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Abstract. In this paper we study Markov chains associated with the
Metropolis-Hastings algorithm. We consider conditions under which the
sequence of the successive densities of such a chain converges to the target
density according to the total variation distance for any choice of the ini-
tial density. In particular we prove that the positiveness of the proposal
density is enough for the chain to converge. The content of this work basi-
cally presents a stand alone proof that the reversibility along with the kernel
positivity imply the convergence.

1. Introduction and main result. The Metropolis-Hastings algo-
rithm invented by Nicholas Metropolis at al. [10] and W. Keith Hastings [5] is
one of the best recognized Markov chain Monte Carlo (MCMC) techniques in the
statistical applications (see e.g. [3, 4, 6, 7, 14, 15, 16, 17, 18]). Throughout this
paper we shall assume that the following conditions are valid.
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H: Let (X,A, λ) be some measure space with a σ-finite measure λ. As-
sume we are given a target probability distribution on (X,A) which is absolutely
continuous with respect to λ with density π(·) : X → R+ for which π(x) > 0 for
all x ∈ X. Assume also we are given an absolutely continuous with respect to λ
proposal distribution on (X,A) which density q(·|x) : X → R+ is set conditionally
to x ∈ X. It is assumed that q(·|·) : X × X → R+ is jointly A × A measurable
(see e.g. [1]).

Note that H brings entirely technical nature, providing the proper con-
tainer for the further treatments. The assumption that π(x) > 0 for all x ∈ X

offers also some technical facilities and does not represent a limitation of the
generality in the present work purposes.

All the probability densities in this paper are considered with respect to
the common reference measure λ.

The Metropolis-Hastings algorithm, as a MCMC algorithm, serves for
sampling from the target distribution π(·) and consists of the following steps.
Generate first initial draw x(0). Let we know the current draw x(n−1). To obtain
the next draw x(n) one should generate a candidate x∗ ∼ q(x|x(n−1)) and accept
the candidate with a probability α(x(n−1), x∗) taking x(n) = x∗ or reject the
candidate with a probability 1− α(x(n−1), x∗) and take x(n) = x(n−1) where

α(x, x′) = min

(

1,
π(x′)

π(x)

q(x|x′)
q(x′|x)

)

for π(x)q(x′|x) > 0.

Following [17] we set α(x, x′) = 1 for q(x′|x) = 0 to avoid ambiguity. All draws
are taken from X. This scheme defines a transition kernel

(1.1) κ(x → x′) = α(x, x′)q(x′|x) + δ(x − x′)

∫

(1− α(x, z)) q(z|x)λ(dz).

where δ(·) is the delta function. The integral sign stands for the λ integration
over X (including where it is necessary the delta function rule). The notation
κ(x → x′) stands for a function of two variables (x, x′) ∈ X × X associated (by
analogy to the discrete state space) with the conditional probability to move
from state x to state x′. According to the assumptions for π(·) and q(·|·) the
kernel (1.1) is nonnegative function. This kernel fulfills the normalizing condition
∫

κ(x → x′)λ(dx′) = 1 but first of all it is well known that the kernel satisfies

the detailed balance condition (reversibility of the chain)

(1.2) π(x)κ(x → x′) = π(x′)κ(x′ → x).
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From the detailed balance condition it follows that the target density is

invariant (stationary) for the kernel, i.e. it holds π(x′) =

∫

π(x)κ(x → x′)λ(dx).

The transition kernel (1.1) defines a Metropolis-Hastings Markov chain (shortly
MH-chain) of X-valued random variables

(

X(n)

)

according to the following rule.
Define the initial random variableX(0) with some proper density f(0)(·) : X → R+.
For any next random variable X(n) the corresponding density f(n)(·) is defined
by the recurrent formula

f(n)(x
′) =

∫

f(n−1)(x)κ(x → x′)λ(dx), n = 1, 2, . . . .

