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Abstract. There are different definitions of homological dimension of met-
ric compacta involving either Čech homology or exact (Steenrod) homology.
In this paper we investigate the relation between these homological dimen-
sions with respect to different groups. It is shown that all homological
dimensions of a metric compactum X with respect to any field coincide
provided X is homologically locally connected with respect to the singu-
lar homology up to dimension n = dimX (br., X is lcn). We also prove
that any two-dimensional lc2 metric compactum X satisfies the equality
dim(X × Y ) = dimX + dim Y for any metric compactum Y (i.e., X is di-
mensionally full-valued). This improves the well known result of Kodama [6,
Theorem 8] that every two-dimensional ANR is dimensionally full-valued.
Actually, the condition X to be lc2 can be weaken to the existence at every
point x ∈ X of a neighborhood V of x such that the inclusion homomorphism
Hk(V ; S1) → Hk(X ; S1) is trivial for all k = 1, 2.

1. Introduction. Everywhere below by a space we mean a metric com-
pactum and by a group an abelian group.

The homological dimension dGX of a space X with respect to a given
group G was introduced by Alexandroff [1] in terms of Vietoris homology: dGX
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of a space X is the largest integer n such that there exists a closed set Φ ⊂ X

carrying an (n − 1)-dimensional cycle on Φ which is not-homologous to zero
in Φ, but is homologous to zero in X. According to Lefschetz [8, Theorem
26.1], the Vietoris homology is isomorphic to Čech homology H∗(X;G), where
G is considered as a discrete group. So, dGX can be defined as the largest
integer n such that there exists a closed set Φ ⊂ X and a non-trivial element
γ ∈ Hn−1(Φ;G) with i

n−1
Φ,X(γ) = 0, where in−1

Φ,X : Hn−1(Φ;G) → Hn−1(X;G) is the
homomorphism generated by the inclusion Φ →֒ X.

Because Čech homology is not exact, some authors prefer to define homo-
logical dimension involving exact homology groups. In particular, Sklyarenko and
his students are using the following definition (see [11], [10], [3]): the homological
dimension of X, denoted by hdimGX, is the largest integer n such that there
exists a closed subset Φ ⊂ X and a non-trivial element of Ĥn(X,Φ;G). Here Ĥ∗

is the exact homology introduced by Sklyarenko in [11], which is isomorphic to
the Steenrod homology [13] for metric compacta.

We always have dGX ≤ dimX, and if 0 < dimX < ∞, then dQ1
X =

dS1X = dimX, where S1 is the circle group and Q1 is the group of rational
elements of S1, see [1].

In Section 2 we investigate the relations between dG and hdimG. For
example, we show that if dimX = n and X is homologically locally connected
with respect to the singular homology up to dimension n (br., X is lcn), then
dG = hdimGX for any field G (see Corollary 2.3). We apply our results from
Section 2 to establish in Section 3 that every two-dimensional compactum X is
dimensionally full-valued if X is lc2 (Corollary 3.3). The last result improves
a theorem of Kodama [6, Theorem 8].1 Actually, the condition in Corollary
3.3 X to be lc2 can be weaken (see Theorem 3.2) to the existence at every
point x ∈ X of a neighborhood V of x such that the inclusion homomorphism
Hk(V ;S1) → Hk(X;S1) is trivial for all k = 1, 2.

2. Some relations between dG and h dimG. It was noted that, in
the class of metric compacta, the exact homology Ĥ∗ is isomorphic to Steenrod
homology, where G is any module over a commutative ring with unity. Moreover,
for every module G and a compact pair (X,A) there exists a natural transforma-
tion TX,A : Ĥ∗(X,A;G) → H∗(X,A;G) between the exact and Čech homologies

such that T nX,A : Ĥn(X,A;G) → Hn(X,A;G) is a surjective homomorphism for

each n, see [11] (if A is the empty set, we denote T kX,∅ by T nX). By [11, The-

1According to the referee, we don’t know any example of a two-dimensional lc2-compactum
which is not an ANR
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orem 4], this homomorphism is an isomorphism in the following situations: (i)
dimX = n: (ii) G admits a compact topology or G is a vector space over a field;
(iii) both the Čech cohomology group Hn(X,A;Z) and G are finitely generated
modules having finite numbers of relations.

