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1. Introduction. The following two results of Pospǐsil [17], which are

valid for every Hausdorff space X, are well known: |X| ≤ 22
d(X)

and |X| ≤

[d(X)]χ(X). Kočinac in [15], for Urysohn spaces X, sharpened the first inequality

to |X| ≤ 22
dθ(X)

. As it was shown by Arhangel’skĭı in [2] for Hausdorff spaces
and by Cammaroto and Kočinac in [4] (see also [15]) for Urysohn spaces, the

second inequality can be sharpened respectively to |X| ≤ [d(X)]bt(X) and |X| ≤

[dθ(X)]btθ(X).

In this paper, for a topological space X and any positive integer n, we
define the cardinal functions S(n)-density (denoted by dn(X)), S(n)-tightness
(denoted by tn(X)), and S(n)-bitightness (denoted by btn(X)), and using them
and recently introduced in [10] cardinal functions S(n)-character, S(n)-pseudo-
character, and S(n)-spread, denoted respectively by χn(X), ψn(X), and sn(X),
we prove some cardinal inequalities for S(n)-spaces.

In particular, we extend the above-mentioned inequalities for the class
of S(n)-spaces, where n is a positive integer, by showing that for every S(n)-

space X we have |X| ≤ 22
dn(X)

(Theorem 3.1) and |X| ≤ [dn(X)]btn(X) (Theorem
3.5). Since btn(X) ≤ tn(X)ψ2n(X), whenever X is an S(n)-space (Theorem
3.3), as a corollary we obtain Theorem 3.7: If X is an S(n)-space, then |X| ≤
[dn(X)]tn(X)ψ2n(X). Extending in Theorems 3.13, 3.15, and 3.17 to S(n)-spaces
a fundamental result about spread due to Shapirovskǐı (see [19] or [12, Theorem
5.1]), in Theorems 3.19, 3.21 and 3.23 we obtain upper bounds for the S(n)-
density of S(n)-spaces using the cardinal function sn(X). In the proofs of these
theorems we use substantially Lemmas 3.10, 3.11 and 3.12 proved in [10]. As
corollaries, in Theorem 3.20, 3.22 and 3.24 we find upper bounds of the cardinality
of S(n)-spaces as functions of sn(X) and btn(X).

2. Preliminaries. All spaces considered here are assumed to be at least
T1 and infinite. N+ denotes the set of all positive integers and N = {0} ∪N

+. α,
β, γ and δ are ordinal numbers, while λ and κ denote infinite cardinals; κ+ is the
successor cardinal of κ. As usual, cardinals are assumed to be initial ordinals. If
X is a set, then P(X) and [X]≤κ denote the power set of X and the collection
of all subsets of X having cardinality ≤ κ, respectively.

We begin with recalling some definitions that we need. (For additional
topological definitions not given here see [9], [13], or [12].)

Definition 2.1. Let X be a topological space, A ⊂ X and n ∈ N
+. A

point x ∈ X is S(n)-separated from A if there exist open sets Ui, i = 1, 2, . . . , n
such that x ∈ U1, U i ⊂ Ui+1 for i = 1, 2, . . . , n − 1 and Un ∩ A = ∅; x is S(0)-
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separated from A if x /∈ A. X is an S(n)-space [21] if every two distinct points
in X are S(n)-separated.

Now, let n ∈ N. The set clθn A = {x ∈ X : x is not S(n)-separated from
A} is called θn-closure of A [6]. A is θn-closed [16] if clθn(A) = A; U ⊂ X is
θn-open if X\U is θn-closed; and A is θn-dense in X if clθn(A) = X.

It is a direct corollary of Definition 2.1 that S(1) is the class of Hausdorff
spaces and S(2) is the class of Urysohn spaces. Since we are going to consider
here only T1-spaces, for us the S(0)-spaces will be exactly the T1-spaces. Also,
clθ0(A) = A and clθ1(A) = clθ(A) is the so called θ-closure of A [20].

It will be more convenient for us to consider the S(n)-spaces in more
’symmetric’ way similar to the way how S(n)-spaces are defined in [7], [8] or [16]
but we are going to use the terminology and notation introduced in [10].

Definition 2.2 ([10]). Let X be a topological space, U ⊆ X, x ∈ U and
k ∈ N

+. We will say that U is an S(2k−1)-neighborhood of x if there exist open
sets Ui, i = 1, 2, . . . , k, such that x ∈ U1, U i ⊂ Ui+1, for i = 1, 2, . . . , k − 1, and
Uk ⊆ U . We will say that U is an S(2k)-neighborhood of x if there exist open
sets Ui, i = 1, 2, . . . , k, such that x ∈ U1, U i ⊂ Ui+1, for i = 1, 2, . . . , k − 1, and
Uk ⊆ U .

