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ABSTRACT. Junnila and Kiinzi defined monotone orthocompactness via
transitive neighbornets, and proved that monotonically normal, monotoni-
cally orthocompact spaces must have an ortho-base. Answering one of Jun-
nila and Kiinzi’s questions, Shouli and Yuming claimed to have provided an
example of a monotonically orthocompact space without an ortho-base. We
define a version of monotone orthocompactness via interior-preserving open
refinements and show that it is a strictly weaker property than monotone
orthocompactness of Junnila and Kiinzi, and we point out an error in the
paper by Shouli and Yuming, thereby indicating that the question of Junnila
and Kiinzi appears to remain open.

1. Introduction. Monotone versions of many covering properties have
been defined and studied in recent years by a number of authors. For example,
a space is called monotonically compact if there is an operator r assigning to
each open cover U a finite open refinement r(U) covering X such that if V is
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an open cover refining U then r(V) refines 7({/). The monotone version of a
covering property is usually much stronger than the original version, for example
Gruenhage proved that monotonically compact To spaces are metrizable [3, 7],
and Gartside and Moody proved that monotonically paracompact spaces are
protometrizable [4].

A covering property is often defined by the requirement that any open
cover U has either a subcover or an open refinement satisfying a certain property
P. (For example, in compact spaces we find finite subcovers, and in paracompact
spaces we find locally-finite open refinements.) We obtain a monotone version if
we require the existence of a monotone operator r such that r(U{) is an open cover
refining U (denoted r(U) < U) and having the required property P, where mono-
tonicity means that if V < U then r(V) < r(U). For example, in this way one
may define monotonically compact, monotonically Lindel6f [2, 6], or monotoni-
cally metacompact spaces [1, 11] (when the property P is “finite”, “countable”,
or “point-finite”, respectively).

But different characterizations of the same covering property may gener-
ate different monotone versions of that covering property. Gartside and Moody’s
definition of monotone paracompactness requires that r(U) is an open star-
refinement of U (and does not specify that r(U/) be locally-finite). If we “mono-
tonize” the usual definition of paracompactness — by requiring that r(U) be a
locally-finite open refinement of U (or, as we also say, that r is a monotone
locally-finite open operator) — then we obtain a larger class of spaces [12, Corol-
lary 1.7, Example 2.1].

In the present note we compare two versions of monotone orthocompact-
ness. We give distinguishing examples, pose a question about a certain partial
order related to wy, and we indicate an error in [13], thus showing that a question
of Junnila and Kiinzi, whether each monotonically orthocompact space must have
an ortho-base, appears to remain open. All spaces considered are T; topological
spaces.

2. Two versions of monotone orthocompactness. Recall that
a family A of subsets of a topological space X is called interior-preserving if
Int(NA;) = N{Int(A) : A € A;} whenever A; C A. For open families A the above
condition reduces to the requirement that N.4; is open whenever A4; C A. A space
X is called orthocompact if every open cover has an open interior-preserving
refinement.

Following the scheme outlined in the introduction we come up with the
following;:
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Definition 2.1. A space X is said to be monotonically orthocompact via
open refinements if it has an operator r : C — C (called a monotone interior-
preserving open operator), where C is the set of all open covers of X, such that
r(U) is interior-preserving and r(U) < U for every U € C, and if V < U then
r(V) <rU).

Junnila and Kiinzi defined monotone orthocompactness via transitive
neighbornets. A neighbornet [8] is a relation R on a space X (i.e. R C X x X)
such that the set R(z) = {y € X : xRy} is a (not necessarily open) neighborhood
of z, i.e. x € Int(R(x)), for each z € X. The usual notion of transitivity applies,
i.e. a neighbornet R is transitive if xRy and yRz implies xRz. Equivalently,
R(y) € R(x) whenever y € R(x). For neighbornets @, R the condition @ C R is
equivalent to the condition Q(x) C R(x) for all z € X.

