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Abstract. The arithmetic on an extended set of proper and improper intervals presents algebraic
completion of the conventional interval arithmetic allowing thus efficient solution of some interval
algebraic problems. In this paper we summarize and present all distributive relations, known by now,
on multiplication and addition of generalized (proper and improper) intervals.

1. Introduction

Among several extensions of the classical interval arithmetic that have been pro-
posed, we consider that one aiming at an algebraic completion of interval arithmetic.
The algebraic extension is developed by H.-J. Ortolf [9] and E. Kaucher [5], [6],
further investigated by E. Gardeñes et al. [3], [4], S. Markov [7], [8], and others. The
set of normal (proper) intervals is extended by improper intervals and the interval
arithmetic operations and functions are extended correspondingly. The generalized
interval arithmetic structure, thus obtained, possesses group properties with respect
to addition and multiplication operations. Lattice operations are closed with respect
to the inclusion order relation. Handling of norm and metric are very similar to
norm and metric in linear spaces [6]. In order to emphasize that a generalized
interval can be considered as a pair of a proper interval (in set-theoretical sense)
and a “direction”, sometimes the algebraic extension of the conventional interval
arithmetic is called directed interval arithmetic [7], [8]. The term “modal interval
analysis” [4] reflects an interpretation of generalized intervals in terms of modal
logic.

The algebraic properties of the generalized interval arithmetic make it a suitable
environment for solving interval algebraic problems, e. g. some interval algebraic
equations, which are not linear in general, can be solved explicitly just by applying
elementary algebraic transformations due to the existence of inverse elements with
respect to addition and multiplication operations [13]. However, the efficient solu-
tion of some interval algebraic problems is hampered by the lack of well studied
distributive relations between generalized (proper and improper) intervals.
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While the existence of inverse elements with respect to addition and multiplica-
tion follows from the isomorphic embedding of the set of conventional intervals into
a group [5], [7], the validity of certain distributive relations is not straightforward.
The well-known subdistributivity property of normal intervals is extended in [5] for
improper intervals and some special cases of distributivity for degenerated (point)
intervals are discussed there. The conventional interval distributive relation

C × (A1 + · · · + An) = C × A1 + · · · + C × An, (1.1)

studied in [15], [16] for proper intervals, is generalized in [3] for proper and
improper intervals. Gardeñes et al. [3] define four distributive domains of general-
ized intervals wherein the relation (1.1) holds true. Much later, in [2] a more general
conditionally distributive law was formulated for intervals A, B, C, A + B ∈ D \T

(A + B) × Cσ(A+B) = A × Cσ(A) + B × Cσ(B).

In this work we present a generalization and full characterization of the dis-
tributive relations on multiplication and addition of generalized intervals. Section 2
provides some basic concepts of the arithmetic on proper and improper intervals and
introduces special functional notations which are essential for the efficient (both
analytic and computer) handling of generalized intervals. Section 3 summarizes all,
known by now, about the conditionally distributive relations for generalized (proper
and improper) intervals and their various forms, e.g. that specifying how and in what
case brackets can be disclosed in multiplying out sum of intervals, or that specifying
how and in what case a common multiplier can be taken out of brackets. The com-
plete proof of the Theorems in this section, as well as detailed comments on their
application can be found in [11]. Some references to papers, containing illustrative
examples for the application of the generalized interval distributive relations, are
also given.

2. The Arithmetic on Proper and Improper Intervals

The set of conventional (proper) intervals IR = {[a−, a+] | a− ≤ a+; a−, a+ ∈ R }
is extended by the set {[a−, a+] | a− ≥ a+; a−, a+ ∈ R } of improper intervals
obtaining thus the set D = {[a−, a+] | a−, a+ ∈ R } ∼= R

2 of all ordered couples
of real numbers called here generalized intervals. Denote the set of zero involving
generalized intervals by T = {A ∈ D | a−a+ ≤ 0}.

The inclusion order relation A ⊆ B ⇐⇒ (b− ≤ a−) and (a+ ≤ b+) is extended
for A, B ∈ D .