Let hdGX be the largest integer n such that there exists a closed set
Φ ⊂ X and a non-trivial γ ∈ Ĥn−1(Φ;G) with în−1

Φ,X(γ) = 0, where în−1
Φ,X :

Ĥn−1(Φ;G) → Ĥn−1(X;G) is the inclusion homomorphism. Clearly, hdGX is
the exact homology analogue of dGX.

Proposition 2.1. For any group G we have the following inequalities
dGX ≤ hdimGX ≤ dimX and hdGX ≤ hdimGX.

P r o o f. Suppose dGX = n. Then n ≥ 1 and there is a closed set
Φ ⊂ X and a non-trivial γ ∈ Hn−1(Φ;G) such that in−1

Φ,X(γ) = 0. This im-

plies Hn(X,Φ;G) 6= 0, see [14, Proposition 4.6]. Consequently, Ĥn(X,Φ;G) 6= 0
(recall that T nX,Φ : Ĥn(X,Φ;G) → Hn(X,Φ;G) is surjective). Therefore, dGX ≤
hdimGX. The inequality hdimGX ≤ dimX follows from the fact that all groups
Ĥk(X,Φ;G) are trivial for k > dimX.

For every closed Φ ⊂ X and every n ≥ 1 we have the exact sequence

→ Ĥn(X,Φ;G) → Ĥn−1(Φ;G) → Ĥn−1(X;G) → · · · ,

which yields the inequality hdGX ≤ hdimGX. ✷

Recall that a space X is homologically locally connected in dimension n

(br., n − lc) if for every x ∈ X and a neighborhood U of x in X there exists
a neighborhood V ⊂ U of x such that the homomorphism ĩnV,U : H̃n(V ;Z) →

H̃n(U ;Z) is trivial, where H̃∗(·; ·) denotes the singular homology groups. The
above definition has two variations: (i) if the group Z is replaced by a group G,
we say that X is n−lc with respect to G; (ii) if every x ∈ X has a neighborhood V
such that the homomorphism ĩnV,X : H̃n(V ;Z) → H̃n(X;Z) is trivial, we say that
X is semi-n− lc. Using the Universal Coefficient Theorem for singular homology,
one can show that X ∈ n − lc with respect to any group G provided X ∈ k − lc

for every k ∈ {n, n − 1}. We say that X is homologically locally connected up to
dimension n (br., X ∈ lcn) provided X is k − lc for all k ≤ n.

According to [9, Theorem 1] the following is true: If (X,A) is a pair of
paracompact spaces with both X and A being lcn and semi-(n + 1) − lc, then
there exists a natural transformation MX,A between the singular and the Čech
homologies of (X,A) such that for each group G the homomorphisms Mk

X,A :

H̃k(X,A;G) → Hk(X,A;G), k ≤ n + 1, are isomorphisms. There exists also a
similar connection between the singular homology and the exact homology, see
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[11, Proposition 9]: Let (X,A) be a pair of locally compact metric spaces with
both X and A being lcn. Then there is a natural transformation SX,A between

the singular and the exact homologies with compact supports Ĥc
k(X,A;G) such

that SkX,A : H̃k(X,A;G) → Ĥc
k(X,A;G) is an isomorphism for each k ≤ n − 1

and it is surjective for k = n.

Therefore, combining the above results we obtain that if (X,A) is a com-
pact metric pair such that both X and A are lcn, then the homology groups
H̃k(X,A;G), Ĥk(X,A;G) and Hk(X,A;G) are naturally isomorphic for each
k ≤ n− 1 and each G.

Proposition 2.2. If G is any group and X is lcn with n = hdimGX,
then dGX ≤ hdGX = hdimGX.

