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Abstract. Recall that for a topological space X , tθ1(X) is the smallest
infinite cardinal κ such that for every A ⊂ X and every x ∈ cl(A) there exists
a set B ⊂ A such that |B| ≤ κ and x ∈ clθ(B) ([6]). For every Urysohn space
X we define the cardinal function ψθ2(X), the θ2-pseudocharacter of X , as
the smallest infinite cardinal κ such that for each x ∈ X , there is a collection

Vx of open neighborhoods of x such that |Vx| ≤ κ and
⋂

{clθ(cl(V )) : V ∈

Vx} = {x}. Using this new cardinal function, among other results, we show
that if X is a Urysohn space and A ⊂ X then (1) | cl(A)| ≤ |A|tθ1 (X)ψ

θ2
(X);

and (2) |X | ≤ 2tθ1(X)ψ
θ2

(X)aLc(X).
Since for every Urysohn space X we have ψθ2(X) ≤ ψ(X)L(X), inequal-

ity (2) sharpens, for the class of Urysohn spaces, the famous Arhangel’skĭı–
Šapirovskĭı inequality |X | ≤ 2t(X)ψ(X)L(X), which is valid for every Hausdorff
space X .
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Using the cardinal function btθ, called θ-bitightness, or recently intro-
duced in [3] variations of the almost Lindelöf degree, other upper bounds of
the cardinality of Urysohn spaces are proved which improve (2), Kočinac’
inequality |X | ≤ 2btθ(X)aL(X), which is valid for every Urysohn space X ,
and, for special classes of Urysohn spaces, Bella-Cammaroto’s inequality
|X | ≤ 2t(X)ψc(X)aLc(X), which is true for every Hausdorff space X .

1. Introduction. In 1969, Arhangel’skĭı proved that if X is a Hausdorff

space then |X| ≤ 2χ(X)L(X) [2]. Later he showed that for regular spaces the

stronger inequality |X| ≤ 2t(X)ψ(X)L(X) is true. In 1974, Šapirovskĭı proved that

the latter inequality was also valid for all Hausdorff spaces X [17]. Improving a

result of Willard and Dissanayake from 1984 [18], in 1988, Bella and Cammaroto

noticed that the inequality |X| ≤ 2t(X)ψc(X)aLc(X) is true for every Hausdorff

spaces X [4]. Later Hodel showed in [11] that ifX is a Uryson space then ψc(X) ≤

ψ(X)aLc(X) and therefore Bella and Cammaroto inequality for Urysohn spaces

becomes |X| ≤ 2t(X)ψ(X)aLc(X).

In the same paper [4] Bella and Cammaroto showed that if X is a Urysohn

space then |X| ≤ dθ(X)χ(X) and |X| ≤ 2χ(X)aL(X). Trying to strengthen the

former inequality, in 1995, Kočinac proved that if X is a Urysohn H-closed space

then |X| ≤ dθ(X)tθ(X)ψc(X) and he asked if the same result was valid for all

Urysohn spaces [13]. (To the best of our knowledge this question is still open.)

Kočinac’ inequality could be considered as an attempt to find, for the class of

Urysohn spaces, the counterpart of Bella and Cammaroto inequality that if X is a

Hausdorff space then |X| ≤ d(X)t(X)ψc(X) (see [4]). We note that Grizlov in [10],

for the case ψc(X) = ω, and Dow and Porter in [8], for the general case, proved

the following more general result: If X is a H-closed space then |X| ≤ 2ψc(X).

In this paper we introduce the cardinal function θ2-pseudocharacter of a

Urysohn space X, denoted by ψθ2(X), and using it we extend or sharpen some

well-known cardinal inequalities for Urysohn spaces. (We recall that a space X

is called Urysohn if every two distinct points in X have disjoint closed neighbor-

hoods.)

Among other results, in Section 3, we show that if X is a Urysohn

space, then | clθ(A)| ≤ |A|tθ(X)ψ
θ2

(X) (Theorem 3.4(a)) and therefore |X| ≤

dθ(X)tθ(X)ψ
θ2

(X) (Corollary 3.5). Since ψc(X) = ψθ2(X) for every Urysohn

H-closed space X, the latter inequality extends Kočinac’ result to all Urysohn

spaces. In Theorem 4.2 we use the former inequality to prove that for every

Urysohn space X, we have |X| ≤ 2tθ(X)ψ
θ2

(X)aL(X). This result and the re-

sult in Theorem 3.4 also follow from our observation that for every Urysohn
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space X we have btθ(X) ≤ tθ(X)ψθ2(X) (Theorem 3.10) and, respectively, from

Cammaroto-Kočinac’ inequality |[A]θ| ≤ |A|btθ(X) ([7]) and Kočinac’ inequality

|X| ≤ 2btθ(X)aL(X), which are valid for every Urysohn space X.

Recall that for a topological space X, tθ1(X) is the smallest infinite car-

dinal κ such that for every A ⊂ X and every x ∈ cl(A) there exists a set B ⊂ A

such that |B| ≤ κ and x ∈ clθ(B) ([6]). In Theorem 3.8 we show that if X is a

Urysohn space and A ⊂ X then | cl(A)| ≤ |A|tθ1 (X)ψ
θ2

(X). Using a generalization

of this result (Theorem 4.7), in Theorem 4.9 we show that for every Urysohn

space X, |X| ≤ 2tθ1 (X)ψ
θ2

(X)aLc(X). Since ψθ2(X) ≤ ψ(X)L(X), whenever X is

a Urysohn space (Lemma 4.10), the former inequality sharpens, for the class of

Urysohn spaces, Arhangel’skĭı–Šapirovskĭı inequality |X| ≤ 2t(X)ψ(X)L(X) , which

is true for every Hausdorff space X. Since for each S(3)-space X (for the defini-

tion of S(3)-spaces see Definition 4.12) we have ψθ2(X) ≤ ψ(X)aLc(X) (Lemma

4.13), Theorem 4.9 improves, for the class of S(3)-spaces, Bella and Cammaroto

inequality |X| ≤ 2t(X)ψc(X)aLc(X), which is valid for every Hausdorff space X and

the inequality |X| ≤ 2t(X)ψ(X)aLc(X), which is valid for every Urysohn space X.