The “dual” is an important monadic operator that reverses the end-points of
the intervals and expresses an element-to-element symmetry between proper and
improper intervals in D . For A = [a−, a+] ∈ D , its dual is defined by

Dual[A] = A− = [a+, a−].
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In some papers Dual[A] is denoted by A. Very often, consideration of one or
another interval end-point or the dualization of a generalized interval depends on
some binary valued variables. To avoid long branching formulae and to simplify the
proofs, in our investigations we use functional notations for the interval end-points
and for the dualization of intervals. Define Λ = {+,−}. For µ, ν ∈ Λ, define product
λ = µν ∈ Λ by λ = {+, if µ = ν; −, if µ �= ν}. This product is commutative:
µν = νµ for µ, ν ∈ Λ.

For λ ∈ Λ, define aλ =
{

a+ if λ = +,
a− if λ = − and Aλ =

{
A if λ = +,
A− if λ = −.

Next, we define some interval functionals, useful for describing certain classes
of generalized intervals. Denote L = {{+}, {−}, {+,−}}. For an interval A ∈ D ,
define a functional, called “direction set”, T : D → L by

T (A) =


{+} if a− < a+,
{−} if a− > a+,
{+,−} if a− = a+,

and a functional, called “direction”, τ : D → Λ by τ(A) ∈ T (A). A generalized
interval A is called proper if τ(A) = + and improper if τ(A) = −. For degenerate
(point) intervals A ∈ R , the direction set is T (A) = {+,−}. Therefore these intervals
belong to both sets: the set of proper intervals and the set of improper intervals. The
freedom to choose an element τ arbitrary from the direction set of the point interval
[0, 0] is essential for obtaining all possible distributive relations.

For an interval A ∈ D \T , define “sign” σ : D \T → Λ by

σ(A) =
{

+ if a−τ(A) > 0,
− if aτ(A) < 0.

With every interval A ∈ D we can associate a proper interval pro(A) = Aτ(A) =
[a−τ(A), aτ(A)] wherein a−τ(A) ≤ aτ(A). For A ∈ D , pro(A) is a projection of the
generalized interval A onto the conventional interval space IR .

The definition of the well-known χ-functional, introduced by H. Ratschek in
[14], is extended for generalized intervals, χ : D → [−1, 1] by

χ([0, 0]) = −1 and χ(A) =
{

a− / a+ if |a−| ≤ |a+|,
a+ / a− if |a−| ≥ |a+|.

To provide a convenient manipulation of interval formulae involving χ-functionals,
we define a functional N : D → L by

N (A) =


{+} if |a+| > |a−|,
{−} if |a+| < |a−|,
{+,−} if |a+| = |a−|,

and a functional ν : D → Λ by ν(A) ∈ N (A). Thus, the definition of χ becomes

χ(A) = a−ν(A) / aν(A), for A ∈ D \ {0}.
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Intervals A, such that χ(A) = −1 are called symmetric. A symmetric interval A
can be also characterized by the property A = −A. For a symmetric interval A, we
have the freedom to choose an element ν from the set N (A) = {+,−}, that is either
ν(A) = + or ν(A) = −, which is also essential for the distributive relations.

The arithmetic operations + and × are extended from the familiar set IR of proper
intervals to D . In [3], [5] and [6] the definition of × is given in a table form, while
using the functional “±” notations we gain a concise presentation of the interval
arithmetic formulae facilitating their manipulation.

A + B = [a− + b−, a+ + b+], for A, B ∈ D ; (2.1)

A × B =



[a−σ(B)b−σ(A), aσ(B)bσ(A)], A, B ∈ D \T ;

[aσ(A)τ(B)b−σ(A), aσ(A)τ(B)bσ(A)], A ∈ D \T , B ∈ T ;

[a−σ(B)bσ(B)τ(A), aσ(B)bσ(B)τ(A)], A ∈ T , B ∈ D \T ;

[ min{a−b+, a+b−},
max{a−b−, a+b+}]τ(A), A, B ∈ T , τ(A) = τ(B);

0, A, B ∈ T , τ(A) = −τ(B).

(2.2)

The occurrence of min and max functions at the end-points of the result on
multiplication of two zero-involving intervals hampers the analytical derivations in
interval analysis and affects the performance of corresponding computer operation.
The next theorem, proven in [12], gives an explicit representation for the end-points
of such products.

THEOREM 2.1. For A, B ∈ T such that τ(A) = τ(B) = τ

A × B =

{
[a−ν(B)τbν(B), aν(B)τ bν(B)] = A × bν(B), if χ(A) ≤ χ(B);

[aν(A)b−ν(A)τ , aν(A)bν(A)τ] = aν(A) × B, if χ(A) ≥ χ(B).

