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Abstract. In the present work weighted area integral means Mp,ϕ(f ; Im z)
are studied and it is proved that the function y → logMp,ϕ(f ; y) is convex
in the case when f belongs to a Hardy space on the upper half-plane.

1. Introduction. In the present paper we study three weighted area
integral means of holomorphic on the upper half plane functions. They are defined
as follows

M (1)
p,ϕ(f ; y) =

∫ y
1 ϕ′(t)

∫ +∞
−∞ |f(x+ it)|pdx dt
∫ y
1 ϕ′(t)dt

,

M (0)
p,ϕ(f ; y) =

∫ y
0 ϕ′(t)

∫ +∞
−∞ |f(x+ it)|pdx dt
∫ y
0 ϕ′(t)dt

,
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Key words: log-convexity,weighted area integral means,holomorphic function,upper half-

plane.
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M (∞)
p,ϕ (f ; y) =

∫ +∞
y ϕ′(t)

∫ +∞
−∞ |f(x+ it)|pdx dt

∫ +∞
y ϕ′(t)dt

where p > 0, y > 0, the functions f and ϕ are such that the integrals exist and
the fraction can be defined as a continuous function on (0;+∞).

The goal is to find specific conditions on the functions f and ϕ under
which each one of these three weighted area integral means is log-convex on
(0;+∞). This goal is partially achieved in Theorems 12, 13, 14, 15 where some
sufficient conditions are presented. Our theorems show that in the case when f

belongs to the Hardy space Hp, 2 ≤ p < +∞, these three weighted area integral
means are similar to the classical integral means

Mp
p (f ; y) =

∫ +∞

−∞
|f(x+ iy)|pdx, y ∈ (0;+∞)

in terms of its monotonic growth and convexity behavior. Moreover, there is
a specific weight ϕ and a specific holomorphic function f such that f does not
belong to any Hardy space and nevertheless such a similarity still exists.

In addition, note that Theorems 8 and 12 can be stated and proved with
any positive number as the lower limit of the integrals instead of 1. Therefore,
in this paper, the weighted area integral mean M (1)

p,ϕ represents without loss of
generality the more general notion of weighted area integral means when the
integrals involved in the definition of M (1)

p,ϕ have the lower limit 1 replaced by any
positive number.

Some of the results in this paper were presented on the Second Interna-
tional Conference “Mathematics Days in Sofia”, July 10–14, 2017, Sofia, Bulgaria.

During the period 2011–2016, there was a series of papers by Ch. Wang,
J. Xiao and K. Zhu on weighted area integral means. In [8] volume integral means
of holomorphic in the unit ball of Cn functions were studied. Among various
results they stated a conjecture about convexity of logMp,α(f, r) in log r. In [7]
authors studied monotonic growth and logarithmic convexity of integral means
which are important from a geometric point of view. In [5], [6], [8] authors proved
theorems about convexity of log of a weighted area integral mean in log r in the
case of holomorphic functions in the unit disk of C. They considered the weight
function ϕ with ϕ′(|z|2) = (1−|z|2)α. In [2], [3], [4] authors studied the case when

f is an entire function on C and the weight function ϕ with ϕ′(|z|2) = e−α|z|2 .

Note that the case of holomorphic functions on the upper half plane re-
mainded unexplored.
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Thus, the present paper contains theorems about weighted area integral
means in a new case. We apply the method demonstrated in [5] and modify it
with some details that are relevant to our goals.

A great deal of our computations are done and checked with a freeware
open-source computer algebra system Maxima (wxMaxima) which is published
at http://maxima.sf.net.

2. Definitions.

Definition 1. Let I, I ⊂ (−∞; +∞), be a non-empty open interval, and
Dn(I) stand for the class of all real valued functions such that have a finite n-th
derivative everywhere in I. If the functions q : I → (0;+∞), ϕ : I → (−∞; +∞)
and M : I → (0;+∞) are such that q ∈ D2(I), ϕ ∈ D3(I), M ∈ D2(I) then the
functions A, B0, C0, B, C, E1, E2, F1 and F2 are defined as follows

A = (qϕ′)′ϕ− qϕ′2, B0 = (qϕ′)′ϕ2, C0 = qϕ2ϕ′2,

B = (qϕ′M)′ϕ2, C = qϕ2ϕ′2M2, E1 = A2ϕ+ E2,

E2 = Aqϕϕ′2 −B′
0qϕϕ

′ + (qϕ′)′ϕq(ϕ2ϕ′)′,

F1 =
B −

√
B2 − 4AC

2A
, F2 =

B +
√
B2 − 4AC

2A
,

where ′ denotes differentiation and F1, F2 are defined on the subset of I defined
by the conditions A 6= 0, B2 − 4AC ≥ 0.

Note that if A 6= 0, B2 − 4AC ≥ 0 then the functions F1, F2 are well
defined real valued functions such that AF 2

i −BFi + C = 0, i = 1, 2.

Example 2. The following examples are used in the main theorems

(1) If I = (0;+∞), q(x) = 1, ϕ(x) =

∫ x

1
t−adt, where x ∈ I and the constant

a > 0 then

A(x) = −x−a−1(ϕ(x) + 1), E1(x) = ax−2a−2ϕ2(x).

(2) If I = (0;+∞), q(x) = 1, ϕ(x) =

∫ x

1
e−tdt, where x ∈ I then

A(x) = −e−x−1, E1(x) = e−2x−1ϕ2(x).
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(3) If I = (0;+∞), q(x) = 1, ϕ(x) =

∫ x

0
t−adt, where x ∈ I and the constant

a < 1 then
A(x) = (a− 1)−1x−2a, E1(x) = 0.

(4) If I = (0;+∞), q(x) = 1, ϕ(x) =

∫ x

0
e−tdt, where x ∈ I then

A(x) = −e−x, E1(x) = e−2xϕ2(x).

(5) If I = (0;+∞), q(x) = 1, ϕ(x) = −
∫ +∞

x
t−adt, where x ∈ I and the constant

a > 1 then
A(x) = (a− 1)−1x−2a, E1(x) = 0.

(6) If I = (0;+∞), q(x) = 1, ϕ(x) = −
∫ +∞

x
e−tdt, where x ∈ I then

A(x) = 0, E1(x) = 0.

(7) If I = (0;+∞), q(x) = 1, ϕ(x) = −
∫ +∞

x
tae−tdt, where x ∈ I and the

constant a < 0 then
A(x) > 0, E1(x) > 0.

The computations which are needed in (1)–(7) are simple and straight-forward
and because of this they are omitted.

Auxiliary example: I = (0;+∞), q(x) = 1, ϕ(x) = −
∫ +∞

x
et−etdt, where

x ∈ I,
A = −ex−2ex < 0, E2 = 0, E1 = A2ϕ+ E2 < 0.

3. Auxiliary results.

Lemma 3. Let I, I ⊂ (−∞; +∞), be a non-empty open interval. If
the functions q : I → (0;+∞), ϕ : I → (−∞; +∞) are such that q ∈ D2(I),
ϕ ∈ D3(I) and ϕ′(x) 6=0 for all x∈I, then the following identities hold on I

E2 = A2ϕ− (AB0 −Aq(ϕ2ϕ′)′ +A′qϕ2ϕ′),(1)

E1 = −q2ϕ2ϕ′3

(

(qϕ′)′ϕ

qϕ′2

)′

.(2)
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Remark 4. Note that it follows by this lemma and the definition of E2

that

(3)

∣

∣

∣

∣

A2ϕ+ (−E2) = AB0 −Aq(ϕ2ϕ′)′ +A′qϕ2ϕ′,

ϕ(−E2) = (−1)(AC0 −B′
0qϕ

2ϕ′ +B0q(ϕ
2ϕ′)′).

