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Abstract. For a submanifold M in a Euclidean space E
m, the tangential

component xT of the position vector field x of M is the most natural vector
field tangent to the Euclidean submanifold, called the canonical vector field

of M . In this article, first we prove that the canonical vector field of every
Euclidean submanifold is always conservative. Then we initiate the study
of Euclidean submanifolds with incompressible canonical vector fields. In
particular, we obtain the necessary and sufficient conditions for the canonical
vector field of a Euclidean submanifold to be incompressible. Further, we
provide examples of Euclidean submanifolds with incompressible canonical
vector field. Moreover, we classify planar curves, surfaces of revolution and
hypercylinders with incompressible canonical vector fields.

2010 Mathematics Subject Classification: 53A07, 53C40, 53C42.
Key words: Euclidean submanifold, canonical vector field, conservative vector field, incom-

pressible vector field.



322 Bang-Yen Chen

1. Introduction. For an n-dimensional submanifold Mn in the Eu-
clidean m-space E

m, the most elementary and natural geometric object is the

position vector field x of Mn. The position vector is a Euclidean vector x =
−−→
OP

that represents the position of a point P ∈ Mn in relation to an arbitrary refer-
ence origin O ∈ E

m.
The position vector field plays important roles in physics, in particular in

mechanics. For instance, in any equation of motion, the position vector x(t) is
usually the most sought-after quantity because the position vector field defines
the motion of a particle (i.e., a point mass): its location relative to a given
coordinate system at some time variable t. The first and the second derivatives
of the position vector field with respect to time t give the velocity and acceleration
of the particle.

For the Euclidean submanifold Mn, there exists a natural decomposition
of the position vector field x given by:

x = xT + xN ,(1.1)

where xT and xN denote the tangential and the normal components of x, respec-
tively.

A vector field on a Riemannian manifold is called conservative if it is
the gradient of some function, known as a scalar potential. Conservative vector
fields appear naturally in mechanics: They are vector fields representing forces
of physical systems in which energy is conserved. Conservative vector fields have
the property that the line integral is path independent, i.e., the choice of any
path between two points does not change the value of the line integral (cf. e.g.,
[13]).

A vector field on a Riemannian manifold is called incompressible if it is a
vector field with divergence zero at all points in the field. An important class of
incompressible vector fields are magnetic fields. It is well-known that magnetic
fields are widely used throughout modern technology, particularly in electrical
engineering and electromechanics (cf. e.g., [1]).

In earlier articles, we have investigated Euclidean submanifolds whose
canonical vector fields are concurrent [5, 6], concircular [12], torse-forming [11],
or conformal [10]. (See [8, 9] for recent surveys on several topics associated with
position vector fields on Euclidean submanifolds.)

In this article, first we prove that the canonical vector field of every Eu-
clidean submanifold is always conservative. Then we initiate the study of Eu-
clidean submanifolds with incompressible canonical vector fields. In particular,
we obtain the necessary and sufficient conditions for the canonical vector field



Incompressible canonical vector field 323

of a Euclidean submanifold to be incompressible. Further, we provide examples
of Euclidean submanifolds with incompressible canonical vector field. Moreover,
we classify planar curves, surfaces of revolution and hypercylinders with incom-
pressible canonical vector fields.

2. Preliminaries. Let x : Mn → E
m be an isometric immersion of

a connected Riemannian manifold Mn into a Euclidean m-space E
m. For each

point p ∈Mn, we denote by TpM
n and T⊥

p M
n the tangent space and the normal

space of Mn at p, respectively. Let ∇ and ∇̃ denote the Levi–Civita connections
of Mn and E

m, respectively. The formulas of Gauss and Weingarten are given
respectively by (cf. [2, 3, 7])

∇̃XY = ∇XY + h(X,Y ),(2.1)

∇̃Xξ = −AξX +DXξ,(2.2)

for vector fields X, Y tangent to M and ξ normal to Mn, where h denotes the
second fundamental form, D the normal connection and A the shape operator of
Mn.