Using some variations of the almost Lindelöf degree defined recently in [3]

and denoted by θ-aLθ(X) and θ-aLc(X) (see Definition 5.1), we show in Theorem

5.2 that for every Urysohn space X, we have |X| ≤ 2tθ(X)ψ
θ2

(X)θ-aLθ(X), and in

Theorem 5.3 we establish even the stronger result |X| ≤ 2btθ(X)θ-aLθ(X), whenever

X is a Urysohn space. Since for every space X we have θ-aLθ(X) ≤ aL(X), these

results improve further our inequality in Theorem 4.2, while the latter result

improves also Kočinac’ inequality |X| ≤ 2btθ(X)aL(X).

Finally, in Theorem 5.4 we show that for every Urysohn space X, |X| ≤

2tθ1 (X)ψ
θ2

(X)θ-aLc(X). Since for every space X we have θ-aLc(X) ≤ aLc(X),

this inequality improves the inequality |X| ≤ 2tθ1 (X)ψ
θ2

(X)aLc(X) in Theorem 4.9,

which is valid also for every Urysohn space X, and since for each S(4)-space X

(for the definition of S(4)-spaces see Definition 4.12) ψθ2(X) ≤ ψ(X)θ-aLc(X)

(Lemma 5.5), Theorem 5.4 improves, for the class of S(4)-spaces, Bella and Cam-

maroto inequality |X| ≤ 2t(X)ψc(X)aLc(X), which is valid for every Hausdorff space

X and the inequality |X| ≤ 2t(X)ψ(X)aLc(X), which is valid for every Urysohn

space X.

2. Preliminaries. The θ-closure of a set A in a space X, denoted by

clθ(A), is the set of all points x ∈ X such that for every open neighborhood U

of x we have cl(U) ∩ A 6= ∅. A is called θ-closed if A = clθ(A) and A is θ-dense

if clθ(A) = X ([15]). The θ-density of a space X is dθ(X) = min{|A| : A ⊂
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X, clθ(A) = X}. We note that when U ⊂ X is open then cl(U) = clθ(U) [15].

The smallest θ-closed set containing A, i.e. the intersection of all θ-closed sets

containing A, is denoted by [A]θ and is called the θ-closed hull of A [4].

The θ-tightness of a space X, denoted by tθ(X), is the smallest infinite

cardinal κ such that for every A ⊂ X and every x ∈ clθ(A) there exists a set

B ⊂ A such that |B| ≤ κ and x ∈ clθ(B) [7].

Recently in [5] the authors showed that even in a H-closed Urysohn space

X it is possible to have tθ(X) < t(X), tθ(X) > t(X), or tθ(X) = t(X), where

t(X) is the tightness of the space X. This fact shows that in general we do

not know if we will get a better result when in a given cardinal inequality we

replace t(X) with tθ(X). Therefore if one would like to get a stronger inequality,

it is better to replace, if possible, t(X) with tθ1(X), since tθ1(X) ≤ t(X) and

tθ1(X) ≤ tθ(X).

The closed pseudocharacter ψc(X) (defined only for Hausdorff spaces X)

is the smallest infinite cardinal κ such that for each x ∈ X, there is a collection Vx
of open neighborhoods of x such that |Vx| ≤ κ and

⋂

{cl(V ) : V ∈ Vx} = {x} [12].

For a topological space X, k(X) is the smallest infinite cardinal κ such

that for each point x ∈ X, there is a collection Vx of closed neighborhoods of

x such that |Vx| ≤ κ and if W is a neighborhood of x then cl(W ) contains a

member of Vx [1]. As it was noted in [1], k(X) is equal to the character of the

semiregularization of X.

The almost Lindelöf degree of a space X with respect to closed sets is

aLc(X) = sup{aL(F,X) : F is a closed subset of X}, where aL(F,X) is the

minimal infinite cardinal κ such that for every open (in X) cover U of F there is

a subfamily U0 ⊂ U such that |U0| ≤ κ and F ⊂
⋃

{U : U ∈ U0}. aL(X,X) is

called almost Lindelöf degree of X and is denoted by aL(X).

Remark 2.1. The cardinal function aLc(X) was introduced in [18] under

the name almost Lindelöf degree and was denoted by aL(X). Here we follow the

notation and terminology used in [11] and suggested in [4].

Clearly aL(X) ≤ aLc(X) ≤ L(X), where L(X) is the Lindelöf degree of

X. For examples of Urysohn spaces such that aL(X) < aLc(X) < L(X) see [18]

or [11].

We finish this section with the following observation.

Lemma 2.2. If X is a space and F ⊂ X is θ-closed then aL(F,X) ≤

aL(X).
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3. Cardinal inequalities for Urysohn spaces involving the θ
2-

pseudocharacter. In 1995, Kočinac proved the following theorem and asked

if the same result was valid for all Urysohn spaces.

Theorem 3.1 ([13, Theorem 2.5]). If X is a Urysohn H-closed space then

|X| ≤ dθ(X)tθ(X)ψc(X).

We do not know the answer of his question but in order to extend the

inequality in his theorem to be valid for all Urysohn spaces we introduce the

following new cardinal function.

Definition 3.2. For every Urysohn space X we define the θ2-pseudocha-

racter, denoted by ψθ2(X), to be the smallest infinite cardinal κ such that for each

x ∈ X, there is a collection Vx of open neighborhoods of x such that |Vx| ≤ κ and
⋂

{clθ(cl(V )) : V ∈ Vx} = {x}.