P r o o f o f L emma 3. Let the functions q and ϕ meet the conditions
from the lemma. Identity (1) follows from the computation1

(

A2ϕ−
(

AB0 −Aq(ϕ2ϕ′)′ +A′qϕ2ϕ′
)

− E2

)

ϕ

= A2ϕ2 −
(

AB0 −Aq(ϕ2ϕ′)′ +A′qϕ2ϕ′
)

ϕ

−
(

AC0 −B′
0qϕ

2ϕ′ +B0q(ϕ
2ϕ′)′

)

= A(B0ϕ− C0)−AB0ϕ+Aqϕ(ϕ2ϕ′)′ −A′qϕ3ϕ′

−AC0 +B′
0qϕ

2ϕ′ −B0q(ϕ
2ϕ′)′

= −2AC0 + q(ϕ2ϕ′)′ (Aϕ−B0)− qϕϕ′
(

A′ϕ2 −B′
0ϕ

)

= −2AC0 − q(ϕ2ϕ′)′qϕϕ′2 − qϕϕ′
(

−2Aϕϕ′ +B0ϕ
′ − C ′

0

)

= qϕϕ′
(

−qϕ′(ϕ2ϕ′)′ − (B0ϕ
′ − C ′

0)
)

= 0.

In order to prove identity (2) note that by identity (1) it follows that
E1 = 2A2ϕ−AB0 +Aq(ϕ2ϕ′)′ −A′qϕ2ϕ′. So,

E1 = A(2Aϕ −B0 + q(ϕ2ϕ′)′)−A′qϕ2ϕ′

= A
(

2((qϕ′)′ϕ− qϕ′2)ϕ− (qϕ′)′ϕ2 + q(2ϕϕ′2 + ϕ2ϕ′′)
)

−A′qϕ2ϕ′

= A
(

(qϕ′)′ϕ2 + qϕ2ϕ′′
)

−A′qϕ2ϕ′ = A
(

(qϕ′)′ϕ′ + qϕ′ϕ′′
) ϕ2

ϕ′
−A′qϕ2ϕ′

= −ϕ2

ϕ′
(A′qϕ′2 −A(qϕ′2)′) = −ϕ2

ϕ′
(qϕ′2)2

(

A

qϕ′2

)′

= −q2ϕ2ϕ′3

(

A

qϕ′2

)′

= −q2ϕ2ϕ′3

(

(qϕ′)′ϕ− qϕ′2

qϕ′2

)′

= −q2ϕ2ϕ′3

(

ϕ(qϕ′)′

qϕ′2

)′

. ✷

Lemma 5. Let I, I ⊂ (−∞; +∞), be a non-empty open interval. Assume
the functions q : I → (0;+∞), ϕ : I → (−∞; +∞) and M : I → (0;+∞) are

1
A

′
ϕ

2
−B

′
0ϕ+ C

′
0 = (−2Aϕ+B0)ϕ

′ follows from Aϕ
2
−B0ϕ+C0 = 0 on I .
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such that q ∈ D2(I), ϕ ∈ D3(I), M ∈ D2(I). Then, the following identities hold
on I

B′qϕ2ϕ′M = B(B −B0M) +B′
0qϕ

2ϕ′M2(4)

+ (ϕ2ϕ′)′qM(B −B0M) + Cϕ2

(

q
M ′

M

)′

,

C ′qϕ2ϕ′M = Cq(ϕ2ϕ′)′ M + 2BC −B0CM.(5)

P r o o f. The proof of identity (4) is as follows

B′qϕ2ϕ′M =

(

M

(

B0 + qϕ2ϕ′ M
′

M

))′

qϕ2ϕ′M

= M ′(B0 + qϕ2ϕ′M
′

M
)qϕ2ϕ′M +M

(

B′
0 +

(

ϕ2ϕ′ q
M ′

M

)′)

qϕ2ϕ′M

= M ′Bqϕ2ϕ′ +B′
0qϕ

2ϕ′M2

+ (ϕ2ϕ′)′ q
M ′

M
qϕ2ϕ′M2 + ϕ2ϕ′

(

q
M ′

M

)′

qϕ2ϕ′M2

= Bqϕ2ϕ′M ′ +B′
0qϕ

2ϕ′M2

+ (ϕ2ϕ′)′ qϕ2ϕ′qMM ′ + qϕ2ϕ′ϕ2ϕ′M2

(

q
M ′

M

)′

= B(B −B0M) +B′
0qϕ

2ϕ′M2

+ (ϕ2ϕ′)′qM(B −B0M) + Cϕ2

(

q
M ′

M

)′

.

The proof of identity (5) is as follows

C ′qϕ2ϕ′M = (qϕ′ ϕ′ϕ2 M2)′qϕ2ϕ′M

=
(

(qϕ′)′ ϕ2ϕ′ M2 + qϕ′ (ϕ2ϕ′)′ M2 + qϕ′ ϕ′ϕ2 2MM ′
)

qϕ2ϕ′M

= B0CM + q(ϕ2ϕ′)′ CM + 2qϕ2ϕ′2M2 qϕ2ϕ′M ′

= B0CM + q(ϕ2ϕ′)′ CM + 2C(B −B0M)

= Cq(ϕ2ϕ′)′ M + 2BC −B0CM. ✷
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Lemma 6. Let I, I ⊂ (−∞; +∞), be a non-empty open interval. Assume
the functions q : I → (0;+∞), ϕ : I → (−∞; +∞), M : I → (0;+∞) and
h : I → (−∞; +∞) meet the conditions

(i) q ∈ D2(I), ϕ ∈ D3(I), M ∈ D2(I),

(ii) there exists a non empty open subinterval J of I, J ⊆ I, such that A(x) 6= 0
for all x ∈ J and B2 − 4AC ≥ 0 on J ,

(iii) h′ = ϕ′M on I.

Then, the following identities hold on J

(h− F1)
′A(F2 − F1)qϕ

2ϕ′M(6)

=F1

(

(F1 − ϕM)(A2(F1 − ϕM) + E1M) + Cϕ2

(

q
M ′

M

)′)

,

(h− F2)
′A(F1 − F2)qϕ

2ϕ′M(7)

=F2

(

(F2 − ϕM)(A2(F2 − ϕM) + E1M) + Cϕ2

(

q
M ′

M

)′)

.

P r o o f. Each of these identities is a result of direct simple and rather
long computations.

The proof of identity (6) is as follows.

(h− F1)
′A(F2 − F1)qϕ

2ϕ′M = (h′ − F ′
1)A(F2 − F1)qϕ

2ϕ′M

= ϕ′MA(F2 − F1)qϕ
2ϕ′M − F ′

1A(F2 − F1)qϕ
2ϕ′M.(8)

By the definition of the functions F1, F2 it follows that

A(F2 − F1) =
√

B2 − 4AC = −2AF1 +B,

AF 2
1 −BF1 + C = 0 =⇒ A′F 2

1 −B′F1 +C ′ = F ′
1(−2AF1 +B)

and hence F ′
1A(F2 − F1) = A′F 2

1 −B′F1 + C ′.
So, from (8) it follows that

(h− F1)
′A(F2 − F1)qϕ

2ϕ′M = A(F2 − F1)C

− (A′F 2
1 −B′F1 +C ′)qϕ2ϕ′M

= A(F2 − F1)(−AF 2
1 +BF1)−A′F 2

1 qϕ
2ϕ′M

+B′F1qϕ
2ϕ′M − C ′qϕ2ϕ′M.
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Now, identities (4) and (5) from Lemma 5 allow us to obtain

