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Abstract. The paper presents a number of methods for factoring finite
abelian groups into a direct product of its subsets. Some are extension of
existing techniques others are new.

1. Introduction. Let G be a finite abelian group written multiplica-
tively with identity element e. Let A1, . . . , An be subsets of G. The product
A1 · · ·An is defined to be

{a1 · · · an : a1 ∈ A1, . . . , an ∈ An}.

We say that the product A1 · · ·An is a factorization of G if G = A1 · · ·An and
each a ∈ G can be represented uniquely in the form

a = a1 · · · an, a1 ∈ A1, . . . , an ∈ An.
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A subset A of G is called normalized if e ∈ A. The factorization G =
A1 · · ·An is called normalized if each Ai is normalized. The number of the ele-
ments of A is denoted by |A|. The smallest subgroup of G that contains A, that
is, the span of A in G, is denoted by 〈A〉. For an integer k and a subset A of G
the notation Ak stands for {ak : a ∈ A}. Thus for example in this paper A2 does
not mean AA or Ak neither means the k-fold Descartes product A× · · · × A. If
G is a direct product of cyclic groups of orders t1, . . . , tn, then we say that G is
a (t1, . . . , tn) type group.

In section 4 we will describe two procedures to construct factorizations
for finite abelian groups based on simultaneous factorizations. These generalize
two methods given earlier by N. G. De Bruijn [2]. The constructions now can
be applied in a more varied setting. In particular they can be used iteratively
to generate large families of factorizations using chains of subgroups. In sections
5 and 6 factorizations are presented that are based on permutations and Latin
squares. Section 7 shows how finite projective geometry can be used to construct
factorizations.

The remaining part of the paper is about applications. Factorizations of
cyclic groups in section 10 provide a source to enrich the collections of variable
length codes. In section 9 we define the complementer factor problem. Then we
point out that the graph theoretical equivalent of the problem suggests a family
of new type of random graphs that computer scientists can use to test maximum
clique algorithms.

The treatment of the factorization method is far from comprehensive.
Important methods are not mentioned. For instance techniques based on error
correcting codes are missing. This method first applied in [6] and later improved
and extended in [3]. A similar construction in [19] with interesting geometric
application is not covered either. Further we did not include the methods of [20]
and [21].

2. Periodic subsets. By the fundamental theorem of finite abelian
groups each finite abelian group can be decomposed into a direct product of
cyclic subgroups. So most likely factoring a given group G into its subgroups
comes into mind first when one looks for a factoring of G into its subsets. It is
still quite natural to consider factorization G = AB, where one of the factors,
say A, is equal to a subgroup H of G. The group G can be partitioned into right
cosets modulo H. If the elements of B form a complete set of representatives
modulo H, then plainly the product HB is direct and gives a factorization of G.
For each element of B there are |H| choices and consequently there are |H||B|

choices for B. In case we are looking for normalized factorizations, then there
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are |H||B|−1 choices for B. One can choose a subgroup K of H and construct
a factorization H = KC of H in a similar way. Combining the factorizations
H = KC and G = HB we get a factorization G = KCB of G.

In a more systematic manner let us consider an ascending chain of sub-
groups

{e} = H0 ⊆ H1 ⊆ · · · ⊆ Hn ⊆ Hn+1 = G

of G and the factorizations

Hn+1 = HnAn, Hn = Hn−1An−1, . . . ,H2 = H1A1

of the subgroups H2, . . . ,Hn+1 respectively. Combining these factorizations gives
the factorization G = H1A1 · · ·An. Of course we can rearrange the factors in any
order we please and group factors together in various ways to get factorizations in
the form G = B1 · · ·Bm. What the above manipulations cannot make disappear
is that a Bi factor is a direct product of the subgroupH1 and certain other factors
from A1, . . . , An.

For convenience we introduce the following terminology. A subset A of
an abelian group G is called periodic if there is a g ∈ G \ {e} such that Ag = A.
The element g is termed a period of A. It turns out that all the periods of A
together with the identity element e form a subgroup H of G. We refer to H as
the subgroup of periods of A. There is a subset B of G such that the product
HB is direct and is equal to A.

Using this terminology we can say that in the factorization G = B1 · · ·Bm

we constructed from G = H1A1 · · ·An one factor Bi is periodic. When Bi is
normalized and |Bi| is a prime, then periodicity of Bi simply means that Bi is
a subgroup of G. As a counterpart of our construction a celebrated theorem of
L. Rédei [14] asserts that in a normalized factorization G = A1 · · ·An of a finite
abelian group G, where each |Ai| is a prime at least one of the factors necessarily
is a subgroup of G.

G. Hajós [7] and A. D. Sands [16] pointed out that there is a nice or-
ganized way to construct factorizations G = B1B2 from the factorization G =
H1A1 · · ·An. In fact the construction can be carried out easily by a computer.

Let G be a finite abelian group, let A, B be subsets of G and let ϕ : B → A
be a function. We define A◦ϕB to be {ϕ(b)b : b ∈ B}. Let D1, . . . ,Dn be subsets
of G such that Di is a complete set of representatives for Hi+1 modulo Hi. (For
the sake of a uniform notation we introduce D0 = H1.) Then use the following
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recursion.

Un = Dn, Vn = {0},

Un−1 = Dn−1Vn, Vn−1 = Dn−1 ◦ Un,

...
...

U1 = D1V2, V1 = D1 ◦ U2,

U0 = D0V1, V0 = D0 ◦ U1.

