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Abstract. Let G be the semidirect product V ⋊K where K is a connected
semisimple non-compact Lie group acting linearily on a finite-dimensional
real vector space V . Let O be a coadjoint orbit of G whose little group K0

is a maximal compact subgroup of K. We construct an explicit symplec-
tomorphism between O and the symplectic product R

2n × O′ where O′ is
a little group coadjoint orbit. We treat in details the case of the Poincaré
group.

1. Introduction. Coadjoint orbits of Lie groups appear in many aeras
of mathematics and physics. In particular, coadjoint orbits can be used in har-
monic analysis to classify the irreducible unitary representations of Lie groups
and, in physics, to describe the classical phase spaces corresponding to internal
degrees of freedom of quantum particles, see [19], [16], [25], [21].
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Coadjoint orbits are basic examples of homogeneous symplectic manifolds
and their geometrical structure have been intensively studied, see for instance [5],
[19].

In this note, we focuse on Lie groups which are semidirect products of
the form G := V ⋊ K where K is a non-compact semisimple Lie group acting
linearily on a finite-dimensional real vector space V . The coadjoint orbits of such
groups were described by J. H. Rawnsley in [23] and the symplectic structure of
these coadjoint orbits was studied by P. Baguis in [2].

Here we consider a coadjoint orbit O of G whose little group K0 is a
maximal compact subgroup of K. As it will be explained in Section 6, this is the
direct generalization of the ’massive’ coadjoint orbits of the Poincaré group, see
[21], Chapter IV, Section 3 and [25], Chapter 8.

In [8], assuming that O is integral and then associated with a irreducible
unitary representation π of G [19], [20], we introduced the Berezin-Weyl corre-
spondence W from a space of functions on R

2n × O′, where O′ is a little group
coadjoint orbit, onto a space of operators on the space of π. Then, by dequantizing
the derived representation dπ by means of W, that is, by computingW−1(dπ(X))
for each element X of the Lie algebra of G, we obtained an explicit symplecto-
morphism from the symplectic product R2n×O′ onto O. Note that O is integral
if and only if O′ is, see [23].

The main aim of the present note is to extend this result to the case where
O is not assumed to be integral. In other words, we show that the existence and
the explicit form of the symplectomorphism R

2n×O′ → O do not depend on the
existence of unitary irreducible representations of G attached to O, see Section 5.
Since our strategy is to deduce the general case from the case where O is integral,
we review some results from [8] in Section 3 and Section 4. Moreover, in Section
6, we give formulas for the symplectomorphism in the case of the (generalized)
Poincaré group which is of some importance in mathematical physics, see [16],
[25].

We can hope for further applications of our results, namely (1) the study
of contractions of Lie group representations in the spirit of [14], [11], [10] and (2)
the construction of explicit star-products on O, see [6] and its references.

2. Generalities. Here we use the notation of [23]. Let K be a con-
nected, non-compact, semisimple real Lie group with finite center. Let k be the
Lie algebra of K. For k in K and f in the dual k∗ of k we denote by k · f the
coadjoint action of k on f .

We assume that K acts linearily on a finite-dimensional real vector space
V and, for k in K and v in V , we denote by k · v the action of k on v. We also



Symplectic decomposition . . . 23

denote by (k, p) → k · p the contragredient action of K on V ∗. Let (A, v) → A · v
and (A, p) → A · p the corresponding representations of k on V and V ∗. For each
v in V and p in V ∗ we define v ∧ p ∈ k∗ by (v ∧ p)(A) = p(A · v) = −(A · p)(v) for
A ∈ k. Note that we have

k · (v ∧ p) = k · p ∧ k · v

for each k ∈ K, v ∈ V and p ∈ V ∗.
We can form the semidirect product G = V ⋊K. The multiplication of

G is
(v, k)(v′, k′) = (v + k · v′, kk′)

for each v, v′ in V and k, k′ in K. The Lie algebra g of G is the vector space
V × k equipped with the Lie bracket

[(a,A), (a′, A′)] = (A · a′ −A′ · a, [A,A′])

for each a, a′ in V and A, A′ in k.
We can identify g∗ with V ∗ × k∗. The coadjoint action of G on g∗ is then

given by
(v, k) · (p, f) = (k · p, k · f + v ∧ k · p)

for each (v, k) ∈ G and (p, f) ∈ g∗. We can identify K-equivariantly k to its dual
k∗ by using the Killing form of k. Then g∗ can be identified to V ∗ × k.

