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ABSTRACT. This paper is devoted to presenting an explicit expression for
the A-radial part of matrix coefficients of the irreducible unitary representa-
tions in terms of Gaussian hypergeometric series and some involved expres-
sions of binomial coefficients

1. Introduction. Let G be the Lie group and (7, V') be a unitary rep-
resentation of G' on a complex Hilbert space V. Then, for arbitrary vectors e,
and e,, in an orthogonal basis {e;} of V, the following functions

tom: G —C

gr— <T(g)en,em>
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are called matrix coefficients of the representation (7, V). They satisfy the Schur
orthogonality relation

0) €n 7£ €k

tm,t = 1
< kl>L2(G) diT(V)@m em){(ex,e); en = k.

The matrix coefficients of irreducible representations of finite groups and their
profound role in harmonic analysis and physics are well known to any one who
has any connection to harmonic analysis and physics. They play a prominent role
in the representation theory of these groups as developed by Burnside, Frobenius,
and Schur. Among the problems raised, there is the one related to finding explicit
analytic formulas for them but this problem remained open except for certain
cases.

Moreover, the beautiful formulas for the A-radial part of the the matrix
coefficients for the higher rank Lie groups in the literature found by the specialists
of representation theory are formulated unopened to avoid certain combinatorial
complexity and the formulas are sometimes not effectively computable.

In this paper we want to have an explicit formula for the A-radial part
of the matrix coefficients of the unitary irreducible representation (1}, Hp,) of

1
SU(n,1), h > 3 where Hj, is the weighted Bergmun space on the unit ball.

We described them uniformly in terms of standard integrals with respect to the
standard Cartan decomposition of the group SU(n,1). More precisely, the main
results of this paper can be stated as follow:

Let {qﬁg | p € N"} be an orthonormal basis of Hj,

L(2h +[p|)12
h _ p1 ... ~Pn — —
¢p(z) - |: p'F(Qh) i| Zl Zn s D= (ph .. 7pn)7 p' — pl' pn'

and |p| =p1+ - + pn.

According to the Cartan decomposition of G = KAK (i.e. g = kiaiks), the A-
radial part of the matrix coefficient t;fq(g) = <Th(g)¢z , qbg >h is given by ¢4, (a;) =

<Th(at)¢2, ¢lh>h-

1
Theorem 1.1. Let h > 2 k= (ki,...,kp) and I = (Iy,...,1y). Then
for k1 > 11, we have
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i (a) = 2(|1] + n)l! (—=1)* 1D (2h) [k
i n  T@Rh+ b +1)\ 1
x  cosh ¢~ CPHEDFRL gann R =l P (<1 20 + k|, k1 — 11 + 1; tanh ¢2),
n n! ‘ ) ‘ ‘ ‘
where = —————— is the binomial coefficient and F(a,b, c;x) is the clas-
m m!(n —m)!

sical Gauss hypergeomeric function (see [2]).
For Iy > k1, we replace k1 and [ by l; and kp, respectively.

This paper is organized as follows:
In Section 2, we review the basis results on SU(n, 1). Section 3 is devoted
to the proof of main result.

2. The group SU(n, 1) and its unitary irreducible represen-
tation. We review some basic definitions and known results of harmonic analysis
on the unit ball B" in C" which will be needed in the sequel (refereing to [1] for
more details on this subject). More precisely, we recall the Cartan decomposition
of SU(n,1). Also, we give an unitary irreductible representation of SU(n,1).

Let SU(n,1) be the group consisting of all matrices g in SL(n + 1,C)
which leave invariant the quadratic form on C™"'!

2., .2 2 _ .2
(21, vy 2ny1) — 21 25+ 425, — 2y

For any matrix g we denote by g* = g’ its conjugate transpose. Then the group
SU(n,1) can be realized as

" I, O

SU(n,l)z{gESL(n—i—l,(C)\gJg:J}, J = 0 -1 )

A B A*A-C*C =1,

Thus writing g € SU(n,1) as g = ( c D >, with ¢ A*B=C*"D We
B*B—-D*D =1.

denote by K a maximal compact subgroup of SU(n,1)

K= { < 1‘04 Jg >‘M € U(n),N € C and det(M) det(N):l} — S(U(n)xU(1)

and
cosht 0 sinh ¢

A=< a; = 0 1,1 0 , teR
sinh ¢ 0 cosh ¢
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Then the Cartan decomposition of SU(n,1) is SU(n,1) = KAK.
1
Let Hp, h > 3 be the weighted Bergman space of index h

Hy, = {f : B" — C analytic ‘ Ch/ (1= |22 7L f(2) Pdu(z) < oo},
Bn

I'(2h
where dp(z) being the Lebesgue measure on B" and Cj, = #
n!l'(2h — n)
For any multi-index p = (p1,...,pn) of non negative integers, we write
lp| =p1+ -+ pnp and p! = pi!- - pyl.
For any z = (21,...,2,) € C", we write 2 = 2[28% ... 2P». The standard

orthonormal basis of Hy, is {qb;} | p € N"} where
1
I'(lpl+2h) ]2
h — P
% (%) [ pTn) | ”

We denote by (, ), the inner product of H,

(60 = Cn [ (1= B D0 du()
For any g € SU(n, 1), we define the operator Tj,(g) on Hj by

Th(9)F(2) = (Cz + D)2 F(g.z) = (Cz + D) *"F((Az + B)(Cz + D)),

., (A B
9 =\c p )