One of the main problems arise here is to establish conditions under which
the sequence (f(n)(·)) converges to the invariant density π(·). In the general case of
stationary Markov chain usually proves that this sequence converges with respect
to the total variation distance dTV , i.e. that

(1.3) lim
n→∞

dTV (µ[f(n)], µ[π]) = lim
n→∞

1

2

∫

|f(n)(x)− π(x)|λ(dx) = 0

under various specific assumptions (see e.g. [2, 3, 1, 9, 11, 12, 15, 17]). Here by
µ[f ] we denote the probability measure associated with the density f(·).

In this paper (Theorem 4.1) we propose conditions under which (1.3)
holds but we follow a somewhat different approach by means of the properly
defined Hilbert space described for example in Stroock [21].

2. Some preliminaries and notes. This study was motivated by
the well-known and clearly proven result in the discrete case where the simple
positivity of the transition matrix (or some its power) guarantees the conver-
gence of the corresponding Markov chain to the stationary distribution, i.e. the
positiveness occurs the only constructive condition needed for the convergence.
So a natural question arises whether some proper positiveness condition is also
sufficient for the convergence in the general state discrete time Markov chains?
The answer turns out to be positive in the case of the Markov chains, associated
with the Metropolis-Hastings algorithm.

The general state discrete time Markov chains convergence is well inves-
tigated (see e.g. [2, 3, 1, 9, 11, 12, 15, 17]) and very common advanced results
were achieved by using of some specific notions as reversibility, irreducibility and
aperiodicity. In the Metropolis-Hastings Markov chains we have two important
particular advantages, sourced by the nature of the chain. Such a chain is al-
ways reversible and the target distribution stands for the (known) stationary
distribution. These facts simplify the environment of the proof scenario.



96 D. Tsvetkov, L. Hristov, R. Angelova-Slavova

The most famous convergence result for the MH-chains, formulated in
easily verifiable conditions, is announced for example in [15] (Theorem 7.4 along
with Corollary 7.5). Therein is shown that the positivity of the proposal distri-
bution

(2.1) q(x|x′) > 0 for all (x, x′) ∈ X× X,

provides the irreducibility of the corresponding MH-chain and also if the algo-
rithm admits the event x(n) = x(n−1) with nonzero probability then the MH-chain
is aperiodic. The second claim of Theorem 7.4 in [15] says that both irreducibility
and aperiodicity imply the total variation convergence. Also in [15] is pointed
out the existence of classes of examples in which the event x(n) = x(n−1) never
occurs.

Concisely formulated our main practical result (Corollary 4.1) states that
if the proposal density q(·|·) is positive then (1.3) holds regardless from the shape
of the initial density. Therefore (2.1) provides also the aperiodicity of the chain
because it is a necessary condition for an irreducible chain to converge.

3. The L
2(π) structure. Following Stroock [21] we shall consider the

Hilbert space L2(π) with an inner product

〈f, g〉π =

∫

f(x)g(x)π(x)λ(dx).

The space L2(π) consists of the measurable functions f(·) : X → R̄ for which

‖f‖2,π =

√

∫

|f(x)|2π(x)λ(dx) < ∞

(see e.g. [13, 19, 20]). Define the operator

(3.1) K[f ](x) =

∫

κ(x → x′)f(x′)λ(dx′)

=

∫

κ̊(x → x′)f(x′)λ(dx′) + φ(x)f(x)

which is formally conjugate to the basic transition operator of the chain

(3.2) K̂[f ](x′) =

∫

f(x)κ(x → x′)λ(dx)
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=

∫

f(x)̊κ(x → x′)λ(dx) + φ(x′)f(x′)

where the sub-kernel κ̊(· → ·) : X× X → R̄+

κ̊(x → x′) = min

(

q(x′|x), π(x
′)

π(x)
q(x|x′)

)

is nonnegative A×A measurable function and the function φ(·) : X → R̄+

φ(x) =

∫

(1− α(x, z)) q(z|x)λ(dz)

is measurable with 0 ≤ φ(x) ≤ 1 for x ∈ X. Actually κ(· → ·) stands for
a transition kernel of the transition operator K̂ and simply is a kernel of the
conjugate operator K.