Let us consider the orbit O(ξ0) of the element ξ0 = (p0, f0) of g
∗ ≃ V ∗× k

under the coadjoint action of G on g∗. Henceforth we assume that the little group
K0 = {k ∈ K : k · p0 = p0} is a maximal compact subgroup of K. Then K0 is a
connected semisimple subgroup of K [17]. Let k0 be the Lie algebra of K0. We
have the Cartan decomposition k = k0 ⊕ p where p is the orthogonal complement
of k0 in k. Then we have p = {v ∧ p0 : v ∈ V }, see [8] and [23], Lemma 1. From
this, we see that, without loss of generality, we can assume that ξ0 = (p0, ϕ0)
with ϕ0 ∈ k0. We denote by o(ϕ0) ⊂ k0 the orbit of ϕ0 ∈ k0 ≃ k∗0 under the
(co)adjoint action of K0.

Let n be the dimension of p. We know that the restriction to p of the
Killing form 〈·, ·〉 of k is positive definite [17]. We fix an orthonormal basis
(E1, E2, . . . , En) for p and we denote by (t1, t2, . . . , tn) the coordinates of T ∈ p

in this basis.
Before going on, let us recall the definition of a symplectic product. Let

(M1, ω
1) and (M2, ω

2) be two symplectic manifolds and let p1 : M1 ×M2 → M1

and p2 : M1 ×M2 → M2 be the projections. Then p∗1ω
1 + p∗2ω

2 is a symplectic
form on M1 ×M2 which is denoted by ω1 ⊗ ω2 and (M1 ×M2, ω

1 ⊗ ω2) is called



24 Benjamin Cahen

the symplectic product of (M1, ω
1) and (M2, ω

2), see for instance [22]. Now,
consider another symplectic manifold (M3, ω

3). If M3 is symplectomorphic to
the symplectic product M1 ×M2, we say that M3 has symplectic decomposition
M1 ×M2.

Let ω0 and ω1 be the Kirillov 2-forms on O(ξ0) and o(ϕ0), respectively.
Denote by {·, ·}1 and {·, ·}0 the Poisson brackets associated with ω1 and ω0. We

consider the symplectic form ω :=

n
∑

k=1

dtk∧dsk on p2. The corresponding Poisson

bracket on C∞(p2) is given by

{f, g} =
n
∑

k=1

(

∂f

∂tk

∂g

∂sk
−
∂f

∂sk

∂g

∂tk

)

.

We denote by {·, ·}2 the Poisson bracket associated with the symplectic
form ω2 := ω⊗ω1 on p2× o(ϕ0). Let u, v ∈ C∞(p2) and a, b ∈ C∞(o(ϕ0)). Note
that for f(T, S, ϕ) = u(T, S)a(ϕ) and g(T, S, ϕ) = v(T, S)b(ϕ) we have

{f, g}2 = u(T, S)v(T, S){a, b}1 + a(ϕ)b(ϕ){u, v}.

3. Representations. The material of this section and of the next sec-
tion is essentially taken from [8].

In this section (and in the next section) we assume that o(ϕ0) is associated
with the unitary irreducible representation (ρ,E) of K0 as in [28], Section 4. This
correspondence goes as follows. Let T be a maximal torus of K0 with Lie algebra
t. We fix an ordering on the root system ∆(gc, tc). Now, let λ ∈ (it)∗ be the
highest weight of (ρ,E). We then define ϕ0 ∈ k∗0 by ϕ0(X) = −iλ(X) for X ∈ t

and ϕ0(X) = 0 for X in the orthogonal complement of t in k0 with respect to
the Killing form of k0. The orbit of ϕ0 under the (co)adjoint action of K0 is then
said to be associated with the representation (ρ,E).

Let Z(p0) be the orbit of p0 under the action ofK on V ∗. By [17], Chapter
VI, Theorem 1.1, we see that the map e : T → expT · p0 is a diffeomorphism
from p onto Z(p0).

For p ∈ Z(p0) we denote by M(p) the unique element of exp(p) such that
M(p) · p0 = p. Consequently, if p = e(T ) then M(p) = expT .