Definition 2.2 ([9, Definition 1]). A topological space X is called mono-
tonically orthocompact provided there is an operator T : C — T, where C is the
set of all open covers of X and T is the set of all transitive neighbornets of X
such that {T(U)(x) : z € X} < U and T(V) C T(U) whenever U,V € C and
V<U.

We will reserve the term “monotonically othocompact” for the property
in Definition 2.2, although we may use for emphasis the term monotonically
orthocompact (via transitive neighbornets), or monotonically orthocompact (via
transitive ONA’s) which is explained in more detail below.

If R is a transitive neighbornet then the cover {R(z) : x € X} is open and
interior-preserving [8, Corollary 3.15], [13, Corollary 2.8]. Indeed, for any Y C X
and any y € G = N{R(x) : x € Y} we have by transitivity that R(y) C G, thus G
is open. It follows that every monotonically orthocompact space is monotonically
orthocompact via open refinements, i.e. it has a monotone interior-preserving
open operator as in Definition 2.1. Clearly every monotonically orthocompact
via open refinements space is orthocompact.

Recall that an open neighborhood assignment (ONA for short) for a space
X is a family O = {O(z) : * € X} where each O(z) is an open neighborhood
of z. If R is a transitive neighbornet then {R(z) : € X} is an ONA with
the additional property that if y € R(x) then R(y) € R(x). Conversely, let us
call an ONA O transitive if y € O(x) implies O(y) C O(z); then the relation R
defined by zRy iff y € O(x) is a transitive neighbornet. Clearly Definition 2.2 is
equivalent to the following;:

Definition 2.3. A topological space X is called monotonically orthocom-
pact provided there is an operator t : C — N, where C is the set of all open covers
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of X and N is the set of all transitive ONAs of X such that {t(U)(x) :z € X} <U
and t(V)(x) C t(U)(x) for all x, whenever U,V € C and V < U.

We provide a couple of examples of monotonically orthocompact via open
refinements spaces that are not monotonically orthocompact. For the first of these
we use the well-known observation that every point-finite open cover is interior-
preserving, and therefore every monotonically metacompact space is monotoni-
cally orthocompact via open refinements. We would also use the following.

Theorem 2.4 (]9, Proposition 3]). A space X is protometrizable if and
only if it is monotonically orthocompact and monotonically normal.

Recall that X is protometrizable if it is paracompact and has an ortho-
base, where a base B is an ortho-base if for every B’ C B either NB’ is open, or else
NB’ is a singleton {z} and B’ is a base at z, [10]. It is shown in [9, Corollary 1]
that each space with an ortho-base is (hereditarily) monotonically orthocompact.

Example 2.5. A linearly ordered topological space (LOTS) X that is
monotonically orthocompact via open refinements but not monotonically ortho-
compact (via transitive neighbornets).

Proof. Let A(w) =w+1 = [0,w] be a convergent sequence and L(w;) =
[0,w;] (with all countable ordinals isolated) be the one-point Lindel6fication of a
discrete set of size wy. Let X denote the quotient space obtained by identifying
the non-isolated point of A(w) with the non-isolated point of L(w;). It is shown
in [12, Example 2.1] that X is a LOTS (hence monotonically normal) with a
monotone locally-finite open operator, that is not protometrizable. It follows that
X is monotonically metacompact, hence monotonically orthocompact via open
refinements, but X is not monotonically orthocompact, by Theorem 2.4. O

A space X is called a lob space if each point has a local base which is
linearly ordered by inclusion.

Proposition 2.6. Fvery monotonically orthocompact space is a lob space.

Proof. This is a direct consequence of the definition of monotone ortho-
compactness and [9, Proposition 1] which states that a space X is a lob space if
and only if there is an operator P from the set C of all open covers to the set of
all (not necessarily transitive) neighbornets such that {P(U)(x) : z € X} < U
and P(V) C P(U) whenever U,V € Cand V <U. O

Although the above proposition has a trivial proof, we stated it as it
provides a more direct way to show that the space X in Example 2.5 is not
monotonically orthocompact. Indeed, it is easily seen that the non-isolated point



On monotone orthocompactness 181

of X has no local base that is linearly ordered. We would use Proposition 2.6 in
a similar way in the last section.