Set B1 = V0, B2 = U0. The functions

ϕn : Un → Dn−1, . . . , ϕ1 : U1 → D0

are suppressed in the formulas above. Then G = B1B2 is a factorization of G.
Plainly B1 is periodic as B1 = D0V1 and D0 = H1.

3. Simultaneous factorizations. Let F1, . . . , Fs be families of sub-
sets of G. If

G =
∏

A∈Fi

A, 1 ≤ i ≤ s

are factorizations of G, then we have s simultaneous factorizations of G. Shortly
we will talk about simultaneous factorizations of G.

Example 1. Let G be a group of type (4, 4) with basis elements x, y.
Consider the sets

A1 = {e, x, x2, x3},

A2 = {e, y, y2, y3},

A3 = {e, xy, x2y3, x3y2}

of G and let

F1 = {A1, A2}, F2 = {A2, A3}, F3 = {A1, A3}

be families of subsets of G. It is a routine computation to verify that

G =
∏

A∈F1

A = A1A2,

G =
∏

A∈F2

A = A2A3,
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G =
∏

A∈F3

A = A1A3

are factorizations of G and so we have three simultaneous factorizations of G.

Example 2. Let G be a group of type (3, 3) with basis elements x, y and
let

A1 = {e, x, x2}, A2 = {e, y, y2},

B1 = {e, xy, x2y2}, B2 = {e, x2y, yx2}.

Set

F1 = {A1, B1}, F2 = {A1, B2},

F3 = {A2, B1}, F4 = {A2, B2}.

One can check that

G =
∏

A∈F1

A = A1B1,

G =
∏

A∈F2

A = A1B2,

G =
∏

A∈F3

A = A2B1,

G =
∏

A∈F4

A = A2B2

are factorizations of G and so we have four simultaneous factorizations of G.

In the special case when |F1| = · · · = |Fs| = 2 we can record the data
conveniently by defining a graph Γ whose nodes are the elements of F1 ∪ · · · ∪Fs

and the nodes Ai, Aj are adjacent if G = AiAj is a factorization of G. We will
refer to the graph Γ as the associated graph of the simultaneous factorizations.

The associated graph in Example 1 has three nodes A1, A2, A3 and each
of them are connected by an edge. In short the associated graph is K3 the
complete graph with three vertices. The associated graph of the simultaneous
factorizations in Example 2 is the complete bipartite graph K2,2. The nodes are
A1, A2, B1, B2. The nodes are partitioned as {A1, A2} ∪ {B1, B2} and each Ai

is connected with each Bj.
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4. Not full-rank factorizations. Let G be a finite abelian group
and let H be a subgroup of G. In this section we will show how simultaneous
factorizations of H give rise factorizations of G. The constructions we present
generalize constructions due to N. G. De Bruijn [2].

Suppose B = {b1, . . . , br} is a complete set of representatives in G modulo
H with r ≥ 2 and b1 = e. Suppose H admits simultaneous normalized factor-
izations such that the associated graph has a node with degree s ≥ 2. In other
words, there are subsets A1, . . . , As+1 of H such that H = AiAs+1 is a normalized
factorization of H for each i, 1 ≤ i ≤ s. Set

C = As+1,

D = b1D1 ∪ · · · ∪ brDr,

where Di ∈ {A1, . . . , As}.

Lemma 1. G = DC is a factorization of G.

P r o o f. We will show that the product DC is equal to G and that |D||C|
is equal to |G|, that is the product DC is direct. The next computation verifies
that G = DC.

DC = (b1D1 ∪ · · · ∪ brDr)C

= (D1b1 ∪ · · · ∪Drbr)As+1

= (D1As+1)b1 ∪ · · · ∪ (DrAs+1)br

= Hb1 ∪ · · · ∪Hbr

= H{b1, . . . , br}

= HB

= G

From the factorizations H = AiAs+1 it follows that |A1| = · · · = |As|.
Let this common value be t. From the previous computation we can read off that
biDi is contained by the coset biH for each i, 1 ≤ i ≤ s. Therefore b1D1, . . . , bsDs

are disjoint subsets. From |b1D1| = · · · = |bsDs| = t it follows that |D| = st.
Finally we have

|D||C| = st|As+1|

= |B||A1||As+1|

= |B||H|
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= |G|

as required. ✷

Let

B = {b1, . . . , br}, C = {c1, . . . , cs}

be normalized subsets of G such that the product BC is direct and form a com-
plete set of representatives in G modulo H. The index of H in G is equal to rs.
If r ≥ 2, s ≥ 2, then this index is a composite number. Suppose H admits uv
simultaneous factorizations such that the associated graph is the complete bipar-
tite graph Ku,v with u ≥ 2, v ≥ 2. In other words there are subsets A1, . . . , Au,
B1, . . . , Bv of H such that H = AiBj is a normalized factorization of H for each
i, j, 1 ≤ i ≤ u, 1 ≤ j ≤ v. Set

D = b1D1 ∪ · · · ∪ brDr,

where Di ∈ {A1, . . . , Au} and set

E = c1E1 ∪ · · · ∪ csEs,

where Ei ∈ {B1, . . . , Bv}.

Lemma 2. G = DE is a factorization of G.

P r o o f. We will show that the product DE is equal to G and that
|D||E| = |G|.

The following straightforward computation shows that G = DE.

