apparent by Definition 1.7 and ii) derives from Proposition 1.1 and
ii) of Proposition 1.5.

Definition 1.9. Let x,, = (Tm1,- -+ Timn,---), m > 1 be a sequence in
X. Let also x = (x1,...,%p,...) € X. The sequence (z,) is said to be pointwise

lI-ll,,

convergent to x, if Tpn — Tp, m — 00, for every n € N. To state the pointwise
convergence of (&) to ©, we will write T, 2> .

Proposition 1.10. Let (zy,)m>1 be a bounded sequence in X and x €

X\ {0} with xp, B 2. There exists an infinite subset M of N such that the norms
of the vectors of the set {xy, : m € M} U{x} have the same representation.

Proof. Since (%, )m>1 is bounded, there exists L > 0 such that
sup({|zmnll,, : m,n € N} U{||zn||,, :n € N}) < L. As in iii) of Proposition
1.5, there exists ky € N such that

L
(21, .., 2k,)| > . for every n > k.

By the pointwise convergence of (z,,) to x, there exists N € N such that

L
(@mi,- -y Tmky)|| > —, for every n > kg and m > N.
n
onsequently, we have that |[[(z1,...,2 > Lnnand N
Consequently, we have that | (z1.....a)| > | Ty
> M, for every n > kg and m > N. Now ii) of Proposition 1.5 yields
that
= 1
N [ S e L
n=ko+1
and
- 1
foml = ool + 30 (1= 7 ) Bl
n=ko+1
m >N (1).

Now it suffices to show that there exists an infinite subset M of {m € N :
m > N} such that the norm of the vectors of the set {z,, : m € M} U {z} have
the same representation. By Remark 1.8, it would be sufficient to show that
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that there exists an infinite subset M of {m € N:m > N} such that for any
n=1,...,k — 1 we have

[Znt1]] [Zmn 1]
@1,y 2 L )| 2 St
and
||33n+1Hn+1 men+1||n+1
<— = < —
H(xh 71:71)” = n+1 H(xmlv 7xmn)|| = n+1 )
for every m € M (2).
| HFor any n = 1,...,ky — Hl WeHhave that either a) H(:L‘l,H,xnﬁH >
Tn+1 Tntl Tntl
L o0 b) )| < L or ) (o, )| = L

Again, by the pointwise convergence of (z,,) to x, the number N in (1) can be
assumed large enough, so whenever one of a) or b) holds, the corresponding in-

equality holds for the vector x,,, for every m > N. Let now |[(z1,...,z,)| =
x
7” Mi”f“ for some n € {1,...,ky — 1}, then there exists an infinite subset B of
n
{m € N:m > N} such that one of the following alternatives, ||(Zm1,. .., Tmn)| >
|1 [ Zmnta]]
mn+ 1n+1 or H(.I‘ml,,l‘mn)n < %1"“ or H(mmlayxmn)n
||33mn+1Hn+1

IR holds true for all m € B. Applying the last argument induc-
n

tively, we find an infinite subset M of {m € N: m > N} such that property (2)
is satisfied, so we are done. O

2. This section is devoted to the proof of our main result. From now on,
the spaces X,, are assumed to be of finite dimension (each having a normalized
1-unconditional basis).

Let Y be a (real) Banach space with dimY = n and ey,..., e, be a basis

n

of Y. A sequence y,, = Zamkek, m > 1in Y will be called monotone if it is
k=1
monotone in every coordinate.
[e.e]
We will usually write z = Z X, for the element x = (z1,...,x,,...) of X.
n=1
Proposition 2.1. The unit ball Bx of X is compact in the topology of
pointwise convergence defined in Definition 1.9.
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Proof. Since each X, is finite dimensional, we have that X, is iso-

o
metric to some Y,’. Set E = (Z @Yn> , then clearly E* is isometric to
n=1 0

[ee]
Z = (Z @Xn> . The fact that the space coo((Yy)) is dense in E implies
n=1

= 1

that the weak™® topology of the space Z = X coincides on the bounded subsets of
X with the topology of pointwise convergence of Definition 1.9. It follows that
our assertion is immediate consequence of the following:

(e}
Claim. Let (x,,) C X with x,, = men and ||z || < 1, for m € N. Let

n=1
o0
also x € X with x = an such that x, = x. Then ||z|| < 1. (That is, Bx is a

n=1
weak™® — closed subset of X.)

Proof of the Claim. We assume that ||| > 1. Then, by Proposition
1.4, there exist £ € N and € > 0 such that

k
(2.1) 1) |l >1+e.
n=1

Since x,, 2 x, there also exists m € N such that

€
(2.2) |Zmn — xnl|,, < o " <k.

