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Interval Analysis in the Extended Interval Space [
E. Kaucher, Karlsruhe

Abstract

This paper shows, how the extended Tnterval Space IR can be used to write formulas, theorems, and
proofsin a closed form, e, without using the left and right interval bounds. So a basic generalization and
mareaver & simplification and improvement of the theorems and proefs B achieved,

0. Introduction

The extension to generalized intervals (with negative widih) retaining all important
properties of interval analysis like isotoneness ete. is leading to a more closed space
in algebraic as well as in lattice-theoretic sense, These advantages enable us to write
formulas and proofs in a closed form without using the left and right interval
bounds. So the theorems and their proofs can be shortened in many cases, the
statements are more general and extended to generalized intervals. Furthermore the
Interval Analysis resembles with classical analysis because the ideas of norm, metric
ete, can be handled more easily. Some recently appeared papers show that this
extended interval analysis facilitates or makes possible formulation and solving
problems as described in [47], [8]. [13], [14]. Moreover the extended interval space
allows to “underestimate™ interval expressions, that means a rounding “lo the
inner”, and to transform this into the usual interval analysis. This problem occurs in
salcty problems, where a minimum set for the solutions instead of an inclusion is
asked for,

1. The Extended Interval Space

In the following we regard only the interval analysis IR over the field of real
numbers, We can do this w.l.o.g., because the formulas in IR", IC ete. are of
analogous form as showed in [3] and [6].

The algebraic structure (IR, +,#, =) is a regular commutative semigroup with
respect to addition, It can be embedded in an isotone group (IR, +, =) asshown in
[4], [5] and [6]. Moreover (IR, =, <) satisfies all assumptions requested in [8], so
that (IR, +, *, =) can be embedded in the high algebraic structure (1R, +,#, =) to
be intreduced now. Furthermore, (IR, =) can be extended to (IR, =) so that
(IR, 7, w, =) turns out to be a complete lattice. For special details see also [47, [5],
[6], [7] and [%]. To shorten this paper some proofs and properties are neglected
which are summarized in [7] and [9].

In'the following 4, B, C, ..., Z =R are clements of the extended interval space and
a = [a,a] IR is the with g identified interval. With 4 = [a, &] the left and right
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bounds of A are denoted by A(4):= a and p(A) := b whereas the midpoint and
a+b b—

radius of 4 are denoted by w(4) : = e and §{A):= Tﬂ . The latter yields a so-

called midpoint-radius designation of A = (u(4), 5(A)). Furthermore, we define:

Fr=Fu=-8 & ={AcIR|0SIAA0< oA} — F:m{—A4|de}
Fr=FuF T:={AeIR|I4d <0< pd) F = {A|deF)

F=F v Fi:={delR|l4d=0} Fyi={delf|pd =0}

(10) A =Bi==id =18 n pd = pB
A= Bi=lB<ld » pAd = pB
A+ B:=[ld + 1B, pA + pB] = (uA + pB,54 + 68)
A—Bi=A+(—B) with — B:=[— pB, — pB] = (— uB.58)
A-B:=[14-iB pA - pBE] = (uApuB + 545B, uASB + nuBsA)
{the so-called hyperbolic product *-*),
A=+ B:= Table 1

AfB:=A+1/BforBe ¥*%and1/B:=[1/pB, /18] = B

AR B=inf(4,B) = [AA L AB, pA pB]

" AwB=sup(4,B) = [Ad B, pd L pB]
A:=[pA, 14] = (u(4), — HA)) (conjugation)
jfﬂ[—],'[], j_:= [5= 1]
HA)i={TelR|A=TcAv A Tc AL

1

ey

T

e

w(By — &8y

Tuable |
. Bes Bey Be— % BeF
Aes# A B pldy- 8 - A8 W4y B
AedF A - p(B) [A{ A ) plAALE), A-UB) 0 N
A AVLCE) 1 o AN Y]
Adg=5 A-B MA)- B A-B pld) - B
Agd A - M) L] A plB [ALAVAL ) i pf A}o( B,
HAyp(B) M pA)EY]

So we get the following properties in (IR, +, ./, -, ~, u, S):
Theorem 1.1.

