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ABSTRACT. The aim of this article is to construct examples of derivations
in finite semirings.

1. Introduction and preliminaries. The differential algebra has
been studied by many authors for the last 65 years and especially the relation-
ships between derivations and the structure of rings. The notion of the ring with
derivation is old and plays an important role in the integration of analysis, alge-
braic geometry and algebra. In 1950 J. Ritt [6], and in 1973 E. Kolchin [4], wrote
the classical books on differential algebra.

During the last few decades there has been a great deal of works con-
cerning derivations in rings, in Lie rings, in skew polynomial rings and other
algebraic structures. About derivations in semirings it is known the definition
in [2], examples and some properties in [1], examples and properties of deriva-
tions in simplicial complexes of strings, see [9], and examples and properties of
derivations in triangles, see [12] and [13].
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The endomorphism semirings of a finite semilattice are well-established,
see [8, 10, 11, 14]. Basic facts for semirings can be found in [2]. Concerning
background of simplicial complexes and combinatorics a reader is referred to [5]
and [7].

. . ab 00

Example 3.2 in [1] shows that the map D given by D ( 0 c) = (0 0 ),
where the elements a,b, c € Z1TU{0} is a derivation. It is true only for the second
order matrices. Now we present the following example.

Example. Let UT M, (S) is the semiring ot the upper triangular matri-
ces of order n with entries from the additively idempotent semiring S. Let for
A = (a;j) € UTM,(S) we define D(A) = A\ diag(a11,...,an,). For B = (b;;) €

J

UT M, (S) the arbitrary element of D(AB) is Z a;ikbrj, where 1 <i <k <j<n.
k=i

On the other hand the arbitrary element of the matrix D(A)B is Z ;i byj.

1<k<j
Also the arbitrary element of the matrix AD(B) is Z a;rbyj. Since S is
i<k<j
an additively idempotent semiring, it follows that Z aikbr; + Z a;pbr; =
1<k<j 1<k<j

Z aikbrj. So D(AB) = D(A)B + AD(B) and since D is evidently linear, it

i<k<j

follows that D is a derivation.

This example shows the crucial role of the additively idempotent semir-
ings for the derivations in semiring theory. In Theorem 2.2. in [3] Kim, Roush
and Markowsky prove that any finite additively idempotent semiring can be rep-
resented as the endomorphism semiring of a finite chain. So, the present paper
investigate the derivations in a finite endomorphism semiring.

Following [8], we fix a finite chain C,, = ({0,1,...,n — 1}, V) and denote
the endomorphism semiring of this chain with Ecn For elements ag, a1,...,ap_1 €
Cy, where k <mn, ap < a1 < ... < ax—1 we denote A = {ag,a1,...,ar_1}. Now,
consider endomorphisms « € Ecn with Im(a) € A. The set of the all such
endomorphisms « is a maximal simplex. We denote this simplex by alin) (A) =
U(”){ao, ai,...,ax—1}. The endomorphisms o € U(”){ao, ai,...,ax—1} such that

a(O):~~~:a(io—l):ao,a(io):---:a(io—i—il—l):al,

alip+ - +igo)=-=alip+ - +ipg1—1)=ar1
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we denote by o = (ag)iy(a1)i, - .. (ag—1)i,_,, where ig + iy + -+ +ix_1 = n.

Any endomorphism a = (ag)i,(a1)i, ... (ax—1)i,_, can be represented as
sum (ag)n—i, (a1)i, + (a0)n—iy(@2)iy + -+ + (@0)n—ij,_, (@k—1)i,_,- So the elements
of strings STR(”){ao,am}, where 1 < m < k — 1 form an additive base of the
simplex and these strings are called basic strings of the simplex.

2. Linearity of the projections. Let us consider the maps
O : 0™ {ag, ay,. .., an_1} = STR™{ag, am},

where 1 < m < k — 1, such that for any a = (ag)i,(a1)i, - .. (ak—1)i,_,, Where
o+t + -+ i1 =n,

Im(a) = (a0 )io(am)n—io-

These maps are called projections of the simplex on the basic strings.

Proposition 1. For any o, 8 € 0™ {ag,ay,...,ar_1} and projection
Om : U(”){ao, ar,...,ax_1} — STR("){aO, am},

where 1 <m < k —1, it follows Op, (v + B) = O () + O (B).

Proof. We consider the endomorphisms o = (ag)io(a1)s; - - - (@k—1)i,_,
and
B = (a0)jo(a1)jy - (@k—1)j,_ys to+ i1+ +ig1=Jo+j1+  +jk_1=n.