Then

k

D

n=1
k k k

S SERES S 3
n=1 n=1 n=1

k k

n=1 n=1

v

, by Proposition 1.4

v




Examples of infinite dimensional Banach spaces . .. 75

>

k
- Z |Zmn — 2nll,
n=1

, from (2.1) and (2.2),

k
>
n=1

> 1—}-5—%:14—

N ™

a contradiction. O

Theorem 2.2. Let (X, )n>1 be a sequence of finite dimensional Banach
spaces, each having an 1-unconditional basis. Then the Banach space X does not
contain an equilateral sequence.

Proof. We are going to prove that the assumption, X contains an

o0
equilateral sequence, leads to a contradiction. So let x,, = Z Tmn, M > 1 be an

equilateral sequence in X. First, we observe that we may assume that ||z,,| =1
and ||z, —xgl| = 1, for m # k € N. By Proposition 2.1, it may be assumed
further that there exists € X such that 2, % = and ||z < 1.

The proof that our assumption leads to a contradiction is divided in 5

steps.

. 1
Step 1. By passing to a subsequence, we may have that ||z,, —z| = 2 for
every m € N.

Proof of Step 1. We first observe that there exists at most one m € N
1
such that ||z, —z| < 5 Indeed, assuming that there exist s # [ € N such that

1
|z — || < 2’ for i = 5,1, we would have that

1 1
1= s — il < o — ol + o — 2l < 5 +5 =1,

1
a contradiction. Therefore, we may assume that ||z,, — z| > 2 for every m € N.

1
We are going to prove that ||z, — z|| > 3 for finitely many m € N. We
suppose that there exists a subsequence of (z,,), denoted again by (z,,), such

1
that ||z, — | > 3 for every m € N. Then for every m € N there exists b, > 0
such that

1
(2.3) lom = o = 5 + b
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Since ||z|| <1 and ||zy,|| = 1, for every m € N, by (2.3) we take that

(2.4) 0<by < g, for every m € N.

We fix m € N. Then there exist £ € N and [ > k such that

k

1 b,
2' mn — 4n a a
(2.5) ;:1(3: ZTn)|| > 5 + 5
and
> b
2. § — ULy
(2.6) (T — Tn)|| < S
n=Il+1

k
Indeed, both (2.5) and (2.6) are consequences of the fact that Z(:z:mn — Tp) il

n=1
Ty — ¢, k — oo. Further, [ can be chosen quite large such that

4 1 b,
9. ooy im
(7) n<2+ 2
and
(2.8) 2 <b—m for every n >1
' nt2 8 yne=t

We note that (2.7) and (2.4) yield that

25 4+0b) 1 by
(2.9) M < 3 + 5 for every n > 1 and j € N.

Since z,, > x, we can choose s € N such that

l

Z(xsn - $n)

n=1

bm
2.10 < —.
(2.10) k

The last, by Proposition 1.4, yields that

k

Z(stn - xn)

n=1

< %ﬂ, since [ > k.
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o0

Z(xsn - wn)

n=1

1
We have that = ||lzs —z|| = 3 + bs. So, by Proposition 1.3,

1
|Ten — xnl|,, <2 3 + bs>, for every n € N. The last, combined with (2.9) and
(2.5), gives that

k

Z(xmn - $n)

n=1

||l‘sn_$an <l+b_m<

< , for every n > I.
n 2 2

Now, by ii) of Proposition 1.5, we take that

k 00
(2.11) | Z(xmn — ) + Z (zn — zsn) |
n=1 n=I[+1
k [e%S) 1
1 =zl + Y (1= g ) o =l
n=1 n=Il+1
Finally, we have that,
00
me - xSH = Z(Qjmn - xsn)
n=1
k [e%S)
> Z(xmn - wsn) + Z (xmn - wsn) )
n=1 n=I[+1
by Proposition 1.4
k [e%s) k [e's)
= Z(wmn - xsn) + Z (wmn - xsn) + Z(xn - xsn) + Z (wmn xn)
n=1 n=Il+1 n=1 n=Il+1
k [e%S)
> Z(azmn Tn) + Z (Tn — Ten)
n=1 n=I[+1
k 00
- Z($n - stn) - Z ($mn - xn)
n=1 n=I[+1
k 00 1 b
> Z(xm” Tn)|| + Z <1 - n—l—l) |Zn — Zsnlln — Zma
n=1 n=Il+1

by (2.6), (2.10) and (2.11)
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AV
R
N