Put κ1(x → x′) = κ(x → x′) and compose formally the sequence of
kernels

κn(x → x′) =

∫

κn−1(x → z)κ1(z → x′)λ(dz), n = 2, 3, . . . ,

which are just the transition kernels of the transition-like operators K̂n in a sense
that

K̂n[f ](x′) =

∫

f(x)κn(x → x′)λ(dx)

and the usual kernels of the operators Kn, i.e.

Kn[f ](x) =

∫

κn(x → x′)f(x′)λ(dx′).

Put also κ̊1(x → x′) = κ̊(x → x′) and compose the sub-kernels

(3.3) κ̊n(x → x′) =

∫

κ̊n−1(x → z)̊κ1(z → x′)λ(dz), n = 2, 3, . . . .

One can find by induction that

Kn[f ](x) =

∫

κn(x → x′)f(x′)λ(dx′)

=

∫

κ̊n(x → x′)f(x′)λ(dx′) +

∫

χn(x → x′)f(x′)λ(dx′) + φn(x)f(x)
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where χn(· → ·) : X× X → R̄+ is some nonnegative A×A measurable function.
One can verify that κn(· → ·) also satisfies the detailed balance condition and
the Chapman-Kolmogorov equation

κm+n(x → x′) =

∫

κm(x → z)κn(z → x′)λ(dz),m = 1, 2, . . . , n = 1, 2, . . . ,

and the same is true for the sub-kernel κ̊n(· → ·).
The proofs of the first two claims of the following proposition can be found

substantially for example in [21], but here we propose our ones for the sake of
completeness.

Proposition 3.1. Suppose H holds and let f ∈ L2(π). Then the following
assertions are valid for the operator defined in (3.1) .
1) K[f ] ∈ L2(π) and also

(3.4) ‖K[f ]‖2,π ≤ ‖f‖2,π.

2) The operator K : L2(π) → L2(π) is self-adjoint and for its norm we have

(3.5) ‖K‖ ≤ 1.

3) Suppose that there exists an integer n ≥ 1 such that κ̊n(· → ·) > 0 a.e. (λ×λ)
in X × X where κ̊n(· → ·) is a composite sub-kernel defined in (3.3). Let also
h ∈ L2(π) be a function for which Kn[h] = h. Then there exists a constant γ
such that h(·) = γ a.e. (λ) in X.

P r o o f. 1) Let f ∈ L2(π). Applying the Holder’s inequality to the
functions |f |

√
κ and

√
κ we find

|K[f ](x)|2 ≤
∫

κ(x → x′)|f(x′)|2λ(dx′).

Multiplying the latter with π(x) and integrating over X we get

‖K[f ]‖22,π ≤
∫

(
∫

π(x)κ(x → x′)|f(x′)|2λ(dx′)
)

λ(dx)

=

∫
(
∫

π(x′)κ(x′ → x)|f(x′)|2λ(dx′)
)

λ(dx)

=

∫

π(x′)|f(x′)|2λ(dx′) = ‖f‖22,π.
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Here we use the detailed balance condition (1.2) and the Tonelli’s theorem which
allows us to interchange the order of integration. Thus we prove simultaneously
the inequality (3.4) and the fact that K[f ] ∈ L2(π).

2) Let f ∈ L2(π) and g ∈ L2(π) and write by means of the Fubini’s
theorem and by the detailed balance condition

〈K[f ], g〉π =

∫
(
∫

κ(x → x′)f(x′)λ(dx′)

)

g(x)π(x)λ(dx)

=

∫
(
∫

π(x)κ(x → x′)f(x′)λ(dx′)

)

g(x)λ(dx)

=

∫

f(x′)

(
∫

κ(x′ → x)g(x)λ(dx)

)

π(x′)λ(dx′) = 〈f,K[g]〉π .

which proves that the operator K is self-adjoint. The inequality (3.5) follows
immediately from (3.4).