Let n ∈ N
+. When a set U is an S(n)-neighborhood of a point x and it is

an open (closed) set in X, we will refer to it as open (closed) S(n)-neighborhood
of x. A set U will be called S(n)-open (S(n)-closed) if U is open (closed) and
there exists at least one point x such that U is an open (closed) S(n)-neighborhood
of x.

Remark 2.3 ([10]). We note that in what follows every S(2k − 1)-open
set U in a space X, where k ∈ N

+, will be considered as a fixed chain of k
nonempty sets Ui, i = 1, 2, . . . , k, such that U i ⊂ Ui+1, for i = 1, 2, . . . , k−1, and
Uk ⊆ U . (In fact, most of the time we will assume that Uk = U).

Now, using the terminology and notation introduced in Definition 2.2 it
is easy to see that the following propositions are true.

Proposition 2.4 ([10]). Let X be a topological space, x ∈ X and k ∈ N
+.

(a) Every closed S(2k−1)-neighborhood of x is a closed S(2k)-neighborhood
of x.

(b) Every S(2k)-neighborhood of x contains a closed S(2k)-neighborhood
of x; hence it contains a closed (and therefore an open) S(2k − 1)-neighborhood
of x. Thus, every S(2k)-neighborhood of x is an S(2k − 1)-neighborhood of x.

(c) Every S(2k+1)-neighborhood of x contains an open S(2k+1)-neighbor-
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hood of x; hence it contains an open (and therefore a closed) S(2k)-neighborhood
of x. Thus, every S(2k + 1)-neighborhood of x is an S(2k)-neighborhood of x.

Proposition 2.5 ([10]). Let X be a topological space and k ∈ N
+.

(a) X is an S(2k − 1)-space if and only if every two distinct points of X
can be separated by disjoint (open) S(2k − 1)-neighborhoods.

(b) X is an S(2k)-space if and only if every two distinct points of X can
be separated by disjoint closed S(2k − 1)-neighborhoods.

(c) X is an S(2k)-space if and only if every two distinct points of X can
be separated by disjoint (closed) S(2k)-neighborhoods.

(d) X is an S(2k + 1)-space if and only if every two distinct points of X
can be separated by disjoint open S(2k)-neighborhoods.

Definition 2.6 ([10]). Let X be a topological space, A ⊆ X and k ∈ N
+.

We will say that a point x is in the S(2k − 1)-closure of A if and only if every
(open) S(2k − 1)-neighborhood of x intersects A and we will say that a point x
is in the S(2k)-closure of A if and only if every (closed) S(2k)-neighborhood (or
equivalently, every closed S(2k−1)-neighborhood) of x intersects A. For n ∈ N

+,
the S(n)-closure of A will be denoted by θn(A). A is θn-closed if θn(A) = A and
U ⊂ X is θn-open if X \U is θn-closed, or equivalently, U ⊂ X is θn-open if U is
an S(n)-neighborhood of every x ∈ U . Finally, A is θn-dense in X if θn(A) = X.

It is immediate that, for every n ∈ N
+, every θn-open set is open and every

set of the form θn(A), where A ⊆ X, is a closed set in X. Also, θ1(A) = cl(A) = A
is the usual closure operator in X and θ2(A) = clθ(A) is the θ-closure operator
introduced by Veličko [20]. We also note that, for any integer n > 1, the θn-
closure operator, in general, is not idempotent.

Definition 2.7 ([10]). Let k ∈ N
+ and X be a topological space.

(a) A family {Uα : α < κ} of open S(2k − 1)-neighborhoods of a point
x ∈ X will be called an open S(2k − 1)-neighborhood base at the point x if for
every open S(2k − 1)-neighborhood U of x there is α < κ such that Uα ⊆ U .

(b) An S(2k − 1)-space X is of S(2k − 1)-character κ, denoted by
χ2k−1(X) = κ, if κ is the smallest infinite cardinal such that for each point
x ∈ X there exists an open S(2k − 1)-neighborhood base at x with cardinality at
most κ. In the case k = 1 the S(1)-character χ1(X) coincides with the usual
character χ(X).

(c) An S(2k)-space X is of S(2k)-character κ, denoted by χ2k(X) = κ,
if κ is the smallest infinite cardinal such that for each point x ∈ X there exists a
family Vx of closed S(2k − 1)-neighborhoods of x such that |Vx| ≤ κ and if W is
an open S(2k − 1)-neighborhood of x, then W contains a member of Vx. In the
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case k = 1 the S(2)-character χ2(X) coincides with the cardinal function k(X)
defined in [1].