(h− F1)
′A(F2 − F1)qϕ

2ϕ′M

= −A2F 2
1 F2 +ABF1F2 +A2F 3

1 −ABF 2
1 −A′F 2

1 qϕ
2ϕ′M

+BF1(B −B0M) +B′
0qϕ

2ϕ′M2F1 + (ϕ2ϕ′)′qM(B −B0M)F1

+ Cϕ2

(

q
M ′

M

)′

F1 − Cq(ϕ2ϕ′)′M − 2BC +B0CM

= −ACF1 +BC +A2F 3
1 −ABF 2

1 −A′F 2
1 qϕ

2ϕ′M

+ (AF 2
1 + C)(B −B0M) +B′

0qϕ
2ϕ′M2F1 + (ϕ2ϕ′)′qMBF1

− (ϕ2ϕ′)′qB0M
2F1 + Cϕ2

(

q
M ′

M

)′

F1 − (−AF 2
1 +BF1)q(ϕ

2ϕ′)′ M

− 2BC +B0CM

where all the underlined parts cancel out. Thus,

(h− F1)
′A(F2 − F1)qϕ

2ϕ′M

= −ACF1 +A2F 3
1 −A′F 2

1 qϕ
2ϕ′M +B′

0qϕ
2ϕ′M2F1

− (ϕ2ϕ′)′qB0M
2F1 + Cϕ2

(

q
M ′

M

)′

F1 +AF 2
1 q(ϕ

2ϕ′)′ M

= F1

(

A2F 2
1 − (AB0 −Aq(ϕ2ϕ′)′ +A′qϕ2ϕ′)F1M

−(AC0 −B′
0qϕ

2ϕ′ + (ϕ2ϕ′)′qB0)M
2 + Cϕ2

(

q
M ′

M

)′)

.

Finally, by identities (3) we obtain

(h− F1)
′A(F2 − F1)qϕ

2ϕ′M

= F1

(

(F1 − ϕM)(A2F1 + E2M) + Cϕ2

(

q
M ′

M

)′)

= F1

(

(F1 − ϕM)(A2(F1 − ϕM) + E1M) + Cϕ2

(

q
M ′

M

)′)

.
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The computations that prove identity (7) are omitted as they are similar
to those that prove identity (6). ✷

Lemma 7. Let I, I ⊂ (−∞; +∞), be a non-empty open interval. Assume
the functions q : I → (0;+∞), ϕ : I → (−∞; +∞), M : I → (0;+∞) and
h : I → (−∞; +∞) meet the conditions

(i) q ∈ D2(I), ϕ ∈ D3(I), M ∈ D2(I),

(ii) there exists a non empty open subinterval J of I, J ⊆ I, such that A = 0
and ϕ′ > 0 on J and B(x) 6= 0 for all x ∈ J ,

(iii) h′ = ϕ′M on I.

Then, the following identity holds on J

(

h− C

B

)′

B2qϕ′M = C2

(

q
M ′

M

)′

.

P r o o f. Claim.

(

(qϕ′)′

ϕ′

)′

= 0 on J and ϕ(x) 6= 0 for all x ∈ J .

Indeed, note that A = 0 implies (qϕ′)′ϕ = qϕ′2 > 0. So, ϕ(x) 6= 0 for all

x ∈ J . Therefore, from A = 0 follows that
(qϕ′)′

ϕ′
=

qϕ′

ϕ
and

(

(qϕ′)′

ϕ′

)′

=

(

qϕ′

ϕ

)′

=
A

ϕ2
= 0.

Thus, the claim is proved.
Now, the lemma follows from the following computations

(

h− C

B

)′

Bqϕ2ϕ′M =

(

h′ − C ′B − CB′

B2

)

Bqϕ2ϕ′M

= ϕ′MBqϕ2ϕ′M +B′C

B
qϕ2ϕ′M −C ′qϕ2ϕ′M.

B′ and C ′ are substituted accordingly to identities (4) and (5) from Lemma 5

(

h− C

B

)′

Bqϕ2ϕ′M

= BC +
C

B

(

B(B −B0M) +B′
0qϕ

2ϕ′M2 + (ϕ2ϕ′)′qM(B −B0M)
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+Cϕ2

(

q
M ′

M

)′)

− (Cq(ϕ2ϕ′)′ M + 2BC −B0CM)

where all the underlined parts cancel out. Thus,

(

h− C

B

)′

Bqϕ2ϕ′M

=
C

B

(

B′
0qϕ

2ϕ′M2 − (ϕ2ϕ′)′qM2B0 + Cϕ2

(

q
M ′

M

)′)

=
C

B

(

qM2(ϕ2ϕ′)2
(

B0

ϕ2ϕ′

)′

+ Cϕ2

(

q
M ′

M

)′)

=
C

B

(

qM2(ϕ2ϕ′)2
(

(qϕ′)′

ϕ′

)′

+ Cϕ2

(

q
M ′

M

)′)

.

Finally, accordingly to the claim, it follows that

(

h− C

B

)′

Bqϕ2ϕ′M =
C2

B
ϕ2

(

q
M ′

M

)′

. ✷

4. Main theorems. In this section Theorems 8, 9, 10 are stated and
proved, and these theorems represent the main theorems of the paper. These
theorems are about the case when q(x) = 1 for all x ∈ (0;+∞).

Note that Definition 1 and the results from the previous section, all they
are used in the proofs of the main theorems in the specific case when q(x) = 1
for all x ∈ (0;+∞). In particular,

A = ϕ′′ϕ− ϕ′2, B = (ϕ′M)′ϕ2, C = ϕ2ϕ′2M2,

and, by (2), E1 = −ϕ2ϕ′3

(

ϕ′′ϕ

ϕ′2

)′

= −ϕ2(ϕ′2ϕ′′ + ϕϕ′ϕ′′′ − 2ϕϕ′′2).

The following Theorem can be stated and proved with any positive num-
ber as the lower limit of the integrals instead of 1.

Theorem 8. Assume the functions ϕ : (0;+∞) → (−∞; +∞), M :
(0;+∞) → (0;+∞) and h : (0;+∞) → (−∞; +∞) are such that ϕ ∈ D3(0;+∞),
M ∈ D2(0;+∞) and meet the conditions
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(i) M ′ < 0, and (logM)′′ ≥ 0 on (0;+∞),

(ii) ϕ′ > 0 on (0;+∞), and ϕ(x) =

∫ x

1
ϕ′(t)dt for all x ∈ (0;+∞),

(iii) ϕ′2ϕ′′ + ϕϕ′ϕ′′′ − 2ϕϕ′′2 ≤ 0 on (0;+∞),

(iv) h(x) =

∫ x

1
ϕ′(t)M(t)dt for all x ∈ (0;+∞).

Then,
h

ϕ
and log

h

ϕ
both belong to D2(0;+∞) and moreover,

(

h

ϕ

)′

< 0,

(

log
h

ϕ

)′′

> 0 on (0;+∞).

P r o o f. Claim 1.
h

ϕ
∈ D2(0;+∞).

Indeed, accordingly to the assumptions, it is clear that the functions h

and ϕ belong to D3(0;+∞). Moreover, ϕ(x) = 0 ⇐⇒ x = 1. So, it is sufficient

to prove that
h

ϕ
has asymptotic expansion of the form

h(x)

ϕ(x)
= α0 + α1(x− 1) + α2(x− 1)2 + o(x− 1)2,

as x → 1, where α0, α1, α2 are real numbers that do not depend on x.
The expansion is obtained as follows. Note that h(1) = ϕ(1) = 0 and

h(x) = h′(1)(x − 1) +
1

2
h′′(1)(x − 1)2 +

1

6
h′′′(1)(x − 1)3 + o(x− 1)3,(9)

ϕ(x) = ϕ′(1)(x− 1) +
1

2
ϕ′′(1)(x − 1)2 +

1

6
ϕ′′′(1)(x− 1)3 + o(x− 1)3,(10)

as x → 1 with ϕ′(1) 6= 0 (by the assumptions of the theorem). Therefore,

h(x)

ϕ(x)
= β0 + β1(x− 1) + β2(x− 1)2 + o(x− 1)2,

where β0 =
h′(1)

ϕ′(1)
, β1 =

1

2
(h′′(1) − ϕ′′(1)β0)

1

ϕ′(1)
, and

β2 =
1

6
(h′′′(1)− 3β1ϕ

′′(1) − β0ϕ
′′′(1))

1

ϕ′(1)
.
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So,

h(x)

ϕ(x)
= M(1) +

1

2
M ′(1)(x − 1) +

1

6
(M ′′(1) +

ϕ′′(1)

2ϕ′(1)
M ′(1))(x − 1)2 + o(x− 1)2,

as x → 1 and the claim is proved.