Interval subtraction and division can be expressed as composite operations:
A − B = A + (−1) × B and A / B = A × (1 / B), where 1 / B = [1 / b+, 1 / b−] if
B ∈ D \T . End-pointwise:

A − B = [a− − b+, a+ − b−], A, B ∈ D ;

A / B =

{
[a−σ(B) / bσ(A), aσ(B) / b−σ(A)], A, B ∈ D \T ;

[a−σ(B) / b−σ(B)τ(A), aσ(B) / b−σ(B)τ(A)], A ∈ T , B ∈ D \T .

The restrictions of the arithmetic operations to proper intervals produce the
familiar operations in the conventional interval space.

The substructures (D , +, ⊆) and (D \T , ×, ⊆) are isotone groups. Hence, there exist
unique inverse elements −A− and 1 / (B−) with respect to the operations addition
and multiplication, such that

A − A− = 0 and B / (B−) = 1 for A ∈ D , B ∈ D \T . (2.3)
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Addition and multiplication operations are commutative and associative, that is for
A, B, C ∈ D and ◦ ∈ {+, ×}

A ◦ B = B ◦ A, A ◦ (B ◦ C) = (A ◦ B) ◦ C.

The definition of norm, metric, and many topological and lattice properties of
(D , +, ×, ⊆) are given in [5], [6]. Some other properties and applications of the
arithmetic on proper and improper intervals can be found in [3]. In this paper we
are interested in the distributive relations between addition (2.1) and multiplication
(2.2) operations.

3. Generalizing Interval Distributive Relations

Because for C = c ∈ R ,
( n∑

i= 1
Ai

)
× C =

n∑
i= 1

(Ai × C), we exclude this case from all

considerations of the generalized conditionally distributive relations below in this
Section.

3.1. CONDITIONAL DISTRIBUTIVITY FOR TWO ADDITIVE TERMS

Denote µ̂(I) =
{

σ(I) if I ∈ D \T ;
ν(I)τ(I) if I ∈ T \{0} and µ̃(I) =

{
σ(I) if I ∈ D \T ;
τ(I) if I ∈ T \{0} .

THEOREM 3.1. For A1, A2 ∈ D \ {0} and S = A1 + A2 the following conditionally
distributive relations hold true:

1. S ∈ D \T , C ∈ D \ (T ∪ R )

(A1 + A2) × C = A1 × Cµ̂(A1)̂µ(S) + A2 × Cµ̂(A2)̂µ(S), iff

either A1, A2 ∈ D \T ,
or Ai ∈ T \{0} for some i ∈ {1, 2} and

χ(Ai) = 0 for all Ai ∈ T \{0};

2. S ∈ D \T , C ∈ T \{0}

(A1 + A2) × C = A1 × Cµ̂(A1)̂µ(S) + A2 × Cµ̂(A2)̂µ(S), iff

either A1, A2 ∈ D \T ,
or Ai ∈ T \{0} for some i ∈ {1, 2} and

for all Ai ∈ T \{0},
either ν(Ai) = τ(C)σ(S), χ(C) ≤ χ(Ai);

or ν(Ai) �= τ(C)σ(S), χ(Ai) = 0;

3. (A1 + A2) × C = A1 × Cλ + A2 × C−λ , iff S = 0; (λ ∈ Λ).
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4. S ∈ T \{0}, C ∈ D \(T ∪ R )

(A1 + A2) × C = A1 × Cσ(A1)̂µ(S) + A2 × Cσ(A2)̂µ(S),

iff A1, A2 ∈ D \T , χ(S) = 0;

= A1 × Cµ̃(A1)µ̃(S) + A2 × Cµ̃(A2)µ̃(S), iff A1, A2 ∈ T \{0};

= Ai1 × Cσ(Ai1 )̂µ(S) + Ai2 × Cν(Ai2 )τ(Ai2 )̂µ(S) = Ai1 × C + Ai2 × C−,

iff Ai1 ∈ D \T , Ai2 ∈ T \{0}, χ(Ai2) = χ(S) = 0;

5. S, C ∈ T \{0} such that τ(C) �= τ(S)

(A1 + A2) × C = 0 = A1 × Cµ̃(A1)µ̃(S) + A2 × Cµ̃(A2)µ̃(S), iff A1, A2 ∈ T \{0};