(d) An S(k − 1)-space X is of S(2k − 1)-pseudocharacter κ, denoted by
ψ2k−1(X) = κ, if κ is the smallest infinite cardinal such that for each point x ∈ X
there exists a family {Uα : α < κ} of S(2k−1)-open neighborhoods of x such that

{x} =
⋂

{Uα : α < κ}. In the case k = 1 the pseudocharacter ψ1(X) coincides

with the usual pseudocharacter ψ(X).
(e) An S(k)-space X is of S(2k)-pseudocharacter κ, denoted by ψ2k(X) =

κ, if κ is the smallest infinite cardinal such that for each point x ∈ X there
exists a family {Uα : α < κ} of S(2k − 1)-open neighborhoods of x such that

{x} =
⋂

{Uα : α < κ}. In the case k = 1 the pseudocharacter ψ2(X) coincides

with the closed pseudocharacter ψc(X).

It follows immediately from the previous definition that if k ∈ N
+, then

χ2k(X) ≤ χ2k−1(X) and ψ2k−1(X) ≤ ψ2k(X) ≤ ψ2k+1(X) ≤ ψ2k+2(X), whenever
they are defined (see [10]).

In relation to Definition 2.7(c) we recall that for a topological space X,
k(X) is the smallest infinite cardinal κ such that for each point x ∈ X, there is
a collection Vx of closed neighborhoods of x such that |Vx| ≤ κ and if W is a
neighborhood of x, then W contains a member of Vx [1]. As it was noted in [1],
k(X) ≤ χ(X) and that k(X) is equal to the character of the semiregularization
of X.

Definition 2.8. Let n ∈ N. We define the θn-density and hereditary
θn-density of a space X (denoted, respectively, by dθn(X) and hdθn(X)) by

dn(X) = min{|A| : A is a θn-dense subset of X}+ ℵ0, and
hdn(X) = sup{dθn(Y ) : Y ⊂ X}.

Clearly, if n = 1, then d1(X) = d(X) and hd1(X) = hd(X) are the usual
density and hereditary density functions. If n = 2, then d2(X) = dθ(X) and
hd2(X) = hdθ(X) are the θ-density and hereditary θ-density functions defined in
[15].

It is not difficult to see that for every space X and every n ∈ N
+ we have

dn(X) ≤ dn−1(X) ≤ · · · ≤ d2(X) = dθ(X) ≤ d1(X) = d(X), and
hdn(X) ≤ hdn−1(X) ≤ · · · ≤ hd2(X) = hdθ(X) ≤ hd1(X) = hd(X).

Definition 2.9 ([10]). Let k ∈ N
+ and X be a topological space.

(a) We shall call a subset D of X S(2k − 1)-discrete if for every x ∈ D,
there is an open S(2k − 1)-neighborhood U of x such that U ∩ D = {x}, and
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we define the S(2k − 1)-spread of X, denoted by s2k−1(X), to be sup{|D| : D is
S(2k − 1)-discrete subset of X} + ℵ0.

(b) We shall call a subset D of X S(2k)-discrete if for every x ∈ D, there
is an open S(2k − 1)-neighborhood U of x such that U ∩D = {x}, and we define
the S(2k)-spread of X, denoted by s2k(X), to be sup{|D| : D is S(2k)-discrete
subset of X}+ ℵ0.

It is easily seen that a set D in a topological space X is discrete if and
only if D is S(1)-discrete and a set D is Urysohn-discrete if and only if D is
S(2)-discrete. Hence, s1(X) is the usual spread s(X) and s2(X) is the Urysohn
spread Us(X) defined in [18].

Definition 2.10. Let n ∈ N
+ and X be a topological space.

(a) The S(n)-tightness of a space X, denoted by tn(X), is the smallest
cardinal τ such that for every A ⊂ X and every x ∈ θn(A) there exists a set
B ⊂ A such that |B| ≤ τ and x ∈ θn(B).

(b) The S(n)-bitightness of a space X, denoted by btn(X), is the smallest
cardinal τ such that for each non-θn-closed set A ⊂ X there exists a point x ∈

X\A and a collection S ∈ [[A]≤τ ]≤τ such that {x} =
⋂

{θn(S) : S ∈ S}.

If n = 1, then t1(X) = t(X) and bt1(X) = bt(X) are the usual tight-
ness and bitightness functions (see [2]) and if n = 2, then t2(X) = tθ(X) and
bt2(X) = btθ(X) are the θ-tightness and θ-bitightness functions defined in [5].

3. Cardinal inequalities for S(n)-spaces. We begin with extend-
ing for the class of S(n)-spaces, where n is any positive integer, the following two

Pospǐsil’s inequalities: |X| ≤ 22
d(X)

and |X| ≤ [d(X)]χ(X) [17].

We note that the case n = 1 of the following theorem is exactly the first
Pospǐsil’s inequality mentioned above and the case n = 2 is [15, Theorem 2.1].

Theorem 3.1. Let n ∈ N
+. If X is an S(n)-space, then |X| ≤ 22

dn(X)
.