Let us define the value of
h

ϕ
at x = 1 to be equal to

lim
x→1

h(x)

ϕ(x)
= M(1)

and note that M(1) > 0. Moreover,

(

h(x)

ϕ(x)

)′∣
∣

∣

∣

x=1

=
1

2
M ′(1),

(

h(x)

ϕ(x)

)′′∣
∣

∣

∣

x=1

=
1

3
(M ′′(1) +

ϕ′′(1)

2ϕ′(1)
M ′(1)),

where |x=1 stands for ‘the value at x = 1’.

Now, it follows from the claim and from
h

ϕ
> 0 on (0;+∞) that log

h

ϕ
is

well defined on (0;+∞) and belongs to D2(0;+∞).
Here, it is verified that the functions h, ϕ and M satisfy an important

simple inequality.

Claim 2. h− ϕM > 0 on (0; 1) ∪ (1;+∞).
This inequality holds because of

h(x)− ϕ(x)M(x) = (−1)

∫ x

1
ϕ(t)M ′(t)dt > 0

for all x ∈ (0; 1) ∪ (1;+∞).
Hence, the derivative

(

h

ϕ

)′

= (−1)
ϕ′

ϕ2
(h− ϕM) < 0, on (0;+∞).

The derivative

(

log
h

ϕ

)′′

is calculated as follows.

Accordingly to the assumptions of the theorem, E1 ≥ 0 on (0;+∞).
Furthermore, by the definition of C the inequality C > 0 holds on (0; 1)∪(1;+∞),
and

A(1) = ϕ′′(1)ϕ(1) − ϕ′2(1) = −ϕ′2(1) < 0,



Log-convexity of WAIM of Hp functions 101

(

A

ϕ′2

)′

=
ϕϕ′ϕ′′′ + ϕ′2ϕ′′ − 2ϕϕ′′2

ϕ′3
≤ 0 on (0;+∞)

and lim
x→1

B(x) = B(1) = 0, lim
x→1

C(x) = C(1) = 0.

So,
A

ϕ′2
=

ϕ′′ϕ

ϕ′2
− 1 decreases on (0;+∞); therefore,

• A

ϕ′2

∣

∣

∣

∣

x=1

< 0 =⇒ two possible cases exist: A < 0 on (0;+∞) or there

exists a number xA ∈ (0; 1) such that A > 0 on (0;xA), A(xA) = 0 and
A < 0 on (xA; +∞) (these cases are discussed bellow as Case 1 and Case 2);

• ϕ′′ϕ

ϕ′2
decreases on (0;+∞), its value

ϕ′′ϕ

ϕ′2

∣

∣

∣

∣

x=1

= 0 and hence ϕ′′ < 0,

B = (ϕ′′M + ϕ′M ′)ϕ2 < 0 on (0; 1) ∪ (1;+∞).

Now, by ϕ′′ < 0 and

B2 − 4AC = ϕ2(ϕ2ϕ′2M ′2 + 2ϕ2ϕ′ϕ′′MM ′ + (ϕ′′ϕ− 2ϕ′2)2M2)

it follows that B2 − 4AC ≥ 0 on (0; 1) ∪ (1;+∞).
Therefore, the functions F1, F2 are real valued well defined functions on

the subset of (0; 1) ∪ (1;+∞) where A does not vanish and

lim
x→1

F1(x) = lim
x→1

F2(x) = 0,

by the definition F1 and F2.

Case 1. Let us suppose that the function ϕ is such that

A < 0 on (0;+∞).

In this case, F2 < 0 <
B

2A
< F1 on (0; 1) ∪ (1;+∞). Moreover,

(AF 2 −BF + C)
∣

∣

F=ϕM
= −ϕ3ϕ′MM ′

{

< 0, x ∈ (0; 1),

> 0, x ∈ (1;+∞).

Therefore,

{

ϕM < F2 < 0 < F1, on (0; 1),

F2 < 0 < ϕM < F1, on (1;+∞).
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In order to prove Ah2 − Bh + C < 0 on (0; 1) ∪ (1;+∞) it is sufficient
to prove that values of h are outside the interval of roots of the equation AF 2 −
BF + C = 0.

First, by identity (7) from Lemma 6 with q = 1, it follows that

(h− F2)
′A(F1 − F2)ϕ

2ϕ′M

= F2

(

(F2 − ϕM)(A2(F2 − ϕM) + E1M) + Cϕ2

(

M ′

M

)′)

< 0,

and hence (h− F2)
′ > 0 on (0; 1). By the definition of F2, it follows that the left

hand side limit
lim

x→1−
(h(x) − F2(x)) = 0.

Thus, h− F2 < 0, and hence h < F2 < F1 on (0; 1). Therefore,

Ah2 −Bh+ C < 0 on (0; 1).

Second, by the identity (6) from Lemma 6 with q = 1, it follows that

(h− F1)
′A(F2 − F1)ϕ

2ϕ′M

= F1

(

(F1 − ϕM)(A2(F1 − ϕM) + E1M) + Cϕ2

(

M ′

M

)′)

> 0;

hence, (h−F1)
′ > 0 on (1;+∞). By the definition of F1, it follows that the right

hand side limit
lim

x→1+
(h(x) − F1(x)) = 0.

Thus, h− F1 > 0, and hence, F2 < F1 < h on (1;+∞). Therefore,

Ah2 −Bh+ C < 0 on (1;+∞).

Hence, in Case 1, Ah2 −Bh+ C < 0 on (0; 1) ∪ (1;+∞).

Case 2. Let us suppose that the function ϕ is such that there exists
a number xA ∈ (0; 1) such that A > 0 on (0;xA), A(xA) = 0 and A < 0 on
(xA; +∞).

Note, if x ∈ (1;+∞) then the proof of Ah2 − Bh + C < 0 on (1;+∞) is
identical with the one showed in Second part of Case 1, so it is omitted here.

Thus, it is sufficient to prove Ah2 −Bh+ C < 0 on (0; 1).
In this case,

(AF 2 −BF + C)
∣

∣

F=ϕM
= −ϕ3ϕ′MM ′ < 0 on (0; 1).
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Therefore,
{

F1 < ϕM < F2 < 0, on (0;xA),

ϕM < F2 < 0 < F1, on (xA; 1).

Note, ϕM < h from Claim 2, and h < 0 on (0; 1).
By identity (7) from Lemma 6 with q = 1, it follows that

(h− F2)
′A(F1 − F2)ϕ

2ϕ′M

= F2

(

(F2 − ϕM)(A2(F2 − ϕM) + E1M) + Cϕ2

(

M ′

M

)′)

< 0,

and hence, (h − F2)
′ > 0 on (0;xA) ∪ (xA; 1). So, h − F2 increases on (0;xA) ∪

(xA; 1).
Moreover, h−F2 increases on (0; 1) because of continuity of h and conti-

nuity of

F2 =
2C

B −
√
B2 − 4AC

at xA, F2(xA) =
C(xA)

B(xA)
.

Therefore, h− F2 < 0 on (0; 1), as lim
x→1−

(h− F2) = 0 and hence,

{

F1 < ϕM < h < F2 < 0, on (0;xA),

ϕM < h < F2 < 0 < F1, on (xA; 1).

