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Abstract. In this study, we consider Newton-secant method for solving the
nonlinear variational inclusion problems in Banach space. Using generalized
continuity conditions, we prove the convergence of the method with the
following advantages: tighter error estimates on the distances involved and
the information on the location of the solution is at least as precise. These
advantages were obtained under the same computational cost.

1. Introduction. We study the variational inclusion

(1.1) 0 ∈ F (x) +G(x) + E(x),

where X, Y are Banach space D ⊂ X is an open set F : D −→ Y is a smooth
operator, G : D −→ Y is continuous operator, [·, ·;G] is a divided difference of
order one for G [4, 19] (i.e., for x, y ∈ D with x 6= y, [x, y;G](x−y) = G(x)−G(y),
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if G is Fréchet differentiable,then [x, x;G] = G′(x)) and E : X ⇒ Y is a set-valued
operator. Many problems can be written in the form (1.1) using Mathematical
Modeling [1]–[29]. The solution x∗ of (1.1) can rarely be found in closed form.
That is why most solution methods for (1.1) are usually iterative. In particular,
the inclusion

(1.2) 0 ∈ F (xm) +G(xm) + (F ′(xm) + [xm−1, xm;G])(xm+1 − xm) + E(xm+1),

where x0 ∈ D is an initial point was studied in [19]. If E = {0}, the method was
studied by Cătinas [4]. Special cases of the inclusion (1.2) have been studied in the
notable papers by Dontchev et.al. [7, 8, 9, 10, 11]. Then, assuming E(x) = −C
for each x ∈ X and C ⊆ Y being a closed convex cone, Pietrus and Alexis [19]
studied the algorithm

(1.3) minimize{‖x− xm‖/F (xm) +G(xm) + (F ′(xm)

+ [xm−1, xm;G])(x − xm) ∈ C}.

Next, we shall define the Algorithm for solving (1.1). Let u1, u2 ∈ D. Define a
set-valued operator Q(u1, u2) : X −→ Y by

(1.4) Q(u1, u2)x := (F ′(u2) + [u1, u2;G])x − C.

Then, Q(u1, u2) is a normed convex process. The inverse, defined for each y ∈ Y
by

Q−1(u1, u2)y := {z ∈ X : (F ′(u2) + [u1, u2;G])z ∈ y + C}

is also a normed convex process. Recall [19], that a mapping F between real
linear space X and Y is a convex process if it satisfies

• F (x) + F (z) ⊂ F (x+ z), for all x, z ∈ X

• F (λx) = λF (x), for all λ > 0 and every x ∈ X

• 0 ∈ F (0).

We have the following [19].

Algorithm. Newton-secant-cone (F,G,C, x0, x1, ε)

1. If Q−1(x0, x1)[−F (x1)−G(x1)] = ∅, stop.

2. Do while e > ε.
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(a) Choose x as a solution of the problem

mimimize{‖x−x1‖/F (x1)+G(x1)+(F ′(x1)+[x0, x1;G])(x−x1) ∈ C}.

(b) Compute e = ‖x− x1‖;x0 := x1;x1 := x.

3. Return x.

Remark 1.1. It is worth noticing that the continuity of the linear oper-
ator F ′(xm) and G being closed and convex, imply that the feasible set of (1.3)
is a closed convex set for all m. Hence, the existence of a feasible point x̄ implies
that each solution of (1.3) lies in the intersection of the feasible set of (1.3) with
the closed ball of center xm and radius ‖x̄− xm‖. Then, by [6, 7, 8, 9, 10, 20] a
solution of (1.3) exists, since X is reflexive and the function ‖x− xm‖ is weakly
lower semi-continuous.

The convergence of Newton-secant method (1.3) was shown in [19] using
Lipschitz continuity conditions on F ′ and divided differences of order one and
two for G. However, there are problems where the Lipschitz continuity of F ′ does
not hold or the divided differences of order two of G do not exist (see also the
numerical examples). Motivated by these constrains, we present a convergence
analysis of the Newton-secant method (1.3) using generalized continuity on F ′

and hypotheses only on the divided difference of order one for G. Our results are
weaker even, if we specialize the conditions on F ′ to the condition given in [19].
This way we expand the applicability of Newton-secant method (1.3).

The rest of the paper is organized as follows: Section 2 contains the
convergence of Newton-secant method (1.3). Numerical examples are given in
Section 3.

2. Convergence of the Newton-secant method. We need an
auxiliary result on majorizing sequences for Newton-secant method (1.3).