P r o o f. Let dn(X) ≤ κ and let A be a θn-dense subset of X such that
|A| ≤ κ. We need to consider two cases: (a) n = 2k − 1 and (b) n = 2k, where
k ∈ N

+. Since X is an S(n)-space, for every two distinct points x and y in X,
there exist open S(2k− 1)-neighborhoods U and V of x and y, respectively, such
that U ∩ V = ∅ in case (a) and U ∩ V = ∅ in case (b). Hence, there exists a set
Bx ⊂ A such that x ∈ θ2k−1(Bx) and y /∈ θ2k−1(Bx) in case (a) and x ∈ θ2k(Bx)
and y /∈ θ2k(Bx) in case (b). Therefore x → {Bx ⊂ A : x ∈ θ2k−1(Bx)} in case
(a) and x→ {Bx ⊂ A : x ∈ θ2k(Bx)} in case (b) is an one-to-one correspondence
between X and a subset of the set P(P(A)), so |X| ≤ 22

κ

. ✷
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The case k = 1 of the following theorem can be found in [2] and for k = 2
it was observed in [11]. We note that in [5, Proposition 2.2] it was shown that
btθ(X) ≤ χ(X).

Theorem 3.2. Let n ∈ N
+. If X is an S(n)-space, then btn(X) ≤ χn(X).

P r o o f. Let χn(X) = κ and let A be a non-θn-closed subset of X. Then
there exists a point x ∈ θn(A) \A. We need to consider two cases: (a) n = 2k− 1
and (b) n = 2k, where k ∈ N

+. In both cases let {Uα : α < κ} be an open
S(2k − 1)-neighborhood base for x. Then for each α < κ we have Uα ∩A 6= ∅ in
case (a) and Uα ∩A 6= ∅ in case (b). In both cases we choose a point xα in these
nonempty intersections. Let B = {xα : α < κ}. Then x ∈ θ2k−1(B ∩ Uα) in case
(a) and x ∈ θ2k(B ∩ Uα) in case (b). Since X is an S(2k − 1)-space in case (a)
and S(2k)-space in case (b) we have

⋂

{θ2k−1(B ∩ Uα) : α < κ} ⊂
⋂

{θ2k−1(Uα) : α < κ} = {x}

in case (a), and

⋂

{θ2k(B ∩ Uα) : α < κ} ⊂
⋂

{θ2k(Uα) : α < κ} = {x}

in case (b). Therefore the collection {B ∩ Uα : α < κ} in case (a) and {B ∩ Uα :
α < κ} in case (b) witness that btn(X) ≤ κ. ✷

Another estimation of the S(n)-bitightness is contained in our next theo-
rem. In [2, Proposition 1] it was observed that t(X) ≤ bt(X) ≤ χ(X), whenever
X is a Hausdorff space. The case n = 1 of Theorem 3.3 gives the following better
estimation: t(X) ≤ bt(X) ≤ t(X)ψc(X) ≤ χ(X).

Theorem 3.3. Let n ∈ N
+. If X is an S(n)-space, then btn(X) ≤

tn(X)ψ2n(X).

P r o o f. Let tn(X)ψ2n(X) = κ and let A be a non-θn-closed subset of X.
Then there is a point x ∈ θn(A)\A. Since tn(X) ≤ κ, we can fix a set B ⊂ A such
that |B| ≤ κ and x ∈ θn(B). We need to consider two cases: (a) n = 2k − 1 and
(b) n = 2k, where k ∈ N

+. Let {V α : α < κ} be a collection of open S(4k − 3)-
neighborhoods of x in case (a) and a collection of open S(4k− 1)-neighborhoods

of x in case (b) such that
⋂

{V
α
: α < κ} = {x}. Since for each α < κ, V α is an

open S(4k−3)-neighborhood of x in case (a) and an open S(4k−1)-neighborhood
of x in case (b), there exist open neighborhoods of x such that

x ∈ V α
1 ⊂ V

α
1 ⊂ · · · ⊂ V α

k ⊂ V
α
k ⊂ · · · ⊂ V α

2k−1
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in case (a) and

x ∈ V α
1 ⊂ V

α
1 ⊂ · · · ⊂ V α

k ⊂ V
α
k ⊂ · · · ⊂ V α

2k

in case (b).
Since x ∈ θn(B), for each α < κ, V α

k ∩B 6= ∅ in case (a) and V
α
k ∩B 6= ∅

in case (b). Thus, for every α < κ we have x ∈ θ2k−1(B ∩ V α
k ) in case (a) and

x ∈ θ2k(B ∩ V
α
k ) in case (b).

Therefore

x ∈
⋂

{θ2k−1(B ∩ V α
k ) : α < κ} ⊂

⋂

{θ2k−1(V
α
k ) : α < κ}

⊂
⋂

{V
α
2k−1 : α < κ} = {x}

in case (a) and

x ∈
⋂

{θ2k(B ∩ V
α
k ) : α < κ} ⊂

⋂

{θ2k(V
α
k ) : α < κ} ⊂

⋂

{V
α
2k : α < κ} = {x}

in case (b).