Case 1. Let ig < jo. Then a+ 8 = (ag)iy(@1)s; - - - (@k—1)s,_,5 %0 + 51 +
o+ Ssg—1 = n and Iy (a+ B) = (ag)iy(@m)n—i;, = Om(c). Since ig < jo imply
8m(ﬁ) = (ao)jo(am)n,jo S (ao)io(am)n,io = am(a) it follows 8m(0é + ﬁ) =
Om/(a) + O (B).

Case 2. Let jo < ig. After the interchanging o and g it follows that
Om(a+ B) = On(@) + 0 (B). O

3. Projection on the least basic string of a simplex. Now we
consider the set

Dy, = {ala € U("){ao,al, coosap—1}afar) < a}.

For a, € Dy, we find (o + B)(a1) = afa1) + B(a1) < a1 and (af)(a1) =
Bla(ar)) < B(ar) < ay. So, we prove the following lemma
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Lemma 1. The set Dy, is a subsemiring of the semiring

0(”){610, al,...,a5_1}.

Lemma 2. For any o, 8 € Dy,, it follows

(1) Oh(ap) = 01()B + adi(B).

Proof. Leta = (ao)io (al)il e (akfl)ik_1> B = (GO)jo (al)jl s (akfl)jk—v
Where i0+i1+"'+ik_1 :j0+j1+"'+j]€_1 =n.

Case 1. Let (a1) = ap and m,1 < m < k — 1, be the largest positive
integer such that 5(a,,) = ap. Then af = (ao)ig+-+tin (@1)s, - - - (@k—1)s,_,, Where
o+ +im+81+- -+ 81 =n. Now 04 (aﬁ) = (ao)i0+...+im (al)n,(iOJr,,,Jrim).
Clearly 81(0&) = (ao)io (al)n,io and so 81(04)5 = ag. Since 81 (,B) = (ao)jo (al)n,jo
and a,, < jo — 1, it follows adi(B) = (a0)ig++im (A1) n—(ig+--+in) and (1) holds.

Case 2. Let B(ag) = ap and (a1) = a1. Then
aff = (ao0)io(a1)s, - - (ar-1)s_,
where g + s1 4+ -+ + sg—1 = n and 0 (af) = (ao)i,(a1)n—i,- Clearly 0i(a) =
(@0)i (a1)n—iy and so A1 ()B = (ao)io(a1)n—io- Since 91(8) = (ao)jo(a1)n—j, and
jo — 1 < ay, it follows a0 (B) = (ap)iy(a1)n—i, and (1 ) holds.

Case 3. Let 5(ag) = f(a1) = a; and m,1 < m < k—1 be the largest pos-
itive integer such that S(a,,) = ai1. Then aff = (a1)ig+tin (@2)sy - - - (Ak—1)s,_; 5
where ig + -+ + iy + S2 4+ -+ + Sg—1 = n. Now 01(aff) = ay. Clearly 0;(a) =
(@0)io(a1)n—i, and so 01(a)B = ay. Since 01(8) = (ao)j,(a1)n—j, and ag > jo — 1,
it follows a01(8) = a7 and (1) holds. O

Theorem 1. The map 01 : Dy, — STR("){aO,al} 1s a derivation. The
mazimal subsemiring of U(”){ao, ai,...,ax—1}, closed under the derivation 0 is
Do, -

Proof. Using Proposition 1 and Lemmas 1 and 2 we immediately prove
that 0y : Dy, — STR(”){QO, ay} is a derivation. To prove the second part of the

theorem we consider three cases.

Case 1. Let B(ap) = ap and fB(a1) > a;. Then
afB = (ao)ip(a2)s; - - - (@r—1)s,_,
where ig + s2 + -+ + sx—1 = n and 0i1(af) = (a0)i,(@1)n—i,- Since 0i(a) =
(@0)io (@1)n—iy, it follows 01 (a)B = (@o)iy(a2)ry - - - (@k—1)r,_,, Where ig+ro+-- -+
rp—1 =n. Now 01(a)B > 01(af), hence (1) does not hold.
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Case 2. Let B(ag) = a1 and S(a1) = ap, where 1 < p < k—1. Then
af = (a1)iy(ap)s, - - - (ar—1)s,_,, where ig + s, + - -+ sx_1 = n and 01(af) = az.
Clearly 01(o) = (a0)io(a1)n—io- Since f(a1) = ap, where 1 < p < k — 1, then
01()B = (a1)ig(ap)n—ip > a1 = 01(aB). So, (1) does not hold.