1) A+ B=RB+ 4

(M) A+ B+ C=A+(B+ O

I3 0+4=4

(M) A+ (D=0

(I5) A= Be=d+CcB+C
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(AuB) +C=(4+ C)u(B + C)
A+ BuC=(du(C—B)+ 8
AN A+B=A+B A+ Ach
(I8) 4+B=PRBwud
I (A+ B« C= A+ (B=x()
(I10) 14 A=A, 06d=0
fI11}) A ljd = 1l dcsr® &
(I A= B=AeC= Bs+C

i15) } {analogously for ~)

013} () A (AuB)sC=AsCyB+C
1o (ds B)uC = (4 w(C/B)+B
ingeneral: (AU B« CS A+ CUBsC,(AABsCodxCrdsC

iy A\ AsB= A \/A+urBrvc A+xc B

A felf wrol te R

} {analogously for m)

(114) AwB=A+5 AsAch

(I15) AsBeF w=dcF v Bed
AwBeF = AeT v BeF

(16) N as(d+ B =a+Ad+awh

A Beia
ael

M7 N dsfa+ B =Asa+ Awh
abak
arhal

(T18) (i) A As{B+C)cAwB+ AsC

A, 8,CelR

(i) A A«(B+C 2 d«B+ dsC
AB.CelR

(i) A A A%(B+C2A4«B+4d+0

A, CslR 84+ CelR

M9) A 1{AsB)=1/d+1/B

A, Feim

(1200 A 1{4/B)=RB/A

A Bewng

(121} A 1/d = d/(4+ )
A=

(I22) A IN4uB)=1/Ay /B
e INAARB) = 1/AA 1/B
(I123) A-B=8- 4
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(I124) (A-B)- C=A'(B:- )
(25 1 - A=A
{126) A A-1jd=1

Ab
(127) A-B=4-B,A-AcR
(128) (A+B) - C=A-C+B-C
(120) A - B=0=(d=0a-Be# rnach)
{130) A= B==A2 B
(131) AnB=A4AuB
{132} (IR, m,w, =) conditionally complere laitice
(133) (IR, +, =) isotone group
(134) (IR, =, =) isotone semigroup, but  (IB\F* s, =) isolone group
(135) IR=IRUIR, R=IRAIR, with IR={d|AcIR} :

(I36) 4 = Bc C= 2(B) < 2(4)u IC)
especially: Be 3(A4)= 3(B) = 2(A4).

With arithmetical expressions we can construct the so-called interval functions. A
further method to get interval functions is the direct extension of continuous real
functions rom B to 1R, For this purpose we give the following definitions:
Definition1.2. Letfe Cowith® = ¥ x ¥ x - x ¥ x A, x Az %+ x Anbea
continuous function, then _?'ca.n be extended on $* el with @* = H(F) = ---
® YY) x HA) % x AL and (X, F)e P

fiX.8)=JX,... X, B,...,B)= L4 {7 (2, a)} (L.1)

wd X w - =% HX)
af HB]n - x BB

For arbitrary Ze IR the operator % is defined as:
| for ZelR

Woi=4 2F i {1.2)
2Ty B for ZelR
ral
This operator is dependent on the order of evaluation, i.e.
w =W - W (1.3)

fu, el = HF) el vaHF¥)
2. Topological Properties of IR, Norm, Metric, Sequence, Width
(IR, +,*, /) is a normed space in the following sense:
Definition 2.1.
Ml =inf{teR* |1+ Fo A1 F} =

AR

1 Interval Analysis in the Extended Interval Space IR

= inf{te R~ | A e+ 2(#)}.