Remark 3.3. We note that the θ2-pseudocharacter is well defined for

every Urysohn space X. Similarly, for every positive integer n, we can define

the θn-pseudocharacter, denoted by ψθn(X), as the smallest infinite cardinal κ

such that for each x ∈ X, there is a collection Vx of open neighborhoods of x

such that |Vx| ≤ κ and
⋂

{clθ . . . clθ
︸ ︷︷ ︸

n−1-times

(cl(V )) : V ∈ Vx} = {x}. Clearly, the θn-

pseudocharacter will be well defined only for spaces X for which for every two

distinct points x, y ∈ X there exists an open neighborhood V of x such that

y /∈ clθ . . . clθ
︸ ︷︷ ︸

n−1-times

(cl(V )). Such spaces, for example, are the S(n)-spaces introduced

by Viglino in [16] (see Definition 4.12). We only recall here that a space is S(1)

if and only if it is Hausdorff and a space is S(2) if and only if it is Urysohn.

Since clθ(V ) = cl(V ) whenever V is an open subset of X, we have

clθ(cl(V )) = clθ(clθ(V )). This explains our choice of the notation ψθ2(X) and

also shows that we can use the notation ψθ(X) instead of ψc(X).

We note that ψ(x) ≤ ψc(X) ≤ ψθ2(X) ≤ κ(X) ≤ χ(X) for every Urysohn

space X. Also, for regular spaces we have ψ(x) = ψc(X) = ψθ2(X).

Using the cardinal function ψθ2(X), the θ2-pseudocharacter of a Urysohn

space X, we can prove the following result.

Theorem 3.4. Let X be a Urysohn space and A ⊂ X. Then

(a) | clθ(A)| ≤ |A|tθ(X)ψ
θ2

(X), and
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(b) |[A]θ| ≤ |A|tθ(X)ψ
θ2

(X).

P r o o f. (a) Let κ = tθ(X)ψθ2(X). For each x ∈ X we fix a collection Vx
of open neighborhoods of x such that |Vx| ≤ κ and

⋂

{clθ(cl(V )) : V ∈ Vx} = {x}.

Since tθ(X) ≤ κ, for each x ∈ clθ(A) we can fix a set Bx ⊂ A such that |Bx| ≤ κ

and x ∈ clθ(Bx). Now, let Fx = {cl(V ) ∩Bx : V ∈ Vx}. Then, for every F ∈ Fx
we have x ∈ clθ(F ). Hence x ∈

⋂

{clθ(F ) : F ∈ Fx} ⊂
⋂

{clθ(cl(V )) : V ∈ Vx} =

{x}. Thus, x → Fx is an one-to-one map from clθ(A) into [[A]≤κ]≤κ. Therefore

| clθ(A)| ≤ |A|κ.

(b) For each α < κ+, by transfinite recursion, we define sets Aα such that

A0 = A and for α > 0, Aα = clθ(
⋃

{Aβ : β < α}). Clearly,
⋃

{Aα : α < κ+} ⊆

[A]θ. To show the reverse inclusion it is sufficient to show that
⋃

{Aα : α < κ+}

is θ-closed. For that end, let x ∈ clθ(
⋃

{Aα : α < κ+}). Then, there exists a

subset Bx ⊂
⋃

{Aα : α < κ+} such that |Bx| ≤ κ and x ∈ clθ(Bx). Since κ+

is regular, there exists α < κ+ such that Bx ⊂ Aα. Hence x ∈ clθ(Aα) ⊂ Aα+1.

Therefore
⋃

{Aα : α < κ+} is θ-closed. Thus,
⋃

{Aα : α < κ+} = [A]θ.

To finish the proof we need to show that |[A]θ| ≤ 2κ. For that it is

sufficient to prove that for every α < κ+ we have |Aα| ≤ 2κ. Suppose that there

exists α < κ+ such that |Aα| > 2κ and let γ be the first ordinal number with that

property. Since Aγ = clθ(
⋃

{Aβ : β < γ}), from (a) we have |Aγ | ≤ |
⋃

{Aβ :

β < γ}|κ ≤ (2κκ+)κ = 2κ - contradiction. The proof is complete. ✷

Corollary 3.5. If X is a Urysohn space, then |X| ≤ dθ(X)tθ(X)ψ
θ2

(X).

It is well known that if X is a Urysohn H-closed space then clθ(cl(U)) =

cl(U) for every open subset U of X ([15, Theorem 4(b)]). Hence, ψθ2(X) = ψc(X)

whenever X is a Urysohn H-closed space. Therefore the inequality in Corollary

3.5 coincides with the inequality in Theorem 3.1 for Urysohn H-closed spaces but

is valid for all Urysohn spaces.

Since tθ(X) ≤ κ(X), as a corollary of Theorem 3.4, we obtain the following

results of Alas and Kočinac and Bella and Cammaroto.

Corollary 3.6 ([1]). If X is a Urysohn space, then

(1) |clθ(A)| ≤ |A|κ(X); and

(2) |[A]θ| ≤ |A|κ(X).

Corollary 3.7 ([4]). If X is a Urysohn space, then
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(1) |clθ(A)| ≤ |A|χ(X); and

(2) |[A]θ| ≤ |A|χ(X).

Notice that the inequality | clθ(A)| ≤ |A|tθ(X)ψ
θ2

(X) from Theorem 3.4(a),

which is valid for every subset A of every Urysohn space X, corresponds to the

inequality | cl(A)| ≤ |A|t(X)ψc(X) (see [4]) which is valid for every subset A of every

Hausdorff space X. Another inequality similar to the latter inequality, which is

also valid only for subsets of Urysohn spaces, is given in the next theorem.

Theorem 3.8. Let X be a Urysohn space and A ⊂ X. Then | cl(A)| ≤

|A|tθ1 (X)ψ
θ2

(X).