Case 3. Let (ag) = ap, where 1 < p < k—1 and p is the largest positive
integer with this property. Then a8 = (ay)s, - - . (ax—1)s,_,, where s+ - +s55_1 =
n and in all cases 01(af3) =ay. Since f(ag) = ap, where 1 < p < k —1, it follows
01 ()B = (ap)io(apt1)rpsq - - - (@k—1)r,_,, Where ig + 7py1 + -+ + 141 = n. So,

81 (Oé),@ > 61 (Oéﬂ)

Hence (1) does not hold again and this completes the proof. O

4. Projection on a middle basic string of a simplex. Here, for
fixed m, 1 <m < k — 1, we consider the projection

Om, 0(”){610,@1, cey Q1) — STR(”){ao,am}

such that for any a = (ag)i,(a1)i - - - (ak—1)i,_,, Where ig+ -+ +ix_1 = n,
O (@) = (a0)io (am)n—io-

Let Ry = {ala € 0™ {ag,a1,...,ar_1},a(am) = agp}.

If o, B € Rim, then (a + 8)(am) = alam) + Bam) = ap and (af)(am) =
Blalam)) = B(ag) = ag. So, Ry, is a subsemiring of o™ {ag, a1, ..., ar_1}.

Let Ry, = {ala € 0™ {ag, a1, ..., ap_1},a(a1) > a1, a(an) < am}.

If a, B € Rap, then (a+ f)(a1) = alar) + B(a1) > a1, (a+ B)(am) =
a(am) + Blam) < am, (@B)(a1) = Blalar)) = Blar) > a1 and (af)(am) =
Blafam)) < B(am) < am. So, Roy, is a subsemiring of 0™ {ag, a1, ...,a,_1}.

Now for o € Ry, and B € Ry, we obtain:

o (a+pB)(a1) =alar)+ B(ar1) = ap+ Blar) > a1, (a+ B)(am) = alam) +
Blam) = ap + Bam) < an,. Hence a+ B € Roy,.

e Let B(ag) = ag. Then (af)(an) = B(alan)) = Blag) = ap. Hence
af € Rip.

e Let S(ag) > a1. Then (af)(a1) = B(a(ar)) = B(ag) = ar and (af)(am) =
Bla(an)) = Blag) < Blam) < an,. Hence aff € Rop,.

o (Ba)(am) = a(B(am)) < alam) = ap. Hence fa € Rip,.

Let Dp,, = Rim U Ray. Thus we have proved

Lemma 3. The set Dy, is a subsemiring of the semiring

0("){610, a,...,a5_1}.
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Lemma 4. For any o, 8 € Dy,,, it follows

(2) Om(aB) = O (a)B + adpm(B).

Proof. Let a = (ao)io(al)il . (ak_l)i}%l and ,B = (ao)jo(al)jl .
(ak—1)j,_,, where ig + i1+ - +ip_1 =Jo+j1 + - + jrk—1 = 1.

Case 1. Let 8 € Ryy,. Then B(ay,) = ag. Let p, m < p < k — 1, be the
largest positive integer such that 5(ap) = ag. Since ap < jo— 1 < apy1, it follows
af = (ao)ig+-ti,(@1)sy - - - (Ak—1)s,_,, Where ig + -+ +ip + 81+ -+ + 551 = n.
Hence Op(aB) = (a0)ig+-+ip (@m)n—(ig+-+ip)- Clearly Om(a) = (a0)io(am)n—io
and then 0,,(a)f = ap. On the other hand 0,,(8) = (ao)j,(am)n—j,- Since
ap < jo— 1 < apt1, it follows adp(B) = (a0)ig+-+ip(@m)n—(ig+-ti,) and (2)
holds.

Case 2. Let 8 € Roy,. Then S(a1) > a1 and B(am) < ap.

Case 2-1. Let f(ag) = ao,B(a1) > a1,B(am) = ap < ay. Then aff =
(a0)ig(a1)sy - - (@k—1)s,_ys G0+ 814+ + 81 = n and I (aB) = (a0)iy(am)n—io-
Clearly O, () = (@0)io (@m)n—i, and so Om(a)B = (ag)iy(ap)n—ic- Since Op,(5) =
(@0)jo (@m)n—j, and ag < jo — 1 < aq, it follows a0y, (B) = (ao)iy(@m)n—i, and (2)
holds.

Case 2-2. Let f(ap) > a1,B(am) = ag < am. Then aff = (a1)s, -
(ak—1)s,_,, where sy + - 4+ sp_1 = n, and Oy (af) = Gp,. Clearly Op(a) =
(@0)io(am)n—i, and so Op()B = (ap)iy(aq)n—iy, Where (ag) = a, and p < g.
Since O, (B) = @m, it follows a0y, (8) = @, and (2) holds. O

Theorem 2. The map O, : Dy, — STR("){aO, a}, wherel <m < k—1,
s a derivation. The semiring Dp,, is the mazimal subsemiring of the simplex
U(”){ao, ai,...,ax—1}, closed under the derivation Oy,.