This shows that
⋂

{θ2k−1(B ∩ V α
k ) : α < κ} = {x} in case (a) and

⋂

{θ2k(B ∩ V
α
k ) : α < κ} = {x} in case (b). The existence of the collections

{B ∩ V α
k : α < κ} in case (a) and {B ∩ V

α
k : α < κ} in case (b) proves that

btn(X) ≤ κ. ✷

The case n = 1 of our next theorem is Lemma 1 in [2]. In [3] the authors
proved that if X is a Urysohn space and A ⊂ X, then | clθ(A)| ≤ |A|χ(X) and
it was sharpened in [4] to | clθ(A)| ≤ |A|btθ(X), which is the case n = 2 of the
following theorem.

Theorem 3.4. Let n ∈ N
+. If A is a subset of an S(n)-space X, then

|θn(A)| ≤ |A|btn(X).

P r o o f. Let |A| = κ and btn(X) = λ. Using transfinite recursion we
define a family {Aα : α < κ+} of subsets of X such that:

(i) Aα ⊂ Aβ for α < β < λ+; and

(ii) |Aα| ≤ λκ for each α < λ+.

Let A0 = A. Suppose we have already defined the sets Aβ for all β < α. We shall
define Aα:

(1) If α is a limit ordinal, then Aα =
⋃

{Aβ : β < α};
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(2) If α = γ + 1, for some γ, then Aα = {x ∈ X : there exists S ∈ [[Aγ ]
≤λ]≤λ

such that {x} =
⋂

{θn(S) : S ∈ S}}.

The construction of the sets Aα is completed. The condition (i) is obvi-
ously satisfied since for every x ∈ X, {x} = θn({x}) for X is an S(n)-space.
We are going to check (ii). Suppose that (ii) is not true and let β be the
first ordinal for which |Aβ| > κλ. Note that β > 0 and β is not a limit ordi-

nal (otherwise |Aβ | ≤
∑

{|Aδ| : δ < β} ≤ κλ). Hence, β = γ + 1 for some

γ < λ+. For each x ∈ Aβ there exists a collection Sx ∈ [[Aγ ]
≤λ]≤λ such that

{x} =
⋂

{θn(S) : S ∈ Sx}. The correspondence x→ Sx is one-to-one. Therefore,

we have |Aβ| ≤
∣

∣

∣
[[Aγ ]

≤λ]≤λ
∣

∣

∣
≤ ((κλ)λ)λ = κλ. This contradiction proves (ii).

Let F =
⋃

{Aα : α < λ+}. We shall show that F is θn-closed. Assume,

to the contrary, that F is not θn-closed. Since btn(X) = λ, there is a point

x ∈ X\F and a family C ∈ [[F ]≤λ]≤λ such that {x} =
⋂

{θn(C) : C ∈ C}. Since

λ+ is regular, there is some α < λ+ such that
⋃

{C : C ∈ C} ⊂
⋃

{Aβ : β <

α} ⊂ Aα. Then, it follows from the definition of Aα+1 that x ∈ Aα+1 and we
have a contradiction. Therefore A is θn-closed and the theorem is proved. ✷

The following result is a direct corollary of Theorem 3.4.

Theorem 3.5. If n ∈ N
+, then |X| ≤ [dn(X)]btn(X), whenever X is an

S(n)-space.

Theorem 3.4 and Theorem 3.3 imply immediately the following two re-
sults:

Theorem 3.6. Let n ∈ N
+. If A is a subset of an S(n)-space X, then

|θn(A)| ≤ |A|tn(X)ψ2n(X).

Theorem 3.7. If n ∈ N
+, then |X| ≤ [dn(X)]tn(X)ψ2n(X), whenever X is

an S(n)-space.

We note that if n = 1 in Theorem 3.6, then we obtain Bella and Cam-
maroto’s result that if X is a Hausdorff space and A is a subset of X, then
|A| ≤ |A|t(X)ψc(X) [3]. The case n = 2 of Theorem 3.6 states that if X is a
Urysohn space and A is a subset of X, then | clθ(A)| ≤ |A|tθ(X)ψ4(X). Under
the same assumptions it was shown in [11] that | clθ(A)| ≤ |A|tθ(X)ψ

θ2 (X). Since
ψθ2(X) ≤ ψ4(X), for every Urysohn space X, the latter estimation is better. (For
the definition of ψθ2(X) see [11]).
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Definition 3.8. Denote by Cn(X) the family of all θn-closed subsets of
a space X.

The case n = 2 of our next result is [15, Theorem 2.4].