For each normal vector ξ at p, the shape operator Aξ is a self-adjoint
endomorphism of TpM

n. The second fundamental form h and the shape operator
A are related by

(2.3) g(AξX,Y ) = g̃(h(X,Y ), ξ),

where g and g̃ denote the metric of M and the metric of the ambient Euclidean
space, respectively.

The mean curvature vector H of an n-dimensional submanifold Mn is
defined by

H =

(

1

n

)

trace h.(2.4)

The Laplacian ∆ of Mn acting on smooth vector fields on a Riemannian
n-manifold (Mn, g) is defined by

∆X = −
n
∑

i=1

(

∇ei∇eiX −∇∇ei
eiX

)

,(2.5)

where {e1, . . . , en} is an orthonormal local frame of Mn.
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3. Canonical vector field of a Euclidean submanifold. For the
canonical vector field xT of a Euclidean submanifold Mn in the Euclidean m-
space E

m, we have the following general results.

Theorem 3.1. Let Mn be a submanifold of the Euclidean m-space E
m.

Then we have:

(1) The canonical vector field of Mn is always conservative.

(2) The canonical vector field ofMn is incompressible if and only if 〈H,x〉 = −1
holds identically on Mn.

P r o o f. Assume that Mn is an n-dimensional submanifold of Em. We
put

f =
1

2
〈x,x〉 ,(3.1)

where x denotes the position vector field of Mn in E
m. Let {e1, . . . , en} be an

orthonormal local frame of Mn. Then it follows from (3.1) that the gradient of
f satisfies

(3.2)

∇f =
1

2

n
∑

i=1

(ei 〈x,x〉)ei =
n
∑

i=1

〈 ∇̃eix,x 〉 ei

=

n
∑

i=1

〈ei,x〉 ei = xT ,

which implies that the canonical vector field is conservative with scalar potential
f . This proves statement (1).

To prove statement (2), we need to compute the divergence div(xT ) of
the canonical vector field xT of Mn. From (2.1), (2.4), (3.2) and the definition
of divergence (cf. e.g. [3, 7]), we find

(3.3)

div(xT ) =

n
∑

i=1

〈

∇eix
T , ei

〉

=

n
∑

i=1

〈∇ei∇f, ei〉

=

n
∑

i,j=1

〈∇ei(〈ej ,x〉 ej), ei 〉

=
n
∑

i,j=1

(

〈 ∇̃eiej,x 〉 〈ej , ei〉+ 〈ej, ei〉2 + 〈ej,x〉 〈∇eiej , ei〉
)

= n+ n 〈H,x〉+
n
∑

i,j=1

(〈∇eiej ,x〉 〈ej , ei〉+ 〈ej ,x〉 〈∇eiej , ei〉) ,
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where we have applied the well-known fact: ∇̃Xx = X for any vector X tangent
to Mn.

If we put

∇Xei =
n
∑

k=1

ωk
i (X)ek,(3.4)

we get ωk
i = −ωi

k for 1 ≤ i, k ≤ n. Thus we obtain

(3.5)

n
∑

i,j=1

(〈∇eiej ,x〉 〈ej, ei〉+ 〈ej ,x〉 〈∇eiej , ei〉)

=
n
∑

i,k=1

ωk
i (ei) 〈ek,x〉+

n
∑

i,j=1

ωi
j(ei) 〈ej,x〉

= 0.

After combining (3.3) and (3.5) we find

div(xT ) = n(1 + 〈H,x〉).(3.6)

Therefore the canonical vector field xT is incompressible if and only if 〈H,x〉 = −1
holds identically. Consequently, we obtain statement (2). ✷

An immediate consequence of Theorem 3.1 is the following.

Corollary 3.1. Let Mn be an n-dimensional submanifold of the Eu-

clidean m-space E
m. Then the canonical vector field v of Mn is incompressible if

and only if 〈x,∆x〉 = n holds identically on Mn.