This is a norm with the following properties:
Lemma 2.2.
(NI) |4 20, || =04 =0
(N2) |4 + B| < |4| + |8
(N3) |a* Al = |a| |4]
(N4) |4 = B| < |4||B|

|4

(N5}||M|=m for AesNZ

i

(2.1)

(N6} |A+ Bl=|d|+|B| if A==ArB=—-BrABeT or ABed

or if AsBe%9, resp.
(N7) |4+ 8| = |4]|B for A,BelR or A, BelR
(N8) AsB=|4|+B for B=—BnrABelR or A BelR
(ND) |4 B| < |4||B|
(NI0) A= B=C=|B = |4|u|C], especially:ac A==|a| < |4|

(N11) |4 w B < |A|u|B, |4~ Bl < |4 |B|, but
A Bl < |A|M|B) A |ldy Bl = |4|w|B|, for A4 ,Belit and
|4 Bl < |A|m|B A ldn Bl = |4|w|B|, for A, BelR

(N12) |+ Al = [4],|4] = |A]

(M13) |A| = A#sign{d) for AelR; |4| = 4 =sign(4) for AcIR

+ 1 Aes
. : 5 Aed
with sign(4) 7 i
-1 Ae -5
For the proof we use the following properties:
Lemma 2.3,
W7 s Wa|WF
tFesWeitfe N tFcwety
wa ST
|W] = sup |w| = |1W|i|pW¥]
we )
FProof. See [9].

Proof (to Lemma 2.2).

(N1} || =0 by definition
A=lelcdclesi=0atFocAStF=|d|=t=0

(2.2)
(2.3)

2.4
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= HEHI'ITJ
(N2) |ALF S A< |A\f, BF<BS|BlF = (4|+|B)FcAd+Bs
(141 + |B).# = |4 + B| < |4] + |B|
(i)
(N3) [ F=dcs|df =
a*|A|*jg drd Sax[ds Fe
lal|4|* F S ax A < |a|= ||+ & = |a* 4| < |a] ||
on the other hand we-have

ma
la*AlF card S |and|f =

| A
#}'Ez{gla; |f¢=' for + # = &
[ | LEW |a* Al

(EIZ)

(N4} |[A|F S A< |A|lF » |BIF cBc|BLF =
14| |Bl+ F = A+ B |d||BlF = |d=B < |48

Equality does not hold in generality, as shown by the following
cxample for IR = IR:

0= [0, 171,00 # |[0, 1]/ |[1, 00| = 1 f. (N7).
(N3) From (I21) we get at once

e [

(N6) Sec [9].
(N7) See [9].
(N8) For 4, BeIR we have with 8= B+ # = |B #

AS|A|Ff=A+B< |A||BF+ # = |A||B+F =|4B and with (MN13)
Al Assign(d) S ds F= |A|BsAsBs F=AsB, ic

A» B = |4|B (N12)
For A, BeIR we have 3+ B = |4] % B = | 4] = B, hence
AsB=|4|+B = |4|+ B

(N9) |4 - B = |AALB|Li|pApB| = |14||AB Li|pA| |pB| <
= (|44l L [pANAB L |pBl) = |A|| B

(N10) With |4l S 4 = |d|.# and |C|F = C=|OF
follows |4].# = 4 = B< € = |C].# and therefore |B| < |AluC].
Ifac A then 4 <2< A and with (N12) |a < |4 1s|4] = |4
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(N11) With |4|f c A c |4 and |BF < B |B#
weget |l c|BlfcAsBe|dlfc By
|l # V1B = # = (AW IB)* # and in the same way
ld|» F Bl 7 = (14w |B])s F, so that with (N10) holds:
[4w Bl §4,I(IAI o [ Bl + Flul(4] v B« F|
= ||| w [ B = 4] |B|
The other propertics are proved in [9] analogously.
[REL
(N12) + T=Tand tF c A< 1f =7 = 4 = ¢F proves the assertion
{(IN13) ses [9].