Theorem 3.9. Let n ∈ N
+. If X is an S(n)-space, then |Cn(X)| ≤

2hdn(X)btn(X).

P r o o f. Let hdn(X)btn(X) = κ and let F be a θn-closed subset of X.
Take a set DF ⊂ F such that θn(DF ) = F and |DF | ≤ κ. So the set Cn(X) of all
θn-closed subsets of X is contained in the set {θn(D) : D ⊂ X, |D| ≤ κ}, which
means |Cn(X)| ≤ |X|κ. By Theorem 3.5 and the fact that dn(X) ≤ κ we have
|Cn(X)| ≤ (κκ)κ = 2κ. The theorem is proved. ✷

Before we continue we recall some results from [10], which we will use
later.

Lemma 3.10 ([10]). Let k ∈ N
+, X be a topological space, κ = s2k−1(X)

and C ⊆ X. For each x ∈ C let Ux be an open S(2k − 1)-neighborhood of x and
let U = {Ux : x ∈ C}. Then there exist an S(2k− 1)-discrete subset A of C such

that |A| ≤ κ and C ⊆ θ2k−1(A) ∪
⋃

{Ux : x ∈ A}.

Lemma 3.11 ([10]). Let k ∈ N
+, X be a topological space, κ = s2k(X)

and C ⊆ X. For each x ∈ C let Ux be an open S(2k − 1)-neighborhood of x and
let U = {Ux : x ∈ C}. Then there exist an S(2k)-discrete subset A of C such

that |A| ≤ κ and C ⊆ θ2k(A) ∪
⋃

{

U
x
: x ∈ A

}

.

Lemma 3.12 ([10]). Let k ∈ N
+.

(a) For every S(3k)-space X, ψ2k(X) ≤ 2s2k(X);
(b) For every S(3k − 2)-space X, ψ2k−1(X) ≤ 2s2k−1(X);
(c) For every S(3k − 1)-space X, ψ2k−1(X) ≤ 2s2k(X);
(d) For every S(3k − 1)-space X, ψ2k(X) ≤ 2s2k−1(X).

Our next three theorems are versions of the fundamental result on spread
due to Shapirovskǐı (see [19] or [12, Theorem 5.1]). We note that the case k = 1
of Theorem 3.13 was stated in [15, Proposition 3.3] for Urysohn spaces X and
hereditary spread hsθ(X) but its proof was based on [18, Lemma 11], which proof
has a gap (see also [10]). Here we state and prove Proposition 3.3 from [15] for
S(3)-spaces and we use the spread sθ(X), instead (see Corollary 3.14).

Theorem 3.13. Let k ∈ N
+ and X be an S(3k)-space with s2k(X) ≤ κ.

Then there exists a subset A of X such that |A| ≤ 2κ and
⋃

{

θ2k(B) : B ∈ [A]≤κ
}

= X.
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P r o o f. SinceX is an S(3k)-space, according to Lemma 3.12(a) ψ2k(X) ≤
2s2k(X) and therefore for every x ∈ X one can choose a collection Ux of S(2k)-

neighborhoods of x such that |Ux| ≤ 2κ and
⋂

{

U : U ∈ Ux
}

= {x}. Using

transfinite recursion we will construct a sequence
{

Aα : α ∈ κ+
}

of subsets of X
and a sequence

{

Uα : α < κ+
}

of families of open S(2k)-subsets of X satisfying
the following conditions:

(a) |Aα| ≤ 2κ, α < κ+;

(b) |Uα| ≤ 2κ, α < κ+; and

(c) If S ∈
[

⋃

{Aβ : β < α}
]≤κ

, V ∈ [Uα]
≤κ, and θ2k(S)∪

⋃

{

V : V ∈ V
}

6=

X, then Aα\
(

θ2k(S) ∪
⋃

{

V : V ∈ V
}

)

6= ∅.

Suppose we have already defined all Aβ and Uβ for β < α. Let us defineAα

and Uα. For every S ∈
[

⋃

{Aβ : β < α}
]≤κ

and every V ∈
[

⋃

{Uβ : β < α}
]≤κ

choose a point x(S,V) ∈ X\
(

θ2k(S) ∪
⋃

{

V : V ∈ V
}

)

whenever the last set is

not empty (otherwise the construction has been finished). Let

Aα =

{

x(S,V) : S ∈
[

⋃

{Aβ : β < α}
]≤κ

and V ∈
[

⋃

{Uβ : β < α}
]≤κ

}

, and

Uα =
⋃

{Ux : x ∈ Aα}.

It is easy to check that Aα and Uα satisfy (a), (b), and (c). Now, let

A =
⋃

{

Aα : α < κ+
}

. We shall prove that A is as it is required. Take a point

p ∈ X\A. We shall show that p ∈ θ2k(B) for some B ∈ [A]≤κ. For every x ∈ A
pick Ux ∈ Ux such that p /∈ Ux. Applying now Lemma 3.11 (to the set A and the
collection {Ux : x ∈ A}) we find a set B in [A]≤τ such that

(∗) A ⊂ θ2k(B) ∪
⋃

{

Uy : y ∈ B
}

.