Hence Ah2 −Bh+ C
∣

∣

xA

= −B

(

h− C

B

)∣

∣

∣

∣

xA

= −B(h− F2)|xA
< 0, and

Ah2 −Bh+ C < 0 on (0; 1).

Hence, in Case 2, Ah2 −Bh+ C < 0 on (0; 1) ∪ (1;+∞).
Therefore

(11) Ah2 −Bh+ C < 0 on (0; 1) ∪ (1;+∞)

in both cases, Case 1 and Case 2.

Claim. There exists the limit

lim
x→1

(−1)(Ah2 −Bh+ C)

ϕ2h2
> 0

and the second derivative
(

log
h

ϕ

)′′

=
−1

ϕ2h2
(Ah2 −Bh+ C) on (0;+∞).
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In particular,

(

log
h

ϕ

)′′

is a well defined continuous function on (0;+∞).

The proof about the limit of this Claim is sketched out only. The limit
is computed by using expansions (9), (10),

M(x) = M(1) +M ′(1)(x − 1) +
1

2
M ′′(1)(x − 1)2 + o(x− 1)2, as x → 1,

and the values of the derivatives of h are substituted as follows

h′(1) = ϕ′(1)M(1), h′′(1) = ϕ′′(1)M(1) + ϕ′(1)M ′(1),

h′′′(1) = ϕ′′′(1)M(1) + 2ϕ′′(1)M ′(1) + ϕ′(1)M ′′(1).

The elements of the numerator, Ah2, Bh and C, are calculated with a
precision of o(x− 1)4. So, the numerator

(−1)(A(x)h(x)2 −B(x)h(x) + C(x))

=
ϕ′4(1)M2(1)

6
(
M ′(1)

M(1)

ϕ′′(1)

ϕ′(1)
+

4M(1)M ′′(1)− 3M ′2(1)

2M2(1)
)(x− 1)4 + o(x− 1)4,

as x → 1.
The denominator, ϕ2h2, is calculated with a precision of o(x − 1)4. So,

the denominator

ϕ2h2 = M2(1)ϕ′4(1)(x− 1)4 + o(x− 1)4,

as x → 1.
Thus, there exists the limit

lim
x→1

(−1)(Ah2 −Bh+ C)

ϕ2h2
=

1

6

(

M ′(1)

M(1)

ϕ′′(1)

ϕ′(1)
+

4M(1)M ′′(1)− 3M ′2(1)

2M2(1)

)

.

Note that the limit is a positive number because of

M ′(1)ϕ′′(1) ≥ 0,

4M(1)M ′′(1)− 3M ′2(1) = M(1)M ′′(1) + 3(M(1)M ′′(1) −M ′2(1)) > 0.

Now, we calculate the second derivative

(

log
h

ϕ

)′′

=

((

log
h

ϕ

)′)′

=

(

h′ϕ

hϕ′

)′

=

(

ϕM

h

)′

=
(−1)(Ah2 −Bh+ C)

ϕ2h2
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on (0; 1) ∪ (1;+∞) and it is continuous on (0; 1) and (1;+∞). The existence of
the finite limit of the second derivative as x → 1 is already proved in this Claim.

This result and the existence of the finite derivative

(

log
h

ϕ

)′′

at x = 1 (note

that log
h

ϕ
∈ D2(0;+∞)), they imply that the second derivative

(

log
h

ϕ

)′′

is a

continuous function at x = 1. Therefore, the second derivative

(

log
h

ϕ

)′′

is a

continuous function on (0;+∞).
So, the Claim is proved.
By this Claim and (11) it follows that the second derivative

(

log
h

ϕ

)′′

> 0 on (0;+∞).

Thus, the theorem is proved. ✷

Theorem 9. Assume the functions ϕ : [0;+∞) → [0;+∞), M : [0;+∞) →
(0;+∞) and h : [0;+∞) → [0;+∞) are such that ϕ ∈ D3(0;+∞), M ∈ D2(0;+∞)
and meet the conditions

(i) the right hand side limit lim
x→0+

ϕ′′(x)ϕ(x)

ϕ′2(x)
< 1,

(ii) the functions M and M ′ are continuous from the right at x = 0 and M(0) 6=
+∞ and M ′(0) 6= −∞,

(iii) M ′ < 0, (logM)′′ ≥ 0 on (0;+∞),

(iv) ϕ′ > 0 on (0;+∞) and ϕ(x) =

∫ x

0
ϕ′(t)dt for all x ∈ (0;+∞),

(v) ϕ′2ϕ′′ + ϕϕ′ϕ′′′ − 2ϕϕ′′2 ≤ 0 on (0;+∞),

(vi) h(x) =

∫ x

0
ϕ′(t)M(t)dt for all x ∈ (0;+∞).

Then,
h

ϕ
and log

h

ϕ
both belong to D2(0;+∞) and moreover,

(

h

ϕ

)′

< 0,

(

log
h

ϕ

)′′

> 0 on (0;+∞).
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P r o o f. By the assumptions, it is clear that
h

ϕ
and log

h

ϕ
both belong to

D2(0;+∞). Furthermore,

h(x) − ϕ(x)M(x) =

∫ x

0
(−1)ϕ(t)M ′(t)dt > 0 for all x ∈ (0;+∞).

Hence,
(

h

ϕ

)′

=
−ϕ′

ϕ2
(h− ϕM) < 0 on (0;+∞).

Accordingly to the assumptions of the theorem, E1 ≥ 0 on (0;+∞).
Furthermore,

(

A

ϕ′2

)′

=
ϕϕ′ϕ′′′ + ϕ′2ϕ′′ − 2ϕϕ′′2

ϕ′3
≤ 0 on (0;+∞).

So,
A

ϕ′2
=

ϕ′′ϕ

ϕ′2
− 1 decreases on (0;+∞) and

A

ϕ′2
≤ lim

x→0+

A

ϕ′2
< 0.

The inequalities A < 0, C > 0 on (0;+∞) imply that F1, F2 are well
defined real valued functions on (0;+∞) and together with the inequality

(AF 2 −BF + C)
∣

∣

F=ϕM
= −ϕ3ϕ′MM ′ > 0

it follows that

F2 < 0 < ϕM < F1 on (0;+∞).

We apply the identity (6) from Lemma 6 with q = 1 to obtain

(h− F1)
′A(F2 − F1)ϕ

2ϕ′M

= F1

(

(F1 − ϕM)(A2(F1 − ϕM) + E1M) + Cϕ2

(

M ′

M

)′)

> 0.

So, (h− F1)
′ > 0 on (0;+∞).

Moreover, (h− F1)|0+ = 0 because of h(0+) = 0 and

lim
x→0+

F1(x) = lim
x→0+

B −
√
B2 − 4AC

2A

= lim
x→0+

(ϕ′′M + ϕ′M ′)ϕ2 −
√

(ϕ′′M + ϕ′M ′)2ϕ4 − 4Aϕ2ϕ′2M2

2A
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= lim
x→0+

ϕ

(

( A
ϕ′2 + 1)M + ϕ

ϕ′M
′
)

−
√

(

( A
ϕ′2 + 1)M + ϕ

ϕ′M ′
)2

− 4 A
ϕ′2M2

2 A
ϕ′2

= 0.

Hence, h− F1 > 0 on (0;+∞). Therefore, F2 < 0 < ϕM < F1 < h and

Ah2 −Bh+ C < 0 on (0;+∞).

