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Abstract. The first author has recently proposed to use special geometric
parameters in the study of maximal spacelike surfaces in Minkowski 3-space.
In canonical principal parameters any maximal spacelike surface is deter-
mined up to its position in the space by the normal curvature of the surface.
Here we prove a theorem that permits a transition from general isothermal
parameters to canonical principal parameters and we make some applica-
tions on parametric polynomial maximal spacelike surfaces. Thus we show
that this approach implies an effective method to prove the coincidence of
two maximal spacelike surfaces given in isothermal coordinates by different
parametric equations.
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1. Introduction. In the differential geometry of curves in Euclidean
space R

3 the notion of a natural parameter plays an essential role. In natural
parameters the two natural equations of a regular curve determine the curve
uniquely up to a motion.

Analogous parameters in the general theory of surfaces in R
3 are not

known.

Recently Ganchev and Mihova [2] introduced natural parameters for a
wide class of surfaces, namely the class of Weingarten surfaces.

In [3] Ganchev studied maximal spacelike surfaces in the three-dimensional
Minkowski space with respect to canonical principal parameters. These param-
eters are determined up to renumbering, sign and additive constants. Then the
normal curvature satisfying the natural PDE determines locally the surface up
to a motion in R

3
1.

Weierstrass formulas for maximal spacelike surfaces in isothermal param-
eters were given in [5].

In the present paper we study the question how to make the transition
from general isothermal parameters on a maximal spacelike surface to canonical
principal parameters. We find the differential equation that allows us to realize
such a transition. Then we make some applications of this result.

Considering a holomorphic function that generates a maximal spacelike
surface S, we find all holomorphic functions that generate the same surface. Thus
we obtain a correspondence between a maximal spacelike surface and a class of
holomorphic functions.

2. Preliminaries. Let R
3
1 be the three-dimensional Minkowski space

with the standard flat metric 〈 , 〉 of signature (2, 1). We assume that the following
orthonormal coordinate system Oe1e2e3 : e21 = e22 = −e23 = 1, ei ej = 0, i 6= j is
fixed and gives the orientation of the space.

All considerations in this paper are local and all functions are supposed
to be of class C∞.

Let S be a regular spacelike surface in R
3
1 defined by the parametric

equation

x = x(u, v) = (x1(u, v), x2(u, v), x3(u, v)); (u, v) ∈ U ⊂ R
2.

Denote the derivatives of the vector function x = x(u, v) by

xu =
∂x

∂u
xv =

∂x

∂v
.
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The coefficients of the first fundamental form of S are given by

E = x2
u > 0, F = xuxv, G = x2

v > 0 .

Denote by U the unit normal to the surface, such that the triple {xu, xv, U} is
right oriented. The coefficients of the second fundamental form are given by

L = Uxuu M = Uxuv N = Uxvv .

Suppose that the principal lines of S are parametric lines and the surface has no
umbilic points. Then F = M = 0 and the principal curvatures ν1 and ν2 are
expressed by

ν1 =
L

E
, ν2 =

N

G
.

The Gauss curvature K and the mean curvature H of a surface S are
defined by

K =
LN −M2

EG− F 2
= ν1ν2 H =

EN − 2FM +GL

2(EG − F 2)
=

ν1 + ν2

2
.

The surface S is said to be maximal if its mean curvature vanishes identically. In
this case the Gauss curvature is negative and the principal curvatures are related
by ν1 + ν2 = 0. Then the normal curvature ν of S is defined to be the function
ν =

√
−K, i.e. the normal curvature is the positive principal curvature [3].
In the different aspects of the study of a surface one can consider special

parameters, closely referred to the problem. We recall two of these kinds of
special parameters, that we shall use:

— the parameters are called isothermal, if E = G, F = 0;
— the parameters are called principal, if the parametric lines are principal

lines.
It is always possible to change the parameters (u, v) so that the resulting

parametrization is isothermal or principal.
Let us now consider a maximal spacelike surface parameterized by isother-

mal parameters. Then very often it is convenient to use complex functions to
investigate this surface. We recall briefly this procedure.

Let f(z) and g(z) be two holomorphic functions defined in a regionD ⊂ C.
Assume that |g(z)| − 1 never vanishes. Then f(z) and g(z) define a Weierstrass
curve as follows [5]:

Ψ(z) =

∫ z

z0

(
1

2
f(z)(1 + g2(z)),

i

2
f(z)(1− g2(z)), f(z)g(z)

)
dz.
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The real and imaginary parts x(u, v) and y(u, v) define two conjugate maximal
space-like surfaces in isothermal parametrizations.

For example the analogue of the classical Enneper surface is defined by

x(u, v) =

(
u3

6
− uv2

2
+

u

2
,−v3

6
+

u2v

2
− v

2
,
u2 − v2

2

)
.

This surface is generated by the Weierstrass formula with the functions f(z) =
1, g(z) = z.