Let dT = dt1dt2 . . . dtn be the Lebesgue measure on p. Then, the K-
invariant measure dµ on Z(p0) is given by dµ = e∗(δ(T )dT ) where δ(T ) :=

Det

(

sinh adT

adT
|p

)

, see [17].
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Since we assume that o(ϕ0) is integral, O(ξ0) is integral [23]. Then O(ξ0)
is associated with the unitarily induced representation π = IndGV ⋊K0

(ei〈p0,·〉⊗ ρ).
By a result of G. Mackey, π is irreducible since ρ is [26]. The representation π

is usually realized on the Hilbert space L2(Z(p0), E) which is the completion of
the space of compactly supported smooth functions ψ : Z(p0) → E with respect
to the norm defined by

‖ψ‖2 =

∫

Z(p0)
〈ψ (p), ψ(p)〉E dµ (p)

as follows. For (v, k) ∈ G the action of the operator π(v, k) is given by

(π (v, k)ψ) (p) = ei〈p,v〉 ρ(M(p)−1 kM(k−1 · p))ψ (k−1 · p).

However, having in mind to use the Weyl calculus, it is convenient to
realize π on the Hilbert space L2(p, E) defined as the completion of the space
C∞
0 (p, E) of compactly supported smooth functions φ : p → E with respect to

the norm given by

‖φ‖2 =

∫

p

〈φ(T ), φ(T )〉E dT.

To this aim, we introduce the unitary operator φ → ψ from L2(p, E)

to L2(Z(p0), E) defined by ψ(e(T )) = δ(T )1/2φ(T ). Let us denote by k · T the
action of K on p which corresponds to the action of K on Z(p0), that is, we have
e(k · T ) = k · e(T ) for k ∈ K and T ∈ p. Then we obtain

(π (v, k)φ) (T ) =

(

δ(T )

δ(k−1 · T )

)1/2

ei〈e(T ),v〉 ρ(M(e(T ))−1 kM(k−1 e(T )))φ (k−1·T )

for each (v, k) ∈ G.
Now we give an explicit expression for the differential dπ of π. Let us

introduce some additional notation. For A ∈ k and T ∈ p we define A · T :=
d

dt
(exp tA) · T

∣

∣

t=0
. Futhermore for p ∈ Z(p0) and A ∈ k we set

L(p,A) =
d

dt

(

M(p)−1 exp(tA)M(exp(−tA) · p)
)

∣

∣

∣

t=0
.

Let prk0 and prp be the projections of k onto k0 and p associated with the
direct decomposition k = k0 ⊕ p.

If u is an endomorphism of k which leaves the space p invariant, the trace
and the determinant of the restriction of u to p are respectively denoted by Trp u
and Detp u.

We have the following lemma.
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Lemma 3.1 ([8]). (1) For A ∈ k and T ∈ p, we have

A · T = − adT prk0(A) +
adT

tanh adT
prp (A).

(2) For p = e(T ) ∈ Z(p0) and A ∈ k, we have

L(p,A) = prk0(A)− tanh
(1

2
ad T

)

prp (A).

(3) For A ∈ k and T ∈ p we have

d

dt
δ(exp(tA) · T )

∣

∣

t=0
= δ(T )Trp

(

γ(adT ) ad prp(A)
)

where the function γ is defined by γ(z) =
z cosh z − sinh z

z sinh z
if z 6= 0 and by

γ(0) = 0.

From this result, we deduce the following expression of dπ.

Proposition 3.2 ([8]). For each (v,A) ∈ g and φ ∈ C0(p, E), we have

(dπ(w,A)φ)(T ) = i 〈e(T ), w〉φ(T ) + dρ

(

prk0(A)− tanh
(1

2
ad T

)

prp (A)

)

φ(T )

+ dφ(T )

(

adT prk0(A)−
adT

tanh adT
prp (A)

)

+
1

2
Trp

(

γ(T ) ad prp(A)
)

φ(T ).

4. Dequantization. Recall that the Berezin calculus is a one-to-one
linear map which associates with each operator A on E a complex-valued function
s(A) on o(ϕ0) called the symbol of the operator A, see [3], [4], [12]. The Berezin
calculus has various properties for which we refer the reader to [3], [12], [9],
[28]. Here, we just mention the following property. Let dρ denote the derived
representation of ρ.

Proposition 4.1 ([9]). For each X ∈ k0 and ϕ ∈ o(ϕ0), we have

s(dρ(X))(ϕ) = i〈ϕ,X〉.

Now we introduce the Berezin-Weyl calculus on p2 × o(ϕ0) by combining
the Berezin calculus with the Weyl calculus for End(E)-valued functions.