P r o o f. According to Proposition 2.1, all we need to show is the equality
hdGX = n. This is true if n = 1 because always 1 ≤ hdGX ≤ hdimGX.
So, let n ≥ 2. By [10, Corollary 2], there is a point x ∈ X such that the
module Hx

n = lim
−→
x∈U

Ĥn(X,X \ U ;G) is non-trivial and n is the maximal integer

with this property. Therefore, Ĥn(X,X \ U ;G) 6= 0 for all sufficiently small
neighborhoods U of x. Because X is lcn, it is p− lc with respect to the group G
for all p ∈ {n− 1, n}. Hence, there exists an open neighborhood V of x such that
the inclusion homomorphism ĩ

p
V,X : H̃p(V ;G) → H̃p(X;G) is trivial for p = n and

p = n−1 . According to the mentioned above natural transformation between the
singular and the exact homology with compact supports, we have the following
commutative diagrams

H̃p(V ;G)
ĩ
p

V,X
−−−−→ H̃p(X;G)

ySp

V

ySp

X

Ĥc
p(V ;G)

î
p

V,X
−−−−→ Ĥp(X;G)

such that both homomorphisms SpV and SpX are isomorphisms for p = n− 1 and

surjective for p = n. This implies that the homomorphism î
p
V,X is trivial for all

p ∈ {n − 1, n}. Consequently, if F ⊂ V is any compact set and p ∈ {n − 1, n},
then the homomorphism î

p
F,X : Ĥp(F ;G) → Ĥp(X;G) is also trivial.

Now we choose a neighborhood W of x with W ⊂ V and Ĥn(X,X \
W ;G) 6= 0. Then, by the excision axiom, Ĥn(X,X \ W ;G) is isomorphic to
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Ĥn(W,bdW ;G). Consider the exact sequence

→ Ĥn(W ;G) → Ĥn(W,bdW ;G) → Ĥn−1(bdW ;G) → · · ·

We claim that L = ∂
(
Ĥn(W,bdW ;G)

)
6= 0, where ∂ denotes the bound-

ary homomorphism ∂ : Ĥn(W,bdW ;G) → Ĥn−1(bdW ;G). Indeed, otherwise
the exactness of the above sequence yield Ĥn(W ;G) 6= 0. This means that
hdGX ≥ n + 1 (recall that, according to the choice of V , the homomorphism
în
W,X

: Ĥn(W ;G) → Ĥn(X;G) should be trivial), a contradiction.

Therefore, L is a non-trivial subgroup of Ĥn−1(bdW ;G). Finally, the
exactness of the above sequence implies în−1

bdW,W
(L) = 0. Hence, în−1

bdW,X
(L) is

also trivial, which yields hdGX = n. ✷

Corollary 2.3. Let X be lcn with n = hdimGX. Then dGX = hdGX =
hdimGX provided G has the following property: the homomorphisms T n−1

bdU
:

Ĥn−1(bdU ;G) → Hn−1(bdU ;G) are isomorphisms for all open sets U ⊂ X (in
particular, this is true for any field G).

P r o o f. We need to show the equality dGX = hdGX. It follows from the
proof of Proposition 2.2 that there exists a point x ∈ X and its neighborhood U
such that Ĥn−1(bdU ;G) 6= 0 and the homomorphism în−1

bdU,X
is trivial. Obviously,

we have the commutative diagram

Ĥn−1(bdU ;G)
în−1

bdU,X
−−−−→ Ĥn−1(X;G)

yTn−1

bdU

yTn−1

X

Hn−1(bdU ;G)
in−1

bdU,X
−−−−→ Hn−1(X;G)

such that T n−1

bdU
is an isomorphism. Therefore, Hn−1(bdU ;G) 6= 0 and

in−1

bdU,X

(
Hn−1(bdU ;G)

)
= 0. Hence, dGX = n. ✷

Recall that the cohomological dimension dimGX is the largest integer
m such that there exists a closed set A ⊂ X such that Čech cohomology group
Hm(X,A;G) is non-trivial. It is well known that dimGX ≤ n iff every map
f : A → K(G,n) can be extended to a map f̃ : X → K(G,n), where K(G,n) is
the Eilenberg-MacLane space of type (G,n), see [12]. We also say that a finite-
dimensional metric compactum X is dimensionally full-valued if dimX × Y =
dimX + dimY for all metric compacta Y , or equivalently (see [7, Theorem 11]),
dimGX = dimZX for any abelian group G.
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Corollary 2.4. If X dimensionally full-valued and X is lcn with n =
dimX, then dGX = hdGX = hdimGX = dimGX = dimX for any field G.