DE = (b1D1 ∪ · · · ∪ brDr)(c1E1 ∪ · · · ∪ csEs)

= b1c1D1E1 ∪ · · · ∪ brcsDrEs

= b1c1H ∪ · · · ∪ brcsH

= {b1c1, . . . , brcs}H

= (BC)H

= G

From the factorizations H = AiB1 it follows that |A1| = · · · = |Au| = t
and from the factorizations H = A1Bj it follows that |B1| = · · · = |Bv| =
w. From the computation above we can see that the coset biH contains biDi.
Consequently, b1D1, . . . , brDr are disjoint subsets. Therefore |D| = rt. Similarly,
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the coset cjH contains cjEj and so c1E1, . . . , csEs are disjoint subsets. Hence
|E| = sw. Now

|D||E| = (rt)(sw)

= r|A1|s|B1|

= rs|A1||B1|

= rs|H|

= |B||C||H|

= |G|

as required. ✷

5. Latin squares. An n by n array is called a Latin square if each
of its n2 entries is filled with one of the symbols 0, 1, . . . , n − 1 such that no
symbol appears twice in a row and no symbol appears twice in a column. Latin
squares are well-known and well-studied combinatorial structures. Their history
goes back to L. Euler [4].

In this section we will show that permutations can be used to construct
factorizations of a group G that has a subgroup H of type (n, n) and |G : H| ≥ 2.
Then we will show that Latin squares that are generalizations of permutations
can be used to construct factorizations of a group G that has a subgroup H of
type (n, n, n) and |G : H| ≥ 2.

First we consider the simpler case of the permutations. Let G be a group
of type (m,n, n) with basis elements x, y, z, where |x| = m, |y| = |z| = n. Sup-
pose that f(0), f(1), . . . , f(n− 1) is a permutation of the elements 0, 1, . . . , n− 1.
Set

A1 = 〈y〉,

A2 = 〈z〉,

A3 = {yizf(i) : 0 ≤ i ≤ n− 1}.

Note that the products A1A3, A2A3 are simultaneous factorizations of the sub-
group H = 〈y, z〉 of G and B = 〈x〉 is a complete set of representatives in G
modulo H. Here |G : H| = m. Therefore, by Lemma 1, G has a factorization
G = DC, where |D| = mn, |C| = n. In fact there is an astronomical number
of these factorizations. There are n! choices for the permutation f . (The choice
when f is the identity permutation gives a trivial factorization.) By our first
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construction from Section 4, the factors C and D are in the following forms

C = A3,

D = b1D1 ∪ · · · ∪ bmDm,

where Di ∈ {A1, A2}. This gives 2m choices for D1, . . . ,Dm. (The choices when
all Di are equal produce not particularly interesting factorizations.) The elements
b1, . . . , bm form a complete set of representatives moduloH with b1 = e. Therefore
there are (n2)m−1 choices for the elements b2, . . . , bm.

Let G be a group of type (m,n, n, n) with basis elements x, y, z, w, where
|x| = m, |y| = |z| = |w| = n. An n by n Latin square can be described by the
n2 triples [i, j, f(i, j)], 0 ≤ i, j ≤ n − 1, where f(i, j) is the symbol in the jth
position in the ith row. Set

A1 = 〈y〉,

A2 = 〈z〉,

A3 = 〈w〉,

A4 = {yizjwf(i,j) : 0 ≤ i, j ≤ n− 1}.

Let us observe that the products A1A4, A2A4, A3A4 form simultaneous factor-
izations of the subgroup H = 〈y, z, w〉 of G, B = 〈x〉 is a complete set of repre-
sentatives in G modulo H and |G : H| = m. Consequently, by Lemma 1, there
is a factorization G = DC of G, where |C| = n2, |D| = mn. We then can go on
to construct factorizations G = DC of a group G that has a subgroup H of type
(n, n, n, n) and |G : H| ≥ 2 using Latin cubes in place of Latin squares. Needles
to say that the number of these factorization is very large. But there are further
possibilities to enlarge the collection of factorizations we have constructed. By
Proposition 3 of [17], in a factorization G = DC the factor D can be replaced by
Di to get the factorization G = DiC whenever i is relatively prime to |D|. The
set Di is not necessarily distinct from D. For example if D is a union of cyclic
subgroups of G, then plainly Di = D for each integer i. C. Okuda [9] singled out
and studied factorizations in which the factors are unions of cyclic subsets. In
order to get interesting factorizations we have to assume that there is an integer
i such that i is relatively prime to |D| and Di 6= D. In this case the products DC
and DiC are simultaneous factorizations of G and using the first construction
from Section 4 one can construct a factorization a group that contains G as a
subgroup. Suppose next that in the factorization G = DC, |D| = |C| and there
are integers i, j such that G = DiCj is a factorization and Di 6= D, Cj 6= C.
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Now the products

DC, DCj, DiC, DiCj

are factorizations of G simultaneously. Using the second construction from Sec-
tion 4 we can construct a factorization of a group that contains G as a subgroup.
In the factorizations constructed so far one of the factors does not span the whole
group which is factored. On the other hand for the majority of the finite abelian
groups there are factorizations in which both factors span the whole group as
shown in [21]. These “full-rank” factorizations cannot be the result of the con-
structions described in Section 4. However the “full-rank” factorizations can be
the starting point of our constructions. In summary there is a bewildering variety
of factorizations of finite abelian groups.