3) Write the identity

h2(x′) = h2(x) + 2h(x)(h(x′)− h(x)) + (h(x′)− h(x))2

multiply with κn(x → x′) and integrate. Then we get

∫

κn(x → x′)h2(x′)λ(dx′) = h2(x) +

∫

κn(x → x′)(h(x′)− h(x))2λ(dx′)

because
∫

κn(x → x′)2h(x)(h(x′)− h(x))λ(dx′) = 2h(x) (Kn[h](x) − h(x)) = 0.

Multiply with π(x) and integrate. Then

(3.6)

∫
(
∫

π(x)κn(x → x′)h2(x′)λ(dx′)

)

λ(dx) =

∫

π(x)h2(x)λ(dx)

+

∫

π(x)

(
∫

κn(x → x′)(h(x′)− h(x))2λ(dx′)

)

λ(dx).

It is easy to see that the left-hand side in (3.6) is equal to the first addend in the
right-hand side. Therefore

∫

π(x)

(
∫

κn(x → x′)(h(x′)− h(x))2λ(dx′)

)

λ(dx) = 0
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which implies immediately that also

∫

π(x)

(
∫

κ̊n(x → x′)(h(x′)− h(x))2λ(dx′)

)

λ(dx) = 0.

Now the inequalities π(·) > 0 and κn(· → ·) > 0 give that there exists a constant
γ such that h(·) = γ a.e. (λ) in X. ✷

Proposition 3.2. Suppose H holds and let K : L2(π) → L2(π) be the
operator defined above. Then for any integer ν ≥ 1 the following assertions are
valid.
1) Every power K2νn, n = 1, 2, . . ., is positive operator, i.e. 〈K2νn[h], h〉π ≥ 0 for
any h ∈ L2(π).
2) The sequence (K2νn) is decreasing, i.e. 〈K2νn+2ν [h], h〉π ≤ 〈K2νn[h], h〉π for
any h ∈ L2(π), n = 1, 2, . . ..
3) All the operators

(

K2νn −K2νn+2νp
)

for n = 1, 2, . . . and p = 1, 2, . . . are also
positive.

P r o o f. 1) Let h ∈ L2(π). The operator K is self-adjoint therefore

〈K2νn[h], h〉π = 〈Kνn[h],Kνn[h]〉π ≥ 0.

2) We have ‖K‖ ≤ 1 therefore

〈K2νn+2ν [h], h〉π = 〈Kνn+ν [h],Kνn+ν [h]〉π
= ‖Kνn+ν [h]‖22,π = ‖Kν [Kνn[h]] ‖22,π ≤ ‖Kνn[h]‖22,π

= 〈Kνn[h],Kνn[h]〉π = 〈K2νn[h], h〉π .

3) The positiveness of the operator
(

K2νn −K2νn+2νp
)

means that

〈
(

K2νn −K2νn+2νp
)

[h], h〉π ≥ 0

for any h ∈ L2(π) that is equivalent to

〈K2νn[h], h〉π ≥ 〈K2νn+2νp[h], h〉π

which follows immediately from 2). ✷

Here we are at position to prove that the operator sequence (Kn) has a
strong limit. More precisely we are going to prove that for every f ∈ L2(π) there
exists the limit

lim
n→∞

Kn[f ] = 〈f,1〉π1
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where 1 denotes the constant function which equals to one.
Further we shall need the following condition of positiveness.
Hp: Assume that there exists an integer ν ≥ 1 for which κ̊ν(· → ·) > 0

a.e. (λ× λ) in X× X. ✷
The conditionHp is met for example when the proposal density is positive.

Remember that the target density is positive by condition H.