P r o o f. By [3], hdimGX = dimGX. On the other hand, dimGX =
dimX because X is dimensionally full-valued. Then, Corollary 2.3 completes the
proof. ✷

One of the main problems concerning homogeneous finite-dimensional
ANR compacta is whether any such space is dimensionally full-valued. According
to [15, Theorem 1.1], any homogeneous ANR compactum satisfies the hypotheses
of next proposition. So, this proposition provides some information about such
spaces which are not dimensionally full-valued.

Proposition 2.5. Let X be lcn−1 with dimX = n such that each x ∈ X

has a local base Bx with the following property: Hn−1(bdU ;Z) is finitely generated
for each U ∈ Bx. Then dZX = hdimZX = n−1 provided X is not dimensionally
full-valued.

P r o o f. Since n − 1 ≤ hdimZX ≤ n and X is not dimensionally full
valued, hdimZX = n − 1 (see [3, p.364]). So, by Proposition 2.2 and the argu-
ments from the proof of Proposition 2.2, we have dZX ≤ n − 1 and there is a
point x ∈ X and its neighborhood U such that Ĥn−2(bdU ;Z) 6= 0 and the homo-
morphism în−2

bdU,X
is trivial. Since Hn−1(bdU ;Z) are finitely generated, Theorem

4(4) from [11] implies that T n−2

bdU
: Ĥn−2(bdU ;Z) → Hn−2(bdU ;Z) is an iso-

morphism. Hence, Hn−2(bdU ;Z) 6= 0 and triviality of în−2

bdU,X
yields triviality of

in−2

bdU,X
. Therefore, dZX = n− 1. ✷

The last statement in this section is the following analogue of Corollary
2.8 from [14].

Proposition 2.6. Suppose X is a compact space and dGX = n. Then
there exists a point x ∈ X and a local base Bx at x such that bdU contains a
closed set CU ⊂ X with Hn−1(CU ;G) 6= 0 for any U ∈ Bx.

P r o o f. Since dGX = n, there is a closed set Φ ⊂ X such that in−1
Φ,X(γ) = 0

for some non-trivial γ ∈ Hn−1(Φ;G). By [14, Lemma 6], there exists a closed set
K ⊂ X containing Φ such that in−1

Φ,K(γ) = 0 but in−1
Φ,F (γ) 6= 0 for all proper closed

subsets F of K containing Φ. Choose x ∈ K \ Φ and let Bx consist of all open
neighborhoods U of x with U ∩ Φ = ∅. Denote A = K \ U , B = U ∩ K and
CU = bdKB. Then K = A∪B and A∩B = CU . Since A is a proper subset of K
and contains Φ, γU = in−1

Φ,A (γ) is a non-trivial element of Hn−1(A;G). Consider
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the following, in general not exact, sequence

Hn−1(CU ;G)
ψ

−−−−→ Hn−1(A;G) ⊕Hn−1(B;G)
φ

−−−−→ Hn−1(K;G),

where ψ(θ) =
(
in−1
CU ,A

(θ), in−1
CU ,B

(θ)
)
and φ

(
(θ1, θ2)

)
= in−1

A,K(θ1) − in−1
B,K(θ2). Since

in−1
A,K(γU ) = in−1

Φ,K(γ) = 0, φ
(
(γU , 0)

)
= 0.