P r o o f. Follows from Theorem 3.1(2) and the well-known formula of
Beltrami: ∆x = −nH (see, e.g., [3, page 41]). ✷

Let N be an (n − 1)-dimensional submanifold of the unit hypersphere
Sm−1
o (1) of Em centered at the origin o ∈ E

m. The cone over N with vertex at o,
denoted by CN , is defined by the following map:

N × (0,∞) → E
m; (p, t) 7→ tp.

Another immediate consequence of Theorem 3.1 is the following.

Corollary 3.2. The canonical vector field of any cone with vertex at the

origin of Em is never incompressible.
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P r o o f. Follows from Theorem 3.1(2) and fact that the position vector
field of any cone with vertex at o ∈ E

m is tangent to the cone. ✷

If (N, g) is a compact Riemannian homogeneous manifold, denote by G
the identity component of the group of isometries of N . Then G is a compact Lie
group which acts transitively on N . Thus N = G/K, where K is the isotropy
subgroup of G at a point p ∈ N . An immersion φ : (N, g) → E

m is said to be
equivariant if and only if there exists a Lie homomorphism ψ : G→ SO(m) such
that φ(q(p)) = ψ(q)(φ(p)) for any q ∈ G and p ∈ N .

Theorem 3.2. Every equivariantly isometrical immersion of a compact

homogeneous Riemannian manifold into any Euclidean space has incompressible

canonical vector field.

P r o o f. Let N be a compact Riemannian homogeneous manifold and
φ : N → E

m be an equivariantly isometrical immersion. Then 1 + 〈H,x〉 is a
constant, say c, on N , where x and N denote the position vector field and mean
curvature vector field of N in E

m, respectively. Hence we have

∫

M

(1 + 〈H,x〉)dV = c vol(N),(3.7)

where dV and vol(N) denote the volume element of volume of N , respectively.
On the other hand, we have the following well-known formula of Minkowski-

Hsiung (cf. [4, page 305]):

∫

M

(1 + 〈H,x〉)dV = 0.(3.8)

By comparing (3.7) and (3.8), we obtain 〈H,x〉 = −1 identically on N . Con-
sequently, the equivariant immersion has incompressible canonical vector field
according to Theorem 3.1(2). ✷

An immediate consequence of Theorem 3.2 is the following.

Corollary 3.3. Every hypersphere centered at the origin of E
n+1 has

incompressible canonical vector field.

4. Planar curves with incompressible canonical vector field.

Recall that, up to rigid motions, a unit speed planar curve is determined com-
pletely by its curvature function.

The next theorem completely classifies planar curves with incompressible
canonical vector field.
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Theorem 4.1. Let γ(s) be a unit speed planar curve in E
2. Then the

canonical vector field of γ is incompressible if and only if, up to rigid rotations

of E2 about the origin, γ is an open portion of a curve of the following two types:

(a) A circle centered at the origin;

(b) A curve defined by

γ =
2

c2

(

cos(c
√
s) + c

√
s sin(c

√
s), sin(c

√
s)− c

√
s cos(c

√
s)
)

(4.1)

for some nonzero real number c.

P r o o f. For the unit speed planar curve γ(s) in E
2, we have

γ′(s) = T, T ′(s) = κN(s), N ′(s) = −κT,(4.2)

H = κN,(4.3)

where T and N are the unit tangent vector field and the principal normal, re-
spectively, and κ is the curvature function of γ.

Now, let us assume that γ is planar curve whose canonical vector field is
incompressible. Then it follows from (4.3) and Theorem 3.1(2) that

〈N, γ〉 = −1

κ
.(4.4)

By differentiating (4.4) with respect to the arclength s, we get

〈T, γ〉 = − κ′

κ3
.(4.5)

Case (a): If κ′(s) = 0. In this case, (4.5) implies that 〈T, γ〉 = 0 holds
identically. Thus the position vector field of γ is always normal to the curve.
Hence γ is an open part of a circle centered at the origin of E2.