3

3

=
2
_I_
A
|
+‘>~
rO
~__
K
)

s

&
S
3
S El

k %)
> Z(xmn - xn) + <1 - H%) H ; (xn _wsn)H - bzm’

n=1

k o0 l
T T )
n=1 n=1 n=1

S S A S (R T R
=2 4 2 F l42\2 7 I+ 8
b 1 /1 3 1\ bm . 3
> = - =+ )= (1=-— 2 ) < =
71+4+b5 T2 2+2> (1 +2> 8,smceby(24)b572
- bin
> 14+ 2 —o 2.
> 1+ +bs 8,by(8)
= 14+bs>1,

a contradiction.
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1
Step 2. ||z|| = =.
2
Proof of Step 2. For any m € N,

1
5 = lzm =zl = fzmll =zl =1 = |||

2

1 1
hence, [|z|| > =. We assume that |z| > 7 By our assumption there exist b > 0
and k € N such that

k
1
2.12 all > =
(2.12) ';x >5+b
and
> b
(2.13) S | <7
n=k+1

In addition, k£ can be chosen large enough such that

1 b
2.14 0 < =
(2.14) 2(k+2) 4
and
(2.15) M Z:z:n , for every m € Nand n > k.

S
(2.12) and (2.13) come directly by the fact Zmn I x, s — oo. For (2.15), by

n=1
Proposition 1.1,
— 1
Z §||l‘mn — Tplln < ||lxm — || =1, for every m € N,
n=1

o0

S0) Z | Tmn — xnll,, < 2 and consequently, ||Zmn — 24|, < 2, for every m,n € N.
n=1

Then there exists s € N such that

n > s.

|Zmn — Znlln

1
< 3 + b, for every m € N and
n
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By the pointwise convergence of (x,,) to x, we choose m € N such that

b
(2.16) I Z Bmn = 2n)|| < 7
Now we have that
o
n=1
o o0
DT o
n=1 n=1
k 00
= | @ w) ) (@ - +an >
n=1 n=k+1 n=k+1
k 00 k
2 Z$n+ Z (Tmn — an)|| — Z(xmn_$n)||_” Z x
n=1 n=k+1 n=1 n=k+1
k oo b
> D ant D (@ —20)| - 5 by (2.13) and (2.16)
n=1 n=k+1
> an + <1 - ]C——i-2> Z | Zmn — Tnlln — 9’ by (2.15)
n=1 n=k+1
and ii) of Proposition 1.5
k 1 00 b
> Zmn + (1 - k——i-2> Z (Tmn — Tn)|| — 3 by Proposition 1.1
n=1 n=k+1
k 1 k
= an +<1_k—+2> xm—x—Z(l‘mn—xn) -
n=1 n=1
i 1 - b
Z ;mn + <1 - k'—‘i‘Q) (me - l‘H - nzl(wmn xn) ) - 5

1 1 1 b b
= 1—— —— = —= 2.12 2.1
> 2—|—b—|—< l<:+2> <2 4> 2,by( ) and (2.16)
1 1 1 b b b
= +b - - - —
2 2 20k+2) 4 4k+2) 2
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a contradiction.

Step 3. The following assertion is not true. For every [ € N there exists mp € N
such that z,,, = x,, for every n <[ and m > my.

Proof of Step 3. We assume that the assertion is true. Then there exists a
subsequence of (z,,), denoted again by (z,,), and a strictly increasing sequence
(t(m)) in N such that

t(m) o0
(2.17) Ty = Z Ty + Z T, for every m € N.
n=1 n=t(m)+1

By Remark 1.2 and (2.17), we take that

e¢] o0

1
@19 o2l = | 3wl > 3 (1= 1) Vomnanlln
n—

t(m)+ n=t(m)+1

for every m € N. We now fix m € N. Then, by iii) of Proposition 1.5, there exists
ko > m such that

t(k) 0o
1
(2.19) [z —al| = Z @ =z + > (17 Fomn 2l

t(m) n=t(k)+1
S
for every k > ko. Since by (2.18) | Y (zmn — @n)ll = ll2m — 2l =
n=t(m)+1
choose k > kg such that

t(k) t(k)

1
(2.20) > (@mn — Tn)|| = Z (@mn = )| >
n=t(m)+1 n=t(m)
and
2

(2.21) ey

<

,4;|»—~

1
Since by Proposition 1.1, 3 Z |lZmn — Tenlln < l|om — zk]] = 1, we take that
n=1
| Tmn — Tnl|,, < 2, for every n € N. Therefore