Theorem 3.1. Suppose H and Hp hold. Then for every f ∈ L2(π) we
have

(3.7) lim
n→∞

‖Kn[f ]− 〈f,1〉π1‖2,π = 0.

P r o o f. It is not difficult to find out that for any real Hilbert space H
with an inner product 〈·, ·〉 and a norm ‖u‖ =

√

〈u, u〉, u ∈ H, with a given linear
bounded self-adjoint positive operator T : H → H it holds the inequality

(3.8) ‖Tu‖2 ≤ ‖T‖〈Tu, u〉.

The proof of (3.8) will be given at the end of the paper. Choose arbitrary f ∈
L2(π). Applying (3.8) to the positive operators (K2νn−K2νn+2νp) for n = 1, 2, . . .
and p = 1, 2, . . . we get

‖(K2νn −K2νn+2νp)[f ]‖22,π ≤ ‖K2νn −K2νn+2νp‖〈K2νn[f ]−K2νn+2νp[f ], f〉π

from which follows that

(3.9) ‖K2νn[f ]−K2νn+2νp[f ]‖22,π ≤ 2
(

〈K2νn[f ], f〉π − 〈K2νn+2νp[f ], f〉π
)

.

From Proposition 3.2 we know that the numerical sequence (〈K2νn[f ], f〉π)∞n=1 is
decreasing an bounded from below by zero therefore this sequence is convergent.
Now from (3.9) it follows that the sequence of the powers (K2νn[f ])∞n=1 is a Cauchy
sequence in L2(π) therefore it has a limit h ∈ L2(π) for which obviously it holds
K2ν [h] = h. From Proposition 3.1(3) (with n = 2ν) we get that h(·) = γ a.e.
(λ) in X with some constant γ because the stated positiveness of the sub-kernel
κ̊ν(· → ·) in Hp provides that

κ̊2ν(x → x′) =

∫

κ̊ν(x → z)̊κν(z → x′)λ(dz) > 0

a.e. (λ×λ) in X×X. We have K2νn[f ] → γ1 whence 〈K2νn[f ],1〉π → γ〈1,1〉π = γ
which gives

〈f,1〉π = 〈f,K2νn[1]〉π = 〈K2νn[f ],1〉π → γ
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therefore γ = 〈f,1〉π which proves (3.7) for the subsequence of the powers
(2νn)∞n=1, i.e. that

(3.10) lim
n→∞

K2νn[f ] = 〈f,1〉π1.

From (3.10) we obtain

(3.11) lim
n→∞

K2νn+m[f ] = lim
n→∞

K2νn [Km[f ]]

= 〈Km[f ],1〉π1 = 〈f,Km[1]〉π1 = 〈f,1〉π1

which proves (3.7) for the all the power subsequences (2νn + m)∞n=1 where m,
1 ≤ m < 2ν, is a nonzero remainder after a division by 2ν. Now it is not difficult
to see that the validity of (3.7) follows from (3.10) and (3.11). ✷

4. Convergence with respect to TV distance. Our main purpose
is to investigate the behavior of the operator sequence (K̂n) rather than the
sequence (Kn) where the transition operator K̂ is defined in (3.2) because it
actually corresponds to the Markov chain. Note that if µ1 and µ2 are absolutely
continuous probability measures (w.r.t. λ) with densities f1(·) and f2(·) then for
the total variation distance dTV (µ1, µ2) it holds (see e.g. [9, 17])

dTV (µ1, µ2) =
1

2

∫

|f1(x)− f2(x)|λ(dx).

