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ABSTRACT. There are different definitions of homological dimension of met-
ric compacta involving either Cech homology or exact (Steenrod) homology.
In this paper we investigate the relation between these homological dimen-
sions with respect to different groups. It is shown that all homological
dimensions of a metric compactum X with respect to any field coincide
provided X is homologically locally connected with respect to the singu-
lar homology up to dimension n = dim X (br., X is Ic"). We also prove
that any two-dimensional l¢? metric compactum X satisfies the equality
dim(X xY) = dim X + dimY for any metric compactum Y (i.e., X is di-
mensionally full-valued). This improves the well known result of Kodama [6,
Theorem 8] that every two-dimensional AN R is dimensionally full-valued.
Actually, the condition X to be I¢? can be weaken to the existence at every
point z € X of a neighborhood V of x such that the inclusion homomorphism
H,(V;S') = Hyp(X;SY) is trivial for all k = 1,2.

1. Introduction. Everywhere below by a space we mean a metric com-
pactum and by a group an abelian group.

The homological dimension dgX of a space X with respect to a given
group G was introduced by Alexandroff [1] in terms of Vietoris homology: dgX
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of a space X is the largest integer n such that there exists a closed set ® C X
carrying an (n — 1)-dimensional cycle on ® which is not-homologous to zero
in @, but is homologous to zero in X. According to Lefschetz [8, Theorem
26.1], the Vietoris homology is isomorphic to Cech homology H,(X;G), where
G is considered as a discrete group. So, dgX can be defined as the largest
integer n such that there exists a closed set ® C X and a non-trivial element
v € Hy1(9; G) with iy (v) = 0, where iy 5 : H,,—1(®;G) — Hy,—1(X;G) is the
homomorphism generatéd by the inclusion P X.

Because Cech homology is not exact, some authors prefer to define homo-
logical dimension involving exact homology groups. In particular, Sklyarenko and
his students are using the following definition (see [11], [10], [3]): the homological
dimension of X, denoted by hdimg X, is the largest integer n such that there
exists a closed subset ® C X and a non-trivial element of H,, (X, ®;G). Here H,
is the exact homology introduced by Sklyarenko in [11], which is isomorphic to
the Steenrod homology [13] for metric compacta.

We always have dgX < dim X, and if 0 < dim X < oo, then dg, X =
ds1X = dim X, where S! is the circle group and Q; is the group of rational
elements of S!, see [1].

In Section 2 we investigate the relations between dg and hdimg. For
example, we show that if dim X = n and X is homologically locally connected
with respect to the singular homology up to dimension n (br., X is Ic"), then
dg = hdimg X for any field G (see Corollary 2.3). We apply our results from
Section 2 to establish in Section 3 that every two-dimensional compactum X is
dimensionally full-valued if X is Ic* (Corollary 3.3). The last result improves
a theorem of Kodama [6, Theorem 8].! Actually, the condition in Corollary
3.3 X to be I¢* can be weaken (see Theorem 3.2) to the existence at every
point z € X of a neighborhood V of x such that the inclusion homomorphism
Hy,(V;SY) — Hyp(X;Sh) is trivial for all k = 1,2.

2. Some relations between dg and h dimg. It was noted that, in
the class of metric compacta, the exact homology H, is isomorphic to Steenrod
homology, where G is any module over a commutative ring with unity. Moreover,
for every module G and a compact pair (X, A) there exists a natural transforma-
tion T'x 4 : H.(X,A;G) — H,(X, A;G) between the exact and Cech homologies
such that T% , : H,(X,A;G) — Hy(X, A;G) is a surjective homomorphism for
each n, see [11] (if A is the empty set, we denote T)]‘é@ by T%). By [11, The-

! According to the referee, we don’t know any example of a two-dimensional l¢>-compactum
which is not an ANR
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orem 4], this homomorphism is an isomorphism in the following situations: (i)
dim X = n: (ii) G admits a compact topology or G is a vector space over a field;
(iii) both the Cech cohomology group H™(X, A;Z) and G are finitely generated
modules having finite numbers of relations.

Let hdgX be the largest integer n such that there exists a closed set
® C X and a non-trivial v € H,_ 1(®;G) with zg)%('y) = 0, where Z(I)X :

H,_1(®:G) — H,_1(X;G) is the inclusion homomorphism. Clearly, hdgX is
the exact homology analogue of dgX.