Thus, the second derivative

(

log
h

ϕ

)′′

=

((

log
h

ϕ

)′)′

=

(

h′ϕ

hϕ′

)′

=

(

ϕM

h

)′

=
(−1)(Ah2 −Bh+ C)

ϕ2h2
> 0

on (0;+∞).
The proof of the theorem is completed. ✷

Theorem 10. Assume the functions ϕ : (0;+∞) → (−∞; 0), M :
(0;+∞) → (0;+∞) and h : (0;+∞) → (−∞; 0) are such that ϕ ∈ D3(0;+∞),
M ∈ D2(0;+∞) and meet the conditions

(i) M ′ < 0 and (logM)′′ ≥ 0 on (0;+∞),

(ii) ϕ′ > 0 on (0;+∞) and ϕ(x) = −
∫ +∞

x
ϕ′(t)dt, ∀x ∈ (0;+∞),

(iii) ϕ′2ϕ′′ + ϕϕ′ϕ′′′ − 2ϕϕ′′2 ≤ 0 on (0;+∞),

(iv) h(x) = −
∫ +∞

x
ϕ′(t)M(t)dt for all x ∈ (0;+∞).

Then,
h

ϕ
and log

h

ϕ
both belong to D2(0;+∞) and moreover,

(

h

ϕ

)′

< 0,

(

log
h

ϕ

)′′

> 0 on (0;+∞).

P r o o f. By the assumptions, it is clear that
h

ϕ
and log

h

ϕ
both belong to

D2(0;+∞).
Claim. h − ϕM > 0 on (0;+∞). Indeed, by the assumptions of the

theorem

• (h− ϕM)′ = −ϕM ′ < 0 on (0;+∞);
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• M decreases on (0;+∞) and M > 0. So, the limit lim
x→+∞

M(x) exists and

it is a non-negative number.

Therefore, h− ϕM decreases on (0;+∞) and

lim
x→+∞

(h(x)− ϕ(x)M(x)) = 0.

Hence, h− ϕM > 0 on (0;+∞).
It follows from this Claim that the derivative

(

h

ϕ

)′

=
−ϕ′

ϕ2
(h− ϕM) < 0 on (0;+∞).

Note that for every x ∈ (0;+∞)

(12) (AF 2 −BF + C)
∣

∣

F=ϕM
= −ϕ3ϕ′MM ′ < 0.

Accordingly to the assumptions of the theorem, E1 ≥ 0 on (0;+∞).
Furthermore,

(

A

ϕ′2

)′

=
ϕϕ′ϕ′′′ + ϕ′2ϕ′′ − 2ϕϕ′′2

ϕ′3
≤ 0

and
A

ϕ′2
decreases on (0;+∞).

Now, there are three cases to consider (and it is not possible to prove that
ϕ′′ < 0).

Case 1. A < 0 on (0;+∞). In this case B2 − 4AC > 0 and hence F1, F2

are well defined real valued functions such that

ϕM < F2 < 0 < F1.

Hence, 0 = lim
x→+∞

ϕ(x)M(x) ≤ lim
x→+∞

F2(x) ≤ 0 and

lim
x→+∞

(h(x) − F2(x)) = 0.

We apply the identity (7) from Lemma 6 with q = 1 to obtain

(h− F2)
′A(F1 − F2)ϕ

2ϕ′M

= F2

(

(F2 − ϕM)(A2(F2 − ϕM) + E1M) + Cϕ2

(

M ′

M

)′)

< 0.
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So, (h− F2)
′ > 0 on (0;+∞) and h− F2 increases on (0;+∞).

Therefore, h − F2 < 0 on (0;+∞) and by ϕM < h < F2 < 0 < F1 it
follows that

Ah2 −Bh+ C < 0 on (0;+∞).

Case 2. There exists xA ∈ (0;+∞) such that A > 0 on (0;xA), A(xA) = 0,
A < 0 on (xA; +∞).

In this case,

• if x ∈ (0;xA) then

(AF 2 −BF + C)
∣

∣

F=ϕM
= −ϕ3ϕ′MM ′ < 0,

C > 0 and hence F1, F2 are well defined real valued functions such that

F1 < ϕM < F2 < 0.

We apply the identity (7) from Lemma 6 with q = 1 to obtain

(h− F2)
′A(F1 − F2)ϕ

2ϕ′M

= F2

(

(F2 − ϕM)(A2(F2 − ϕM) + E1M) + Cϕ2

(

M ′

M

)′)

< 0.

So, (h− F2)
′ > 0 on (0;xA).

• if x ∈ (xA; +∞) then B2 − 4AC > 0 and hence F1, F2 are well defined real
valued functions such that

ϕM < F2 < 0 < F1.

Hence, 0 = lim
x→+∞

ϕ(x)M(x) ≤ lim
x→+∞

F2(x) ≤ 0 and

lim
x→+∞

(h(x)− F2(x)) = 0.

We apply the identity (7) from Lemma 6 with q = 1 to obtain

(h− F2)
′A(F1 − F2)ϕ

2ϕ′M

= F2

(

(F2 − ϕM)(A2(F2 − ϕM) + E1M) + Cϕ2

(

M ′

M

)′)

< 0.

So, (h− F2)
′ > 0 on (xA; +∞).
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Thus, h− F2 increases on (0;xA) and on (xA; +∞).
Moreover, in this case, ϕ′′(xA) < 0. Hence, the inequality B = (ϕ′′M +

ϕ′M ′)ϕ2 < 0 holds in a neighborhood of xA. So,

F2 =
2C

B −
√
B2 − 4AC

is continuous.
Hence, h− F2 increases on (0;+∞). Therefore, h− F2 < 0 on (0;+∞).
Now, we prove that Ah2 −Bh+ C < 0 on (0;+∞). Indeed,

• Ah2−Bh+C < 0 on (0;xA) because of F1 < ϕM < h < F2 < 0 and A > 0;

• Ah2 − Bh + C < 0 on (xA; +∞) because of ϕM < h < F2 < 0 < F1 and
A < 0.

Case 3. A > 0 on (0;+∞). In this case,

(AF 2 −BF + C)
∣

∣

F=ϕM
= −ϕ3ϕ′MM ′ < 0,

C > 0 and hence F1, F2 are well defined real valued functions such that

F1 < ϕM < F2 < 0.

Hence, 0 = lim
x→+∞

ϕ(x)M(x) ≤ lim
x→+∞

F2(x) ≤ 0 and

lim
x→+∞

(h(x) − F2(x)) = 0.

We apply the identity (7) from Lemma 6 with q = 1 to obtain

(h− F2)
′A(F1 − F2)ϕ

2ϕ′M

= F2

(

(F2 − ϕM)(A2(F2 − ϕM) + E1M) + Cϕ2

(

M ′

M

)′)

< 0.

So, (h − F2)
′ > 0 on (0;+∞). Hence, h − F2 increases on (0;+∞). Therefore,

h− F2 < 0 and F1 < ϕM < h < F2 < 0 on (0;+∞).
So,

Ah2 −Bh+ C < 0 on (0;+∞)

holds in Case 3 and moreover, it holds in all three cases.
The second derivative

(

log
h

ϕ

)′′

=

((

log
h

ϕ

)′)′

=

(

h′ϕ

hϕ′

)′

=

(

ϕM

h

)′

=
(−1)(Ah2 −Bh+ C)

ϕ2h2
> 0

on (0;+∞).
Thus the theorem is proved. ✷
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5. Applications. Here we start with a note about integral means of
holomorphic on the upper half-plane functions proved in a paper [1] by G. Hardy,
A. Ingham, G. Pólya in 1927. In Subsection 4.3 they proved that if the holomor-
phic function in a strip of the complex plane meets some conditions such as

growth at infinity O(ee
k|z|

) and convergence of the integrals on the boundaries of
the strip then in the case when 2 ≤ p < +∞ the integral mean

M(y) =

∫ +∞

−∞
|f(x+ iy)|pdx

has first derivative

M ′(y) = p

∫ +∞

−∞
|f(x+ iy)|p−2(uu′y + vv′y)dx

and second derivative

M ′′(y) = p2
∫ +∞

−∞
|f(x+ iy)|p−2(u′2y + v′2y )dx

where u is the real part of f and v is the imaginary part of f . Moreover, they
proved that

M ′2 ≤ M ′′M.