Let us show that p ∈ θ2k(B). Suppose not. Then one can choose α < κ+

for which B ⊂
⋃

{Aβ : β < α}. By (c), then Aα\
(

θ2k(B) ∪
⋃

{

Uy : y ∈ Y
}

)

6=

∅ which contradicts (∗). The theorem is proved. ✷

The case k = 1 of the previous theorem gives us the following:

Corollary 3.14. Let X be an S(3)-space with sθ(X) ≤ κ. Then there

exists a subset A of X such that |A| ≤ 2κ and
⋃

{

clθ(B) : B ∈ [A]≤κ
}

= X.
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Theorem 3.15. Let k ∈ N
+ and X be an S(3k−2)-space with s2k−1(X) ≤

κ. Then there exists a subset A of X such that |A| ≤ 2κ and

⋃

{

θ2k−1(B) : B ∈ [A]≤κ
}

= X.

P r o o f. Since X is an S(3k − 2)-space, according to Lemma 3.12(b),
ψ2k−1(X) ≤ 2s2k−1(X) and therefore for every x ∈ X one can choose a collection Ux
of S(2k− 1)-neighborhoods of x such that |Ux| ≤ 2κ and

⋂

{U : U ∈ Ux} = {x}.

Using transfinite recursion we will construct a sequence
{

Aα : α ∈ κ+
}

of subsets
of X and a sequence

{

Uα : α < κ+
}

of families of open S(2k − 1)-subsets of X
satisfying the following conditions:

(a) |Aα| ≤ 2κ, α < κ+;
(b) |Uα| ≤ 2κ, α < κ+;

(c) If S ∈
[

⋃

{Aβ : β < α}
]≤κ

, V ∈ [Uα]
≤κ, and

θ2k−1(S) ∪
⋃

{V : V ∈ V} 6= X, then Aα\
(

θ2k−1(S) ∪
⋃

{V : V ∈ V}
)

6= ∅.

Suppose we have already defined all Aβ and Uβ for β < α. Let us defineAα

and Uα. For every S ∈
[

⋃

{Aβ : β < α}
]≤κ

and every V ∈
[

⋃

{Uβ : β < α}
]≤κ

choose a point x(S,V) ∈ X\
(

θ2k−1(S) ∪
⋃

{V : V ∈ V}
)

whenever the last set

is not empty (otherwise the construction has been finished). Let

Aα =

{

x(S,V) : S ∈
[

⋃

{Aβ : β < α}
]≤κ

and V ∈
[

⋃

{Uβ : β < α}
]≤κ

}

, and

Uα =
⋃

{Ux : x ∈ Aα}.

It is easy to check that Aα and Uα satisfy (a), (b), and (c). Now, let

A =
⋃

{

Aα : α < κ+
}

. We shall prove that A is as it is required. Take a point

p ∈ X\A. We shall show that p ∈ θ2k−1(B) for some B ∈ [A]≤κ. For every x ∈ A
pick Ux ∈ Ux such that p /∈ Ux. Applying now Lemma 3.10 (to the set A and the
collection {Ux : x ∈ A}) we find a set B in [A]≤τ such that

(∗) A ⊂ θ2k−1(B) ∪
⋃

{Uy : y ∈ B} .

Let us show that p ∈ θ2k−1(B). Suppose not. Then one can choose

α < κ+ for which B ⊂
⋃

{Aβ : β < α}. By (c), then

Aα\
(

θ2k−1(B) ∪
⋃

{Uy : y ∈ Y }
)

6= ∅

which contradicts (∗). The theorem is proved. ✷
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The case k = 1 of the previous theorem is the well-known Shapirovskǐı’s
result on spread (see [19]).

Corollary 3.16. Let X be a Hausdorff space with s(X) ≤ κ. Then there

exists a subset A of X such that |A| ≤ 2κ and
⋃

{

B : B ∈ [A]≤κ
}

= X.

Theorem 3.17. Let k ∈ N
+ and X be an S(3k−1)-space with s2k−1(X) ≤

κ. Then there exists a subset A of X such that |A| ≤ 2κ and

⋃

{

θ2k(B) : B ∈ [A]≤κ
}

= X.

P r o o f. Since X is an S(3k − 1)-space, according to Lemma 3.12(d),
ψ2k(X) ≤ 2s2k−1(X) and therefore for every x ∈ X one can choose a collection Ux
of S(2k− 1)-neighborhoods of x such that |Ux| ≤ 2κ and

⋂

{

U : U ∈ Ux
}

= {x}.