6. Disjoint Latin squares. Let f , g be permutations of 0, 1, . . . , n−1
such that f(0) = g(0) and f(i) 6= g(i) for 1 ≤ i ≤ n−1. We will say that f and g
are disjoint permutations. In this section we will show that disjoint permutations
can be used to construct factorizations of a group G that has a subgroup H of
type (n, n) and the index |G : H| is a composite number. Then we show that
an extension of disjoint permutations the disjoint Latin squares can be used to
construct factorizations for a group G that admits a subgroup H of type (p, p, p)
and the index |G : H| is a composite number.

Let G be a group of type (kn,mn) with basis elements x, y, where |x| =
kn, |y| = mn. Assume that f, g are disjoint permutations of 0, 1, . . . , n− 1. Set

A1 = 〈xk〉,

A2 = 〈ym〉,

B1 = {xkiymf(i) : 0 ≤ i ≤ n− 1},

B2 = {xkiymg(i) : 0 ≤ i ≤ n− 1}.

One can verify that the products

A1B1, A1B2, A2B1, A2B2

are simultaneous factorizations of the subgroup H = 〈xk, ym〉 of G and |G : H| =
km. One can choose B and C such that B, C are normalized subsets, the product
BC is direct and is a complete set of representatives in GmoduloH. Now Lemma
2 is applicable and gives that there is a factorization G = DE of G.
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Let us turn to the Latin squares. Consider two Latin squares given in the
forms

[i, j, f(i, j)], [i, j, g(i, j)], 0 ≤ i, j ≤ n− 1,

where f(0, 0) = g(0, 0) and f(i, j) 6= g(i, j) when (i, j) 6= (0, 0). We will say that
the Latin squares are disjoint. Disjoint Latin squares can be used to construct
factorizations.

Let G be a group of type (kn,mn, n) with basis elements x, y, z, where
|x| = kn, |y| = mn, |z| = n. Set

A1 = 〈xk〉,

A2 = 〈ym〉,

A3 = 〈z〉,

B1 = {xkiymjzf(i,j) : 0 ≤ i, j ≤ n− 1},

B2 = {xkiymjzg(i,j) : 0 ≤ i, j ≤ n− 1}.

One can verify that the products

A1B1, A1B2, A2B1, A2B2, A3B1, A3B2

are simultaneous factorizations of the subgroup H = 〈xk, ym〉 of G and |G : H| =
km. By Lemma 2, there is a factorization G = DE of G. From our point of view
the most important fact is that there is a very large variety of such factorizations.

7. Finite projective spaces. Let p be a prime and let n ≥ 2 be an
integer. Let G be a finite abelian group and let G = B1 · · ·BsH be a factorization
of G, where H is an elementary p-group of rank n and |B1| ≥ 2, . . . , |Bs| ≥ 2.
Suppose that

Bi = {bi,1, . . . , bi,r(i)}.

Let L1, . . . , Ln,M1, . . . ,Mn be subgroups ofH of order p such thatH = X1 · · ·Xs,
where Xi ∈ {Li,Mi} for each i, 1 ≤ i ≤ n. Set

A1 = b1,1L1 ∪ b1,2M1 ∪ · · · ∪ b1,r(1)M1,

...

An = bn,1Ln ∪ bn,2Mn ∪ · · · ∪ bn,r(n)Mn.
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The computation

A1 · · ·An =

n
∏

i=1

(bi,1Li ∪ bi,2Mi ∪ · · · ∪ bi,r(i)Mi)

= B1 · · ·BnH

= G

shows that G = A1 · · ·An is a factorization of G.

As H is an elementary p-group of rank n it can be viewed as an n-
dimensional affine space over GF(p). The subgroups L1, . . . , Ln,M1 . . . ,Mn of
order p can be viewed as 1-dimensional subspaces in [GF(p)]n. The 1-dimensional
subspaces of [GF(p)]n form the points of in the (n − 1)-dimensional projective
space over GF(p). This is the geometrical interpretation we will use. Plainly
the product X1 · · ·Xn is equal to H if the points X1, . . . ,Xn span an (n − 1)-
dimensional projective space. The next lemma shows that if p ≥ 3, then there is
a suitable choice for the points in each dimension.

Lemma 3. Let p be an odd prime and let n ≥ 2 be an integer. There are

points L1, . . . , Ln,M1, . . . ,Mn in the (n − 1)-dimensional projective space over

GF(p) such that the points X1, . . . ,Xn span the whole (n − 1)-dimensional pro-

jective space where Xi ∈ {Li,Mi} for each i, 1 ≤ i ≤ n.

P r o o f. Consider first the n = 2 special case. Let the points L1, L2, M1,
M2 be defined by coordinates in the following way

L1 : (1, 0), M1 : (1, 1),

L2 : (0, 1), M2 : (1, 2).

Note that none of the determinants
∣
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∣

∣

1 0

0 1

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

1 0

1 2

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

1 1

0 1

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

1 1

1 2

∣
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∣

∣

is zero in GF(p) for p ≥ 3 and so each of the four pairs

L1, L2, L1,M2, M1, L2, M1,M2

spans a 1-dimensional projective space over GF(p).

Let us turn to the n = 3 case. Let the points L1, L2, L3, M1, M2, M3
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given in the following way

L1 : (1, 0, 0), M1 : (1, 1, 0),

L2 : (0, 1, 0), M2 : (1, 2, 0),

L3 : (0, 0, 1), M2 : (0, 0, 2).