= A1 × Cµ̂(A1)̂µ(S) + A2 × Cµ̂(A2)̂µ(S),

iff χ(S) = 0 and for all Ai ∈ T \{0}
ν(Ai) �= ν(S), χ(C) ≤ χ(Ai);

6. S, C ∈ T \{0}, such that τ(C) = τ(S)

(A1 + A2) × C = A1 × Cµ̃(A1)µ̃(S) + A2 × Cµ̃(A2)µ̃(S),
iff for i = 1, 2, Ai ∈ T \{0}, and

either χ(C) ≥ max{χ(Ai), χ(S)};

or ν(Ai) = ν(S), χ(C) ≤ min{χ(Ai), χ(S)};

or χ(C) = χ(Ai1) ≤ min{χ(Ai2), χ(S)},
τ(C) = τ(Ai1 ), ν(Ai1 ) �= ν(Ai2 ) = ν(S);

= A1 × Cσ(A1)̂µ(S) + A2 × Cσ(A2)̂µ(S),

iff A1, A2 ∈ D \T , χ(C) ≤ χ(S);

= Ai1 × Cν(Ai1 )τ(Ai1 )̂µ(S),

iff A1, A2 ∈ T \{0}, ν(S) = ν(Ai1 ) �= ν(Ai2 ),
χ(Ai2) = 0, χ(C) ≤ min{χ(Ai1 ), χ(S)};

= Ai1 × Cσ(Ai1 )̂µ(S) + Ai2 × Cν(Ai2 )τ(Ai2 )̂µ(S),

iff Ai1 ∈ D \T , Ai2 ∈ T \{0}, ν(Ai2 ) = ν(S),
χ(C) ≤ min{χ(Ai2), χ(S)};

= Ai1 × Cσ(Ai1 )̂µ(S) = Ai1 × C

iff Ai1 ∈ D \T , Ai2 ∈ T \{0}, ν(Ai2 ) �= ν(S),(
χ(C) ≤ χ(S), χ(Ai2) = 0, or χ(C) = χ(S) = 0

)
.

Essential for the application of Theorem 3.1 is that in some special cases there
exist two equal distributive representations due to the freedom to choose τ(S) ∈
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{+,−} for S = 0 (that is the case 3 of Theorem 3.1), and ν(⋅) ∈ {+,−} for symmetric
intervals (that is the case 6.2 of Theorem 3.1).

EXAMPLE 3.1. For C ∈ T \{0} and A, B ∈ D \T , such that A+B = S ∈ T , τ(C) = τ(S)
and χ(C) = χ(S) = −1, from case 6.2 of Theorem 3.1 due to N (S) = {+,−} and
σ(A) = −σ(B), we obtain (A + B) × C = A × Cλ + B × C−λ , λ ∈ Λ. Indeed

([3, 2] + [−1,−4]) × [7,−7] = [14,−14],
[3, 2] × [7,−7]− + [−1,−4] × [7,−7] = [−14, 14] + [28,−28] = [14,−14],
[3, 2] × [7,−7] + [−1,−4] × [7,−7]− = [21,−21] + [−7, 7] = [14,−14].

Although in cases 2.2.1, 5.2, 6.3 and 6.4 of Theorem 3.1 some Ai or S may be
symmetric (χ(⋅) = −1), the conditionally distributive relations are unique because
their conditions fix the corresponding ν-values in an unique way.

There are some other special cases in which both relations

(A1 + A2) × C = A1 × Cµ̂(A1)̂µ(S) + A2 × Cµ̂(A2)̂µ(S), (3.1)

(A1 + A2) × C = A1 × Cµ̃(A1)µ̃(S) + A2 × Cµ̃(A2)µ̃(S) (3.2)

hold true. Those cases are: the case 3, the case 5.2 and the case 6.2 of Theorem 3.1.
In those cases there are two equal distributive representations, too. In all other cases
only one of the two conditionally distributive relations holds true.

EXAMPLE 3.2. For A, B, C ∈ T \{0} such that A+B = S ∈ T , τ(C) �= τ(S), χ(S) = 0,
ν(A) = ν(B) �= ν(S), and χ(C) ≤ min{χ(A), χ(B)}, there are two equal distributive
representations. E.g. for the intervals A = [2,−5], B = [−3, 5] and C = [4,−5], we
have

(A + B) × C =

{
A × Cτ(A)τ(S) + B × Cτ(B)τ(S) = 0 + 0,
A × C−τ(A)τ(S) + B × C−τ(B)τ(S) = [25,−20] + [−25, 20].