So, (logM)′′ ≥ 0. Note that, M ′′ ≥ 0.
In the present paper we consider such an integral mean of holomorphic

on the upper half-plane function under the conditions 2 ≤ p < +∞ and

sup
y>0

M(y) < +∞

i.e. we consider function f that belongs to the Hardy space Hp of holomorphic on
the upper half-plane functions. It is well known (see “Bounded analytic functions”
by J. Garnett) that such a function meets the growth condition |f(x + iy)| =
O(y−1/p) (both, as y → 0+ and y → +∞), the integral mean M is a non-
increasing function on (0;+∞), the right hand side limit at y = 0 is

M(0) = M(0+) = lim
y→0+

M(y) = sup
y>0

M(y) < +∞,

where M(0) is defined to be the Lp norm to the power of p of the boundary values
of f .

Now, note if f is not the zero function then M ′ < 0 on (0;+∞). Indeed,
if there is a y0 ∈ (0;+∞) such that M ′(y0) = 0 then
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• on the one hand, M ′ ≥ 0 on (y0; +∞) because of M ′′ ≥ 0,

• on the other hand, M ′ ≤ 0 on (0;+∞) as M is a non-increasing function.

Hence, M ′ = 0 on (y0; +∞). Therefore, M ′′ = 0 on (y0; +∞). So, |f ′|2 =
u′2y + v′2y = 0 and f = 0 because it is the only constant function that belongs to
the Hardy space Hp, 2 ≤ p < +∞.

Thus, we have proved the following lemma

Lemma 11. Let p be such that 2 ≤ p < +∞, f ∈ Hp (Hp is the Hardy
space of holomorphic functions on the upper half-plane). If f is not the zero
function then the integral mean

M(y) =

∫ +∞

−∞
|f(x+ iy)|pdx

is a bounded continuous function on [0;+∞) such that M ∈ D2(0;+∞) and

M > 0, M ′ < 0, M ′′ > 0, (logM)′′ ≥ 0 on (0;+∞).

From this point of our paper through the its end p is such that 2 ≤ p <

+∞ and Hp is the Hardy space of holomorphic functions on the upper half-plane,
f 6= 0, i.e. f is not the zero function and the integral mean

M(y) =

∫ +∞

−∞
|f(x+ iy)|pdx

is defined for y ∈ [0;+∞).
Note, Definition 1 from Section 2 and the results from Section 3, all they

are used in the proofs of the following theorems in the specific case when q(y) = 1
for all y ∈ (0;+∞). In particular,

A = ϕ′′ϕ− ϕ′2, B = (ϕ′M)′ϕ2, C = ϕ2ϕ′2M2,

and, by (2), E1 = −ϕ2ϕ′3

(

ϕ′′ϕ

ϕ′2

)′

= −ϕ2(ϕ′2ϕ′′ + ϕϕ′ϕ′′′ − 2ϕϕ′′2).

The following Theorem can be stated and proved with any positive num-
ber as the lower limit of the integrals instead of 1.

Theorem 12. Let 2 ≤ p < +∞, f ∈ Hp \ {0}. Assume the functions
ϕ : (0;+∞) → (−∞; +∞) and h : (0;+∞) → (−∞; +∞) meet the conditions

(i) ϕ ∈ D3(0;+∞), ϕ(y) =

∫ y

1
ϕ′(t)dt for all y ∈ (0;+∞),
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(ii) ϕ′ > 0 and ϕ′2ϕ′′ + ϕϕ′ϕ′′′ − 2ϕϕ′′2 ≤ 0 on (0;+∞),

(iii) h(y) =

∫ y

1
ϕ′(t)M(t)dt for all y ∈ (0;+∞).

Then,
h

ϕ
and log

h

ϕ
both belong to D2(0;+∞) and moreover,

(

h

ϕ

)′

< 0,

(

log
h

ϕ

)′′

> 0 on (0;+∞).

This theorem is a simple corollary of Lemma 11 and Theorem 8 and we
omit the details. Theorem 12 holds with each one of the following functions

• ϕ(y) =

∫ y

1
t−adt, a > 0;

• ϕ(y) =

∫ y

1
e−tdt.

Theorem 13. Let 2 ≤ p < +∞, f ∈ Hp \ {0}. Assume the functions
ϕ : (0;+∞) → (−∞; +∞) and h : (0;+∞) → (−∞; +∞) meet the conditions

(i) ϕ(y) =

∫ y

0
ϕ′(t)dt, ϕ′ > 0 for all y ∈ (0;+∞),

(ii) lim
y→0+

ϕ′′(y)ϕ(y)

ϕ′2(y)
< 1, ϕ′2ϕ′′ + ϕϕ′ϕ′′′ − 2ϕϕ′′2 ≤ 0 on (0;+∞),

or as an alternative

(ii′) lim
y→0+

ϕ′′(y)ϕ(y)

ϕ′2(y)
= 1, ϕ′2ϕ′′ + ϕϕ′ϕ′′′ − 2ϕϕ′′2 < 0 on (0;+∞),

(iii) h(y) =

∫ y

0
ϕ′(t)M(t)dt for all y ∈ (0;+∞).

Then,
h

ϕ
and log

h

ϕ
both belong to D2(0;+∞) and moreover,

(

h

ϕ

)′

< 0,

(

log
h

ϕ

)′′

> 0 on (0;+∞).
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P r o o f. By Lemma 11, M > 0 and M ′ < 0, (logM)′′ ≥ 0 on (0;+∞).

As in the proof of Theorem 9, by the assumptions, it is clear that
h

ϕ
and

log
h

ϕ
both belong to D2(0;+∞). Furthermore,

h(y)− ϕ(y)M(y) =

∫ y

0
(−1)ϕ(t)M ′(t)dt > 0 for all y ∈ (0;+∞).

Hence,
(

h

ϕ

)′

=
−ϕ′

ϕ2
(h− ϕM) < 0 on (0;+∞).

Accordingly to the assumptions of the theorem, E1 ≥ 0 on (0;+∞).
Furthermore,

• in the case of the assumption (ii),

(

A

ϕ′2

)′

=
ϕϕ′ϕ′′′ + ϕ′2ϕ′′ − 2ϕϕ′′2

ϕ′3
≤ 0 on (0;+∞).

So,
A

ϕ′2
=

ϕ′′ϕ

ϕ′2
− 1 decreases on (0;+∞) and

A

ϕ′2
≤ lim

y→0+

A

ϕ′2
< 0.

• in the case of the assumption (ii′),

(

A

ϕ′2

)′

=
ϕϕ′ϕ′′′ + ϕ′2ϕ′′ − 2ϕϕ′′2

ϕ′3
< 0 on (0;+∞).

So,
A

ϕ′2
=

ϕ′′ϕ

ϕ′2
− 1 decreases on (0;+∞) and

A

ϕ′2
< lim

y→0+

A

ϕ′2
= 0.

Thus, in both cases, A < 0 on (0;+∞).
The inequalities A < 0, C > 0 on (0;+∞) imply that the functions F1, F2

are real valued well defined functions on (0;+∞) and together with the inequality

(AF 2 −BF + C)
∣

∣

F=ϕM
= −ϕ3ϕ′MM ′ > 0
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it follows that

(13) F2 < 0 < ϕM < F1 on (0;+∞).

We apply the identity (6) from Lemma 6 with q = 1 to obtain

(h− F1)
′A(F2 − F1)ϕ

2ϕ′M

= F1

(

(F1 − ϕM)(A2(F1 − ϕM) + E1M) + Cϕ2

(

M ′

M

)′)

> 0.

So,

(14) (h− F1)
′ > 0 on (0;+∞).

Let ε > 0 and

Mε(y) =

∫ +∞

−∞
|f(x+ (y + ε)i)|pdx, ∀y ∈ (0;+∞).