We say that a smooth function f : (T, S, ϕ) → f(T, S, ϕ) is a symbol on
p2× o(ϕ0) if for each (T, S) ∈ p2 the function ϕ→ f(T, S, ϕ) is the symbol in the
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Berezin calculus on o(ϕ0) of an operator f̂(T, S) on E. Moreover, a symbol f on
p2 × o(ϕ0) is called a S-symbol if the function f̂ belongs to the Schwartz space of
rapidly decreasing smooth functions on p2 with values in End(E).

Let us consider the Weyl calculus for End(E)-valued functions, which is
a slight refinement of the usual Weyl calculus for complex-valued functions [18].
For any S-symbol f on p2 × o(ϕ0) we define the operator W(f) on the Hilbert
space L2(p, E) by the equation

(W(f)φ)(T ) = (2π)−n
∫

p2
ei〈S,Z〉f̂

(

T +
1

2
S,Z

)

φ(T + S) dS dZ

for each φ ∈ C∞
0 (p, E).

The Weyl calculus can be extended to much larger classes of symbols [18],
in particular to polynomial symbols. We say that a symbol f on p2 × o(ϕ0) is
a P-symbol if the function f̂(T, S) is polynomial in S. Let f be the P-symbol
defined by f(T, S, ϕ) = u(T )Sα where u ∈ C∞(p, E) and with the usual notation
Sα := sα1sα2 . . . sαn for each multi-index α = (α1, α2, . . . , αn). Then, by [27], we
have

(W(f)φ)(T ) =

(

i
∂

∂S

)α(

u

(

T +
1

2
S

)

φ(T + S)

)

∣

∣

∣

Z=0

In particular, if f(T, S, ϕ) = u(T ) then (W(f)φ)(T ) = u(T )φ(T ) and if f(T, S, ϕ) =
u(T )Sk then

(W(f)φ)(T ) = i

(

1

2
∂ku(T )φ(T ) + u(T )∂kφ(T )

)

where ∂k denotes the partial derivative with respect to the variable tk.

The correspondence f → W(f) is called the Berezin–Weyl calculus on
p2 × o(ϕ0). The following property of W can be proved by a direct computation.

Proposition 4.2 ([8]). Let f and g two P-symbols on p2 × o(ϕ0) of the

form

u(T ) + 〈v(T ), ϕ〉 +

n
∑

k=1

wk(T )Sk

where u ∈ C∞(p), v ∈ C∞(p, k0) and wk ∈ C∞(p) for k = 1, 2, . . . , n. Then we

have

[W(f), W(g)] = −iW({f, g}2).

Also, we have the following result.
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Proposition 4.3 ([8]). For each X = (w,A) ∈ g, the Berezin-Weyl

symbol of the operator −idπ(X) is the P-symbol fX on p2 × o(ϕ0) given by

fX(T, S, ϕ) = 〈e(T ), w〉 + 〈ϕ,L(e(T ), A)〉 + 〈A · T, S〉.

Note that the map X → fX(T, S, ϕ) is linear. Then there exists a map Ψ
from p2 × o(ϕ0) to g∗ such that

fX(T, S, ϕ) = 〈Ψ(T, S, ϕ), X〉

for each X ∈ g and each (T, S, ϕ) ∈ p2 × o(ϕ0). More precisely, we have the
following proposition.

Proposition 4.4 ([8]). For (T, S, ϕ) ∈ p2 × o(ϕ0) we have

Ψ(T, S, ϕ) =
(

e(T ), ϕ+ tanh

(

1

2
adT

)

ϕ+

(

adT +
adT

tanh adT

)

S
)

.

Moreover, Ψ is a symplectomorphism from (p2×o(ϕ0), ω2) onto (O(ξ0), ω0).

5. Symplectic decomposition. In this section, we retain the no-
tation of Section 2. It is no longer assumed that o(ϕ0) (hence O(ξ0)) is inte-
gral. By analogy with the case when O(ξ0) is integral, we introduce the map
Ψ : p2 × o(ϕ0) → O(ξ0) defined by

Ψ(T, S, ϕ) :=
(

e(T ), ϕ + tanh

(

1

2
ad T

)

ϕ+

(

adT +
ad T

tanh adT

)

S
)

.

Then we have the following result.

Proposition 5.1. The map Ψ : p2 × o(ϕ0) → O(ξ0) is a bijection.

P r o o f. First, we prove that Ψ takes values in O(ξ0).

Let (T, S, ϕ) ∈ p2 × o(ϕ0). Let p = e(T ). Since p = {v ∧ p0 : v ∈ V } (see
Section 2), there exists v ∈ V such that

(M(p)−1 · v) ∧ p0 = − tanh

(

1

2
adT

)

ϕ+
adT

sinh adT
S.