The norm defined in Definition 2.1 is inducing a metric in IR in the followin 2 well-
known way:

Definition 2.4,
A q(4,B):=14 - B (2.5)
4.8zl
This is a metric with the following properties:
Lemma 2.5,

(M1} g(d,B) = 0, g(4, B) = 0= A = B, g(A, B) = ¢(B, 4)
(M2) (4, B) < 9(4, C) + q(C. B)

(M3) g{A + B, A + C) = ¢(B,C)

(M4) {4 + B,C + D) < g(4, C) + ¢(B, D)

(M5) g{axﬂ,auC} = |alg(B, C), acR
gldsb dwe) = |Algb, ) forb-c=0

(M6} g(d+B,4+C) < |4 q(B, C)

|4
(MT) g(A/B, A/C) < B+l 4(B.C)

(M8) 4 = B<C=q(B,C) <4(d,C) » g(d, B) < g(d, C) ==
q(B, C)Lig(A, B) < q(4, C)

M) A;sXcd; A B =Y By=gq(X,F)< §lds, Br)Ligid,, By)
For X e 3(A) and ¥ e 3(B) we have: g(X, ¥) < g(A, B)

(M10) g(4, B) = g(4, B)
(ML1) 4] — B < g(4, B)

(MI12) g4, B) < x= \/
Cellt

4 Voogla,b) = x

PB4 agd+ T

{ I Voo glab) s xoa
I=Ad+C b5 8+
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(M13) The ser R(A, B):= [Z|g(d, B) = g(A, Z) + g(Z, B} is non-empty for arbi-
trary A, B 1R and is representing a rectangle in the p-d-plane with A and B as
diagonal corners,

(M14) ZeR(A,0) = g(4, Z) = |4| - |Z]
Prouof.
(M1) follows from (N1) and (N12)

[Nz

{14 . 4] £

M) |d-B=d=C+C=B=s|d-C+|C—H
il (41

(M3) A+ F—Ad+Cl=A—A+B-C)=|B-10)

b T X M
(M) [A+B=C+D|=|4-C+B-Dl<|4-0C+|B-D|

{116)

il N
(M5} lasB—asC|=|asB—asC| = |a(B - C)| = |a||B — C|
For the second formula we can assume ¢ = b w.lo.g, sothat with b -c = 0

follows 0 él‘—i = 1. Hence with the just proved assertion we have

= bl

y (‘:+| C) Axs
i e e i
b b b
A*§+Aa(l—§)—ﬁ*f

b
C
Ax|]l = -
( é-)

(M6) withf(x,a) = g - xand the interval function f{&, 4) = 4 + ¥ wederive from
Theorem 2.6

lax — ay| = sup lal|lx — ¥ = |4llx — ¥l
FE WA

|Asﬁ—A*ri=Iban] —A*g

(I

= |&l

i14)
= 8]

LA EH

[
= Ir‘!llbl‘l —E‘ =14||6 — ¢l

and so
WA X, A+ ¥) = |4 g(X, T).
(M7) With (M&) we have g(4/5, 4/C) < |4| g(1/8, 1/C). Furthermore

[1/B — 1/C] = |C/(B+C) — Bi(B+ C)|

S e —— g( B
(MB) From A cBsCeAd-CosB-Cs0an0sB8—-4<C— A4 we have
with (N10)

B—C=sld-—Cla|ld—Bl<|d~-0.
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A1
(M9) 4 =B cX~F¥cA;— B, = |X =¥ <|4; — Bs|uijd, — By

(M10) follows from (N12)

(M11) see [9]
(E] (M3
(M12} "=" proves by gla,b) < gld+ C. B+ C) = g4, B < x

“e="1 4 + Cell and 8 + C=IR always holds and therefore with
la—blsx=sa—bs Ffx ab—ac Fx we have

A N asgx+dba AN bs Fr+ias
agd+C kS H+ O bsB+Cagd+ 0

M aSFx+B+Ca A b fx+dA+0C

acd+C b+ C

Thereforewe have d + C= #x+ B+ Cand B+ C < #Fx + 4 + Csuch
that

A—Fg #Fxand B - 4 = #x. Hence
A—Bc Fxand 4 — B2 Fx; therefore Fxsd ~ B o f
and with (N10) finally |4 — Bf < x.
(M14) We have |4] = 4(4,0) = ¢(4, Z) + q(Z.0) = g(4, Z) = |d| - |Z|
The following two theorems state important estimations for the interval analysis

theoretically as well as in practical applications, They show, roughly spoken, that
the topelogical properties of real functions hold in their interval extension, too.