Let Xi ∈ {Li,Mi} for some i, 1 ≤ i ≤ 3. We claim that X1, X2, X3 span a
2-dimensional projective space over GF(p). Indeed, if X3 = L3, then the n = 2
special case gives that the points X1, X2 span a 1-dimensional projective space.
Clearly L3 is not in this space and so the points X1, X2, X3 span a 2-dimensional
projective space. The case when X3 = M3 can be settled in a similar manner.

The proof can be completed by an induction on n. ✷

8. Z-subsets. A subset A of an abelian group G is called a Z-subset if
Ak ⊆ A for each k ∈ Z. Clearly a Z-subset of G is a union of cyclic subsets of
G. The concept, that was introduced by C. Okuda [9] in 1975, is not as artificial
as it might look at the first glance. Let q be a power of a prime. If C is a perfect
e-error correcting linear code of length n over the alphabet {0, 1, . . . , q− 1}, then
[GF(q)]n = S + C is an additive factorization, where S is the Hamming sphere
of radius e centered at the origin. Here C is a subgroup of [GF(q)]n and so it
is obviously a Z-subset. Further S is a Z-subset too. Thus factorizations with
Z-subset factors occur naturally in coding theory.

We present a factorization construction of [9] by Z-subsets. Let p be an
odd prime. Let G be a group of type (p, p, p, p) with basis elements x, y, u, v.
Set

A = 〈x〉 ∪ 〈xy〉 ∪ · · · ∪ 〈xyp−1〉 ∪ 〈yu〉,

B = 〈u〉 ∪ 〈y2uv〉 ∪ · · · ∪ 〈y2uvp−1〉 ∪ 〈v〉.

We claim that G = AB is a factorization of G. We will verify that |A| = |B| = p2

and AA−1 ∩ BB−1 = {e}. To prove |A| = p2 note that A is a union of p + 1
distinct subgroups of order p. This will give that |A| = (p + 1)(p − 1) + 1 = p2.
It remains to show that

{e} = 〈x〉 ∩ 〈xyα〉, 1 ≤ α ≤ p− 1,

{e} = 〈x〉 ∩ 〈yu〉,

{e} = 〈xyα〉 ∩ 〈xyβ〉, 1 ≤ α < β ≤ p− 1,

{e} = 〈xyα〉 ∩ 〈yu〉, 1 ≤ α ≤ p− 1.



348 Sándor Szabó

As an illustration let us check the third one. Suppose that (xyα)i = (xyβ)j for
some i, j, 0 ≤ i, j ≤ p− 1. Since x, y, u, v is a basis of G it follows that

i − j = 0,

αi − βj = 0.

The equations hold in GF(p). The determinant of the system is not zero and so
it follows that i = j = 0 as required. The proof of |B| = p2 is similar.

In order to prove that AA−1 ∩BB−1 = {e} consider the subgroups

〈x, xyα〉, 〈u, y2uvγ〉,

〈x, yu〉, 〈u, v〉,

〈xyα, xyβ〉, 〈y2uvγ , y2uvδ〉,

〈xyα, yu〉, 〈y2uvγ , v〉.

We should verify that each subgroup from the first column is distinct from each
subgroup from the second column. The subgroups can be paired off in 16 ways.
As an illustration we will show that

{e} = 〈xyα, xyβ〉 ∩ 〈y2uvγ , y2uvδ〉.

Assume that

(xyα)i(xyβ)j = (y2uvγ)k(y2uvδ)l.

Since x, y, u, v is a basis of G it follows that

i + j = 0

αi + βj − 2k − 2l = 0

k + l = 0

γk + δl = 0

The last two equations give that k = l = 0, then the first two equations give that
i = j = 0 as required.

It might be disheartening that one must go through the drudgery of check-
ing 16 cases. On the other hand it is quite comforting that we can get away with
considering a mere 16 cases independently of the size of the prime p.

9. Exhaustive search. There are occasions when searching for factor-
izations of a group we have to resort on a computer assisted exhaustive search.
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We describe the complementer factor problem and two methods that proved to
be useful in practice.

Given a finite abelian group G, a subset A of G such that |A| divides
|G|. A subset B of G is a called a complementer factor of A in G if G =
AB is a factorization of G. The complementer factor problem asks if A has a
complementer factor or alternatively asks for finding all possible complementer
factors of A in G.

We introduce a graph Γ in the following way. The nodes of Γ are the
elements of G. Then compute the set AA−1 and set k = |G|/|A|. We connect
two distinct elements g, h of G with an edge if gh−1 6∈ AA−1. Suppose that
∆ is a clique of size k in Γ and that B is the set of the nodes of ∆. Now
BB−1∩AA−1 = {e} and |G| = |A||B| obviously hold which implies that G = AB
is a factorization of G. Therefore in order to decide if A has a complementer factor
in G one may check if the graph Γ has a clique of size k. In order to find all
complementer factors to A in G we may find all cliques of size k in Γ.

We illustrate the procedure with a toy problem. Let G be a group of
type (4, 4, 2) with basis elements x, y, z, where |x| = |y| = 4, |z| = 2. Let
A = {e, x, y, x3y3z}. The group G has 32 elements and A has 4 elements. So a
possible complementer factor B must have 8 elements. We list the elements of G
in the following way

x0y0z0, x0y0z1, x0y1z0, . . . , x3y3z1,

that is, the exponents of the elements are ordered lexicographically. The graph
Γ has 32 nodes and is given by its 32 by 32 incidence matrix which is displayed
in Table 1.