3.2. EQUIVALENT CONDITIONALLY DISTRIBUTIVE RELATIONS

Various different forms of the conditionally distributive relations can be derived
from Theorem 3.1 and the next theorem.

THEOREM 3.2. Let A1, A2, C ∈ D \{0} and A1 + A2 = S ∈ D . Denote by (C0)
the conditions under which the relations, defined by Theorem 3.1, hold true. The
relation

(A1 + A2) × C = A1 × Cµ(A1)µ(S) + A2 × Cµ(A2)µ(S),

that is the corresponding relation from Theorem 3.1 (µ is either µ̂ or µ̃ depending
on the type of the relation), is equivalent to the relation

(A1 + A2) × Cµ(S) = A1 × Cµ(A1) + A2 × Cµ(A2),
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which holds true iff the corresponding conditions (C0), wherein τ(C) is replaced by
µ(S)τ(C) are satisfied.

EXAMPLE 3.3. The relation (3.2) which holds true for A1, A2 ∈ T \{0}, S ∈ T \{0}
and C ∈ D \ (T ∪ R ) (case 4.2 of Theorem 3.1) is equivalent to the relation

(A1 + A2) × Cτ(S) = A1 × Cτ(A1) + A2 × Cτ(A2),

which holds true for A1, A2 ∈ T \{0}, S ∈ T \{0} and C ∈ D \ (T ∪ R ).

EXAMPLE 3.4. The relation (3.1) which holds true for A1, A2 ∈ D \T , S, C ∈
T \{0}, τ(C) = τ(S), χ(C) ≤ χ(S) (case 6.2 of Theorem 3.1) is equivalent to the
relation

(A1 + A2) × Cν(S)τ(S) = A1 × Cσ(A1) + A2 × Cσ(A2),

which holds true for A1, A2 ∈ D \T , S, C ∈ T \{0}, τ(S) = +, χ(C) ≤ χ(S).

The application of Theorem 3.1 and Theorem 3.2 is mainly for taking a com-
mon multiplier out of brackets in simplification of an interval expression. Due to
the commutativity and associativity of + and × operations, the conditionally dis-
tributive law for two additive terms is sufficient for the simplification of any interval
expression [13]. However for disclosing brackets in multiplying an interval sum we
need a generalization of Theorem 3.1 for n additive terms.

3.3. MULTIPLICATION OF A FINITE INTERVAL SUM

The next six theorems combine the sufficient conditions for disclosing brackets
in multiplication of an interval sum without referring to the end-points of the
participating intervals (conditionally distributive law for n additive terms) with the
general rules for disclosing brackets in multiplication of an interval sum when there
is no distributivity. The following notations will be used: I, J, Ii ⊆ I, i = 1, …, p and
Jj ⊆ J, j = 1, …, q are index sets (p and q are defined in each of the theorems), such

that
p⋂

i= 1
Ii = ∅,

p⋃
i= 1

Ii = I,
q⋂

j= 1
Jj = ∅,

q⋃
j= 1

Jj = J, and Ai ∈ D \T for all i ∈ I, Bj ∈ T \{0}

for all j ∈ J, S =
∑
i ∈I

Ai +
∑
j ∈J

Bj.

THEOREM 3.3. If S ∈ D \T , C ∈ D \ (T ∪ R ) and there exist index sets I, Jj,
j = 1, …, 5, some of them may be empty sets, such that

• χ(Bj) = 0 for all j ∈ J1;

• Σ2 =
∑

j ∈J2

Bj and χ(Σ2) = 0;

• ν(Bj) = + for all j ∈ J3, Σ3 =
∑

j ∈J3

Bj and (Σ3 = 0 ∨ χ(Σ3) = 0);

• ν(Bj) = − for all j ∈ J4, Σ4 =
∑

j ∈J4

Bj and (Σ4 = 0 ∨ χ(Σ4) = 0);
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then the following relation holds true(∑
i ∈I

Ai +
∑
j ∈J

Bj

)
× C

=
∑
i ∈I

(Ai × Cσ(Ai)σ(S)) +
∑
j ∈J1

(Bj × Cν(Bj)τ(Bj)σ(S))

+
∑
j ∈J2

(Bj × Cν(Σ2)τ(Bj)σ(S)) +
∑
j ∈J3

(Bj × Cτ(Bj)σ(S)) +
∑
j ∈J4

(Bj × C−τ(Bj)σ(S))

+
∑
j ∈J5

([b−
j , 0] × Cτ(Bj)σ(S) + [0, b+

j ] × Cτ(Bj)σ(S)).