Then we have

ϕ+ tanh

(

1

2
adT

)

ϕ+

(

adT +
adT

tanh ad T

)

S
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= exp(adT )

(

ϕ− tanh

(

1

2
adT

)

ϕ+
adT

sinh adT
S

)

=M(p) ·
(

ϕ+ (M(p)−1 · v) ∧ p0
)

=M(p) · ϕ+ v ∧ p.

hence

Ψ(T, S, ϕ) = (p,M(p) · ϕ+ v ∧ p) = (v,M(p)) · (p0, ϕ) ∈ O(ξ0).

Now we prove that Ψ is a bijection from p2×o(ϕ0) toO(ξ0). Let ξ ∈ O(ξ0).
We have to solve the equation

(5.1) Ψ(T, S, ϕ) = ξ

with (T, S, ϕ) ∈ p2 × o(ϕ0).

We can write ξ = (v, k) · (p0, ϕ0) = (k · p0, k · ϕ0 + v ∧ k · p0) for some
(v, k) ∈ G. Let p = k · p0. Then we can decompose k as k = M(p)u with
u ∈ K0. Thus Equation 5.1 implies that p = e(T ) hence T is uniquely determined.
Moreover, Equation 5.1 also gives

ϕ− tanh

(

1

2
adT

)

ϕ+
adT

sinh adT
S = u · ϕ0 + (M(p)−1 · v) ∧ p0.

Taking projections on k0 and p, we get ϕ = u · ϕ0 and

− tanh

(

1

2
adT

)

ϕ+
adT

sinh adT
S = (M(p)−1 · v) ∧ p0.

Hence ϕ and S are uniquely determined. This ends the proof. ✷

From classical representation theory of compact Lie groups, we deduce
the following lemma.

Lemma 5.2. Let U ⊂ k∗0 be the union of all integral coadjoint orbits of

K0. Then the linear span of U is k∗0.

P r o o f. As at the beginning of Section 3, let T be a maximal torus of k0
with Lie algebra t. For each λ ∈ (it)∗, let ϕλ ∈ k∗0 defined ϕλ(X) = −iλ(X) for
X ∈ t and ϕλ(X) = 0 for X in the orthogonal complement t⊥ of t (with respect
to the Killing form of k0). Then the map λ → ϕλ is a linear isomorphism from
(it)∗ onto {ϕ ∈ k∗0 : ϕ|t⊥ ≡ 0}.
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Clearly, U contains ϕλ for each λ ∈ (it)∗ which is analytically integral
and dominant. Then, taking into account the action of the Weyl group, we
see that U also contains ϕλ for each λ ∈ (it)∗ which is analytically integral
(and not necessarily dominant). In particular, for each λ in the root lattice, we
have ϕλ ∈ U , see [24], p. 130. This implies that the linear span of U , says

V, contains
∑

α

Rϕα, where the sum is over all roots α. Consequently, we have

{ϕλ : λ ∈ (it)∗} ⊂ V. Finally, since U -hence V- is stable under the coadjoint
action of K0, we get V = k∗0. ✷

For each X ∈ g, let fX be the function on p2 × o(ϕ0) defined by

fX(T, S, ϕ) = 〈Ψ(T, S, ϕ), X〉.

Then we can easily verify that we have

fX(T, S, ϕ) = 〈e(T ), w〉 + 〈ϕ,L(e(T ), A)〉 + 〈A · T, S〉.

Proposition 5.3. For each X,Y ∈ g, we have {fX , fY }2 = f[X,Y ].

P r o o f. For X,Y ∈ g, we consider the fonction h := {fX , fY }2 − f[X,Y ]

on p2 × o(ϕ0). Then by an easy computation, we see that h is of the form

h(T, S, ϕ) = 〈a(T, S), ϕ〉 + b(T, S)

where a ∈ C∞(p2, k) and b ∈ C∞(p2).
Now, an immediate consequence of Proposition 4.4 is that h(T, S, ϕ) = 0

for each (T, S) ∈ p2 and each ϕ ∈ U . In particular, one has

〈a(T, S), ϕλ〉+ b(T, S) = 0

for each (T, S) ∈ p2 and each λ in the root lattice, then we get b = 0 and,
consequently, we have 〈a(T, S), ϕ〉 = 0 for each (T, S) ∈ p2 and ϕ ∈ U . By
Lemma 5.2, this is also true for each ϕ ∈ k∗0, hence we get h = 0. ✷

Finally, from Proposition 5.1 and Proposition 5.3, we can deduce the
following result.