Proof. From Proposition 1 and Lemmas 3 and 4 we prove that 0,, :
Dy, — STR("){ao, am } is a derivation. In the second part we consider four cases.

Case 1. Let p,1 < p < m be the largest positive integer such that
B(ap) = ap and ¢,p < ¢ < m be the least positive integer such that f(a,,) = a,.
Then a8 = (a0)igt-+ip(a1)sy - - - (@p—1)s;,_,, Where dg+- - -+ip+s1+-- 45,1 =n
and O (af) = (ao)iOJr...Hp(am)n,(iOJr,,,Hp). Since O (@) = (@0)ig(@m)n—i, then
Om(a)p = (a0)io(@g)n—io- On the other hand 0,,(8) = (ag)j,(@m)n—j,- Since
ap < jo — 1 < apy1, it follows a0 (B) = (@0)ig+-+ip (@m)n—(ig+-+ip)-
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Case 1-1. Let ¢ < m. Then
O (@) B + a0 (B) = (a0)ie(ag)n—io + (@0 )io-++ip (@m)n—(ig+-tip) =

(a0)io (q)is+-tip (@m)n—(igt-tip) > (@0)igt-tip(Um)n—(ig+-tip) = Om(aB).

Case 1-2. Let ¢ > m. Then
Om () B + adm(B) = (a0)io(ag)n—io + (a0)ig++ip (@m)n—(ig+-tip) =

(a0)ip(aq)n—io > (@0)ig+-+ip(Um)n—(ig+-tip) = Om(aB).
Hence, (2) does not hold.

Case 2. Let (ap) = ag, B(a1) > a1 and B(am) = ap, where m <
p < k—1. Then af = (ao)i,(a1)s, --- (@k—1)s,_,» %0 + 51+ -+ + Sg—1 = n and
Om(af) = (ao)lo(am)n,io. Since O () = (a0)iy(@m)n—i,, it follows Op, () =
(@0)io(ap)n—io > (a0)jo(@m)n—j, = Om(aB) and (2) does not hold.

Case 3. Let f(ap) = ap, where 1 < p < m and f(an) = a4, where

m < q<k—1. Then aff = (ap)s, ... (ar—1)s,_,, Where s, +--- 4+ s,_1 = n, and

Om(af) = @p,. Clearly Oy, (a) = (@0)iy(@m)n—i, and so O ()8 = (ap )iy (ag)n—io-
Since O, (B) = @, it follows adp,(B) = @p,. Thus we have

am(a)/B + aam(ﬁ) = (ap)io (aq)nfio +am = (am)io (aq)nfio > am = am(a/B)

Hence, (2) does not hold.

Case 4. Let B(ap) = ap, where m < p < k —1 and S(am) = aq,
where p < ¢ <k —1. Then aff = (ap)s, - .. (ax—1)s,_,, where s, +--- 4 5,1 =
n, and Op(af) = @p. Since On(a) = (ao)iy(am)n—iy, it follows Op,(a)f =
(ap)io(ag)n—iy > @m = Om(af). Hence (2) does not hold again and this com-
pletes the proof of the theorem. O

5. Projection on the biggest basic string of a simplex. Let
Sy = {ala € 6™{ag,a1,. .. a1}, (ax_1) = ag}.

For o, 8 € S1 we have (a + B)(ax—1) = a(ax—1) + B(ak—1) = ap and
(af)(ar—1) = PB(alag—1)) = PBlag) = ap. So, S1 is a subsemiring of
U(”){ao, aiy...,a5—1}

Let us consider the set Sy = {a]a € 0™ {ag,a1,...,ar_1},a(a1) > a1}
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If a, B € So, it follows (a + 8)(a1) = alar) + B(a1) > a1 and (aB)(a1) =
B(a(ar)) > B(ar) > ay. So, S is a subsemiring of o™ {ag, a1,...,ap_1}.

Now, for a € S1 and g € S5 it follows

e (a+p)(a1) = alar) + Blar) = ap + B(a1) > ay, hence o + B € Ss.

e Let B(ag) = ap- Now, (af)(ax-1) = B(al(ax—1)) = Blao) = ag, s0
af € 5.

e Let 8(ag) = a1. Now, (af)(a1) = B(a(ar)) = B(ao) = a1, so af € S.

e Let a(B(a1)) = a(ar). Now, (Ba)(ar) = a(B(a1)) = afa1) = ag, so,
af € 5.

e Let a(B(a1)) > a(ar). Now, (Ba)(ar) = a(B(a1)) > afa1) = ag, so,
(Ba)(ar) > a1 and af € Ss.