Take a family {ωα} of finite open covers of K such that the homology
groups Hn−1(CU ;G), Hn−1(A;G), Hn−1(B;G) and Hn−1(K;G) are limit of the
inverse systems {Hn(N

CU
α ;G), π∗β,α}, {Hn−1(N

A
α ;G), π

∗

β,α}, {Hn−1(N
B
α ;G), π∗β,α}

and {Hn−1(N
K
α ;G), π∗β,α}. Here, N

F
α , F ⊂ K, denotes the nerve of ωα restricted

on F , and πβ,α : NF
β → NF

α are the corresponding simplicial maps with β being
a refinement of α. Because γU 6= 0, there is α0 with γα0

= π∗α0
(γU ) 6= 0, where

πα : A → NA
α is the natural map. Since K is a metric space, we can suppose

that each cover ωα has the following property: if {Vj : j = 1, . . . , k} ⊂ ωα such

that

j=k⋂

j=1

Vj meets both A and B, then it also meet CU (this can be done by

considering first a finite open family ω′ in K, which covers CU and satisfies the
following condition: for any Ω ⊂ ω′ we have ∩Ω 6= ∅ if and only if ∩Ω meets CU ;
then add to ω′ open subsets of K disjoint from CU to obtain a cover of K). The
advantage of this type of covers is that the intersection of the nerves NA

α and NB
α

(considered as sub-complexes of NK
α ) is the nerve NCU

α and NA
α ∪NB

α = NK
α for

all α.
Then, we have the Mayer-Vietoris exact sequence (the coefficient group

G is suppressed)

Hn−1(N
CU
α0

)
ψα0−−−−→ Hn−1(N

A
α0
)⊕Hn−1(N

B
α0
)

φα0−−−−→ Hn−1(N
K
α0
) · · ·

Obviously, φ
(
(γU , 0)

)
= 0 implies φα0

(
(γα0

, 0)
)
= 0, and the exactness of this

sequence yields Hn−1(N
CU
α0

;G) 6= 0. Therefore, Hn−1(CU ;G) 6= 0. ✷

3. Dimensionally full-valued compacta. In this section we are
going to improve the result of Kodama [6, Theorem 8] that every two-dimensional
ANR-compactum is dimensionally full-valued. We need the following statement:

Lemma 3.1. Suppose G is a torsion free group and X is compact such
that hdimGX = dimX = n. If the groups Ĥn(X,F ;G) and Hn(X,F ;G) are
isomorphic for each closed set F ⊂ X, then X is dimensionally full-valued.

P r o o f. Since hdimGX = n, there exists a closed set Φ ⊂ X with
Ĥn(X,Φ;G) 6= 0. So, Hn(X,Φ;G) 6= 0, and according to [14, Proposition 4.5],
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Hn(X,Φ;Z) is also non-trivial. Finally, by [5, Corollary 1], X is dimensionally
full-valued. ✷

Theorem 3.2. Suppose X is a two-dimensional compactum satisfying
the following condition: for any x ∈ X there exists a neighborhood V of x such
that the homomorphism ik

V ,X
: Hk(V ;S1) → Hk(X;S1) is trivial for k = 1, 2.

Then X is dimensionally full-valued.

P r o o f. Because S1 is a compact group, the exact homology Ĥ∗(·;S
1) is

naturally isomorphic to Čech homology H∗(·;S
1). So, dS1X = hdS1X. Moreover,

according to [1], dS1X = hdimS1 X = 2. The last equality implies the existence
of a point x ∈ X such that Hx

2 = lim
−→
x∈U

Ĥ2(X,X \ U ;S1) is non-trivial, see [10,

Corollary 2]. Thus, Ĥ2(U,bdU ;S1), being isomorphic to Ĥ2(X,X \ U ;S1), is
not trivial for all sufficiently small neighborhoods U of x. On the other hand,
there is a neighborhood V of x such that the homomorphisms îk

V ,X
: Ĥk(V ;S1) →

Ĥk(X;S1), k = 1, 2, are trivial. Consequently, the homomorphisms îk
U,X

, k = 1, 2,

are also trivial for all neighborhoods U of x with U ⊂ V . Hence, Ĥ2(U ;S1) = 0
provided U ⊂ V (otherwise we would have hdS1X > 2).