Lemma 2.1. Let a ≥ 0, b ≥ 0 and c > 0 be given parameters. Let also
w : R+ −→ R+, w1 : R3

+ −→ R+, w2 : R4
+ −→ R+ be continuous, nondecreasing

functions. Suppose that

(2.1) a ≤ b ≤ 2a

and equation

(2.2) (t− a)(1 − q(t)) + a− b = 0
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has zeros greater than a, where

(2.3) q(t) =
c

1− cp(t)
(

∫ 1

0

w(aθ)dθ + w1(a, a, a))

and

(2.4) p(t) = w(t− a) + w2(t, t− a, t, t− a).

Denote by t∗ the smallest such zero. Then, scalar sequence {tn} defined by

t0 = 0, t1 = a, t2 ≥ b,

tn+1 = tn +
c

1− cpn

[
∫ 1

0

w(θ(tn − tn−1))dθ

+w1(tn − tn−1, tn − tn−2, tn−1 − tn−2)

]

(tn − tn−1)(2.5)

is well defined, nondecreasing, bounded from above by t∗∗ given by

(2.6) t∗∗ =
t2 − t1
1− q

+ a

and converges to its unique least upper bound t∗ which satisfies

(2.7) b ≤ t∗ ≤ t∗∗,

where
pn = w(tn − a) + w2(tn−1, tn−1 − a, tn, tn−1 − t1),

q =
c

1− cp

and
p = p(t∗).

Moreover, the following estimates hold

(2.8) 0 ≤ t2 − t1 ≤ t1 − t0

(2.9) 0 ≤ tn+1 − tn ≤ q(tn − tn−1)

and

(2.10) 0 ≤ t∗ − tn ≤ qn−1

1− q
(t2 − t1) n = 2, 3, . . . .



Extending the applicability of Newton-secant methods 291

P r o o f. By (2.1), we have that t0 ≤ t1 ≤ t2 and t2− t1 ≤ t1− t0. It then
follows by (2.5) and a simple inductive argument that

t0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ tk+1

and

tk+1 − t0 = (tk+1 − tk) + (tk − tk−1) + · · ·+ (t2 − t1) + (t1 − t0)

≤ (qk−1 + · · ·+ 1)(t2 − t1) + t1 − t0

≤ t2 − t1
1− q

+ t1 − t0 = t∗∗.

Hence, sequence {tk} is nondecreasing, bounded from above by t∗∗ and as such
it converges to t∗ which satisfies (2.7). Let m ≥ 1. We can write

tn+m − tn = (tn+m − tn+m−1) + · · · + (tn+1 − tn)

≤ (qn+m−2 + · · · qn−1)(t2 − t1)

=
1− qm

1− q
qn−1(t2 − t1).

By letting m −→ ∞ in the preceding estimate we show (2.10). ✷

Next, we present the semilocal convergence analysis of Newton-secant
method (1.3) using the preceding notation.

Theorem 2.2. Let D,X, Y, F,G,Q be as defined previously. Suppose:

(i) There exist points x0, x1 ∈ D such that Q(x0, x1) carries X onto Y.

(ii) There exist c > 0 and a ≥ 0 such that

‖Q−1(x0, x1)‖ ≤ c

and
‖x1 − x0‖ ≤ a.

(iii) There exist w : R+ −→ R+, w1 : R3
+ −→ R+, w2 : R4

+ −→ R+ continuous,
nondecreasing functions such that for each x, y, z ∈ D

‖F ′(x)− F ′(y)‖ ≤ w(‖x − y‖),

‖[x, y;G] − [z, y;G]‖ ≤ w1(‖x− z‖, ‖x − y‖, ‖z − y‖)
and

‖[x, y;G] − [x0, x1;G]‖ ≤ w2(‖x− x0‖, ‖y − x1‖, ‖x − x1‖, ‖y − x0‖).
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(iv) ‖x2 − x1‖ ≤ b− a, where x2 defined by the algorithm and Remark 1.1.

(v) Hypotheses of Lemma 2.1 hold.

(vi) Ū(x0, t
∗) ⊂ D.

(vii) w(0) = w1(0, 0, 0) = w2(0, 0, 0, 0) = 0.