Conversely, every maximal spacelike surface can be obtained at least lo-
cally in this way. Note however that a maximal spacelike surface can be generated
via the Weierstrass formula by different pairs of holomorphic functions f(z), g(z).

It is easy to see that the coefficients E and G of the first fundamental
form of the surface defined via the Weierstrass formula with functions f(z), g(z)
are given by

(2.1) E = G =
1

4
|f |2(1− |g|2)2.

Analogously the normal curvature is

(2.2) ν =
4|g′|

|f |(1− |g|2)2 ,

see [4, Theorem 22.33].

Recently Ganchev [3] proposed maximal spacelike surfaces in Minkowski
space to be investigated in special principal parameters, namely the canonical
principal parameters. If the surface is parameterized with such parameters, then
the coefficients of the I and II fundamental forms are expressed only by the
invariant ν:

E = G =
1

ν
> 0 F = 0

L = 1 M = 0 N = −1.

This idea leads to the special Weierstrass curve

(2.3) Φ(z) =

∫ z

z0

(
1 + g2(z)

2g′(z)
,
i(1− g2(z))

2g′(z)
,
g(z)

g′(z)

)
dz

and the real part of this curve is a maximal spacelike surface with canonical
principal parametrization. We shall use also the following theorem:
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Theorem A ([3]). If a surface is parameterized with canonical principal
parameters, then its normal curvature satisfies the PDE

∆ ln ν − 2ν = 0.

Conversely for any solution ν(u, v) of this PDE there exists locally a unique (up to
position in the space) maximal space-like surface with normal curvature ν(u, v),
(u, v) being canonical principal parameters.

The canonical principal parameters (u, v) are determined uniquely up to
the following transformations [3]

(2.4)
u = εū+ a

v = εv̄ + b
ε = ±1, a = const , b = const.

3. Transformation of the isothermal parameters to canonical

ones. Suppose the maximal spacelike surface S is defined as the real part of the
Weierstrass maximal curve

(3.1) Ψ(z) =

∫ z

z0

(
1

2
f(z)(1 + g2(z)),

i

2
f(z)(1 − g2(z)), f(z)g(z)

)
dz.

We look for a transformation z = z(w) so that the resulting curve Φ(w) has the
form

Φ(z) =

∫ z

z0

(
1 + g̃2(z)

2g̃′(z)
,
i(1− g̃2(z))

2g̃′(z)
,
g̃(z)

g̃′(z)

)
dz

for a holomorphic function g̃(w). The real part of this curve will be a canonical
principal representation of the given surface S. The equality Ψ(z(w)) = Φ(w)
gives Ψ′(z(w))z′(w) = Φ′(w). Hence it is easy to derive

(3.2) f(z(w))z′(w) =
1

g̃′(w)
, g(z(w)) = g̃(w).

The last equation implies

g̃′(w) = g′(z(w))z′(w)

and now from the first equation of (3.2) we obtain

(3.3) (z′(w))2 =
1

f(z(w))g′(z(w))
.

Now we know also the function g̃(w) = g(z(w)).
So we have the following
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Theorem 3.1. Let the maximal spacelike surface S be defined by the
real part of (3.1). Any solution of the differential equation (3.3) defines a trans-
formation of the isothermal parameters of S to canonical principal parameters.
Moreover the function g̃(w) that defines S via the formula (2.3) is given by
g̃(w) = g(z(w)).

Corollary 3.2 ([3]). The canonical principal parameters of a maximal
spacelike surface are determined up to the transformations (2.4).

As an application of Theorem 3.1 consider the maximal surface S gener-
ated by the functions

(3.4) f(z) = a, g(z) = bz + c, a, b, c ∈ C, a, b 6= 0

via the Weierstrass formula. Equation (3.3) has the form

(z′(w))2 =
1

ab

and its solution is
z(w) = ± w

√
a
√
b
+ const.

According to Corollary 3.2 and Theorem 3.1 we may replace z in g(z) with
z

√
a
√
b
− c

b
and we will obtain a parametrization of the surface S in canonical

principal parameters via the formula (2.3) and the function

g̃(z) = g

(
z

√
a
√
b
− c

b

)
=

√
b√
a
z.

We find directly its normal curvature:

ν =
4
∣∣ b
a

∣∣
(
1−

∣∣ b
a

∣∣ (u2 + v2)
)2

Remark that the obtained result shows that the surface S0 generated via the
Weierstrass formula by the functions

f(z) =
|a|
|b| , g(z) = z

has the same normal curvature in canonical principal parameters. So because of
Theorem A we may identify S with S0. On the other hand the Weierstrass formula
implies that S0 is homothetic to the standard Enneper surface (a = b = 1).

So as in the case of minimal surfaces in the Euclidean space [1] we have
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Corollary 3.3. The maximal surface generated by the functions (3.4)
coincide with the Enneper surface up to position in the space and homothety.