Theorem 2.6. Let fla,a): D) % oo w Dyx Ay % o x A, =R with D,elR,
AjelRfor 1 i< n, 1 == mbeacontinuous function in the sense of Lipschitz,
which is (see Definition 1.2) extended on the interval domain % = HD,) % -~
% A(D,) with & =(X\,..., X)) and o = (A\,..., A, (parameter domain) as in
{1.1):

N, &) = W {fl=, a)}

ELLIP IV P A
wE AN WAL = K]

The continuousity in the sense of Lipschitz shall hold for each varighle x, 1 < i< nin
the form

Lr‘{-xlrr-r:xr'-]s-gs-xﬂ-ls--'sxn:‘-#.} —f{xl,.,..x,-_i,.r,le,...,xm.ﬁ’}[&'.ﬂjf&—tf
()
for xpeDy 1 £ j5n, f# i and ac (). Then we have for all ¥, & e F:
QT ) (¥ AN Y LalX, ¥ {2.6)
=1

i.e. the interval extension iy continuous in the sense of Lipschitz, too.

4 Compating, Supgd 2
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Proof. With (+) we have immediately from the triangle inequation

MY a

i 1 (
q{.‘ﬂ:ms ﬁ}sf{ys &'}) — II{#, a‘} _f[:f1 43’}' = z Iilxi _}?JF = E :E"}(X}r YI-} {"}

i=1
Let now CelR such that

(i) for every u = flw, ) = flZ, &) + C with 2 HT) ~ ac o)
there always exists a v = f{g, o) = f(#, &) + C with g £ 2(¥). Then

[ash A

glu,v) < ¥ (X, 1),
i=1
(i1} and for every v = f{z, &) = (¥, &) + C with 3 e H¥) » de )
there always exists a v = fiz, ) = (&, &) + C with =& 37). Then

] A

g{u1 U:’ = E IF'?':XH Yi:l"

i=1
So we get with (M12)

M

o)
qUiE, o). f(¥, &) = q(f(Z, )+ C.A¥. L)+ C) =

iy n

< X kX, .
=1
Theorem 2.7, [ in Theorem 26 D) = -+ - = D, = I} and holds
fiX )= W {flz,a) =FX,.. X
=P
P ]

then for every X, ¥e @
qUf X, ). f(Y, &) < Y, he(X, ¥) = ig(X, ).
i=1

After introducing a metric |R becomes a metric and therefore a topological space.
Therefore we can use Cauchy sequences, convergence and continuousity as usually,

Lemma 2.8,
(2.7) Every sequence in IR has at least one limes point in 1R,

(2.8) {dlisois @ Cauchy sequence i (1A} and {pdy}, .o are both Cauchy
sequences, i.e. lim A, = <= lim 14; = 14 lim pd, = pd.
k= o k=m
(2.9) The operations +, —, +, {, M, W and conjugation are contimious operators.
Margauerf{ﬂf', A isa cﬂn.rfn_ﬂ_ﬂus_}"umian if fl, &) fike in (1.1) is one,
(2.10) Every sequence {Ag}, -, with 'J&_;u 24, 2 -+ 2 By a Cauchy sequence and
convergent against the interval A= (| A, 2 B.
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FProaf.
(2.7) Follows from the homeomorphism of (1R, |-[) and (R?, || ||) with respect to
the maximum norm and (2.4).

_ x4
(2.8) |4y — A| = |44, — 14| |pd; — pA| proves the assertion.

{2.9) see [9].