Proposition 2.1. For any group G we have the following inequalities
dgX < hdimg X < dim X and hdgX < hdimg X.

Proof. Suppose deX = n. Then n > 1 and there is a closed set
® C X and a non-trivial v € H,_1(®;G) such that ’L%}%(y) = 0. This im-
plies H, (X, ®;G) # 0, see [14, Proposition 4.6]. Consequently, ﬁn(X,q); G)#0
(recall that T g : fAIn(X, ®; G) — H, (X, ®;G) is surjective). Therefore, dgX <
hdimg X. The inequality hdimg X < dim X follows from the fact that all groups
fIk.(X, ®; G) are trivial for k£ > dim X.

For every closed ® C X and every n > 1 we have the exact sequence

— Ho(X,8:G) = Hy 1(9;G) > Hy 1(X;G) = -+,

which yields the inequality hdgX < hdimg X. O

Recall that a space X is homologically locally connected in dimension n
(br., n — lc) if for every z € X and a neighborhood U of = in X there exists
a neighborhood V' C U of x such that the homomorphism 7\Z/U : ﬁn(V;Z) —

ﬁn(U ;Z) is trivial, where ]’;T*(7 -) denotes the singular homology groups. The
above definition has two variations: (i) if the group Z is replaced by a group G,
we say that X is n—lc with respect to G; (i) if every € X has a neighborhood V
such that the homomorphism iy, y : . H,(V;Z) — H,(X;Z) is trivial, we say that
X is semi-n —lc. Using the Universal Coefficient Theorem for singular homology,
one can show that X € n — lc with respect to any group G provided X € k — lc
for every k € {n,n — 1}. We say that X is homologically locally connected up to
dimension n (br.;, X € lc") provided X is k — lc for all k < n.

According to [9, Theorem 1] the following is true: If (X, A) is a pair of
paracompact spaces with both X and A being I¢" and semi-(n + 1) — l¢, then
there exists a natural transformation Mx 4 between the singular and the Cech
homologies of (X, A) such that for each group G the homomorphisms M ;% A
ﬁk(X, A;G) = Hip(X,A;G), k < n+ 1, are isomorphisms. There exists also a
similar connection between the singular homology and the exact homology, see
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[11, Proposition 9]: Let (X, A) be a pair of locally compact metric spaces with
both X and A being lc". Then there is a natural transformation Sx 4 between
the singular and the exact homologies with compact supports H (X, A; G) such
that S;C(,A : I:Tk(X,A; G) — ﬁ,ﬁ(X, A; @) is an isomorphism for each £k < n — 1
and it is surjective for k = n.

Therefore, combining the above results we obtain that if (X, A) is a com-
pact metric pair such that both X and A are Ic¢", then the homology groups
ﬁk(X, A; G), I:Tk(X,A; G) and Hi(X, A;G) are naturally isomorphic for each
k <n—1 and each G.

Proposition 2.2. If G is any group and X is lc" with n = hdimg X,
then dgX < hdgX = hdimg X.

Proof. According to Proposition 2.1, all we need to show is the equality
hdgX = n. This is true if n = 1 because always 1 < hdgX < hdimg X.
So, let n > 2. By [10, Corollary 2], there is a point z € X such that the
module H; = lim ﬁn(X ,X \ U;G) is non-trivial and n is the maximal integer

zelU

with this property. Therefore, ﬁn(X,X \ U;G) # 0 for all sufficiently small
neighborhoods U of z. Because X is Ic", it is p — ¢ with respect to the group G
for all p € {n—1,n}. Hence, there exists an open neighborhood V' of z such that
the inclusion homomorphism Z?/,X : ﬁp(V; G) — I:TP(X; G) is trivial for p = n and
p =n—1. According to the mentioned above natural transformation between the
singular and the exact homology with compact supports, we have the following
commutative diagrams

~ Zp ~
H,(V;G) —% H,(X;Q)

s [

T -
HE(V;G) — H,(X;G)

such that both homomorphisms S}, and S% are isomorphisms for p =n — 1 and
surjective for p = n. This implies that the homomorphism ?"/ y is trivial for all
p € {n — 1,n}. Consequently, if ' C V is any compact set and p € {n — 1,n},

then the homomorphism ?}x : I:TP(F; G) — I:TP(X; G) is also trivial.