Then (T}, Hp) is an irreducible unitary representation of SU(n, 1).
Now, we consider the coefficient matrix tgq = <Th(g)¢)z,¢)g>h of the group

SU(n,1) according to the above orthonormal basis.
Since Th(gl.QQ) = Th(gl)Th(QQ)u 91,92 € SU(n7 ]-)7 we have

tho(9192) = > thilg1)ty(92).
keNm

According to the Cartan decomposition SU(n,1) = KAK each element ¢ in
SU(n, 1) can be written as g = kjayke. Henceforth

keEN™
leNm
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3. Proof of Theorem 1.1. Now we compute for

cosh ¢ 0 sinh ¢
ay = 0 In— 1 0
sinh ¢ 0 cosht

the matrix coefficient

(Th(ayoh ol
= c,,/ (1= [2]%)?= 4D (cosh t — z; sinh )~ 2@l (as.2) o () dp(z)
Bn

= Ch/ (1 _ |Z‘2)2h*(n+1)(cosht -z Sinht)f(2h+\k|)
B”l
X (21 cosh t — sinh t)k1 Z§2 e Zﬁ" Eldu(z)
= Caleosh ) T [ (1 20Dty

n

(21 — tanh t)F1 282 . 2kn gl (2).
Since |z; tanht| < 1, we can use the binomial formula

(1—z) = Z%xk, lz] <1

keN

to rewrite the above integral as

<Th(at)¢2> ¢lh>h = Cj(cosh ¢)~ChHlkD TR

> 2h + [k / (1= 2?0 (=2 tanh 1)

|
peEN p:

k?l tanht —
x Z A g e A duz)

= Cp(cosht) —(2h+|k|)+k1 ZZ 1)atp( QZ ;_(|:\) k;)(tanht)pﬂ
.g. 1 — !

peN ¢=0

/ (1 B ‘Z|2)2h—(n+1)zf—Q+klz§2 . Zﬁ"%ldu(z).

X

Since

/ (1-— |z\2)2h*("+1)zf_q+k1z§2 o T )
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1
_ / (1 —T2)2h_(n+1)r2n_1+|l|+ka—qdr/ w;ffq+k1w§2. w " dw
0 oBn
I'(2h —n)(|I 1 _
( )| +n+ )/ wzlo q+k1w12€2 w wdw
I'(2h+ |l +1) oBn

F@2h —n)L(|l| +n+1) 2(n— 1)
L@2h+ || +1) (n—14 )

when

the integral in the above sum equals
p—q+ki=0h
kj:lj, jZQ,...,TL
and vanishes otherwise. Thus
(Tilan)oh, ol
I+ n)I'(n)I'IT'(2h —n)
_ 1 g~ @A)+ 2(
Ci(cosh )™ T(2h + 1]+ 1)

PR (2 + k), k!
XZZ @h 4 FDk (o

S plg!(k1 — q)!

Fi=bi(|1] +n)L'(n)I'T(2h — n)
I'2h+ 1] + 1)
(=1)P(2h + [k[)pk: ! 2
X tanh ¢)P
D o T
with ]{Jj :lj,j:2,...,n
Henceforce, by using the following equality
(=1)P(ky — 19)! _ (=l)p
(h=pMkr+p—1) (k1 =1 +1)

= QC'h(coshIf)_(Qh'HkDH’l (=1) (tannht)]“_ll

we have
) 2(|1] +n)l! (—=1)¥1=1D(2h) [k
th(ar) = <Th(at)¢ka¢l > n L2k + |h| + 1) <le>

_ _ 2h + |k|)p(=l1)p
x cosh ¢~ hFIkDFRL (ganp )kl ( P tanht
( ) ;;\I ki =1+ 1), g )

2(1) + n)I! (=1)"1=0T(2h) [k
n  T@h+|h+1)\U
x cosh t~CPHEDFRL (panh ¢)M1 =0 P (<1, 2h + |k|, k1 — 1y + 1; (tanh £)?).
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Remark 3.1. For k € K = S(U(n) x U(1)) we are not yet able to give

a simple explicit expression for the matrix coefficient tzq(k:) = <T h(k)(bg , (bg >h.
But we can rewrite it as a series. Indeed:

Let k = ( A 699 ) e K, A= (ajj)ijand z = (21,...,2,) =r(wi,...,wy) €

0
B". Then,

n
E :aljwj
J=1

Az =r :
n
D> anjty
j=1
Thus
1 n n
U (k) = 0@+ / (1 = p2)2h= (D) 20— 1lplk] gy / 1wy Peatdu.
0 oB" iy i1
Making use of the identity
m! k k
ki tkn=m

we obtain for p = (p1,...,pn), and ¢ = (q1,...,qn) that

o (k) G0eh+lp) L(2h —n)T'(n + |p| + 1)
pa I'(2h + |p| + 1)

J
pilt - lpalt TT o]

1<i,5<n
x D
p!

PRy pl=p;,

n i
ijl quq,b-

1<ij<n

1 1 1 2 2 2 n n n
it gt PRl
x/ wlfl Pz p”wgl P2 P B2 Prpd dw
oBn

P’
. q'p! a,l
0PI (2R)D(n + |p| 4+ 1) Z 1§11,_]['§n Y
 n(n—1+p)T(2h+ [p| +1) ' I pzl
Sioipl=pis 1<ij<n
Py q§:q¢

1<ij<n
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