(2.10) The sequence {A; — B}, , , is lower bounded by 0 and therefore convergent
and so a Cauchy sequence with limes 4. For |7} is isotone we have for every a

ﬁ A; 2 4,2 A = B and hence the assertion for n — oo,

1]
For the quality of numerical algorithms in interval analysis the width is an
important criterion.

Definition 2.9. The [unctional
@11) N dd):= |4 — 4] = g4, )

is called the width (diameter) of the interval A.

For d the following propertics hold:

Lemma 2.10.

(2.12) d(A) = |pA — 44|, dA) =d(4)

(2.13) d{A) =0 A = geR '

(2.14) A= Bs C=d(B) < dlA)ud(C)

(2.15) (A + B) = d(A) + d(B)

(2.16) d(A + B) < d(A)|B| + | 4| d(B)

(Z17) () dlA=B) = |A|KBYLd(A)|B| for 4, BelR or A, BelR
(ii} d{Ad = 8) = d{4) i B) for A, BesF*

{2.18) (i) dla+B) = |a|d B forach

(1) A =B)=|B|dlA) Jor A,BEIE.AEF, Be s
or A, BelR, Acd, Bes*
(2.19) dA € nld" ' dd) f A":=dwde: -nd
—
A [actars

(2.20) di{4 - BY") < 2d(A)"  for Be 3(A),n= 1
<2'7"d(A) for l(A) S B, n>1

(2.21) |4| = d{4) = 2|4| for Aeg*

2.22) G) dﬂm=% for AgT

a*
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(i) ASX/Y s B=diX/Y) < (’J—L-J;—j + d[—n)ﬂm L1 |B|)
Jor Y¢.57% and |X'+ ¥] = |X]|¥] (¢f. N7, N§).

(223) Be A= A< B=y4(4,B) < q(4, B) < q(B, B) = d(B)
d(B) — d{ A}
2
(2.24) AN By < dA)ndB) for A, BelR

Froof.

=-1]
In

Asds B= = g4, B) < d(B) — d(A)

(2.41 3
(21D A-A=[id —pd.pd — A4] = |4 = A| = |pA — 14|
{13}

dA) =14 - | = |4 — A| = d(A)
12,12
{213 dA) =0 = pd=ld==dcR

s i
2l AP C=s4d-AcB-—ASB-—Bc(C—BcC-C=
B} =|B— B| = |C— (Quild — 4] = d{C)id(4)

Lk

(215) A+ B) —(4+B|=|d-—4+B— B <
ld— Al + |B — B = dl4) + d(B)

(M}

(2.16) d{d«B) = g(dsB,A+B) < g(A+B,As B) + g(A+B, A B) <
6]

< |BlglA, 4) + |4|g(B, B) = |B|d(4) + | 4] d(B)

{2.17) (i) For A, BelR we have

[(EERT]
0 A+(B—B) g A=B— AR .
as well as e =
0= Bx(d—A) = A+ B— A+R

Mg

A|d(B) = |4]|B— Bl = |4 (B~ B 'S 14+ B — AwBl =
as w;:ll asg

(N7 )
[Bld(A) = |Bl|4 — 4| = |Bx(d — A)| < |BsA— Bsd|
and therefore |A| d{B) | B d(4) < (4 + B).
For A, BelR the assertion follows with
d(A+B) = d(A+B) = d(A» B)

(i} proves with (i) and (2.21)

d(A + B)

= d(d* B),
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{16 -
(2.18) (i)d(as B) = |as B — a+B| = |as(B - B)| =
{H3)

= |a |B — B| = |a| 4(B)

{EIHA*E]' fﬂld *IBI} Iﬂlﬂ'{ff}

(2.19) True for n = 0, so take induction over n:
2.16] M)

d‘(ri“”)—d‘{d“*i} = | dA4") + |47 dA4) =
< Al A @A) + A d) = (n + D)A|"dl4)
(2.20) see [9]
(2.21) see [9]