Now we choose a neighborhood W' of z with W C V and Hy(X, X \
W;G) # 0. Then, by the excision axiom, H,(X,X \ W;G) is isomorphic to
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H, (W,bdW;G). Consider the exact sequence
— H,(W;G) = H,(W,bdW;G) — H,_1(bdW;G) —

We claim that L = 8( (W, bd W; G)) # 0, where 0 denotes the bound-
ary homomorphism 8 : H, (W, bdW;G) — Hn 1(bdW;G). Indeed, otherwise
the exactness of the above sequence yield H «(W;G) # 0. This means that

hng >n+1 (recall that, according to the choice of V', the homomorphism
H,(W;G) = H,(X;QG) should be trivial), a contradiction.

Therefore, L is a non-trivial subgroup of H,_ 1(bdW;@G). Finally, the

“n—1 “n—1 :
exactness of the above sequence implies i/ 4, (L) = 0. Hence, 4 . (L) is

also trivial, which yields hdgX =n. O

Corollary 2.3. Let X be lc" with n = hdimg X. Then dgX = hdgX =

hdimg X provided G has the following property: the homomorphisms T}?dl} :

H,_1(bdU;G) = H,_1(bdU;G) are isomorphisms for all open sets U C X (in
particular, this is true for any field G).

W,X

Proof. We need to show the equality dg X = hdgX. It follows from the
proof of Proposition 2.2 that there exists a point = ex and its neighborhood U

such that H,,_ 1(bdU; G) # 0 and the homomorphism ’LZ’ p [1] 18 trivial. Obviously,

we have the commutative diagram

“n—1

X

H,1(bdT;G) =% H, 1(X;G)

n—1 -1
J{deU J/T;

-n—1
(2

anl(dea G) ﬂ anl(Xa G)

such that T};T)Zdﬁl is an isomorphism. Therefore, H, 1(bdU;G) # 0 and

zzd%’x( H,_1(bdU;@)) = 0. Hence, dcX =n. O

Recall that the cohomological dimension dimg X is the largest integer
m such that there exists a closed set A C X such that Cech cohomology group
H™(X,A;G) is non-trivial. It is well known that dimg X < n iff every map
f: A — K(G,n) can be extended to a map f: X — K(G,n), where K(G,n) is
the Eilenberg-MacLane space of type (G,n), see [12]. We also say that a finite-
dimensional metric compactum X is dimensionally full-valued if dim X x Y =
dim X + dim Y for all metric compacta Y, or equivalently (see [7, Theorem 11]),

dimg X = dimz X for any abelian group G.
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Corollary 2.4. If X dimensionally full-valued and X is Ic" with n =
dim X, then dgX = hdgX = hdimg X = dimg X = dim X for any field G.

Proof. By [3], hdimg X = dimg X. On the other hand, dimg X =
dim X because X is dimensionally full-valued. Then, Corollary 2.3 completes the
proof. O

One of the main problems concerning homogeneous finite-dimensional
AN R compacta is whether any such space is dimensionally full-valued. According
to [15, Theorem 1.1], any homogeneous AN R compactum satisfies the hypotheses
of next proposition. So, this proposition provides some information about such
spaces which are not dimensionally full-valued.

Proposition 2.5. Let X be l¢" ! with dim X = n such that each x € X
has a local base B, with the following property: H”_l(bd U;7Z) is finitely generated
for eachU € B,. Then dzX = hdimgz X = n—1 provided X is not dimensionally
full-valued.

Proof. Since n —1 < hdimz X < n and X is not dimensionally full
valued, hdimz X =n — 1 (see [3, p.364]). So, by Proposition 2.2 and the argu-
ments from the proof of Proposition 2.2, we have dzX < n — 1 and there is a
point z € X and its neighborhood U such that H,_»(bd U;Z) # 0 and the homo-

morphism /1\35% 18 trivial. Since H "~1(bdU;Z) are finitely generated, Theorem

4(4) from [11] implies that ng_% . Hy_5(bdU;Z) — H,_5(bdU;Z) is an iso-
morphism. Hence, H,, 2(bdU;Z) # 0 and triviality of 2 yields triviality of

bdU,X
‘n—2
= . =n—1. 10
Cbd T X Therefore, dzX =n —1

The last statement in this section is the following analogue of Corollary
2.8 from [14].