Table 1. The incidence matrix of Γ

A B C D

D A B C

C D A B

B C D A

The blocks A, B, C, D are detailed in Table 2. The reader can notice
that the matrices B and D are transposes of each other and the matrices A and
C are symmetric with respect to the main diagonal.

There are well tested computer programs to find k-cliques in a given
graph. See for example [13], [10]. The computation reveals that Γ contains 16
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Table 2. Blocks A, B, C, D

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

cliques of size 8. We list two of them

B1 = {e, z, y2, y2z, x2, x2z, x2y2, x2y2z},

B2 = {e, z, y2, y2z, x2y3, x2y3z, x2y, x2yz}.

One can see that both of them are periodic. The subgroups of periods are
〈x2, y2, z〉, 〈y2, z〉 respectively and so B1 is a subgroup of G.

We turn to an other possible algorithm to tackle the complementer factor
problem. Let F be a family of subsets of a universal set U . The k-exact cover
problem asks if there are k elements V1, . . . , Vk of F such that V1, . . . , Vk form a
partition of U , that is, V1∪· · ·∪Vk = U and Vi∩Vj = ∅ for each i, j, 1 ≤ i < j ≤ k.
The complementer factor problem can be reduced to the exact cover problem by
setting U = G and F = {Ag : g ∈ G}. If the sets Ab, b ∈ B form a partition of
G, then clearly G = AB is a factorization of G.

We illustrate the procedure with the same choice of G and A as in the
previous example. The elements of the family F can be given by a 32 by 32
incidence matrix. The matrix is depicted in Table 3. The blocks A, B are
detailed in Table 2. We used D. E. Knuth [8] dancing link algorithm to solve this
instance of the exact cover problem and got the same 16 solutions as with the
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Table 3. The family F

A B

A B

A B

B A

Table 4. Blocks A, B

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

k-clique method.

Sometimes only a subset of the factor A is given in the exact cover prob-
lem. Both the clique and the exact cover approaches can be extended to this
more general situation. It is well-known that the k-clique and the exact cover
problems fall into the NP-complete class. This means that in these families of
problems there must be computationally demanding instances. However, it is
an empirical fact some of the solvable cases played crucial role to settle highly
nontrivial problems. As convincing examples we would like to mention [22], [12],
[11]. So these exhaustive search techniques can be rightfully listed among the
tools of constructing factorizations.

We would like to propose a family of new type of random graphs to test
the performance of maximum clique algorithms. Namely, take a finite abelian
group of a suitable size. The order of G will be the number of nodes of the graph.
Then consider an ascending chain of subgroups

{e} = H0 ⊆ H1 ⊆ · · · ⊆ Hn ⊆ Hn+1 = G.

From the chain using the Hajós-Sands recursion we have seen in Section 2 con-
struct a factorization G = B1B2. Discard B1 and try to find a complementer
factor to B2 in G. This can be done by constructing the graph Γ above. In order
to have a large collection of such graphs and in order to ensure fairness we sug-
gest to pick the functions ϕi randomly so that each ϕi has the some probability
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1/(|Di−1|
|Ui|).

10. Code constructions. Let A be the binary alphabet {x, y}. The
set of all the possible finite words can be formed using letters from A will be
denoted byA∗. With the operation of the concatenation of wordsA∗ is a free semi-
group generated by the elements of A. The neutral element is the empty word.
A nonempty subset C of A∗ is called a code if for each c1, . . . , cu, d1, . . . , dv ∈ C
from

c1 · · · cu = d1 · · · dv

it follows that u = v, then c1 · · · cu = d1 · · · du implies that c1 = d1, . . . , cu = du.
Once a code C is constructed by deleting elements from C we get new codes. In
other words subset of a code is again a code.

In order to refute the so called triangle conjecture P. W. Shor [18] con-
structed the code listed in Table 5.

Table 5. Shor’s code

y x3y x8y x11y

yx x3yx2 x8yx2 x11yx

yx7 x3yx4 x8yx4 x11yx2

yx13 x3yx6 x8yx6

yx14

Analyzing Shor’s code one can come up with the following idea of con-
structing codes. Let B = {b(1), . . . , b(s)} be a set of integers. Suppose A1, . . . , As

are subsets of integers such that the sum Ai + B is direct for each i, 1 ≤ i ≤ s.
This simply means that

a+ b = a′ + b′, a, a′ ∈ Ai, b, b′ ∈ B

imply that a = a′, b = b′. Set

Ci = {xb(i)yxa : a ∈ Ai}, 1 ≤ i ≤ s.

Lemma 4. The set C = C1 ∪ · · · ∪ Cs is a code over the binary alphabet

{x, y}.

P r o o f. It is enough to verify that given a word w that is a product of
elements of C then we are able to decompose w into a product of elements of C
without any ambiguity.



Methods for constructing factorizations of abelian groups with applications 353

If the letter y does not appear in w, then w cannot be a product of
elements of C. If y appears in w once, then w must be a single code word in C.
By counting we can find the number of x’s in front of y in w. Let this number
be β. If β is equal to one of b(1), . . . , b(s), say β = b(i), then w must belong to
Ci. By scanning w we can find the number of x’s following y. Let this number
be α. If α ∈ Ai, then w must be the code word xb(i)yxα in C.