Conversely, if γ is an open part of a circle centered at the origin of E2, then
the canonical vector field xT of γ vanishes identically. Therefore xT is trivially
incompressible.

Case (b): If κ′(s) 6= 0. In this case, by differentiating (4.5) with respect
to s and using (4.4), we find

0 =

(

κ′

κ3

)′

,(4.6)
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which implies that the curvature function κ(s) satisfies

κ′

κ3
= −2

b
(4.7)

for some nonzero real number b.
After solving (4.7) we obtain

κ2 =
b

4(s − a)
(4.8)

for some real number a. Therefore, by applying a suitable translation on s, we
get

κ2 =
b

4s
(4.9)

Without loss of generality, we may assume that b is positive. So we may put
b = c2 and we get

κ =
c

2
√
s
.(4.10)

Therefore, up to rigid rotations of E2 about the origin, the planar curve γ is given
by

γ =
2

c2

(

cos(c
√
s) + c

√
s sin(c

√
s), sin(c

√
s)− c

√
s cos(c

√
s)
)

(4.11)

Fig. 1. Planar curve with incompressible canonical
vector field defined by (4.1) with c = 1 and s ∈ (0, 60π)
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which is exactly (4.1).
Conversely, if the curve γ is defined by (4.1), then we get

γ′(s) =
(

cos(c
√
s), sin(c

√
s)
)

,

H = γ′′(s) =
−c
2
√
s

(

sin(c
√
s),− cos(c

√
s)
)

.

It is direct to verify that 〈H, γ〉 = −1 holds identically. Consequently, the canon-
ical vector field of γ is incompressible according to statement (2) of Theorem 3.1.
✷

5. Hypercylinders and surfaces of revolution with incom-

pressible canonical vector field. In this section, we present the next result
which classifies hypercylinders with incompressible canonical vector field.

Theorem 5.1. Let Mn (n ≥ 2) be a hypercylinder over a unit speed

planar curve γ(s) ⊂ E
2 ⊂ E

2 × E
n−1. Then the canonical vector field of Mn in

E
n+1 is incompressible if and only if, up to rotations of the E

2 about the origin,

Mn is an open part of the hypersurface defined by

(5.1)

(

(1− n)s cos(K(s)) +
√

n(n− 1)
√

c2 − s2 sin(K(s)),

(1− n)s sin(K(s))−
√

n(n− 1)
√

c2 − s2 cos(K(s)),

t2, . . . , tn

)

,

where K(s) =

√
n√

n− 1
arctan

(

s/
√

c2 − s2
)

with −c < s < c.

P r o o f. Let Mn ⊂ E
2 ⊂ E

2×E
n−1 be a hypercylinder over a unit speed

planar curve γ(s) in E
2. Without loss of generality, we may assume that Mn is

parametrized by

x(s, t2, . . . , tn) =
(

γ(s), t2, . . . , tn),(5.2)

where γ(s) is a unit speed planar curve. It is easy to verify that the mean
curvature vector of Mn in E

n+1 satisfies

H =
γ′′

n
=
κN

n
,(5.3)
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whereN denotes the principal normal of the planar curve γ. Hence it follows from
(5.2), (5.3) and Theorem 3.1(2) that the hypercylinder Mn has incompressible
canonical vector field if and only if the planar curve γ satisfies

〈

γ, γ′′
〉

= −n.(5.4)

Analogous to the proof Theorem 4.1(b), it is direct to verify that if a unit
speed planar curve γ satisfies (5.4), then its curvature function κ satisfies

n(κκ′′ − 3κ′2) = (n− 1)κ4, n ≥ 2.(5.5)

After solving this second order differential equation, we know that up to
translations on s the solutions of (5.5) satisfy

κ(s) =

√
n√

n− 1
√
c2 − s2

, n ≥ 2,(5.6)

where c is a nonzero real number. From (5.6) we obtain

K(s) =

√
n√

n− 1
arctan

(

s√
c2 − s2

)