Let Dy, , = S1 U S3. Thus we have proved

Lemma 5. The set Dy, , is a subsemiring of the semiring

(n){a(h ai, ... 7ak—1}'

Lemma 6. For any o, 3 € Dy, _,, it follows

(3) Op—1(af) = Op—1(a) B + adk_1(B).

Proof. Let a = (ao)io(al)il ...(ak_l)ik71 and ,B = (ao)jo(al)jl
(ak—1)j,_,, where ig + i1+ - +ip_1 =Jo+j1 + - + jr—1 = 1.

Case 1. Let § € S;. Then B(ay) = = B(ag_1) = ag. Then aff = ag
and Ox—1(af) = ag. Clearly 0y_1(a) = (ao)lo( k—1)n—i, and so Ox_1()f = ap.
Since dx_1(8) = ag, it follows ady_1(B) = ag and (3) holds.

Case 2. Let § € Sy. Then f(a1) > a;.

Case 2-1. Let B(ag) = ag, f(a1) > a1 and B(ax_1) = am, where 1 <
m < k —1. Then aff = (ap)i,(a1)s, - -- (ag—1)s,_,, where ip +s1 4+ -+ s,_1 =n
and Ox—1(af) = (ao)iy(@k—1)n—i,- Clearly Ox_1(a) = (a0)i,(ak—1)n—i, and then
Op—1(a)B = (a0)iy(am)n—i,- On the other hand 9y_1(8) = (ao)jo (a@k—1)n—j, and
since jo — 1 < ay, it follows ady_1(8) = (a0)iy(@k—1)n—i, and (3) holds.

Case 2-2. Let f(ag) > a1. Then af > a7 and Op_1(af) = ax_1. Since
Ok—1(8) = ag_1, it follows ady_1(5) = ax_1. Hence

Op—1()B + 01 (B) = Op—1()B + ak—1 = ax—1 = I3(p)
and (3) holds. O
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Theorem 3. The map Oy_1 : Dy, _, — STR(”){ao, ax—1} is a derivation.
The mazimal subsemiring of a(”){ao,al, ...,ap—1}, closed under the derivation
Ok—1 15 Doy, _, -

Proof. Using Proposition 1 and Lemmas 5 and 6 we prove that Jp_1 :
Dy, , — STR(”){aO, ax—1} is a derivation. In the second part we consider two
cases.

Case 1. Let B(ag_1) = ax_1 and m,1 < m < k—1, be the largest positive
integer such that B(am,) = ag. Then aff = (ag)ig+-+im (@1)s; - - - (@k—1)s),_,, Where
o+ Fim st sp_1 = n. Now Op_1(af) = (a0)ig+tim (Ok—1)n—(io+tim)-
Since Og_1() = (ag)i(@k—1)n—iy, it follows Ok_1(a)f = (a0)iy(@k—1)n—iy >
Ok—1(afB), hence, (3) does not hold.

Case 2. Let f(ap) = ap and f(ag—1) < aq, where 1 < p < k-1
and 1 < ¢ < k—1. Then aff = (ag)ig+-+i,(a1)s, - .- (ag)s,, where ig + --- +
ip+ 81+ + 8¢ = nand _1(a)B = (a0)ig+-tip(Uk—1)n—(ig++i,)- Clearly
Ok—1(a) = (a0)io(ak—1)n—io- Then Jx_1(a)B = (a0)iy(ag)n—i- Since Op_1(8) =
(ao)jo (ak—l)nfjo and Qp <jo—1< Ap+1, then

a0-1(B) = (a0 )ig+-+ip (@k—1)n—(ig++iy)-
Thus we have

Ok—1(a)B + adk—1(B) = (a0)ig(ag)n—iy + (a0)ig++ip (Uh—1)n—(ig4-+ip) =

(a0)io (ag)iy++iy (akfl)nf(ioJr---Jrip) > (ao)z‘0+~~~+z‘p(akfl)nf(io+---+ip) = Ok-1(ap),
hence (3) does not hold and this completes the proof. O

Remark. It is possible to extend Section 2 for 1 < m < k — 1. Then
Ri1 U Ry = Dy, and also Ry,_1 = S1, Rap—1 = S2. But, now the new Lemma
4 and new Theorem 2 will be consisting much more cases and we “can’t see the
wood for the trees”.
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