Let L1
X
be the Banach space of the measurable functions f(·) : X → R̄ for

which

‖f‖1 =
∫

|f(x)|λ(dx) < ∞

provided with the usual norm ‖ · ‖1. We have

(4.1) ‖f‖1 ≤ ‖f/π‖2,π
because (by Cauchy-Schwarz inequality)

‖f‖1 =
∫

|f(x)|λ(dx)

=

∫

π(x)

∣

∣

∣

∣

f(x)

π(x)

∣

∣

∣

∣

λ(dx) =

∫

√

π(x)

∣

∣

∣

∣

√

π(x)
f(x)

π(x)

∣

∣

∣

∣

λ(dx)

≤
√

∫

π(x)λ(dx)

√

∫

π(x)

∣

∣

∣

∣

f(x)

π(x)

∣

∣

∣

∣

2

λ(dx) = ‖f/π‖2,π.

From (4.1) it follows that if f/π ∈ L2(π) then f ∈ L1
X
.
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Proposition 4.1. Suppose H and Hp hold. Let f(·) be a function such

that f/π ∈ L2(π) and put γ =

∫

f(x)λ(dx). Then

(4.2) lim
n→∞

‖K̂n[f ]− γπ‖1 = 0.

P r o o f. First of all notice that (4.1) guarantees the existence of the
constant γ. It can be shown by induction that

K̂n[f ](x′) = π(x′)Kn

[

f

π

]

(x′), n = 1, 2, . . . ,

whence by means of the Cauchy-Schwarz inequality we obtain

(4.3) ‖K̂n[f ]− γπ‖1 =
∫

|K̂n[f ](x′)− γπ(x′)|λ(dx′)

=

∫

π(x′)

∣

∣

∣

∣

Kn

[

f

π

]

(x′)− γ1(x′)

∣

∣

∣

∣

λ(dx′)

=

∫

√

π(x′)

(

√

π(x′)

∣

∣

∣

∣

Kn

[

f

π

]

(x′)− γ1(x′)

∣

∣

∣

∣

)

λ(dx′)

≤

√

∫

π(x′)

∣

∣

∣

∣

Kn

[

f

π

]

(x′)− γ1(x′)

∣

∣

∣

∣

2

λ(dx′) =

∥

∥

∥

∥

Kn

[

f

π

]

− γ1

∥

∥

∥

∥

2,π

On the other hand by (3.7) it follows that

(4.4) lim
n→∞

∥

∥

∥

∥

Kn

[

f

π

]

− γ1

∥

∥

∥

∥

2,π

= 0

because
〈

f

π
,1

〉

π

=

∫

f(x)

π(x)
π(x)λ(dx) =

∫

f(x)λ(dx) = γ.

Now the validity of (4.2) follows immediately from (4.3) and (4.4). ✷

Hereafter we shall prepare for the final results. Put

Xm =

(

x ∈ X|π(x) ≥ 1

m

)

,m = 1, 2, . . . .

Obviously Xm ⊆ Xm+1 and X = ∪∞
m=1Xm. For f(·) : X → R̄ put f[m](x) = f(x)

where x ∈ Xm and f[m](x) = 0 elsewhere.
The following proposition helps to prove Theorem 4.1.
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Proposition 4.2. Suppose H holds. Then the following assertions are
true.
1) Let f ∈ L1

X
. Then K̂[f ] ∈ L1

X
and

(4.5) ‖K̂[f ]‖1 ≤ ‖f‖1

consequently for any f ∈ L1
X
and g ∈ L1

X
and any n = 1, 2, . . . we have

(4.6) ‖K̂n[f ]− K̂n[g]‖1 ≤ ‖f − g‖1.

2) Let f ∈ L1
X be a bounded function. Then f[m]/π ∈ L2(π) and

(4.7) lim
m→∞

‖f − f[m]‖1 = 0.

3) Let f ∈ L1
X and put

γ =

∫

f(x)λ(dx), γ[m] =

∫

f[m](x)λ(dx),m = 1, 2, . . . .

Then

(4.8) ‖γ[m]π − γπ‖1 ≤ ‖f − f[m]‖1.