Consider next the case when y appear in w at least twice. We can find
the number of x’s in front of the first y and the number of x’s between the first
and second y. Let these numbers be β and α respectively. There is a b(i) such
that β = b(i) otherwise w cannot be a product of elements of C. Then α can be
represented in the form

α = a+ b, a ∈ Ai, b ∈ B

otherwise w is not a product of elements of C. We can chop off the code word
xb(i)yxa from the front of w and repeat the procedure with a shorter word. ✷

Example 3. In case of the code exhibited in Table 5

B = {0, 3, 8, 11},

A1 = {0, 1, 7, 13, 14},

A2 = {0, 2, 4, 6},

A3 = {0, 2, 4, 6},

A4 = {0, 1, 2}.

One can verify that the sum Ai +B is direct for each i, 1 ≤ i ≤ 4.

In the construction above direct sums of subsets of the set of integers
were used. Next we use direct sums of subsets of a finite cyclic group. Choose
a positive integer n. Let B = {b(1), . . . , b(s)} be a subset of Z(n). We think of
Z(n) as the set of elements 0, 1, . . . , n− 1 with the operation of addition modulo
n. Suppose that A1, . . . , As are subsets of Z(n) such that the sum Ai+B is direct
in Z(n) for each i, 1 ≤ i ≤ s. Set

Ci = {xb(i)yxa : a ∈ Ai}, 1 ≤ i ≤ s.

Lemma 5. The set C = {xn} ∪C1 ∪ · · · ∪Cs is a code over the alphabet

{x, y}.

P r o o f. The proof parallels the proof of Lemma 4. The only difference
is that when we count the number of appearances of x we should do so modulo
n. ✷
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The morale of this section is that simultaneous factorizations provide an-
other source of codes beside the well-known constructions that yield for example
the prefix and postfix codes. We describe two possible approaches in detail.

In the first approach one can start with a normalized factorization Z(n) =
A + C of the cyclic group Z(n). Then look for integers k1, . . . , ks for which
k1A + C, . . . , ksA+ C are factorizations of Z(n) simultaneously. Then choosing
the subsets A1, . . . , As, B such that A1 ⊆ k1A, . . . , As ⊆ ksA, B ⊆ C by Lemma
5 we get a code.

In the second approach one can start with a normalized factorization
Z(n) = A + C of the cyclic group Z(n). This time consider H = 〈C〉 and
suppose that H 6= Z(n), that is, Z(n) = A+C is not a “full-rank” factorization.
Choose elements a1, . . . , as of A. Adding −ai to both sides of the factorization
Z(n) = A+C gives the normalized factorization Z(n) = (A−ai)+C. Restricting
this factorization to H results the normalized factorization H = [(A−ai)∩C]+C.
Now the sums

[(A− a1) ∩ C] + C, . . . , [(A − as) ∩ C] +C

form s simultaneous factorizations of H. Let us choose the subsets A1, . . . , As,
B such that

A1 ⊆ [(A− a1) ∩ C] + a1, . . . , As ⊆ [(A− as) ∩C] + as, B ⊆ C.

By Lemma 5 we can construct a code.

Arguments similar to those in Section 5 show that there is a ready supply
of factorizations of cyclic groups and so a very large variety of codes can be
constructed from factorizations.

There is a more profound connection between codes and factoring cyclic
groups when one starts with a maximal code and assigns a factorization to the
code as described by A. Restivo, S. Salemi, and T. Sportelli [15]. For further
details see also C. De Felice [5] and the definitive monograph of J. Berstel and
D. Perrin [1].

11. Characters and the covering problem. Let U be a universal
set and let F be a family of subsets of U . If B1, . . . , Bk are subsets of F such
that U = B1 ∪ · · · ∪ Bk, then we say that B1, . . . , Bk form a covering of U . The
decision version of the k-covering problem is the following. Given a universal set
U , a family of subsets F of U and an integer k. Are there k elements B1, . . . , Bk

of F that form a covering of U? The non-decision version of the covering problem
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seeks of finding a covering or finding all coverings of U by k subsets. We show
that factoring a finite abelian group can be related to the covering problem.

For a subset A and for a character χ of a finite abelian group G the
complex number

∑

a∈A

χ(a)

will be denoted by χ(A). If χ(A) = 0, then we say that χ annihilates A. The set of
all characters of G that annihilates A will be denoted by Ann(A). The character ε
of G defined by ε(g) = 1 for each g ∈ G is called the unit or principal character of
G. Let G be the set of all the characters of G. It is a consequence of the standard
orthogonality relations of characters that G = A1 · · ·An is a factorization of G if
and only if |G| = |A1| · · · |An| and the sets Ann(A1), . . . ,Ann(An) form a covering
of G \ {ε}. (For the details see [14].)

Let G be a finite abelian group, let G be the group of characters of G and
let L be a family of subsets of G. We construct an |L| by |G| incidence matrix
M . The rows correspond to the elements of L and the columns correspond to the
elements of G. Let mA,χ be a typical component of M , where A ∈ L, χ ∈ G. We
set

mA,χ =

{

1, if χ(A) = 0,

0, if χ(A) 6= 0.

The 1’s in the row of A record the annihilator of A. It is clear that the column
labeled by the principal character ε of G contains only 0. If the rows correspond-
ing to the sets A1, . . . , An together contain 1’s in each column corresponding to
the elements of G \{ε} and in addition |G| = |A1| · · · |An| holds, then the product
A1 · · ·An is a factorization of G.

We illustrate the procedure with a toy example. Let G be a group of type
(2, 2, 3) with basis elements x, y, z, where |x| = |y| = 2, |z| = 3. Each element
g ∈ G can be written in the form

g = xaybzc, 0 ≤ a, b ≤ 1, 0 ≤ c ≤ 2.