P r o o f. Let κ = tθ1(X)ψθ2(X). For each x ∈ X we fix a collection Vx of

open neighborhoods of x such that |Vx| ≤ κ and
⋂

{clθ(cl(V )) : V ∈ Vx} = {x}.

Since tθ1(X) ≤ κ, for each x ∈ cl(A) we can fix a set Bx ⊂ A such that |Bx| ≤ κ

and x ∈ clθ(Bx). Now, let Fx = {cl(V ) ∩Bx : V ∈ Vx}. Then, for every F ∈ Fx
we have x ∈ clθ(F ). Hence x ∈

⋂

{clθ(F ) : F ∈ Fx} ⊂
⋂

{clθ(cl(V )) : V ∈ Vx} =

{x}. Thus, x → Fx is an one-to-one map from cl(A) into [[A]≤κ]≤κ. Therefore

| cl(A)| ≤ |A|κ. ✷

Corollary 3.9. If X is a Urysohn space, then |X| ≤ d(X)tθ1 (X)ψ
θ2

(X).

We note that in the inequality in Theorem 3.8 we weaken Bella and Cam-

maroto inequality | cl(A)| ≤ |A|t(X)ψc(X) by replacing t(X) with tθ1(X) but com-

pensate by strengthening ψc(X) = ψθ(X) to ψθ2(X).

We recall that the θ-bitightness of a space X, denoted by btθ(X), is the

smallest infinite cardinal κ such that for every non-θ-closed set A ⊂ X there

exists a point x ∈ X \A and a collection S ∈ [[A]≤κ]≤κ such that
⋂

{clθ(S) : S ∈

S} = {x} [7]. The θ-bitightness is not defined for every topological space X but

it is well defined for every Urysohn space X. The following theorem gives the

relationship between btθ(X) and tθ(X)ψθ2(X) for every Urysohn space X.

Theorem 3.10. If X is a Urysohn space then btθ(X) ≤ tθ(X)ψθ2(X).

P r o o f. Let tθ(X)ψθ2(X) = κ and let A be a non-θ-closed subset of X.

Then there is a point x ∈ clθ(A) \ A. Since tθ(X) ≤ κ, we can fix a set B ⊂ A

such that |B| ≤ κ and x ∈ clθ(B). Let V be a collection of open neighborhoods

of x such that |V| ≤ κ and
⋂

{clθ(cl(V )) : V ∈ V} = {x}. Then cl(V ) ∩ B 6= ∅
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and hence x ∈ clθ(B ∩ cl(V )) for every V ∈ V. Thus,

x ∈
⋂

{clθ(B ∩ cl(V )) : V ∈ V} ⊂
⋂

{clθ(cl(V )) : V ∈ V} = {x}.

This shows that
⋂

{clθ(B∩cl(V )) : V ∈ V} = {x}. The existence of the collection

{B ∩ cl(V ) : V ∈ V} proves that btθ(X) ≤ κ. ✷

Cammaroto and Kočinac noticed in [7] that for every Urysohn space X we

have btθ(X) ≤ χ(X). Theorem 3.10 shows that the stronger inequality btθ(X) ≤

tθ(X)ψθ2(X) ≤ κ(X) ≤ χ(X) is true. In [7] the authors also proved that if X

is a Urysohn space then for every A ⊂ X we have |[A]θ| ≤ |A|btθ(X). Therefore

Theorem 3.4 also follows from their result and Theorem 3.10.

4. Cardinal inequalities for Urysohn spaces involving the

almost Lindelöf degree. In [9] the following result is proven.

Theorem 4.1 ([9, Corollary 6.13]). For every Urysohn space X, |X| ≤

2κ(X)aL(X).

The above theorem clearly generalizes Bella and Cammaroto inequality

mentioned before, that for every Urysohn space X we have |X| ≤ 2χ(X)aL(X).

Using the cardinal function ψθ2(X) we can generalize Theorem 4.1 and therefore

Bella and Cammaroto inequality as follows:

Theorem 4.2. For every Urysohn space X, |X| ≤ 2tθ(X)ψ
θ2

(X)aL(X).

P r o o f. Let tθ(X)ψθ2(X)aL(X) = κ and for each x ∈ X we fix

a collection Vx = {Vα(x) : α < κ} of open neighborhoods of x such that
⋂

α<κ

clθ(cl(Vα(x))) = {x}. Also, for a non-empty subset A of X we denote by

CA the set of all families C = {cl(Ua) : a ∈ A,Ua ∈ Va}.

Now, let x0 be an arbitrary point in X. Recursively we construct a family

{Fα : α < κ+} of subsets of X with the following properties:

(i) F0 = {x0} and clθ(
⋃

β<α

Fβ) ⊂ Fα for every 0 < α < κ+;

(ii) |Fα| ≤ 2κ for every α < κ+;

(iii) for every α < κ+, and every F ⊂ clθ(
⋃

β<α

Fβ) with |F | ≤ κ if X \
⋃

C 6= ∅

for some C ∈ CF , then Fα \
⋃

C 6= ∅.
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Suppose that the sets {Fβ : β < α} satisfying (i)-(iii) have already been

defined. We will define Fα. Since |Fβ | ≤ 2κ for each β < α, we have |
⋃

β<α

Fβ | ≤

2κ · κ+ = 2κ. Then it follows from Theorem 3.4, that |clθ(
⋃

β<α

Fα)| ≤ 2κ. Hence,

there are at most 2κ subsets F of clθ(
⋃

β<α

Fα) with |F | ≤ κ and for each such set

F we have |CF | ≤ κκ = 2κ. For each F ⊂ clθ(
⋃

β<α

Fα) with |F | ≤ κ and each

C ∈ CF for which X \
⋃

C 6= ∅ we choose a point in X \
⋃

C 6= ∅ and let Eα be

the set of all such points. Clearly |Eα| ≤ 2κ. Let Fα = clθ(Eα ∪ (
⋃

β<α

Fα)). Then

it follows from our construction that Fα satisfies (i) and (iii) while (ii) follows

from Theorem 3.4.