4. Holomorphic functions generating a maximal space-like

surface. It is known that a maximal spacelike surface is generated by different
pairs of holomorphic functions via the Weierstrass formula. For example the
Enneper surface is generated by the pair

f(z) = 1 g(z) = z

but also by

f(z) = ez g(z) = ez

and of course many others. It is natural to ask: under what condition do two
pairs of holomophic functions give rise to the same maximal spacelike surface via
the Weierstrass representation? It is not difficult to prove the following:

Proposition 4.1. Suppose the pairs (f̃(z), g̃(z)) and (f(w), g(w)) gen-
erate two maximal spacelike surfaces via the Weierstrass formula. Then these
surfaces coincide (up to translation) iff there exists a function w = w(z), such
that

g̃(z) = g(w(z)) and f̃(z) = f(w(z))w′(z).

For the two pairs above, that generate the Enneper surface, the function
w(z) = ez.

Analogously the following question related to the formula (2.3) arises: how
are related the functions that generate a maximal spacelike surface in canonical
principal parameters? We have the following result in this direction:

Theorem 4.2. Let the holomorphic function g(z) generate a maximal
spacelike surface in canonical principal parameters, i.e. via (2.3). Then for an
arbitrary complex number α with |α| 6= 1 and for an arbitrary real number ϕ any
of the functions

(4.1) eiϕ
α+ g(z)

1 + ᾱg(z)
and eiϕ

1

g(z)

generates the same surface in canonical principal parameters (up to position in
the space). Conversely any function that generates this surface (up to position in
the space) in canonical principal parameters has the above form.
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P r o o f. Let us consider the function

g̃(z) = eiϕ
α+ g(z)

1 + ᾱg(z)
.

Denote by S the maximal spacelike surface generated via the formula (2.3) by
g(z) and by Ψ(z) the corresponding complex curve. Analogously we define S̃ and
Ψ̃(z).

We may prove that S and S̃ coincide (up to motion) by a direct compu-
tation of their normal curvatures using the formula

ν =
4|g′|2

(1− |g|2)2

and applying Theorem A. Now we show another possibility for the proof, thus
clarifying the relation between S, S̃ and the transformation (4.1). We have

Ψ′(z) =

(
1

2

1 + g2(z)

g′(z)
,
i

2

1− g2(z)

g′(z)
,
g(z)

g′(z)

)
,

Ψ̃′(z) =

(
1

2

1 + g̃2(z)

g̃′(z)
,
i

2

1− g̃2(z)

g̃′(z)
,
g̃(z)

g̃′(z)

)
.

Let α = a+ bi, a, b ∈ R. Consider the matrices

A =




cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


 B =




1 + a2 − b2

1− a2 − b2
2ab

1− a2 − b2
2a

1− a2 − b2

2ab

1− a2 − b2
1− a2 + b2

1− a2 − b2
2b

1− a2 − b2

2a

1− a2 − b2
2b

1− a2 − b2
1 + a2 + b2

1− a2 − b2




.

A straightforward verification shows that these matrices belong to SO(2, 1) and
that

ABΨ′(z) = Ψ̃′(z).

The last equality implies up to translation

AB x(u, v) = x̃(u, v).

Hence the considered transformation of the function g(z) corresponds to a motion
applied to the surface S.
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Now for the converse we note that every motion can be presented as an
SO(2, 1)-rotation, i.e. a product AB of two matrices of the above form and then
a translation. ✷

Remark 1. The second transformation (4.1) can be considered as a
special case of the first one with α = ∞.

Remark 2. The group of transformations (4.1) is SO(2, 1) and it is not
a connected group. Its identity component SO+(2, 1) consists of the transforma-
tions with |α| < 1.

Remark 3.

1. When we use as above the Weierstrass representation in the form (3.1),
the identity component SO+(2, 1) of the transformation group (4.1) acting on g

and preserving S may be writen also in the form

g̃(z) =
āg(z) + b̄

bg(z) + a
, |a|2 − |b|2 = 1 , a, b ∈ C.

This is the group SU(1, 1) of unitary matrices with respect to the indefinite
Hermitian dot product in C

2
1.

2. Analogously if we use the Weierstrass representation in the form

Ψ(z) =

∫ z

z0

(
1

2
f(z)(1− g2(z)), f(z)g(z),

1

2
f(z)(1 + g2(z))

)
dz,

then we obtain the following group of linear fractional transformations of g:

g̃(z) =
ag(z) + b

cg(z) + d
, ad− bc = 1 , a, b, c, d ∈ R.

This is the special linear group SL(R, 2) of real matrices.
3. If we use the Weierstrass representation in the form

Ψ(z) =

∫ z

z0

(
1

2
f(z)(1 + g2(z)), if(z)g(z),

1

2
f(z)(1− g2(z))

)
dz.

then we obtain the following group of linear fractional transformations of g:

g̃(z) =
ag(z) + ib

icg(z) + d
, ad+ bc = 1 , a, b, c, d ∈ R,

This is the group of SL(C, 2) matrices, which are real along the main diagonal
and imaginary along the antidiagonal.

Of course these groups are isomorphic.
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