P r o o f. 1) We have

|K̂[f ](x′)| ≤
∫

|f(x)|κ(x → x′)λ(dx)

whence (again by means of the Fubini’s theorem)

‖K̂[f ]‖1 =
∫

|K̂[f ](x′)|λ(dx′)

≤
∫

(
∫

|f(x)|κ(x → x′)λ(dx)

)

λ(dx′) =

∫

|f(x)|λ(dx) = ‖f‖1

which proves (4.5). The validity of (4.6) follows immediately from (4.5) and the
linearity of K̂.
2) According to the assumption f(·) is bounded consequently for some constant
C it holds |f[m](x)| ≤ C for x ∈ Xm. Then

∣

∣

∣

∣

f[m](x)

π(x)

∣

∣

∣

∣

≤ Cm,x ∈ Xm,
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therefore

∫

π(x)

∣

∣

∣

∣

f[m](x)

π(x)

∣

∣

∣

∣

2

λ(dx) ≤
∫

Xm

π(x) |Cm|2 λ(dx) ≤ C2m2 < ∞

which proves that f[m]/π ∈ L2(π). By the definition

‖f − f[m]‖1 =
∫

|f(x)− f[m](x)|λ(dx) =
∫

X\Xm

|f(x)|λ(dx)

which proves (4.7) because Xm ր X.
3) We have

‖γ[m]π − γπ‖1 =
∫

|γ[m]π(x
′)− γπ(x′)|λ(dx′)

= |γ[m] − γ|
∫

π(x′)λ(dx′) =

∣

∣

∣

∣

∣

∫

X\Xm

f(x)λ(dx)

∣

∣

∣

∣

∣

≤ ‖f − f[m]‖1

which proves (4.8). ✷

We are ready to give more general conditions under which (4.2) is valid.

Theorem 4.1. Suppose H and Hp hold. Let f ∈ L1
X

and put γ =
∫

f(x)λ(dx). Then

(4.9) lim
n→∞

‖K̂n[f ]− γπ‖1 = 0.

Therefore if f ∈ L1
X
is a probability density function (w.r.t. λ) on X then

(4.10) lim
n→∞

dTV (µ[K̂n[f ]], µ[π]) = 0.

P r o o f. In the beginning of this proof we shall assume that the function
f ∈ L1

X
is bounded. Put again

γ[m] =

∫

f[m](x)λ(dx),m = 1, 2, . . . .

For any n = 1, 2, . . . and m = 1, 2, . . . we can write

(4.11) ‖K̂n[f ]−γπ‖1 ≤ ‖K̂n[f ]−K̂n[f[m]]‖1+‖K̂n[f[m]]−γ[m]π‖1+‖γ[m]π−γπ‖1
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Choose some ε > 0. By (4.7) fix an integer m ≥ 1 such that ‖f − f[m]‖1 < ε/3.
Then according to (4.6) we obtain

(4.12) ‖K̂n[f ]− K̂n[f[m]]‖1 <
ε

3

for any n = 1, 2, . . . and according to (4.8) we obtain

(4.13) ‖γ[m]π − γπ‖1 <
ε

3
.

For such a fixed m we have from Proposition 4.2(2) that f[m]/π ∈ L2(π) therefore
by Proposition 4.1 we get that

lim
n→∞

‖K̂n[f[m]]− γ[m]π‖1 = 0

consequently we can choose an positive integer n0 such that

(4.14) ‖K̂n[f[m]]− γ[m]π‖1 <
ε

3

for any n > n0. Replacing the inequalities (4.12), (4.13) and (4.14) in (4.11) we
receive that

‖K̂n[f ]− γπ‖1 <
ε

3
+

ε

3
+

ε

3
= ε

for any n > n0 which by definition proves the validity of (4.9) for the case of
bounded f ∈ L1

X
.

Choose now arbitrary f ∈ L1
X
and put fm(x) = f(x) where |f(x)| ≤ m

and fm(x) = 0 elsewhere, m = 1, 2, . . .. In the same way as for (4.11) one can get

‖K̂n[f ]− γπ‖1 ≤ ‖K̂n[fm]− γmπ‖1 + 2‖fm − f‖1
where

γm =

∫

fm(x)λ(dx).