— 2 1
(2.22) 2 najan” < ) <7 for every n > t(k).
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Properties (2.20), (2.21), (2.22) and ii) of Proposition 1.5 now give that

t(k) 00 1
o — i = @ — sl + > (1= ) omn = 2wl
n=t(m)+1 n=t(k)+1
t(k) 0 1
= (xmn - an) + Z (1 - n—'i‘l> men - $kn||na
n=t(m)+1 n=t(k)+1
by (2.20)
t(k) 00 1
- (@ — )|+ D (1— )WMn—mﬂhi
n=t(m)+1 n=t(k)+1 n+l
- 1
- Tmn — Tn
£ 3 (1= 37 o = ol
t(k)
n=t(m)+1

) T

S
+
—_

o0

1
doo(1- p——) Zn = Zknll,

t(k)
= Z (wmn - xn) +
=t(m)+1

n n=t(k)+1
> 1
+ Z (1 - n——i-1> [Zmn — 2nll,,
n=t(k)+1
= 1
=l t > (1= ) = aual s by (219
n=t(k)+1
< Nlom — 2| + [|[zx — 2|, by (2.18)
S
22 7

a contradiction.
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Step 3 informs us that there exists I € N such that for every m € N there
exist n < [ and k > m such that xg, # x,. Since the set {1,...,l} is finite
there exist ng < [ and a subsequence of (x,,), denoted again by (x,,), such that
Tmng 7 Tng, for every m € N. By iii) of Proposition 1.5, there exists a strictly
increasing sequence (t(m)) in N such that ¢(1) > ng and

t(m) o0
1
m = mn — 4n - — mn — dnlly
fom =l = | S mn =2+ 3= (1= 777 Fon =l

n=1 n=t(m)+1

for every m € N.
t(m) C

n=1

Corollary 1.6 now gives that for every m € N there exists (An)
[0, 1] such that

t(m) [e'e) 1
|Zm =z =) A [Tmn — Tl + Y <1 - —> | Tmn — T, -

n=1 n=t(m)+1 n+l

Step 4. Let m € N, then there exists an infinite subset M of N such that

no [ee]
Z(Q:mn — Tgn) + Z (Trmn — Tn)
n=1 n=ng+1

no t(m)
= ZAmonmn_xann‘i‘ Z Amn‘|xmn_xn||n
n=1

n=ngp+1
> 1
+ > (1 - 1> | Zmn — Znll,
n=t(m)+1

for every k € M.

ng 00
Proof of Step 4. We observe that Z(mmn — Tgn) + Z (Tmn — Tn) EN
n=1 n=ng+1

Tm — x, k = 00. Now the conclusion is direct from Proposition 1.10.

For the remaining of this proof we are going to assume that (Zym)m>1 C X, is
monotone for every 1 < n < ng. This is proved by a standard diagonal argument.

Step 5. For m € N we denote by M,, an infinite subset of N as in Step 4.
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There exist m € N and k € M,,, such that

no o
Y A |mn = Thally, <Y A lTmn = @all,,
n=1 n=1

Proof of Step 5. Firstly, it is obvious that we can assume that m < min M,,,
for m € N. Also we may assume that M, C M, for k < ¥’ € N. Let now m € N,

d, = dim X,, and {e’f, e ,egn} be an 1-unconditional basis of X, for 1 < n < ng.
Let also
dn, dn,
Top = Zasn]ej and z, = Z an; e
7=1 7=1

be the expressions of the vectors zg, € X,, and x,, € X,,, respectively, on the
basis {e’f,...,egn}, for s € Nand 1 < n < ng. By the monotonicity of the
sequences (Tyn)m>1, for 1 < n < ng, we have that |amn, — agn;| < |amn; — an,|
for any k € My,, 1 <n <ngand 1 < j <d, Thusfor k& € M, there exist
(An,)f2y € [=1,1] such that

dn dn

Tmn — Tkn = Z(amnj - akn]-)G? = Z )\ﬁj (amnj - anj)€?
= =1

for 1 < n < ng, with /\ﬁj = 0 when Umn; = Gngj-

In fact (/\ﬁj );lil C (—1,1] for any k € M,,. Indeed, assuming that )\ﬁj =
—1, forsome 1 <n <ngand 1 < j < dy, then amy; # an; and 2a,n; = an;+akn;,
a contradiction by the monotonicity of the sequences (Zyn)m>1, for 1 <n < ny.
Now we are going to use the following result: for any unconditional basis (e;) in

a Banach space X, for all m € N, all scalars (a;)!_; and all sequences (\;)!_;, we

have
l
E a;€;
i=1

where ubc{e;} is the unconditional basis constant of the basis (e;). A proof of
the last can be found in [1]. By the l-unconditionality of {e’f, . ,egn} and the
above inequality, we have

l

Z )\z a;e;

i=1

)

< ubc{e;} max |Ai -

dn

men - $kn||n = Z Afz]- (amnj - anj)e?
j=1
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dn
k
S ubc {e?} lg%}én |>‘n]| ’ Z(amnj - anj)e?
J=1 n
dn
k
< max Pl Z<m —an;)ej

n

k
- 1%2@ |)‘nj| Nzmn = znlln,

for every k € M, and 1 < n < ng (2.17).