Thus,

Mε(y) = M(y + ε), Mε(0) = M(ε), M ′
ε(0) = M ′(ε), hε(y) =

∫ y

0
ϕ(t)M(t+ ε)dt

and
Bε(y) = (ϕ(y)M(y + ε) + ϕ′(y)M ′(y + ε))ϕ2(y)

Cε = ϕ2ϕ′2M2(y + ε),where y > 0. As it is above, functions

F1,ε =
Bε −

√

B2
ε − 4ACε

2A
, F2,ε =

Bε +
√

B2
ε − 4ACε

2A

are real valued well defined functions on (0;+∞) and together with the inequality

(AF 2 −BεF + Cε)
∣

∣

F=ϕMε
= −ϕ3ϕ′MεM

′
ε > 0

it follows that
F2,ε < 0 < ϕMε < F1,ε on (0;+∞).

We apply the identity (6) from Lemma 6 wiht q = 1 to obtain

(hε − F1,ε)
′A(F2,ε − F1,ε)ϕ

2ϕ′Mε

= F1,ε

(

(F1,ε − ϕMε)(A
2(F1,ε − ϕMε) + E1Mε) + Cϕ2

(

M ′
ε

Mε

)′)

> 0.
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So, (hε − F1,ε)
′ > 0 on (0;+∞).

Moreover, lim
y→0+

(hε − F1,ε) = 0 because of lim
y→0+

hε = 0 and

lim
y→0+

F1,ε(y) = lim
y→0+

Bε −
√

B2
ε − 4ACε

2A

= lim
y→0+

ϕ

((

A
ϕ′2 + 1

)

Mε +
ϕ
ϕ′M

′
ε

)

−
√

((

A
ϕ′2 + 1

)

Mε +
ϕ
ϕ′M ′

ε

)2
− 4 A

ϕ′2M2
ε

2 A
ϕ′2

= 0.

Hence, hε − F1,ε > 0 on (0;+∞).
Fix y > 0. Hence, h(y)− F1(y) = lim

ε→0+
(hε − F1,ε) ≥ 0.

So, h− F1 ≥ 0 on (0;+∞) and by (14) it follows that

h− F1 > 0 on (0;+∞).

Therefore, by A < 0 and (13) it follows that Ah2 −Bh+ C < 0 on (0;+∞).
The second derivative

(

log
h

ϕ

)′′

=

((

log
h

ϕ

)′)′

=

(

h′ϕ

hϕ′

)′

=

(

ϕM

h

)′

=
(−1)(Ah2 −Bh+ C)

ϕ2h2
> 0

on (0;+∞). ✷

Theorem 13 holds with each one of the following functions

• ϕ(y) =

∫ y

0
t−adt, a < 1;

• ϕ(y) =

∫ y

0
e−tdt.

Theorem 14. Let 2 ≤ p < +∞, f ∈ Hp \ {0}. Assume the functions
ϕ : (0;+∞) → (−∞; +∞) and h : (0;+∞) → (−∞; +∞) meet the conditions

(i) ϕ ∈ D3(0;+∞), ϕ(y) = −
∫ +∞

y
ϕ′(t)dt for all y ∈ (0;+∞),

(ii) ϕ′ > 0 and ϕ′2ϕ′′ + ϕϕ′ϕ′′′ − 2ϕϕ′′2 ≤ 0 on (0;+∞),

(iii) h(y) = −
∫ +∞

y
ϕ′(t)M(t)dt for all y ∈ (0;+∞).
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Then,
h

ϕ
and log

h

ϕ
both belong to D2(0;+∞) and moreover,

(

h

ϕ

)′

< 0,

(

log
h

ϕ

)′′

> 0 on (0;+∞).

This theorem is a simple corollary of Lemma 11 and Theorem 10 and we
omit the details. Theorem 14 holds with each one of the following functions

• ϕ(y) = −
∫ +∞

y
t−adt, a > 1;

• ϕ(y) = −
∫ +∞

y
t−ae−tdt, a < 0.

Theorem 15. Let 2 ≤ p < +∞, f ∈ Hp \ {0}, ϕ(y) = −
∫ +∞

y
e−tdt,

h(y) = −
∫ +∞

y
e−tM(t)dt for all y ∈ (0;+∞). Then,

h

ϕ
and log

h

ϕ
both belong

to D2(0;+∞) and moreover,

(

h

ϕ

)′

< 0,

(

log
h

ϕ

)′′

> 0 on (0;+∞).

P r o o f. By Lemma 11, M ∈ D2(0;+∞),

M > 0, M ′ < 0, M ′′ > 0, (logM)′′ ≥ 0 on (0;+∞).

By the assumptions, it is clear that
h

ϕ
and log

h

ϕ
both belong toD2(0;+∞).

Claim. h − ϕM > 0 on (0;+∞). Indeed, by the assumptions of the
theorem

• (h− ϕM)′ = −ϕM ′ < 0 on (0;+∞);

• M decreases on (0;+∞) and M > 0. So, the limit lim
y→+∞

M(y) exists and

it is a non-negative number.

Therefore, h− ϕM decreases on (0;+∞) and

lim
y→+∞

(h(y)− ϕ(y)M(y)) = 0.
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Hence, h− ϕM > 0 on (0;+∞).
It follows from this Claim that the derivative

(

h

ϕ

)′

=
−ϕ′

ϕ2
(h− ϕM) < 0 on (0;+∞).

Note,

A = ϕ′′ϕ− ϕ′2 = 0, B = (ϕ′′M + ϕ′M ′)ϕ2 < 0, C = ϕ2ϕ′2M2.

By Lemma 7 with q = 1,

(

h− C

B

)′

B2ϕ′M = C2

(

M ′

M

)′

≥ 0 on (0;+∞).

So,

(

h− C

B

)′

≥ 0 on (0;+∞) Therefore, h− C

B
increases on (0;+∞) and

lim
y→+∞

(h(y)− C(y)

B(y)
) = lim

y→+∞
h(y)− lim

y→+∞

C(y)

B(y)

= lim
y→+∞

ϕ2(y)ϕ′2(y)M2(y)

(ϕ′′(y)M(y) + ϕ′(y)M ′(y))ϕ2(y)
= lim

y→+∞

ϕ′(y)M(y)
ϕ′′(y)
ϕ′(y) + M ′(y)

M(y)

= 0

because in the last equation the numerator tends to 0 and the denominator tends
to sum of (−1) and a non-positive number.

Claim. h− C

B
< 0 on (0;+∞).

Indeed, if there is y0 ∈ (0;+∞) such that h(y0)−
C(y0)

B(y0)
= 0 then h−C

B
=

0 on (y0; +∞).

(

M ′

M

)′

= 0 on (y0; +∞) which means that
M ′

M
is a non zero

constant on (y0; +∞) (because of f is not the zero function). The equation

h′ =

(

C

B

)′

then gives us
M ′

M
= 1 on (y0; +∞). Therefore, M(y) = ey.const and

by M > 0, M ′ ≤ 0 it follows that M = 0 on (y0; +∞) which is impossible because
of f is not the zero function.

Now, the second derivative

(

log
h

ϕ

)′′

=
B
(

h− C
B

)

h2ϕ2
> 0 on (0;+∞). ✷
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Note that in some specific cases it seems reasonable to change parts of
the proofs with an argument for −Bh+ C < 0. In particular, such an approach
will make us to use part of the proof of Lemma 7. However, we prefer not to do
this.

Example 16 (An auxiliary example). If

ϕ(y) = −
∫ +∞

y
et−etdt,M(y) = ey

2

, h(y) = −
∫ +∞

y
ϕ′(t)M(t)dt

then

(

h

ϕ

)′

> 0 and

(

log
h

ϕ

)′′

> 0 on (0;+∞).
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