Then, there exists at least a sequence {xn} generated by method (1.3) which is well
defined in U(x0, t

∗), remains in U(x0, t
∗) for each n = 0, 1, 2, . . . and converges

to some x∗ ∈ Ū(x0, t
∗) such that F (x∗) + G(x∗) ∈ C. Moreover, the following

estimates hold

(2.11) ‖xn − x∗‖ ≤ t∗ − tn,

where sequence {tn} is defined by (2.5) and t∗ = lim
n−→∞

tn.

P r o o f. Let us define operator Am for each m = 1, 2, . . . by

Am = F (xm+1) +G(xm+1)− F (x∗)−G(x∗)

−[F (xm+1)− F (xm)− (F ′(xm) + [xm−1, xm;G])(xm+1 − xm).

+G(xm+1 −G(xm)].(2.12)

Then, we get that Am ∈ C − F (x∗)−G(x∗) and by continuity lim
n−→∞

Am = 0. It

follows that F (x∗) + G(x∗) ∈ C, since C − F (x∗) − G(x∗) is closed. Hence, the
point x∗ solves (1.1). Using mathematical induction, we shall show that sequence
{xm} is well defined and satisfies

(2.13) ‖xm+1 − xm‖ ≤ tm+1 − tm for each m = 0, 1, 2, . . . ,

where sequence {tm} is defined by (2.5). By the second hypothesis in (ii), (iv)
and (2.5), we obtain the existence of x2 which solves (1.1) for m = 1, ‖x1−x0‖ ≤
a = t1− t0, ‖x2−x1‖ ≤ b−a = t2− t1, which shows (2.13) for m = 0, 1. Suppose
that (2.13) holds for i = 3, . . . m, where x1, x2, . . . xm are defined by (1.3). Then,
we get that ‖xi − x0‖ ≤ ti − t0 < t∗. That is xi ∈ U(x0, t

∗). We can write for

(2.14) Bi(x) = −(F ′(xi)− F ′(x1) + [xi−1, xi;G]− [x0, x1;G])x

that

(2.15) Q(xi−1, xi)x = (Q(x0, x1)−Bi)x.
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By (ii), (iii), (2.15), Lemma 2.1 and the induction hypotheses we obtain in turn
that

‖Q−1(x0, x1)‖‖Bi‖ ≤ c[w(‖xi − x1‖)
+w2(‖xi−1 − x0‖, ‖xi−1 − x1‖, ‖xi − x0‖, ‖xi−1 − x1‖)]

≤ c[w(ti − t1) + w2(ti−1 − t0, ti−1 − t1, ti − t0, ti−1 − t1)]

≤ c[w(t∗ − a) +w2(t
∗, t∗ − a, t∗, t∗ − a)] < 1.(2.16)

It follows from (2.16) and the Banach perturbation Lemma [13] that

(2.17) Q−1(xi−1, xi) ∈ L(Y,X)

and

‖Q−1(xi−1, xi)‖ ≤ ‖Q−1(x0, x1)‖
1− ‖Q−1(x0, x1)‖‖Bi‖

≤ c

1− cpi
.(2.18)

The existence of xi solving (1.3) with i = k follows from the fact that Q(xi−1, xi) :
X −→ Y. Next, we must solve the problem

(2.19) F (xm) +G(xm) + [xm−1, xm;G](x− xm) ∈
F (xm−1) + (F ′(xm−1) + [xm−2, xm−1;G](xm − xm−1) +G(xm−1) + C.

The right hand side of (2.19) is contained in the cone C, since xm solves (ii).
That is any x satisfying (2.19) is feasible for (1.3). Using (2.19), we can get x as
the solution of

(2.20) x− xm ∈ Q−1(xm−1, xm)(−F (xm)−G(xm) + F (xm−1)

+G(xm−1) + (F ′(xm−1) + [xm−2, xm−1;G](xm − xm−1)).

The right hand side of (2.20) contains an element of least norm, so there exists
x̄ satisfying (2.18) and (2.19) such that

‖x̄− xm‖ ≤ ‖Q−1(xm−1, xm)‖(‖ − F (xm) + F (xm−1) + F ′(xm−1)(xm − xm−1)‖
+‖G(xm)−G(xm−1)− [xm−2, xm−1;G](xm − xm−1)‖).(2.21)

In view of (2.5), (iii), (2.18), (2.21) and the induction hypotheses we get in turn
that

‖x̄− xm‖ ≤ c

1− cpm

[
∫ 1

0

w(θ‖xm − xm−1‖)dθ‖xm − xm−1‖
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+‖[xm, xm−1;G]− [xm−2, xm−1;G]‖‖xm − xm−1‖
]