Proposition 2.6. Suppose X is a compact space and dgX = n. Then
there exists a point x € X and a local base B, at x such that bdU contains a

closed set Cy C X with Hy,—1(Cy; G) # 0 for any U € B,.

Proof. Since dgX = n, there is a closed set ® C X such that zg_)% (v)=0
for some non-trivial v € H,_1(®; G). By [14, Lemma 6], there exists a closed set
K C X containing ® such that ’Lg}%-(’)/) =0 but ’Lg}l (7) # 0 for all proper closed
subsets F' of K containing ®. Choose x € K \ ® and let B, consist of all open
neighborhoods U of z with UN® = @. Denote A = K\ U, B =UNK and
Cy =bdgB. Then K = AUB and AN B = Cy. Since A is a proper subset of K
and contains ®, vy = igj(y) is a non-trivial element of H,_1(A;G). Consider
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the following, in general not exact, sequence
Ho1(Cis Q) —2— Hp 1(A;G) @ Ho1(B;G) —2— H,_(K;G),

where ¢(0) = (ig;}A(H),ig;’lB(H)) and ¢((61,62)) = ix}i(@l) - ’L%}%(Qg) Since
() =i () =0, ¢((yw,0)) = 0.

Take a family {w,} of finite open covers of K such that the homology
groups H, 1(Cy;G), H,—1(A; G), H,—1(B;G) and H,_1(K;G) are limit of the
inverse systems { H,,(NSV; G)Thats {H, 1(NZ; G)Thats {H, (N5, G)h o)
and {H,_;(NX, G), 75 o) Here, NF| F c K, denotes the nerve of w,, restricted
on F, and mg, : N, 5 — N(f are the corresponding simplicial maps with 8 being
a refinement of a. Because vy # 0, there is g with v, = 7, (Y0) # 0, where
Mot A — N(f is the natural map. Since K is a metric space, we can suppose
that each cover w, has the following property: if {V; : j =1,...,k} C w, such

j=k
that ﬂ V; meets both A and B, then it also meet Cp (this can be done by
j=1
considering first a finite open family ' in K, which covers Cyy and satisfies the
following condition: for any 2 C w’ we have NQ # & if and only if NQ meets Cy;
then add to w’ open subsets of K disjoint from Cy to obtain a cover of K). The
advantage of this type of covers is that the intersection of the nerves N(f and Nf
(considered as sub-complexes of NX) is the nerve NSV and N2 U NP = NX for
all a.

Then, we have the Mayer-Vietoris exact sequence (the coefficient group

G is suppressed)

7/1(1 (z)a
Hy, 1 (NSV) —5 H, 1(NZ)® H,1(NE) — H, {(NE)---

a@Q

Obviously, (b((’yU,O)) = 0 implies ¢q, ((yaO,O)) = 0, and the exactness of this
sequence yields Hn,l(NCU' G) # 0. Therefore, H,_1(Cy; G) #0. O

«p !

3. Dimensionally full-valued compacta. In this section we are
going to improve the result of Kodama [6, Theorem 8] that every two-dimensional
AN R-compactum is dimensionally full-valued. We need the following statement:

Lemma 3.1. Suppose G is a torsion free group and X is compact such
that hdimg X = dim X = n. If the groups H,(X,F;G) and H,(X, F;G) are
isomorphic for each closed set F' C X, then X is dimensionally full-valued.

R Proof. Since hdimg X = n, there exists a closed set ® C X with
H,(X,®;G) # 0. So, H,(X,®;G) # 0, and according to [14, Proposition 4.5],
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H,(X,®;Z) is also non-trivial. Finally, by [5, Corollary 1], X is dimensionally
full-valued. 0O

Theorem 3.2. Suppose X is a two-dimensional compactum satisfying
the following condition: for any x € X there exists a neighborhood V' of x such
that the homomorphism 2 : Hy(V;SY — Hy(X;SY) is trivial for k = 1,2.

Then X is dimensionally full valued.