(111} 2.18)
(222) () d(1/A) = d(1/A = A/A) = d(A » 1/(A+ D)) = _“‘f“‘;

() A X/ Y B=F+Fedc Ve X FeFe =
M7y (M1

= |VeX] = |¥]|X] < FeFe{d||8) and 50
Y Fa(ld u)B) Yo ¥{|ld| 8]
—lﬂ —— as well as |in| = T-
On the other hand ;
H‘-’f(f* Y} 18 d X)) ¥ d{}'}lﬂ  fdlX) ﬂTYJ
d(}f “YeE T Tr o I (pﬂ I
(223 BcAs A= B=gid, B =< gld, B) < q(B, B) = d(B)
on the other hand
R

dB) = g(B,B) < q(B.A) + q{4,A) + q(4,B) = 2g(A, B) + d(4),

ie. wﬂ 44, B)

(2.24) see [9].

X < ()

){IAJ |B1).

To conclude this chapter we give some important estimations for interval f unctions,
at first an analogous estimation to (2.6) for the width.

Theorem 2.11. Under the assumption of Theorem 2.6 we have for all ¥ c %
df(%) < ¥ hdlX) (2.25)
i=1
where of = 2= RB" are ro intervals.
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Proof,
I.11} m

s 1.6) m
a(f(&)) = g (X), [ X)) = g f(I)NF Hiﬂl ¥ Lalx, X; - 2 k(X))
i=1

Furthermore we give estimations for the distance of interval functions with
properties depending on the width of the arguments. Let be in the following
@2 IR

Theorem 2.12. Let g(X, &) be the interval extension of g(x, =) like in Theorem 2.6
and let (X, o) be an arbitrary interval function satisfying

AV 9T, &) S f(X, o) < glX, o) (2.26)
Yed Tadl] -
Then for all Xe%
gUflX, o) g(X, &) < } Le(X) = 1d(X) 2.27)
i=1
Ifin (226) WXy = Tor f(X, 0N = # {a(x, a)}
by
then we have
gL (X, &), g(X, &) < [2d(X) (2.28)
Proof. :

(2.27): From (2.26) we get
gUITX, of), g(X, o)) < glg(T, o), g( X, o)) <

{260 @

< Y halTX) < (=)
i=

M3 m

(respecting ¥ = T = X) < ¥ Lk, X)=idX)
i=1

(2.28): From p(X) = T = X we derive

El]
AT, 30 < X0, X) = g(X/2 + B2, ) = q(B2, X[2) = d()12,

so (+) is estimated by {24(X).

If f{X, o) = f{’n {g(x, &)} then trivially
ae S a)

gl X), #) = (X, o) = g(X, &) holds.

Theorem 2.13. Let h(X, o) with Xe 3 be the interval extension of hix, a) for ag
HN.of) and let k be contirmous in the sense of Lipschitz with constant . Let for Ge IR

glX, &) = G + h(X, &)+ (X — Z)
be an interval function in (generalized) centralized form [3] with arbitrary 2 E:@‘I:X}
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and let f{X, o) be an a.rb:‘:m-?}r interval fumction with the following property:
A A G+KT, ) (X — o) = f(X, o) S g(X, o) (2.29)

YeP Tedlk)
then
for all Xe@: g(f(X, &), g(X, &) < - A XY (2.30)
holds. Moreover for f(X) = T or w(X) = Z in (2.29) we have
qlf (X, o), g(X, &) < (I/2) - d(X)%. (2.31)
If (X)) = Tand i X) = Z then
gUf (X, o), g(X, o)) < (i/4) - d(X)*. : (2.32)
Froof.

(2.30): From (2.29) we get

B}
A X, ), g(X, &) < q(G + h(T, )+ (X ~ Z),G + h(X, )% (X — Z))

i3y
= q(h(T, o)+ (X — Z),h(X, )+ (X — Z)) <

(M}

S X = ZIgMT, &) WX, N <X~ 2] 1 g(T,X) <

{10, Bd) 12.11

< X—X-1-gXX) < dX) -1 dX) = I- d)?