≤ c

1− cpm

[
∫ 1

0

w(θ‖xm − xm−1‖)dθ

+w1(‖xm − xm−1‖, ‖xm − xm−2‖, ‖xm−1 − xm−2‖)
]

‖xm − xm−1‖

≤ c

1− cpm

[
∫ 1

0

w(θ(tm − tm−1))dθ

+w1(tm − tm−1, tm − tm−2, tm−1 − tm−2)

]

|tm − tm−1|

= tm+1 − tm.(2.22)

By Lemma 2.1, sequence {tm} is complete. In view of (2.22), sequence {xm} is
complete in a Banach space X and

‖xm+1 − xm‖ ≤ ‖x̄− xm‖ ≤ tm+1 − tm. ✷

Remark 2.3.

(a) Our results can specialize to the corresponding ones in [19]. Choose w(t) =
Lt, w1(t) = L1 and w2(t, t, t, t) = L2. But even in this case, our results
are weaker, since we do not use the hypothesis on the divided difference of
order two

‖[x, y, z;G]‖ ≤ K

but use instead the second hypothesis in (iii) which involves only the divided
difference of order one. Moreover, the results in [19] cannot be used to solve
the numerical examples at the end of the paper, since F ′ is not Lipschitz
continuous. However, our results can apply to solve inclusion problems.
Hence, we have expanded the applicability of Newton-secant method (1.3).

(b) Our results can be improved even further as follows: Let r0 be defined as
the smallest positive zero of equation

w2(t, t, t, t) = 1.

Define D0 = D ∩ U(x0, r0). Suppose that the first and second hypotheses
in (iii) are replaced by

‖F ′(x)− F ′(y)‖ ≤ w̄(‖x− y‖)
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and

‖[x, y;G] − [z, y;G]‖ ≤ w̄1(‖x− z‖, ‖x − y‖, ‖z − y‖)
for each x, y, z ∈ D0. Denote the new conditions by (iii)’. Then, clearly
condition (iii)’ can replace (iii) in Theorem 2.2, since the iterates {xm} lie
in D0 which is a more accurate location than D. Moreover, since D0 ⊆ D,
we have that

w̄(t) ≤ w(t)

and

w̄1(t, t, t) ≤ w1(t, t, t)

for each t ∈ [0, r0) hold. Notice that the definition of functions w̄ and w̄1

depends on w and r0. Another way of extending our results is to consider
instead of D0 the set D1 = D ∩U(x1, r0 −‖x1 − x0‖). Then, corresponding
functions ¯̄w and ¯̄w1 will be at least as small as w̄, w̄1, respectively, since
D1 ⊆ D0. Notice that the construction of the ‖w‖ functions is based on the
initial data F,G,C, x0, x1.

3. Numerical examples. In this section we suggest examples where
the operator F ′ is not Lipschitz. Consequently the earlier results cannot apply
to solve (1.1), where as ours can apply.

Example 3.1. Let X = Y = C[0, 1] and consider the nonlinear integral
equation of the mixed Hammerstein-type defined by

(3.1) x(s) =

∫ 1

0

Q(s, t)

(

x(t)
3

2 +
x(t)2

2

)

dt,

where the kernel Q is the Green’s function defined on the interval [0, 1]× [0, 1] by

(3.2) Q(s, t) =

{

(1 − s)t, t ≤ s
s(1− t), s ≤ t.

Define F,G : C[0, 1] −→ C[0, 1] by

(3.3) F (x)(s) := x(s)−
∫ 1

0

G(s, t)

(

x(t)
3

2 +
x(t)2

2

)

dt,

and

Q(x)(s) = 0.
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Notice that x∗(s) = 0 is one of the solutions of (1.1). Using (3.2), we obtain

(3.4) ‖
∫ 1

0

Q(s, t)dt‖ ≤ 1

8
.

Then, by (3.2)–(3.4), we have that

(3.5) ‖F ′(x)− F ′(y)‖ ≤ 1

8
(
3

2
‖x− y‖ 1

2 + ‖x− y‖).

In view of (3.5), the earlier results requiring F ′ to be Lipschitz (such as [19, 20])

cannot apply. However, our results can apply, if we choose w(t) =
1

8

(

3

2
t
1

2 + t

)

,

w1 = 0 and w2 = 0.

Application 3.2. Let

A(yn) = F ′(yn) + [yn−1, yn;G], (9n ≥ 0)

and consider Newton-like method in the form

(3.6) yn+1 = yn − (F ′(yn) + [yn−1, yn;G])−1(F (yn) +G(yn)) (n ≥ 0).