Proof. Because S! is a compact group, the exact homology l’/{f*(7 St is
naturally isomorphic to Cech homology H,(-;S'). So, ds1 X = hdg1 X. Moreover,
according to [1], ds1 X = hdimgi X = 2. _The last equahty implies the existence

of a point x € X such that Hy = lAqHQ(X X \ U;S') is non-trivial, see [10,
zeU

Corollary 2]. Thus, Hg(U,de;S ), being isomorphic to ﬁg(X,X \ U;SY), is
not trivial for all sufficiently small neighborhoods U of . On the other hand,
there is a neighborhood V of 2 such that the homomorphisms 7% ity . H p(V;Sh) —

H »(X;SY), k = 1,2, are trivial. Consequently, the homomorphlsms zU v k=12,

are also trivial for all neighborhoods U of z with U C V. Hence, Hy(U;S") = 0
provided U C V' (otherwise we would have hdg1 X > 2).
Therefore, for any U with U C V we have the exact sequence

0 — Hy(T,bdT;SY) —2— Hi(bdT;SY) — H(T;SY). ..

Since Hy(U,bdU;S') # 0, Hy(bdTU;S") #£ 0.
So, for all small neighborhoods U of = the groups Ha(U, de SY) and

1(de Sl) are non-trivial, while the homomorphisms ;%] P Hl(U sh —
(X;S!) are trivial. This implies that the homomorphisms % 4T.X

( S are also trivial. Since dim X = 2, H3(X;Z) = H*(U,bdU;Z) =
3T 7Z) = 0. So, by the Universal Coefficient Theorem (see [11, Theorem 3)),
we have the isomorphisms

Hy(U,bdTU;S") = Hom(H?(U,bd U; Z),S"),
Hy(U;SY) = Hom(H*(U;Z),S") and Hy(X;S') = Hom(H?(X;Z),S").
Similarly, dimbd U < 1 yields H?(bdU;Z) = 0. So,
Hi(bdT;S") = Hom(H"' (bd U; Z),S").

1

m m n:> )

Thus, H*(U,bdU;Z) # 0, H'(bdU;Z) # 0 and the triviality of the homo-

morphisms % AT .X yields the triviality of the inclusion homomorphisms j;(b 47 |

. Hi(bdTU;S") —
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HY(X;7Z) — H'(bdU;Z). Indeed, by [4], the group Hi(X;S') is the character
group of HY(X;Z). So, Hom(H'(X;Z),S") is isomorphic to Hy(X;S'). Sim-
ilarly, Hom(H!(bd U;Z),S') is isomorphic to H;(bdTU;S!). Hence, identifying
the Cech homology groups with the corresponding exact homology groups, we ob-

tain that the inclusion homomorphism /z?o 4T x 18 equivalent to a homomorphism

from Hom(H'(bdT;Z),S") into Hom(H'(X;7Z),S') assigning to each character
¢ € Hom(H'(bdTU;Z),S") the composition ¢ Oj;(bdﬁ' Thus, j;(de is trivial.

On the other hand, it is well known that the simplicial one-dimensional
cohomology groups with integer coefficients are free, so any non-trivial one-
dimensional Cech cohomology group H 1(-;Z) is torsion free, see for example
[2, Theorem 2.5]. In particular, H'(bdTU;Z) is torsion free. It follows from the
exact sequence

L B B
S HY(XZ) MY glbd T z) —2s BAX,bATLZ) -

that O is an injective homomorphism. Hence, H*(X,bd U;Z) contains elements
of infinite order. This implies H*(X,bdU;Q) # 0. So, dimg X = 2. On the
other hand, by [3, p.364], dimg X = hdimg X. Finally, Lemma 3.1 yields X is
dimensionally full-valued. O

Corollary 3.3. Every two-dimensional l¢*-compactum is dimensionally

full-valued.

Proof. We already observed the lc2-property implies that the following
condition for any group G and open sets V C X:

e the groups ﬁk(V, G) and ﬁk(X, @) are isomorphic to H,(V, G) and Hi (X, G),
respectively, for all k£ <2 (see [9, Theorem 1]);

Because X is l¢?, any point 2 € X has a neighborhood V such that the inclusion
homomorphisms ?‘“/’X . Hy(V; Q) — Hy,(X;G) are trivial for k = 1,2. So, we can
apply Theorem 3.2. O

Acknowledgments. The author thanks the referee for his/her careful
reading of the paper.
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