It follows from Theorem 2.4 that neither the Sorgenfrey line nor the or-
dinal space wj are monotonically orthocompact, [9]. The following proposition
implies that the Sorgenfrey line is monotonically orthocompact via open refine-
ments. Recall that a GO (generalized ordered) space is a topological space X
with a linear order with respect to which there is a base consisting of order-convex
sets.

Proposition 2.7. Let X be a GO-space with a o-closed-and-discrete
dense set D and such that [x,—) is open for each x € X. Then X is mono-
tonically orthocompact via open refinements.

Proof. Write D = U,«,D,, where each D,, is closed-and-discrete, and
D,, € Dy41. Given any open cover U and any non-isolated x let n(z,U) = min{n :
U €U, 3d € Dy, d >z, [x,d) CU}. Let e(z,U) = inf((w, =) N Dy(z00)) (Where
inf is taken with respect to the linear order on X, and e(x,U) may be a gap).
Clearly e(x,U) > x since if e(x,U) = x then = € ((z,—) N Dy 1)) contradicting
that each D,, is closed-and-discrete. Let Z denote the set of all isolated points
of X and r(U) = {[z,e(z,UU)) : x € X \ Z} U{{z} : ® € Z}. Then r(Uf) is an
open cover of X and r(U) < U. It is easily seen (using that D,, C D,4;) that
the operator r is monotone. We will show that r(U) is interior-preserving. If
not, then there is a non-isolated y and points xy, such that y € Ng<w[zk, e(xk,U))
and y = inf{e(xy,U) : k < w} with e(zp1,U) < e(zg,U) for all k. Then
Tp41 < xg (for all k), for otherwise xpi1 € [zg,e(rg,U)) which would imply
that n(xgi1,U) < n(xg,U) and e(xgi1,U) > e(zg,U). There is m such that
(x1,20) N Dy, # 0. Since for each k > 1 there is Uy € U with (z1,x9) C
[k, y) C [k, e(zk,U)) C Uy if follows that n(zg,U) < m for all k > 1. Therefore
e(zk,U) = inf((e(xg,U),—) N D,y,) for each k > 1, and y = inf((y, =) N Dy,),
contradicting that D,, is closed-and-discrete. O

3. Is w; monotonically orthocompact via open refinements?
We do not know if w; is monotonically orthocompact via open refinements. It
turns out that this question could be restated in purely order-theoretic terms, as
follows.

Let F be the set of all functions f from w; into w; that are: (a) regressive,
ie. f(o) < a whenever 0 < o < wy, and (b) increasing, i.e. f(a) < f(B) if
0 < a < B <wip. Define a partial order C on F by f C g if f(«a) < g(«) for all
a < wi. Let K be the subset of F consisting of functions with finite range. That
is, C={feF:|fla):a<w| <Ng}
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Theorem 3.1. The following statements are either both true, or both
false:

(1) wy (with the usual order topology) is monotonically orthocompact via
open refinements,

(7i) there is a T-increasing map  : F — K, i.e. if f T g then (f) C
¥(g), and such that ¥(f) 3 f for all f € F.

Proof. Assume that w; were monotonically orthocompact (via open
refinements) with a monotone interior-preserving open operator r. For each f € F
let Uy = {{0}} U{(f(a),a] : 0 < @ < w1}, an open cover of wy. For each a > 0
define ¢(f)(a) = min{y < « : there is U € r(Uy), (7,a] C U}. Define (f)(0) =
0. It is easily verified that ¢(f) € F, i.e. 9(f) is increasing and regressive. If
0 < o« then there is U € r(Uy) and B such that (¢(f)(«), ] € U C (f(B),0].
Hence f(8) < ¢(f)(a) and a < 8 which in turn implies f(a) < f(8), to conclude
flo) <Y(f)(e). If f T g then Uy < Uy and r(Uy) < r(Uy) which in turn implies
Y(f) E¥(9).