Now, let G =
⋃

α<κ+

Fα. Clearly |G| ≤ 2κ ·κ+ = 2κ and since tθ(X) ≤ κ, G

is θ-closed. To finish the proof it is sufficient to show that G = X. Suppose that

there is x ∈ X \G. Then for every y ∈ G there is Vy ∈ Vy such that x /∈ cl(Vy).

Since {Vy : y ∈ G} is an open cover of G and G is θ-closed, it follows from Lemma

2.2 that there is F ⊂ G with |F | ≤ κ such that G ⊂
⋃

{cl(Vy) : y ∈ F}. Clearly

x /∈
⋃

{cl(Vy) : y ∈ F}. Since |F | ≤ κ, there is β < κ+ such that F ⊂ Fβ . Then

for C = {cl(Vy) : y ∈ F} we have C ∈ CF and x ∈ X \
⋃

C. Then it follows

from our construction that Fβ+1 \
⋃

C 6= ∅ which contradicts Fβ+1 ⊂ G ⊂
⋃

C.

Therefore G = X and the proof is completed. ✷

We note that Kočinac mentioned in [13] (see also MR1205960) that for

every Urysohn space X one can show that |X| ≤ 2btθ(X)aL(X). Therefore Theorem

4.2 could be deducted from that observation and Theorem 3.10.

In the following definition we introduce the concept of θ-κ-closure of a

subset of a topological space. This new concept will be used later in the proof of

Theorem 4.9 .

Definition 4.3. For A ⊆ X and an infinite cardinal κ, let [A]≤κ = {B :

B ⊆ A, |B| ≤ κ}. We define the θ-κ-closure of A as clθκ(A) =
⋃

B∈[A]≤κ

clθ(B). A

is θ-κ-closed if clθκ(A) = A.

The proofs of the following three observations are straightforward.
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Lemma 4.4. Let X be a Urysohn space, A ⊂ X and κ ≥ tθ1(X). Af-

ter applying (tθ1)
+-many consecutive times the operator clθκ(·), beginning with

clθκ(A), the resulting set will be closed.

Lemma 4.5. Let X be a Urysohn space and G ⊆ X be such that G =
⋃

α<κ+

Fα, where for each α < β < κ+ we have clθκ(Fα) ⊆ Fβ. If κ ≥ tθ1(X) then

G is a closed subset of X.

Lemma 4.6. If U ⊆ X is open and κ ≥ tθ1(X) then clθ(U) = cl(U) =

clθκ(U).

Theorem 4.7. Let X be a Urysohn space, A ⊂ X and κ be an infinite

cardinal. Then | clθκ(A)| ≤ |A|κ·ψθ2
(X).

P r o o f. Let τ = ψθ2(X). For each x ∈ X we fix a collection Vx of

open neighborhoods of x such that |Vx| ≤ τ and
⋂

{clθ(cl(V )) : V ∈ Vx} = {x}.

It follows from the definition of clθκ(A) that for each x ∈ clθκ(A) we can fix a

set Bx ⊂ A such that |Bx| ≤ κ and x ∈ clθ(Bx). Now, let Fx = {cl(V ) ∩ Bx :

V ∈ Vx}. Then |Fx| ≤ τ and for every F ∈ Fx we have x ∈ clθ(F ). Hence

x ∈
⋂

{clθ(F ) : F ∈ Fx} ⊂
⋂

{clθ(cl(V )) : V ∈ Vx} = {x}. Thus, x → Fx is an

one-to-one map from clθκ(A) into [[A]≤κ]≤τ . Therefore | clθκ(A)| ≤ |A|κ·τ . ✷

Corollary 4.8. Let X be a Urysohn space, A ⊂ X and κ = tθ1(X). Then

cl(A) ⊆ clθκ(A) and | clθκ(A)| ≤ |A|tθ1 (X)ψ
θ2

(X).

We note that Theorem 3.8 follows directly from Corollary 4.8.

The following theorem gives another upper bound for the cardinality of a

Urysohn space X.

Theorem 4.9. For every Urysohn space X, |X| ≤ 2tθ1 (X)ψ
θ2

(X)aLc(X).

P r o o f. Let tθ1(X)ψθ2(X)aLc(X) = κ and for each x ∈ X we fix

a collection Vx = {Vα(x) : α < κ} of open neighborhoods of x such that
⋂

α<κ

clθ(cl(Vα(x))) = {x}. Also, for every non-empty subset A of X we denote by

CA the set of all families C = {cl(Va) : a ∈ A,Va ∈ Va}.

Now, let x0 be an arbitrary point in X. Recursively we construct a family

{Fα : α < κ+} of subsets of X with the following properties:

(i) F0 = {x0} and clθκ(
⋃

β<α

Fβ) ⊂ Fα for every 0 < α < κ+;
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(ii) |Fα| ≤ 2κ for every α < κ+;

(iii) for every α < κ+, and every F ⊂ clθκ(
⋃

β<α

Fβ) with |F | ≤ κ if X \
⋃

C 6= ∅

for some C ∈ CF , then Fα \
⋃

C 6= ∅.

Suppose that the sets {Fβ : β < α} satisfying (i)-(iii) have already been

defined. We will define Fα. Since |Fβ | ≤ 2κ for each β < α, we have |
⋃

β<α

Fβ | ≤

2κ · κ+ = 2κ. Then it follows from Theorem 4.7 that |clθκ(
⋃

β<α

Fα)| ≤ 2κ. Hence,

there are at most 2κ subsets F of clθκ(
⋃

β<α

Fα) with |F | ≤ κ and for each such

set F we have |CF | ≤ κκ = 2κ. For each F ⊂ clθκ(
⋃

β<α

Fα) with |F | ≤ κ and each

C ∈ CF for which X \
⋃

C 6= ∅ we choose a point in X \
⋃

C 6= ∅ and let Eα be the

set of all such points. Clearly |Eα| ≤ 2κ. Let Fα = clθκ(Eα ∪ (
⋃

β<α

Fα)). Then it

follows from our construction that Fα satisfies (i) and (iii) while (ii) follows from

Theorem 4.7.