, −c < s < c,(5.7)

where K is an anti-derivative of κ. Hence, up to rotations of E2 about the origin,
the planar curve γ(s) with curvature function κ is given by

γ =

(
∫ s

cos(K(s))ds,

∫ s

sin(K(s))ds

)

.(5.8)

It follows from (5.8) that

γ′′ = −κ(s)
(

sin(K(s)),− cos(K(s))
)

.(5.9)

Now, it follows from (5.4), (5.8) and (5.9) that

n

κ(s)
= sin(K(s))

∫ s

cos(K(s))ds − cos(K(s))

∫ s

sin(K(s))ds,(5.10)

which yields

(5.11)

∫ s

cos(K(s))ds =
√

n(n− 1)
√

c2 − s2 csc(K(s))

+ cot(K(s))

∫ s

sin(K(s))ds.
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Now, by differentiating (5.11) we find

(5.12)

∫ s

sin(K(s))ds =(1− n)s sin(K(s))

−
√

n(n− 1)
√

c2 − s2 cos(K(s)).

By substituting (5.12) into (5.10) we find

(5.13)

∫ s

cos(K(s))ds =(1− n)s cos(K(s))

+
√

n(n− 1)
√

c2 − s2 sin(K(s)).

Therefore, by substituting (5.10) and (5.11) into (5.8) we obtain

(5.14)

γ =

(

(1− n)s cos(K(s)) +
√

n(n− 1)
√

c2 − s2 sin(K(s)),

(1− n)s sin(K(s))−
√

n(n− 1)
√

c2 − s2 cos(K(s))

)

.

It is easy to verify that the planar curve γ defined by (5.14) satisfies
〈

γ, γ′′
〉

= −n
identically. Consequence, the hypercylinder over γ with incompressible canonical
vector field is an open part of the hypersurface defined by (5.1). ✷

If we consider a surface of revolution in E
3 of the form:

x(s, t) = (r(s) cos t, r(s) sin t, s),(5.15)

then it is direct to verify that the mean curvature vector of the surface is given
by

(5.16) H =
1 + r′(s)2 − r(s)r′′(s)

2r(s)(1 + r′(s)2)2
(

− cos t,− sin t, r′(s)
)

.

It follows from (5.15), (5.16) and Theorem 3.1(2) the following.

Proposition 5.1. The surface of revolution in E
3 defined by (5.15) has

incompressible canonical vector field if and only if the function r satisfies the

following second order differential equation:

(1 + r′2)(r + sr′ + 2rr′2) + r(r − sr′)r′′ = 0.(5.17)
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Fig. 2. Hypercylinder with incompressible canonical vector field
defined by (5.1) with c = 1, n = 2, |s| < 0.7 and t2 ∈ (0, 1)

6. Examples of surfaces in E
4 with incompressible canon-

ical vector field. Finally, we provide some examples of surfaces in E
4 with

incompressible canonical vector field. Let us consider product surfaces of two
unit speed planar curves β(s) and γ(t) given by

x(s, t) = (β(s), γ(t)).(6.1)

Then the mean curvature vector of this product surface is given by

H =
1

2

(

β′′(s), γ′′(t)
)

.(6.2)

According to Theorem 3.1(2), the surface has incompressible canonical vector
field if and only if

〈

β(s), β′′(s)
〉

+
〈

γ(t), γ′′(t)
〉

= −2(6.3)

holds identically, which implies that β(s) and γ(t) satisfy

(6.4)

〈

β(s), β′′(s)
〉

= −a,
〈

γ(t), γ′′(t)
〉

= −(2− a)

for some constant a.
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The simplest such examples in E
4 with incompressible canonical vector

field is by taking a = 1 in (6.4). Clearly, such a surface is the product of two
planar curves with incompressible canonical vector field given by type (a) or type
(b) as defined in Theorem 4.1.
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