Using transfinite recursion we will construct a sequence
{

Aα : α ∈ κ+
}

of subsets
of X and a sequence

{

Uα : α < κ+
}

of families of open S(2k − 1)-subsets of X
satisfying the following conditions:

(a) |Aα| ≤ 2κ, α < κ+;
(b) |Uα| ≤ 2κ, α < κ+; and

(c) If S ∈
[

⋃

{Aβ : β < α}
]≤κ

, V ∈ [Uα]
≤κ, and

θ2k(S) ∪
⋃

{

V : V ∈ V
}

6= X, then Aα\
(

θ2k(S) ∪
⋃

{

V : V ∈ V
}

)

6= ∅.

Suppose we have already defined all Aβ and Uβ for β < α. Let us defineAα

and Uα. For every S ∈
[

⋃

{Aβ : β < α}
]≤κ

and every V ∈
[

⋃

{Uβ : β < α}
]≤κ

choose a point x(S,V) ∈ X\
(

θ2k(S) ∪
⋃

{

V : V ∈ V
}

)

whenever the last set is

not empty (otherwise the construction has been finished). Let

Aα =

{

x(S,V) : S ∈
[

⋃

{Aβ : β < α}
]≤κ

and V ∈
[

⋃

{Uβ : β < α}
]≤κ

}

, and

Uα =
⋃

{Ux : x ∈ Aα}.

It is easy to check that Aα and Uα satisfy (a), (b), and (c). Now, let

A =
⋃

{

Aα : α < κ+
}

. We shall prove that A is as it is required. Take a point

p ∈ X\A. We shall show that p ∈ θ2k(B) for some B ∈ [A]≤κ. For every x ∈ A
pick Ux ∈ Ux such that p /∈ Ux. Applying now Lemma 3.11 (to the set A and the
collection {Ux : x ∈ A}) we find a set B in [A]≤τ such that

(∗∗) A ⊂ θ2k(B) ∪
⋃

{

Uy : y ∈ B
}

.
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Let us show that p ∈ θ2k(B). Suppose not. Then one can choose α < κ+

for which B ⊂
⋃

{Aβ : β < α}. By (c), then Aα\
(

θ2k(B) ∪
⋃

{

Uy : y ∈ Y
}

)

6=

∅ which contradicts (∗∗). The theorem is proved. ✷

The case k = 1 of the previous theorem could be restated as follows:

Corollary 3.18. Let X be a Urysohn space with s(X) ≤ κ. Then there

exists a subset A of X such that |A| ≤ 2κ and
⋃

{

clθ(B) : B ∈ [A]≤κ
}

= X.

Our next result follows from Theorem 3.13:

Theorem 3.19. Let k ∈ N
+. If X is an S(3k)-space, then d2k(X) ≤

2s2k(X).

Using the last theorem and Theorem 3.5 we get:

Theorem 3.20. Let k ∈ N
+. If X is an S(3k)-space, then |X| ≤

2s2k(X)bt2k(X).

P r o o f. By Theorem 3.5 and Theorem 3.19 we have

|X| ≤ (d2k(X))bt2k(X) ≤
(

2s2k(X)
)bt2k(X)

= 2s2k(X)bt2k(X). ✷

As a corollary of Theorem 3.15 we obtain:

Theorem 3.21. Let k ∈ N
+. If X is an S(3k−2)-space, then d2k−1(X) ≤

2s2k−1(X).

Using the previous theorem and Theorem 3.5 we get:

Theorem 3.22. Let k ∈ N
+. If X is an S(3k − 2)-space, then |X| ≤

2s2k−1(X)bt2k−1(X).

P r o o f. By Theorem 3.5 and Theorem 3.21 we have

|X| ≤ (d2k−1(X))bt2k−1(X) ≤
(

2s2k−1(X)
)bt2k−1(X)

= 2s2k−1(X)bt2k−1(X). ✷

As a consequence of Theorem 3.17 we have:

Theorem 3.23. Let k ∈ N
+. If X is an S(3k− 1)-space, then d2k(X) ≤

2s2k−1(X).

Using the last theorem and Theorem 3.5 we get:

Theorem 3.24. Let k ∈ N
+. If X is an S(3k − 1)-space, then |X| ≤

2s2k−1(X)bt2k(X).

P r o o f. By Theorem 3.5 and Theorem 3.23 we have

|X| ≤ (d2k(X))bt2k(X) ≤
(

2s2k−1(X)
)bt2k(X)

= 2s2k−1(X)bt2k(X). ✷
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[4] F. Cammaroto, Lj. Kočinac. A note on θ-tightness. Rend. Circ. Mat.
Palermo (2) 42, 1 (1993), 129–134.
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[18] J. Schröder. Urysohn cellularity and Urysohn spread. Math. Japon. 38, 6
(1993), 1129–1133.
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