Therefore, for any U with U ⊂ V we have the exact sequence

0 → Ĥ2(U,bdU ;S1)
∂

−−−−→ Ĥ1(bdU ;S1) → Ĥ1(U ;S1) . . .

Since Ĥ2(U,bdU ;S1) 6= 0, Ĥ1(bdU ;S1) 6= 0.
So, for all small neighborhoods U of x the groups Ĥ2(U,bdU ;S1) and

Ĥ1(bdU ;S1) are non-trivial, while the homomorphisms î1
U,X

: Ĥ1(U ;S1) →

Ĥ1(X;S1) are trivial. This implies that the homomorphisms î1
bdU,X

: Ĥ1(bdU ;S1) →

Ĥ1(X;S1) are also trivial. Since dimX = 2, H3(X;Z) = H3(U,bdU ;Z) =
H3(U ;Z) = 0. So, by the Universal Coefficient Theorem (see [11, Theorem 3]),
we have the isomorphisms

Ĥ2(U,bdU ;S1) ∼= Hom(H2(U,bdU ;Z),S1),

Ĥ2(U ;S1) ∼= Hom(H2(U ;Z),S1) and Ĥ2(X;S1) ∼= Hom(H2(X;Z),S1).

Similarly, dimbdU ≤ 1 yields H2(bdU ;Z) = 0. So,

Ĥ1(bdU ;S1) ∼= Hom(H1(bdU ;Z),S1).

Thus, H2(U,bdU ;Z) 6= 0, H1(bdU ;Z) 6= 0 and the triviality of the homo-
morphisms î1

bdU,X
yields the triviality of the inclusion homomorphisms j1

XbdU
:
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H1(X;Z) → H1(bdU ;Z). Indeed, by [4], the group H1(X;S1) is the character
group of H1(X;Z). So, Hom(H1(X;Z),S1) is isomorphic to H1(X;S1). Sim-
ilarly, Hom(H1(bdU ;Z),S1) is isomorphic to H1(bdU ;S1). Hence, identifying
the Čech homology groups with the corresponding exact homology groups, we ob-
tain that the inclusion homomorphism î1

bdU,X
is equivalent to a homomorphism

from Hom(H1(bdU ;Z),S1) into Hom(H1(X;Z),S1) assigning to each character
ϕ ∈ Hom(H1(bdU ;Z),S1) the composition ϕ ◦ j1

XbdU
. Thus, j1

XbdU
is trivial.

On the other hand, it is well known that the simplicial one-dimensional
cohomology groups with integer coefficients are free, so any non-trivial one-
dimensional Čech cohomology group H1(·;Z) is torsion free, see for example
[2, Theorem 2.5]. In particular, H1(bdU ;Z) is torsion free. It follows from the
exact sequence

· · · → H1(X;Z)
j1
XbdU−−−−→ H1(bdU ;Z)

∂X−−−−→ H2(X,bdU ;Z) → · · ·

that ∂X is an injective homomorphism. Hence, H2(X,bdU ;Z) contains elements
of infinite order. This implies H2(X,bdU ;Q) 6= 0. So, dimQX = 2. On the
other hand, by [3, p.364], dimQX = hdimQX. Finally, Lemma 3.1 yields X is
dimensionally full-valued. ✷

Corollary 3.3. Every two-dimensional lc2-compactum is dimensionally
full-valued.

P r o o f. We already observed the lc2-property implies that the following
condition for any group G and open sets V ⊂ X:

• the groups H̃k(V,G) and H̃k(X,G) are isomorphic toHk(V,G) andHk(X,G),
respectively, for all k ≤ 2 (see [9, Theorem 1]);

Because X is lc2, any point x ∈ X has a neighborhood V such that the inclusion
homomorphisms ĩkV,X : H̃k(V ;G) → H̃k(X;G) are trivial for k = 1, 2. So, we can
apply Theorem 3.2. ✷

Acknowledgments. The author thanks the referee for his/her careful
reading of the paper.
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