Claim. (f) € K. Proof. Suppose not, and pick oy for k¥ < w with
ap < ogy1 and 0 < (f)(aw) < »(f)(art1). Let B = 21<1p¢(f)(04k)- There is

w

k such that ap > B, for otherwise ¥(f)(ar) < ¥(f)(B8) < B for all k, implying
B < ¢(f)(B) < B. Thus (removing finitely many o) we may assume that
ar > f( for all k and hence 8 € Ngew(¥(f)(ar),ax]. For each k there is an
open Uy, € r(Uy) with (¢(f)(ow), ax] € Uk and (by minimality of ¢ (f) (o)) with
Y(f)(ag) € U,. But then the open cover r(Uy) is not interior-preserving since
B & Int(N{Uy, : k < w}). This contradiction proves the claim, and completes the
proof that (i) = (7).

Now assume that condition (i) holds, and for each open cover & and « > 0
define fy(o) = min{p : 3U € U, (B,a] C U}, and fy(0) = 0. Then it is easy to
verify that fi; € F and if we define r(U) = {{0}} U{(¥(fu)(a),a] : 0 < a < w1}

then r is the required monotone interior-preserving open operator for wy. O

Question 3.2. Does there exist a map 1 as described in condition (ii) of
the above theorem?

It is well-known that every GO-space is orthocompact. We do not know
if there is an example of a GO-space or a LOTS that is not monotonically ortho-
compact via open refinements.

4. On a question by Junnila and Kiinzi. Gruenhage [5] proved
that a T space X is protometrizable if and only if it is a monotonically nor-
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mal space with an ortho-base. The requirement that X has an ortho-base was
weakened by Junnila and Kiinzi to the requirement that X is monotonically or-
thocompact, [9, Proposition 3| (stated as Theorem 2.4 above). The question
whether each monotonically orthocompact space must have an ortho-base was
left open. A negative answer was claimed in [13] based on the following.

Theorem 4.1 (claimed in [13, Theorem 4.4]). Every space with a Néthe-
rian base of subinfinite rank is monotonically orthocompact.

A base B is called a Notherian base of subinfinite rank (NSR base for
short, [10]) if (a) every strictly increasing by set inclusion sequence of members
of B is finite, and (b) every infinite subfamily of B with nonempty intersection
must contain two elements one of which is contained in the other.

The proof of [12, Example 2.1] shows that the space X described there
(as well as in Example 2.5 here) has a NSR base. Since X is a LOTS (hence
monotonically normal), Theorem 2.4 and Theorem 4.1 would imply that X is
protometrizable, which it is not! Upon inspection, the proof as well as the state-
ment of [13, Theorem 4.4] turn out to be invalid. We would present an easy
example showing exactly where the proof breaks. We would also explain why the
statement is invalid (based directly on the same example that the authors in [13]
claimed to be a monotonically orthocompact space without an ortho-base).

Let Z = {a,b,c} with the discrete topology (where a,b,c are distinct).
While obviously Z is monotonically orthocompact, nevertheless Z could be used
to show that the proof of [13, Theorem 4.4] is invalid. Let B be the base of
all subsets of Z, then B is a NSR base. Let U; = {{a,b},{a,c}} and Uy =
{{a,b},{a,c},{b,c}}. Clearly Uy < Us. If V; is the collection of maximal (with
respect to inclusion) elements of U; then clearly V; = U;, i = 1,2. The transitive
neighbornet Ry, constructed in [13] is, in essence, the same as the ONA { Ry, (x) :
x € Z} where (for i = 1,2) Ry, (z) = {B €V, : x € B}. It is claimed without
verification, in the proof of [13, Theorem 4.4], that Ry, () C Ry, (x) for each z.
But in the space Z that we consider, Ry, (b) = {a, b} while Ry, (b) = {b}, thus
Ry, (b) € Ry, (b). In short, the proof fails because the intersection operator is not
monotone: If one family (e.g. {{a,b}}) refines another (e.g. {{a, b}, {b,c}}) then
it does not necessarily follow that the intersection of the first family is contained
in the intersection of the second family.