We record g by the exponents a, b, c. Let ρ, σ be a roots of unity of orders 2 and
3 respectively. The character χ of G defined by

χ(x) = ρa, χ(y) = ρb, χ(z) = σc

will be recorded by the exponents a, b, c. The cyclic subset

A = {e, a, a2, . . . , ar−1}



356 Sándor Szabó

Table 6. The incidence matrix

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 1 1 1 0 0 0 1 1 1

0 1 2 0 1 2 0 1 2 0 1 2

000;2

001;2

002;2

010;2 1 1 1 1 1 1

011;2 1 1

012;2 1 1

100;2 1 1 1 1 1 1

101;2 1 1

102;2 1 1

110;2 1 1 1 1 1 1

111;2 1 1

112;2 1 1

000;3

001;3 1 1 1 1 1 1 1 1

002;3 1 1 1 1 1 1 1 1

010;3

011;3 1 1 1 1

012;3 1 1 1 1

100;3

101;3 1 1 1 1

102;3 1 1 1 1

110;3

111;3 1 1 1 1

112;3 1 1 1 1

will be recorded by [a, r]. If a = xuyvzw, then [a, r] will be written simply as
u, v, w; r The incidence matrix is depicted in Table 6. The reader may notice
that the notation 000; 2 does not correspond to a set of G. In fact it denotes a
multiset of G. So the rows of the incidence matrix should be labeled by multisets
of G instead of sets. The underlying theory works equally well for multisets. The
reader also can check that the rows marked by 101; 2, 111; 2, 001; 3 cover the
columns marked by the elements of G \ {ε}. These rows record the following sets

A1 = {e, xz}, A2 = {e, xyz}, A3 = {e, z, z2}
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and |G| = |A1||A2||A3| holds. Therefore G = A1A2A3 is a factorization of G. By
Rédei’s theorem one of the factors A1, A2, A3 must be a subgroup of G. Indeed,
here A3 is a subgroup of G.

Let us cancel now the rows of the incidence matrix that correspond to
subgroups of G. In this way the occurring factorizations cannot contain sub-
group factors. From Rédei’s theorem we know that such factorizations do not
exist. However, there are multiple factorizations without subgroup factors and
the construction of such factorizations is also related to the covering problem.
Namely, if

G \ {ε} ⊆ Ann(A1) ∪ · · · ∪Ann(An),

then the product A1 · · ·An is a multiple factorization of G. The multiplicity of
the factorization is of course (|A1| · · · |An|)/|G|.

We say that the row labeled by A dominates the row labeled by A′ if
Ann(A) ⊆ Ann(A′). (For example in Table 6 the 15th row dominates the last
row.) Deleting row A′ from M we get a new incidence matrix M ′. Obviously if
M contains a covering, then so does M ′. In short, the row of A′ can be deleted
from M .

The column of χ of M records the family of subsets

Lχ = {A : A ∈ L, χ(A) = 0}

of G. We say that the column of χ dominates the column of χ′ if Lχ ⊆ Lχ′ . (For
example in Table 6 the last column dominates the second column.) Canceling
column χ from M we get a new incidence matrix M ′. Clearly if M contain a
covering, then so does M ′. Shortly, one can delete column χ′ from M .

Table 7 represents a condensed version of the incidence matrix in Table
6. One can read off from the incidence matrix that the product of the sets

A1 = {e, yz},

A2 = {e, xz},

A3 = {e, yz, (yz)2},

A4 = {e, xz, (xz)2},

A5 = {e, xyz, (xyz)2},

form a 9-fold factorization of G.

In this construction the type of the group G was (2, 2, 3). Let us now
consider a group of type (2, 2, p). In other words let us replace the number 3 by
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Table 7. A condensed incidence matrix

0 0 1 1 1 1

1 1 0 0 1 1

0 1 0 1 0 1

011;2 1 1

101;2 1 1

111;2 1 1

011;3 1

101;3 1

111;3 1

an odd prime p in the above construction. Let x, y, z, be the basis elements of
G, where |x| = |y| = 2, |z| = p. Set

A1 = {e, yz},

A2 = {e, xz},

A3 = {e, yz, . . . , (yz)p−1},

A4 = {e, xz, . . . , (xz)p−1},

A5 = {e, xyz, . . . , (xyz)p−1}.

Let us choose a non-identity character χ of G and try to show that χ(Ai) = 0 for
some i, 1 ≤ i ≤ 5.

Suppose first that χ(z) = 1. Since χ is not the identity character either
χ(x) 6= 1 or χ(y) 6= 1. This means that at least one of χ(x) and χ(y) is equal
to −1. If χ(x) = −1, then χ(A2) = 0. If χ(y) = −1, then χ(A1) = 0. For the
remaining part of the argument we may assume that χ(z) 6= 1, that is, χ(z) is a
complex root of unity of order p. If χ(x) = 1, then χ(A4) = 0. If χ(y) = 1, then
χ(A3) = 0. We are left with the case when χ(x) = χ(y) = −1. Now χ(xy) = 1
and so χ(A5) = 0. Thus the product A1 · · ·A5 is a p2-fold factorization of G.
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[14] L. Rédei. Die neue Theorie der endlichen Abelschen Gruppen und Verall-
gemeinerung des Hauptsatzes von Hajós. Acta Math. Acad. Sci. Hungar. 16

(1965), 329–373.

[15] A. Restivo, S. Salemi, T. Sportelli. Completing codes. RAIRO Inform.
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