From the first part of the proof we already know that for arbitrary fixed positive
integer m it holds

lim
n→∞

‖K̂n[fm]− γmπ‖1 = 0

because fm(·) is bounded. Now the validity of (4.9) is a consequence of the
well-known fact that

lim
m→∞

‖fm − f‖1 = 0.

The validity of (4.10) follows immediately from (4.9). ✷

Theorem 4.1 allows us to prove the following practically valuable result
with easily verifiable conditions.
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Corollary 4.1. Suppose H holds. Let q(x|x′) > 0 a.e. (λ× λ) in X×X.
Then (1.3) is valid for every initial density f0(·) ∈ L1

X
.

P r o o f. By conditions we have π(x) > 0 for all x ∈ X and q(·|·) > 0 a.e.
(λ× λ) in X× X. These inequalities guarantee that κ̊(· → ·) > 0 a.e. (λ × λ) in
X×X therefore we can use Hp with ν = 1. At this point we can apply Theorem
4.1 which implies consequently the validity of (4.9), (4.10) and (1.3). ✷

Now we can conclude that the condition (2.1) (besides the irreducibility
shown for example in [15]) provides also the aperiodicity of the chain, because it
is a necessary convergence condition for the irreducible chains (as it follows from
Theorem 5.4.4 [11]).

5. Remarks. In this paper we offer a possible way to prove the to-
tal variance convergence of MH-chains, under the kernel positivity condition,
by means referred more to the functional analysis rather than to the classical
probability constructions. The offered method is backgrounded by some schemes
described in [21] and does not utilize the notions of the irreducibility and aperi-
odicity. However it has an essential drawback, because the overall proof scheme
lays heavily on the detailed balance condition property of the MH-chains. Thus
our approach basically cannot apply to MCMC algorithms which do not fulfill
the detailed balance condition.

It is not difficult to prove that the Kullback-Leibler divergence between
the current MH-chain density f(n)(·) and the target distribution π(·) do not in-
crease as n → ∞. The same is valid for the dTV (µ[f(n)], µ[π]), which is shown
for example in [11] (Proposition 13.3.2). The latter can be considered as a good
testimony for the validity of (1.3) at all under some natural requirements.

For the sake of completeness let us prove the validity of (3.8). The op-
erator T is linear bounded self-adjoint and positive in the real Hilbert space H
therefore it holds the Cauchy-like inequality

|〈Tu, v〉|2 ≤ 〈Tu, u〉〈Tv, v〉

for all u ∈ H and all v ∈ H. Putting in the latter v = Tu we obtain

(5.1) |〈Tu, Tu〉|2 = ‖Tu‖4 ≤ 〈Tu, u〉〈T 2u, Tu〉.

Now applying the classical Cauchy inequality and the inequality for the norm we
get

〈T 2u, Tu〉 ≤ ‖T 2u‖‖Tu‖ ≤ ‖T‖‖Tu‖‖Tu‖ = ‖T‖‖Tu‖2.
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Replacing the latter in (5.1) we get the inequality

‖Tu‖4 ≤ 〈Tu, u〉‖T‖‖Tu‖2

that is equivalent to ‖Tu‖2 ≤ ‖T‖〈Tu, u〉, i.e. (3.8). Perhaps various proofs of
(3.8) can be found in other places but we present here an explicit proof taking
into account the importance of this inequality in our construction.

The operator K̂ considered in (3.1) represents an interesting nontrivial
example for a self-adjoint operator. Also a careful inspection of the proofs in the
discrete case leads to considering of a very interesting example of positive definite
matrices of the type A = (min(αi, αj)) where (αk) are mutually different positive
numbers.

Finally note that in the general case (2.1) is the only easily verifiable
condition which provides the assumption Hp.
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