The example presented in [13] is the Dieudonné plank D. It does indeed
[10, Example 5.3] have a NSR base, and the authors (incorrectly, using [13,
Theorem 4.4]) conclude that it is monotonically orthocompact. Then the authors
(correctly) argue that D does not have an ortho-base since the corner point does
not have a base that is linearly ordered by inclusion. But, they fail to observe
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that (in light of Proposition 2.6 here) the same argument shows that D is not
monotonically orthocompact either. (We conclude that the statement of [13,
Theorem 4.4] is invalid. Despite that at hindsight the error seems obvious, it
might perhaps be subtle, as it survived not only a referee report, but also a
review in Zentralblatt by one of the authors of [9].)

We searched for other examples with nice properties, but without an
ortho-base, hoping to find one that is monotonically orthocompact. An wj-
Nagata space X (for each infinite cardinal p) that has no ortho-base is constructed
in [14, Example 4.1]. Since w,-Nagata spaces are monotonically normal, such an
X is just another example of a space that is not monotonically orthocompact.

Let M be the Michael line and let w + 1 = [0,w] with the order topology
(a converging sequence). Since each of M and w+ 1 has a NSR base, so does the
product M x (w+ 1), by [10, Theorem 3.5]. It follows that M x (w+ 1) is mono-
tonically metacompact [3, section 5], and hence monotonically orthocompact via
open refinements. It is first countable, and in particular a lob space. M x (w+1)
is not hereditarily normal since M is not perfect (the irrationals are an open set
that is not F,), hence M X (w + 1) is not monotonically normal, so one may ask
if it is monotonically orthocompact. We modify the proof of [12, Example 2.4]
to show that it is not.

Example 4.2. The space X = M X (w + 1) is not monotonically ortho-
compact.

Proof. Assume X were monotonically orthocompact and let t : C — N
be a monotone orthocompact (via transitive ONAs) operator as in Definition 2.3.

Let P = R\ Q denote the irrationals, and H = X \ (Q x {w}). For each

11 1
pePandn > 1let R(p,n) = [p——.p+—]x[n+1,w] and C(p,n) = (M\[p—ﬁ,er

%]) x [n,w]. Let U(p) = Up>1C(p, k), let U(p,n) = (Ui<k<nC(p, k) U R(p, n),

let U(p) = {U(p), H} and U(p,n) = {U(p,n), H}. Then U(p),U(p,n) € C and
U(p) <U(p,n) for all n > 1.

For each p € P there is n, > 1 such that {p} x [n,,w] C t(U(p))(p,w) C
t(U(p,np)){p,w). Let P, = {p € P: n, =n}. Since P is not F;,, we may fix n > 1
and ¢ € QN P,.

1 1 1 1

Let V = ([q—%,ﬁ%]x[n+1,w])U((M\[q—%,q+%D X[Ow]) and
V ={V,H}. Fixp € P, with [p—¢| < % and (p,w) € t(V){q,w). Then U(p,n) C
V and U(p,n) <V, hence (p,n) € tU(p,n))(p,w) C t(V){p,w) C t(V){q,w), the
latter inclusion by transitivity. The only element of V that contains (q,w) is
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V, hence t(V)(q,w) C V. Since (p,n) ¢ V we obtain a contradiction, which
completes the proof. O

Thus, to the best of our knowledge the following question first stated by

Junnila and Kiinzi remains open at present.

Question 4.3. Does every monotonically orthocompact space have an

ortho-base?
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