Now, let G =
⋃

α<κ+

Fα. Clearly |G| ≤ 2κ · κ+ = 2κ and since tθ1(X) ≤ κ,

G is closed (Lemma 4.5). To finish the proof it is sufficient to show that G = X.

Suppose that there is x ∈ X \ G. Then for every y ∈ G there is Vy ∈ Vy such

that x /∈ cl(Vy). Since {Vy : y ∈ G} is an open cover of G and G is closed,

there is F ⊂ G with |F | ≤ κ such that G ⊂
⋃

{cl(Vy) : y ∈ F}. Clearly

x /∈
⋃

{cl(Vy) : y ∈ F}. Since |F | ≤ κ, there is β < κ+ such that F ⊂ Fβ . Then

for C = {cl(Vy) : y ∈ F} we have C ∈ CF and x ∈ X \
⋃

C. Then it follows

from our construction that Fβ+1 \
⋃

C 6= ∅ which contradicts Fβ+1 ⊂ G ⊂
⋃

C.

Therefore G = X and the proof is completed. ✷

Lemma 4.10. Let X be a Urysohn space. Then ψθ2(X) ≤ ψ(X)L(X).

P r o o f. Let ψ(X)L(X) = κ, x ∈ X, and {Vα(x) : α < κ} be a collection

of open neighborhoods of x such that
⋂

α<κ

Vα(x) = {x}. For each α < κ, let

Fα(x) = X \ Vα(x) and for each y ∈ Fα(x) let Uα(x, y) and Wα(y, x) be open in

X neighborhoods of x and y, respectively, such that cl(Uα(x, y))∩ cl(Wα(y, x)) =
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∅. Then {Wα(y, x) : y ∈ Fα(x)} is an open cover of Fα(x) in X and since

L(X) ≤ κ, there exists a subset Aα(x) of Fα(x) such that |Aα(x)| ≤ κ and
⋃

{Wα(y, x) : y ∈ Aα(x)} covers Fα(x). Note that clθ(cl(Uα(x, y)))∩Wα(y, x) =

∅ for each y ∈ Aα(x). Therefore
⋂

{clθ(cl(Uα(x, y))) : y ∈ Aα(x)} ⊆ Vα(x).

Since
⋂

α<κ

Vα(x) = {x}, we have
⋂

{clθ(cl(Uα(x, y))) : α < κ, y ∈ Aα(x)} = {x}.

Therefore ψθ2(X) ≤ κ. ✷

Corollary 4.11. If X is a Urysohn space, then |X| ≤ 2tθ1 (X)ψ(X)L(X).

It follows immediately from Corollary 4.11 that for the class of Urysohn

spaces Theorem 4.9 sharpens the famous Arhangel’skĭı–Šapirovskĭı inequality

|X| ≤ 2t(X)ψ(X)L(X) , which is valid for every Hausdorff space X.

In order to compare the inequality in Theorem 4.9 with Bella and Cam-

maroto inequality |X| ≤ 2t(X)ψc(X)aLc(X), which is valid for every Hausdorff space,

and the inequality |X| ≤ 2t(X)ψ(X)aLc(X), which is valid for every Urysohn space,

we recall the following definition:

Definition 4.12. Let X be a topological space, A ⊂ X and n be a positive

integer. A point x ∈ X is S(n)-separated from A if there exist open sets Ui,

i = 1, 2, . . . , n such that x ∈ U1, U i ⊂ Ui+1 for i = 1, 2, . . . , n−1 and Un∩A = ∅;

x is S(0)-separated from A if x /∈ A. X is an S(n)-space if every two distinct

points in X are S(n)-separated (see [16] and [14]).

It follows directly from the above definition that the S(1)-spaces are ex-

actly the Hausdorff spaces and the S(2)-spaces are exactly the Urysohn spaces.

Lemma 4.13. Let X be an S(3)-space. Then ψθ2(X) ≤ ψ(X)aLc(X).

P r o o f. Let ψ(X)aLc(X) = κ, x ∈ X, and {Vα(x) : α < κ} be a

collection of open neighborhoods of x such that
⋂

α<κ

Vα(x) = {x}. Let α < κ and

Fα(x) = X \ Vα(x). Since X is an S(3)-space, for each y ∈ Fα(x) we can find

open neighborhoods Uα(x, y), Sα(x, y) andWα(x, y) of x such that cl(Uα(x, y)) ⊂

Sα(x, y) ⊂ cl(Sα(x, y)) ⊂ Wα(x, y) and y /∈ cl(Wα(x, y)). Let W ′
α(y, x) = X \

cl(Wα(x, y)). Then {W ′
α(y, x) : y ∈ Fα(x)} is an open cover of the closed set

Fα(x) and since aLc(X) ≤ κ, there exists a subset Aα(x) of Fα(x) such that

|Aα(x)| ≤ κ and
⋃

{cl(W ′
α(y, x)) : y ∈ Aα(x)} covers Fα(x). Note that for each

y ∈ Aα(x) we have clθ(cl(Uα(x, y))) ⊂ clθ(Sα(x, y)) = cl(Sα(x, y)) ⊂ Wα(x, y),
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hence clθ(cl(Uα(x, y))) ∩ cl(W ′
α(y, x)) = ∅ . Therefore

⋂

{clθ(cl(Uα(x, y))) : y ∈ Aα(x)} ⊆ Vα(x).

Since
⋂

α<κ

Vα(x) = {x}, we have
⋂

{clθ(cl(Uα(x, y))) : α < κ, y ∈ Aα(x)} = {x}.