THEOREM 3.4. If S ∈ T , C ∈ D \(T ∪ R ) and there exist index sets Ii, i = 1, …, 4
and Jj, j = 1, 2, some of them possibly empty sets, such that

•
∑
i ∈I1

Ai = 0,

• Σ2 =
∑
i ∈I2

Ai, χ(Σ2) = 0,

• Σ4 =
∑

j ∈J1

Bj, χ(Σ4) = 0, Σ5 =
∑
i ∈I3

Ai +
∑

j ∈J1

Bj, χ(Σ5) = 0,

then the next relation holds true.(∑
i ∈I

Ai +
∑
j ∈J

Bj

)
× C =

∑
i ∈I1

(Ai × Cσ(Ai)) +
∑
i ∈I2

(Ai × Cσ(Ai)ν(Σ2)τ(S))

+
∑
i ∈I3

(Ai × Cσ(Ai)ν(Σ5)τ(S)) +
∑
j ∈J1

(Bj × Cν(Bj)τ(Bj)ν(Σ5)τ(S))

+
∑
j ∈J2

(Bj × Cτ(Bj)τ(S)) +
∑
i ∈I4

(Ai × cσ(C)τ(S)).

THEOREM 3.5. If S ∈ D \T , C ∈ T \{0} and there exist index sets I, Jj, j = 1, …, 4,
some of them may be empty sets, such that

•
∑

j ∈J1

bτ(C)σ(S)
j = 0 (that is χ(

∑
j ∈J1

Bj) = 0 and ν(
∑

j ∈J1

Bj) �= τ(C)σ(S)),

• for all j ∈ J2 χ(C) ≤ χ(Bj) and either ν(Bj) = τ(C)σ(S), or ν(Bj) �= τ(C)σ(S),
χ(

∑
j ∈J2

Bj) = 0,

• for all j ∈ J3 τ(C) = τ(Bj), τ(C)σ(S) = ν(
∑

j ∈J3

Bj), χ(Bj) ≤ χ(
∑

j ∈J3

Bj) = χ(C),

then the following relation holds true(∑
i ∈I

Ai +
∑
j ∈J

Bj

)
× C =

∑
i ∈I

(Ai × Cσ(Ai)σ(S)) +
∑
j ∈J1

(Bj × C−τ(C)τ(Bj))

+
∑

j ∈J2 ∪J3

(Bj × Cτ(C)τ(Bj)) +
∑
j ∈J4

([bτ(C)σ(S)
j , 0]−τ(C)σ(S) × Cτ(Bj)σ(S)).
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THEOREM 3.6. If S ∈ T , C ∈ T \{0}, τ(C) �= τ(S) and there exist index sets Ii,
i = 1, 2, 3, Jj, j = 1, 2, some of them may be empty sets, such that

• Σ1 =
∑
i ∈I1

Ai is such that (Σ1 = 0 ∨ χ(Σ1) = 0);

• Σ2 =
∑
i ∈I2

Ai +
∑

j ∈J2

Bj is such that (Σ2 = 0 ∨ χ(Σ2) = 0) and for all j ∈ J2,

ν(Bj) �= ν(Σ2), χ(C) ≤ χ(Bj), then the following relation holds true(∑
i ∈I

Ai +
∑
j ∈J

Bj

)
×C = 0 =

∑
i ∈I1

(Ai × Cσ(Ai)ν(Σ1)τ(S)) +
∑
j ∈J1

(Bj × Cτ(Bj)τ(S))

+
∑
i ∈I2

(Ai × Cσ(Ai)ν(Σ2)τ(S)) +
∑
j ∈J2

(Bj × C−τ(Bj)τ(S)).