Proposition 5.4. The map Ψ : p2 × o(ϕ0) → O(ξ0) is a symplectomor-

phism. Consequently, O(ξ0) has symplectic decomposition p2 × o(ϕ0).

6. The Poincaré group. Here, let V = R
n+1 and let K = SO0(n, 1)

be the identity component of SO(n, 1). Then G is the (generalized) Poincaré
group. The usual Poincaré group corresponds to the case n = 3.
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Recall that SO(n, 1) is the group of all real (n+ 1)× (n+ 1) matrices of
determinant 1 leaving invariant the bilinear form on V defined by

〈p, p′〉 = −

(

n
∑

k=1

pi p
′
i

)

+ pn+1 p
′
n+1.

We can identify V ∗ to V by using this bilinear form.
Let (e1, e2, . . . , en+1) be the standard basis of Rn+1. We take p0 = men+1

where m > 0. Then K0 is the subgroup of K consisting of all matrices of the

form

(

k0 0
0 1

)

for k0 ∈ SO(n,R) and the orbit Z(p0) is then the sheet of the

hyperboloid 〈p, p〉 = m2 defined by pn+1 > 0.
For each 1 ≤ i, j ≤ n + 1, let Eij be the matrix whose ij-th entry is 1

and all of the other entries are 0. The matrices Aij = Eji−Eij (1 ≤ i < j ≤ n)
form a basis for k0 and the matrices Ek = Ekn+1 + En+1k (1 ≤ k ≤ n) a basis
for p.

We can identify k∗ with k by using the form defined on k by 〈X,Y 〉 =
1

2
Tr(XY ) which is a multiple of the Killing form. Note that the basis (Ek)1≤k≤n

of p is orthonormal with respect to 〈·, ·〉. Moreover, in the identification k∗ ≃ k,
the matrix Aij (1 ≤ i < j ≤ n) corresponds to the element ei ∧ ej of k∗ and the
matrix Ek (1 ≤ k ≤ n) to ek ∧ en+1.

Let j be the isomorphism from R
n onto p defined by j(t) =

n
∑

k=1

tkEk. For

T = j(t) ∈ p, we denote |T | := 〈T, T 〉1/2 = |t|. Then, since for each T = j(t) ∈ p

we have

expT = In +
sinh |T |

|T |
T +

cosh |T |

|T |2
T 2,

we get

e(T ) = m

(

sinh |T |

|T |
t1, . . . ,

sinh |T |

|T |
tn, cosh |T |

)

.

On the other hand, from the equality

(adT )2nS = |T |2n−2(adT )2S = |T |2n−2(|T |2S − 〈T, S〉T )

for T, S ∈ p and n ≥ 1, we easily deduce the following formula for Ψ

Ψ(T, S, ϕ)=

(

e(T ), ϕ+[T, S]+
tanh 1

2 |T |

|T |
[T, ϕ]+

|T |

tanh |T |
S−

|T |− tanh |T |

|T |2 tanh |T |
〈T, S〉T

)

.
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However, this expression of Ψ is rather complicated. So, we aim to find
a more simple symplectomorphism. This can be done by proceeding as follows.
First, we solve the equation

x ∧ p =

(

adT +
adT

tanh adT

)

S, x ∈ R
n × (0)

for T = j(t), S = j(s) ∈ p, p = e(T ) and we easily find the solution

x = x(t, s) :=
1

m

(

|t|

sinh |t|
s+

|t| cosh |t| − sinh |t|

|t|2 sinh |t| cosh |t|
〈t, s〉t

)

.

Now, a tedious but easy computation shows that the map σ : (t, s) →
(p̃, q̃) defined by the equations q̃ = x(t, s) and e(j(t)) = (p̃, pn+1) is a symplecto-
morphism of R2n. Then the map Ψ′ defined by Ψ′(p̃, q̃, ϕ) := Ψ(σ−1(p̃, q̃), ϕ) is a
symplectomorphism from R

2n × o(ϕ0) onto O(ξ0). Moreover, it is clear that

Ψ′(p̃, q̃, ϕ) =

(

p, ϕ+
tanh 1

2 |T (p)|

|T (p)|
[T (p), ϕ] + q̃ ∧ p

)

where p = (p̃, pn+1) ∈ Z(p0) and T (p) is the unique element T of p such that
e(T ) = p.

In particular, we recover the symplectomorphism introduced in [7] which
is well known for n = 3, see for instance [13].
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