<j
put By = {j < dng @ Qsngj = Gngj}, for s € N. Now for m € N and k € M, the
choice of )‘ﬁoj and our last assumption yield that B,, & By. So for m = 1 and
k € My, we have that By & By. For k' € M) we will also have that By, ¢ By.
Inductively, since the set {1,...,dp,} is finite, we can find s € M; such that
Bs ={1,...,dy,,}, a contradiction, since zsy, # Tn,, for every s € N.

The last along with (2.17) entails that there exist m € N and k € M,,
such that

Let us assume that for every m € N and k € M,,, | Jnax AP =1. We
Sang

noJ

||xmn0 - wknOHno < ||~Tmno - xnoHno >

then by (2.17), we get that

no no

n=1 n=1

The proof of Step 5 is complete.

Finally, we are in position to prove that our initial assumption leads to a contra-

no o0
diction. Let m € N and k € M,,, as in Step 5. We put y = Z:z:;m + Z Tn,

n=1 n=ng+1

then by Step 4
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no
||xm - yH = Z A ||~Tmn - .I‘ann + Z Amn ||~Tmn - .I‘an

n=1 n= n0+1
# 3 (1) b =l
t(m +1
no
n=1 n=ng+1
+ Z <1 — —) |Zmn — znll,, , by Step 5
t(m)+1
(%) = [lem — =
Also,
[e.e] [e.e]
n=n, 1 n=1
The last combined with (x) gives that
[#m —akll < flzm =yl + [lor =yl
< om =2l +llz —
2 2 7
a contradiction. O
Corollary 2.3 (Terenzi [5]). There exists an equivalent norm ||-|| on Iy

such that (I1, ||-||) does not contain an equilateral sequence.

Proof. We take X,, = R, n > 1, in Theorem 2.2, then clearly X = [
and Terenzi’s norm on X satisfies the assertion. O

As it was mentioned in the Introduction the most part of our proof is
essentially the same with Terenzi’s. The distinction between the two proofs lays
on Step 5 of Theorem 2.2. Terenzi considers 1-dimensional Banach spaces, thus
to prove Step 5 it suffices to observe that x4, # x,,, for every s € N and since the
sequences (Zymn)m>1, for 1 < n < ngy are monotone, we have that for 1 <n < nyg
either X, < T, < Xy O Ty > Tip = Tn, where the inequalities are strict when
n =mngy.

Terenzi constructed still another renorming of /1 not admitting any equi-
lateral sequence [6]. Using Terenzi’s methods it can be proved that the space [;
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equipped with its canonical norm contains infinite dimensional subspaces which
do not contain an equilateral sequence. By [3] we can choose a weak* closed
stictly convex subspace X of (I1,||-]]1) and we assume that there exists a normal-

ized 1- equilateral sequence (x,) in X. The proof of Step 1, which here can be

1
simplified, yields that there exists € X with ||z|| < 1 such that ||z, — z|| = 7

for n € N. Then for n € N
[(z1 —2) — (zn —2)|| =1 = [|z1 — 2[| + ||z, — 2]|.

By the strict convexity of X this implies that 1 —z = —(z,, — ) or z,, = 2z — 1,
for every n € N, a contradiction. The aforementioned result and its proof were
suggested to us from Professor P. Dowling. We include it here with his kind
permission.

Theorem 2.2 above provides us with further examples (beyond the space
l1) of Banach spaces, which do not contain any equilateral sequence.

Corollary 2.4. There exists a separable Banach space with an uncondi-
tional basis not isomorphic to a subspace of l1 and not containing an equilateral
sequence.

Proof. For n > 1, we take X,, = [, with p > 2, in Theorem 2.2.
Then the Banach space (X, |-||) does not contain an equilateral sequence. On
the other hand, X can not be embedded in [{, because its isomorphic version

o
Z = (Z @l;) has cotype> p > 2 and the space [; has cotype 2 (see Th. 23,
n=1

= 1
p.98 in [7] and Remark 6.2.11, Th. 6.2.14 in [1]). O
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