This method has order
1 +

√
5

2
(see [4]) (same as the method of Chord), but higher

than the order of

(3.7) zn+1 = zn − F ′(zn)
−1(F (zn) +G(zn)) (n ≥ 0)

considered in [5] and the method of Chord

(3.8) wn+1 = wn − [wn−1, wn;G]−1(F (wn) +G(wn)) (n ≥ 0),

where [x, y;G] denotes the divided difference of G at the points x and y considered
in [13].

Now, we shall provide an example for this case.

Example 3.3. Let X = Y = (R2, ‖ · ‖∞). Consider the system

3x2y + y2 − 1 + |x− 1| ≤ 0

x4 + xy3 − 1 + |y| ≤ 0.

Set ‖x‖∞ = ‖(x1, x2)‖∞ = max{|x1|, |x2|}, F = (F1, F2), G = (G1, G2). For x =
(x1, x2) ∈ R

2, we choose F1(x1, x2) = 3x21x2 + x22 − 1, F2(x1, x2) = x41 + x1x
3
2 − 1,

G1(x1, x2) = |x1 − 1|, G2(x1, x2) = |x2|. We shall take [x, y;G] ∈ M2×2(R) as

[x, y;G]i,1 =
G1(y1, y2)−Gi(x1, y2)

y1 − x1
,
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[x, y;G]i,2 =
G1(x1, y2)−Gi(x1, x2)

y2 − x2
, i = 1, 2,

provided that y1 6= x1 and y2 6= x2.Otherwise define [x, y;G] to be the zero matrix
in M2×2(R). Moreover, using method (3.7) with z0 = (1, 0) we obtain Comparison
Table 1. Furthermore, using the method of Chord (3.8) with w−1 = (1, 0) and
w0 = (5, 5), we obtain Comparison Table 2. Finally, using our method (3.6) with

Comparison Table 1

n z(1)
n

z(2)
n

‖zn − zn−1‖
0 1 0
1 1 0.333333333333333 3.333E-1
2 0.906550218340611 0.354002911208151 9.344E-2
3 0.885328400663412 0.338027276361322 2.122E-2
4 0.891329556832800 0.326613976593566 1.141E-2
5 0.895238815463844 0.326406852843625 3.909E-3
6 0.895154671372635 0.327730334045043 1.323E-3
7 0.894673743471137 0.327979154372032 4.809E-4
8 0.894598908977448 0.327865059348755 1.140E-4
9 0.894643228355865 0.327815039208286 5.002E-5
10 0.894659993615645 0.327819889264891 1.676E-5
11 0.894657640195329 0.327826728208560 6.838E-6
12 0.894655219565091 0.327827351826856 2.420E-6
13 0.894655074977661 0.327826643198819 7.086E-7
. . .
39 0.894655373334687 0.327826521746298 5.149E-19

Comparison Table 2

n w(1)
n

w(2)
n

‖wn − wn−1‖
-1 5 5
0 1 0 5.000E+00
1 0.989800874210782 0.012627489072365 1.262E-02
2 0.921814765493287 0.307939916152262 2.953E-01
3 0.900073765669214 0.325927010697792 2.174E-02
4 0.894939851625105 0.327725437396226 5.133E-03
5 0.894658420586013 0.327825363500783 2.814E-04
6 0.894655375077418 0.327826521051833 3.045E-04
7 0.894655373334698 0.327826521746293 1.742E-09
8 0.894655373334687 0.327826521746298 1.076E-14
9 0.894655373334687 0.327826521746298 5.421E-20

y−1 = (1, 0), y0 = (5, 5), we obtain Comparison Table 3.
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Comparison Table 3

n y(1)
n

y(2)
n

‖yn − yn−1‖
-1 5 5
0 1 0 5
1 0.909090909090909 0.363636363636364 3.636E-01
2 0.894886945874111 0.329098638203090 3.453E-02
3 0.894655531991499 0.327827544745569 1.271E-03
4 0.894655373334793 0.327826521746906 1.022E-06
5 0.894655373334687 0.327826521746298 6.089E-13
6 0.894655373334687 0.327826521746298 2.710E-20

The solution is

x∗ = (0.894655373334687, 0.327826521746298)

chosen from the lists of the tables displayed above. Hence, method (3.6) converges
faster than (3.7) and (3.8).
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