Therefore ψθ2(X) ≤ κ. ✷

Corollary 4.14. If X is an S(3)-space, then |X| ≤ 2tθ1 (X)ψ(X)aLc(X).

Corollary 4.14 shows that for the class of S(3)-spaces, Theorem 4.9 im-

proves Bella and Cammaroto inequality |X| ≤ 2t(X)ψc(X)aLc(X), which is valid for

every Hausdorff space X and the inequality |X| ≤ 2t(X)ψ(X)aLc(X), which is valid

for every Urysohn space X.

5. Results involving variations of the almost Lindelöf degree.

Recently in [3] the authors gave the following definition:

Definition 5.1. The θ-almost Lindelöf degree of a subset Y of a space X

is θ-aL(Y,X) = min{κ : for every cover V of Y consisting of open subsets of X,

there exists V ′ ⊆ V such that |V ′| ≤ κ and
⋃

{clθ(cl(V )) : V ∈ V ′} = Y }.

The function θ-aL(X,X) is called θ-almost Lindelöf degree of the space

X and is denoted by θ-aL(X).

The θ-almost Lindelöf degree with respect to closed subsets of X is

θ-aLc(X) = sup{θ-aL(C,X) : C ⊆ X is closed}.

The θ-almost Lindelöf degree with respect to θ-closed subsets of X is

θ-aLθ(X) = sup{θ-aL(F,X) : F ⊆ X is θ-closed}.

It follows directly from the above definition that θ-aL(X) ≤ aL(X) and

Example 3.2 in [3] shows that there exist spaces X for which that inequality could

be strict. Also, since every θ-closed set is closed and aL(F,X) ≤ aL(X) whenever

F ⊂ X is a θ-closed set (Lemma 2.2), we have θ-aLθ(X) ≤ θ-aLc(X) ≤ aLc(X)

and θ-aL(X) ≤ θ-aLθ(X) ≤ aL(X).

Now, using the above variations of the almost Lindelöf degree we can

strengthen the results in some of our previous theorems. For example, the fol-

lowing theorem improves the inequality in Theorem 4.2.

Theorem 5.2. For every Urysohn space X, |X| ≤ 2tθ(X)ψ
θ2

(X)θ-aLθ(X).

P r o o f. Let tθ(X)ψθ2(X)θ-aLθ(X) = κ and for each x ∈ X we fix

a collection Vx = {Vα(x) : α < κ} of open neighborhoods of x such that
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⋂

α<κ

clθ(cl(Vα(x))) = {x}. For a non-empty subset A of X we denote by KA

the set of all families K = {clθ(cl(Ua)) : a ∈ A,Ua ∈ Va}.

Now, let x0 be an arbitrary point in X. Recursively we construct a family

{Fα : α < κ+} of subsets of X with the following properties:

(i) F0 = {x0} and clθ(
⋃

β<α

Fβ) ⊂ Fα for every 0 < α < κ+;

(ii) |Fα| ≤ 2κ for every α < κ+;

(iii) for every α < κ+, and every A ⊂ clθ(
⋃

β<α

Fβ) with |A| ≤ κ if X \
⋃

K 6= ∅

for some K ∈ KA, then Fα \
⋃

K 6= ∅.

Suppose that the sets {Fβ : β < α} satisfying (i)-(iii) have already been

defined. We will define Fα. Since |Fβ | ≤ 2κ for each β < α, we have |
⋃

β<α

Fβ | ≤

2κ · κ+ = 2κ. Then it follows from Theorem 3.4 that |clθ(
⋃

β<α

Fα)| ≤ 2κ. Hence,

there are at most 2κ subsets A of clθ(
⋃

β<α

Fα) with |A| ≤ κ and for each such set

A we have |KA| ≤ κκ = 2κ. For each A ⊂ clθ(
⋃

β<α

Fα) with |A| ≤ κ and each

K ∈ KA for which X \
⋃

K 6= ∅ we choose a point in X \
⋃

K 6= ∅ and let Eα be

the set of all such points. Clearly |Eα| ≤ 2κ. Let Fα = clθ(Eα ∪ (
⋃

β<α

Fα)). Then

it follows from our construction that Fα satisfies (i) and (iii) while (ii) follows

from Theorem 3.4.

Now, let G =
⋃

α<κ+

Fα. Clearly |G| ≤ 2κ · κ+ = 2κ and since tθ(X) ≤ κ,

G is θ-closed. To finish the proof it is sufficient to show that G = X. Suppose

that there is x ∈ X \ G. Then for every y ∈ G there is Vy ∈ Vy such that

x /∈ clθ(cl(Vy)). Since {Vy : y ∈ G} is an open cover of G and G is θ-closed,

there is A ⊂ G with |A| ≤ κ such that G ⊂
⋃

{clθ(cl(Vy)) : y ∈ A}. Clearly x /∈
⋃

{clθ(cl(Vy)) : y ∈ A}. Since |A| ≤ κ, there is β < κ+ such that A ⊂ Fβ . Then

for K = {clθ(cl(Vy)) : y ∈ A} we have K ∈ KA and x ∈ X \
⋃

K. Then it follows

from our construction that Fβ+1 \
⋃

K 6= ∅ which contradicts Fβ+1 ⊂ G ⊂
⋃

K.

The proof is completed. ✷
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If in the proof of Theorem 5.2 we set κ = btθ(X)θ-aLθ(X) and for the

estimation of the upper bounds of the cardinality of θ-closures of sets we use

Cammaroto-Kočinac’ inequality | clθ(A)| ≤ |A|btθ(X) then we can prove the fol-

lowing result which is stronger than the one in Theorem 5.2.

Theorem 5.3. For every Urysohn space X, |X| ≤ 2btθ(X)θ-aLθ(X).

The following theorem improves the result in Theorem 4.9.