THEOREM 3.7. If S ∈ T , C ∈ T \{0}, τ(C) ∈ T (S), χ(C) ≤ χ(S) and there exist
index sets I, Jk, k = 1, …, 4, some of them may be empty sets, such that

• for all j ∈ J1, χ(C) ≤ χ(Bj),
( ∑

j ∈J1

Bj = 0 ∨ ν(Bj) = ν(S)
)

;

• for all j ∈ J2, χ(Bj) ≤ χ(Σ2) = χ(C), wherein
∑

j ∈J2

Bj = Σ2 ∈ T and either Σ2 = 0

or τ(Σ2) = τ(S), ν(Σ2) = ν(S);

•
∑

j ∈J3

Bj = Σ3 ∈ T and for all j ∈ J3, ν(Bj) �= ν(S), (Σ3 = 0 ∨ χ(Σ3) = 0), then the

following relation holds true(∑
i ∈I

Ai +
∑
j ∈J

Bj

)
× C =

∑
i ∈I

(Ai × Cσ(Ai)ν(S)τ(S)) +
∑
j ∈J3

(Bj × C−τ(Bj)τ(S))

+
∑

j ∈J1 ∪ J2

(Bj × Cν(Bj)τ(Bj)ν(S)τ(S)) +
∑
j ∈J4

([0, bν(S)
j ]ν(S) × Cτ(Bj)ν(S)τ(S)).

THEOREM 3.8. If S ∈ T , C ∈ T \{0}, τ(C) ∈ T (S), χ(S) < χ(C) and there exist
index sets Ii, i = 1, 2, Jj, j = 1, 2, 3, some of them may be empty sets, such that

•
∑
i ∈I1

Ai = Σ1 ∈ T is such that Σ1 = 0 or χ(C) = χ(Σ1), τ(C) = τ(Σ1);

• for all j ∈ J1, χ(Bj) ≤ χ(C);

•
∑

j ∈J2

Bj = Σ2 ∈ T is such that Σ2 = 0 or for all j ∈ J2, χ(C) = χ(Σ2) ≤ χ(Bj),

τ(C) = τ(Σ2), ν(Bj) = λ ∈ Λ, then the following relation holds true(∑
i ∈I

Ai +
∑
j ∈J

Bj

)
× C =

∑
i ∈I1

(Ai × Cσ(Ai)ν(Σ1)τ(S)) +
∑

j ∈J1 ∪ J2

(Bj × Cτ(Bj)τ(S))

+
∑
i ∈I2

(Ai × cν(C)) +
∑
j ∈J3

(Bj × cν(C)).
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4. Concluding Remarks

A fundamental role of the conditionally distributive law is to connect the additive
and the multiplicative groups of generalized intervals. The generalized conditionally
distributive law can be also of particular theoretical interest for a more complete
characterization of the distributive relations in the extended interval space involving
inner (nonstandard) operations [2], [8].

The application of the generalized conditionally distributive law concerns devel-
opment of some numerical methods involving proper and improper intervals, explic-
it solution of classes of interval algebraic equations, as well as development of a
methodology for true symbolic-algebraic interval computations. Even not generally
valid, the distributive law for generalized intervals turned out to be an indispensable
tool for the reduction of interval algebraic equations, with multi-incidence on the
unknown variable, to simpler ones. The latter would be helpful for the explicit
solution of the corresponding equation and/or for the reduction of the round-off
errors due to the reduced number of arithmetic operations in the simplified equation.
An application of interval distributive relations for finding general normal form of
pseudo-linear interval expressions and equations is discussed in [10].

The existence of inverse additive and multiplicative elements in the space of gen-
eralized intervals makes it possible to find algebraic solution to certain types interval
equations just by applying elementary algebraic transformations on these equations.
Such equations usually come from real-life practical problems, where modelling
equations involve multiple occurrences of the interval parameters. Applying a the-
orem for eliminating the dependency problem [3] often leads to interval equations
in generalized interval arithmetic. The validity of a conditionally distributive law
in this space considerably extends the class of interval algebraic equations that can
be solved explicitly. Some examples, illustrating the combined application of prop-
erties (2.3) and the distributive relations for solving interval algebraic equations in
one variable, can be found in [1], [13].

The algebraic and distributive-like properties of generalized interval arithmetic
can be easy and effectively exploited in the environment of a computer alge-
bra system [1]. The computer algebra implementation of the generalized inter-
val distributive relations provides automatic simplification of symbolic-numerical
interval expressions [13]. An advanced methodology for symbolic algebraic inter-
val computations involves explicit algebraic transformations on interval formulae,
automatic simplification of interval expressions and algebraic solutions to interval
equations. This way, the computer algebra tools for generalized interval arithmetic
and symbolic-algebraic manipulations [1], [13] greatly facilitate the application
and the computations with generalized intervals, which otherwise may seem too
complicated.
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