()
with ¥ — ¥cX-ZoX—Yand Y T=x

(2.31): From u(X) = (X + X)/2 = T = X we get with (M8)

AT, ) < 92 + X = a(%)2) = d0)2
or in the case p(X) = Z and
¥ — Z] = |¥ — X/2 — 22| = |X)2 — X/2] = d(X);2
with line () the assertion.
(2.32): With both estimations in (2.31) we achieve the factor //4.

Lemma 2.14. If of = acR™, Ze HX) and f{X) = W, alZ) + h(x)»(x — Z)},
then with G = g(Z) we have f(X) = g(X) and from

W ocrlg(Z) + hix)e(x — Z)} = g(Z) + h(w)= (X — Z)
with |k(w)] = min |h(x)], T= weR and 0 = X — Z on the other hand

=X

G+ hw)« (X — Z) = f(X)
so that (2.29) holds. Therefore we have

gi#", c ola(x)}, 9(Z) + KX) = (X — Z)) < [d(X). {2.33)
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Remarks, Both the Theorems 2.12 and 2.13 can be generalized (to several
variables) as well asin the properties (2.26) and (2.29), For instance in (2.26) suffices
the weaker assumption _
AN ol af) = (X, ) < (U, ). (2.26)
Y@ reXxXcsl
Finally we can state, that if an interval function fcan be included in this way by the
interval function g, then f and g have the same topological properties.

If g is continuous, then so is £, if g is continuous in the sense of Lipschitz, then so s f
and this of the same degree. This theorem is a very important instrument in the
interval analysis.

Theorem 2.15. Let ge Ch, g continuous in the sense of Lipschitz with constant |,
glx) = glZ} + g(X) + (X — Z) the interval extension af g with Z e 3(X) and g'(X) the
interval extension of ¢' for Xe %, If then for an arbitrary function f(X)

AV 9@+ g (DX - Z) = f(X) < gl (2.34)
Xed Tedn
holds, then
gUA(X), 9(X)) = ld(X)* {2.35)
For z = p(X} or p(X) = T we have
q(f(X), a(X)) < lf2d(X)* (2.36)
If z = p(X) and p(X) < T then
gl f(X), g(X)) = [j4d(X). : (2.37)

The following theorem is H generalization of Theorem 2.15 and introduces the
application of Taylor-expansions. !

Theorem 2.16. Let L{X, o) be as in Theorem 2.13 and for arbitrary Z e 3(X) and G, &
IR, O0<igsn—1

KX, ) = . G (X = Z + h(X, o) (X — Z)°

be an interval function, Moreover for the interval function f(X, o)

Rl

A NV X GsX—2) + hT, a)+(X - ZV'c fiX, &) S g(X, &) (2.38)

Yed Telil) i=0
fet be satisfied. Then for all Xe@

GUAX, ), glX, o)) < [ d( X1
holds. If Z = (X} or p(X) = T, then the constant can be halved as in Theorem 2,15,

Proof. Likefor Theorem 2.13, where (X — Z)| = |¥ — ZI' s d{X)" and q(T. X) =
$d(X) have now to be estimated, resp, ;
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In many cases we have with zeR, ze X

)
G, = MY z)fil and h(X, o) =ﬁ$

where ¢ = p(X) is to be preferred in general,

3. Conclusion

The methods used here improve the estimations of the Theorems 3, 4,and 6in [1]
with a factor 2 and, moreover the assertions were widely generalized and reduced to
few, clear lines. So the Interval Analysis now becomes a calculus which is
comparable to those of classical Analysis: The handling of norm and metric are
very similar to norm and metric in linear spaces, As a by-product of the extension to
generalized intervals the Interval Analysis turns out to be more independent of sct
theory because many results are derivable without using set theary,

Some further assertions are summarized in [9]. Nevertheless a lot of properties
have to be investigated in the future to complete the theory.
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