Theorem 5.4. For every Urysohn space X, |X| ≤ 2tθ1 (X)ψ
θ2

(X)θ-aLc(X).

P r o o f. Let tθ1(X)ψθ2(X)θ-aLc(X) = κ and for each x ∈ X we

fix a collection Vx = {Vα(x) : α < κ} of open neighborhoods of x such that
⋂

α<κ

clθ(cl(Vα(x))) = {x}. For every non-empty subset A of X we denote by CA

the set of all families C = {clθ(cl(Va)) : a ∈ A,Va ∈ Va}.

Now, let x0 be an arbitrary point in X. Recursively we construct a family

{Fα : α < κ+} of subsets of X with the following properties:

(i) F0 = {x0} and clθκ(
⋃

β<α

Fβ) ⊂ Fα for every 0 < α < κ+;

(ii) |Fα| ≤ 2κ for every α < κ+;

(iii) for every α < κ+, and every F ⊂ clθκ(
⋃

β<α

Fβ) with |F | ≤ κ if X \
⋃

C 6= ∅

for some C ∈ CF , then Fα \
⋃

C 6= ∅.

Suppose that the sets {Fβ : β < α} satisfying (i)-(iii) have already been

defined. We will define Fα. Since |Fβ | ≤ 2κ for each β < α, we have |
⋃

β<α

Fβ | ≤

2κ · κ+ = 2κ. Then it follows from Theorem 4.7 that |clθκ(
⋃

β<α

Fα)| ≤ 2κ. Hence,

there are at most 2κ subsets F of clθκ(
⋃

β<α

Fα) with |F | ≤ κ and for each such

set F we have |CF | ≤ κκ = 2κ. For each F ⊂ clθκ(
⋃

β<α

Fα) with |F | ≤ κ and each

C ∈ CF for which X \
⋃

C 6= ∅ we choose a point in X \
⋃

C 6= ∅ and let Eα be the

set of all such points. Clearly |Eα| ≤ 2κ. Let Fα = clθκ(Eα ∪ (
⋃

β<α

Fα)). Then it

follows from our construction that Fα satisfies (i) and (iii) while (ii) follows from

Theorem 4.7.
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Now, let G =
⋃

α<κ+

Fα. Clearly |G| ≤ 2κ · κ+ = 2κ and since tθ1(X) ≤ κ,

G is closed (Lemma 4.5). To finish the proof it is sufficient to show that G = X.

Suppose that there is x ∈ X \ G. Then for every y ∈ G there is Vy ∈ Vy
such that x /∈ clθ(cl(Vy)). Since {Vy : y ∈ G} is an open cover of G and G is

closed, there is F ⊂ G with |F | ≤ κ such that G ⊂
⋃

{clθ(cl(Vy)) : y ∈ F}.

Clearly x /∈
⋃

{clθ(cl(Vy)) : y ∈ F}. Since |F | ≤ κ, there is β < κ+ such that

F ⊂ Fβ. Then for C = {clθ(cl(Vy)) : y ∈ F} we have C ∈ CF and x ∈ X \
⋃

C.

Then it follows from our construction that Fβ+1 \
⋃

C 6= ∅ which contradicts

Fβ+1 ⊂ G ⊂
⋃

C. Therefore G = X and the proof is completed. ✷

Lemma 5.5. Let X be an S(4)-space. Then ψθ2(X) ≤ ψ(X)θ-aLc(X).

P r o o f. Let ψ(X)θ-aLc(X) = κ, x ∈ X, and {Vα(x) : α < κ} be a

collection of open neighborhoods of x such that
⋂

α<κ

Vα(x) = {x}. Let α < κ

and Fα(x) = X \ Vα(x). Since X is an S(4)-space, for each y ∈ Fα(x) we can

find open neighborhoods Uα(x, y), Sα(x, y), Tα(x, y) and Wα(x, y) of x such that

cl(Uα(x, y)) ⊂ Sα(x, y) ⊂ cl(Sα(x, y)) ⊂ Tα(x, y) ⊂ cl(Tα(x, y)) ⊂ Wα(x, y) and

y /∈ cl(Wα(x, y)). Let W
′
α(y, x) = X \ cl(Wα(x, y)). Then {W ′

α(y, x) : y ∈ Fα(x)}

is an open cover of the closed set Fα(x) and since θ-aLc(X) ≤ κ, there exists a sub-

set Aα(x) of Fα(x) such that |Aα(x)| ≤ κ and
⋃

{clθ(cl(W
′
α(y, x))) : y ∈ Aα(x)}

covers Fα(x). Also, clθ(cl(Uα(x, y))) ⊂ clθ(Sα(x, y)) = cl(Sα(x, y)) ⊂ Tα(x, y)

and clθ(cl(W
′
α(y, x))) ⊂ clθ(X \Wα(x, y)) ⊂ clθ(X \ cl(Tα(x, y))) ⊂ X \ Tα(x, y)

whenever y ∈ Aα(x). Hence, for every y ∈ Aα(x) we have clθ(cl(Uα(x, y))) ∩

clθ(cl(W
′
α(y, x))) = ∅. Thus,

⋂

{clθ(cl(Uα(x, y))) : y ∈ Aα(x)} ⊆ Vα(x). Since
⋂

α<κ

Vα(x) = {x}, we have
⋂

{clθ(cl(Uα(x, y))) : α < κ, y ∈ Aα(x)} = {x}.

Therefore ψθ2(X) ≤ κ. ✷

Corollary 5.6. If X is an S(4)-space, then |X| ≤ 2tθ1 (X)ψ(X)θ-aLc(X).

Corollary 5.6 shows that for the class of S(4)-spaces, Theorem 5.4 im-

proves Bella and Cammaroto inequality |X| ≤ 2t(X)ψc(X)aLc(X), which is valid for

every Hausdorff space X and the inequality |X| ≤ 2t(X)ψ(X)aLc(X), which is valid

for every Urysohn space X.
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