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Evgenija Popova�
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Abstract. In this paper we investigate the application of a self-veri�ed general-purpose parametric�xed-point iteration method to linear systems involving nonlinear dependencies. The inclusion methodis combined with a simple interval arithmetic technique providing inner and outer bounds for therange of monotone rational functions. The arithmetic on proper and improper intervals is consideredas an intermediate computational tool for eliminating the dependency problem in range computationand for obtaining inner estimations by outwardly rounded interval arithmetic. Therefore the targetproblems to be solved are restricted to linear systems whose input data are rational functions ofuncertain parameters varying within given intervals. Supporting software tools with result veri�cation,developed in the environment ofMathematica, are presented. The discussed methodology and softwaretools can be applied to a wide range of practical problems leading to linear systems with dependentuncertain data, in particular applications to FEM models of mechanical structures. Beside someillustrative examples, an advanced practical application from structural engineering mechanics is solvedby the discussed parametric iteration, as well as by a combination of interval techniques based onthe parametric solver; the results are compared to literature data produced by other methods. Acomparison of di�erent measures of overestimation is done.
Keywords: linear systems, interval parameters, nonlinear dependencies, automatic result veri�cation,structural steel frames.AMS subject classi�cation: 15A06, 65G20
1 Introduction
Solving parametric linear systems involving uncertainties in the parameters is an important part ofthe solution to many scienti�c and engineering problems.Consider linear algebraic system A(p) � x = b(p); (1a)where A(p) is an n�n matrix, b(p) is an n-dimensional vector and p = (p1; : : : ; pk)> is a k-dimensionalparameter vector. The elements of A(p) and b(p) are, in general, nonlinear functions of the parameters

aij(p) = aij(p1; : : : ; pk); (1b)bi(p) = bi(p1; : : : ; pk); i; j = 1; : : : ; n: (1c)�This work is supported by the Bulgarian National Science Fund under grant No. MM1301/03.
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The parameters are considered to be unknown or uncertain and varying within prescribed intervals

p 2 [p] = ([p1]; : : : ; [pk])>: (1d)
When the parameters vary within a box [p] 2 IRk the set of solutions, called parametric solutionset is

�p = �(A(p); b(p); [p]) := fx 2 Rn j A(p) � x = b(p) for some p 2 [p]g : (2)
In general, a solution set has very complicated structure, and does not need even to be convex. Theparametric solution set �p is bounded if A(p) is nonsingular for every p 2 [p]. For a nonempty boundedset � � Rn, de�ne interval hull � : PRn ! IRn by

�� := [inf �; sup�] = \f[x] 2 IRn j � � [x]g:
It is well-known that � (A(p); b(p); [p]) � � ([A]; [b]) ; (3)where

[A] = A([p]) := �fA(p) 2 Rn�n j p 2 [p]g [b] = b([p]) := �fb(p) 2 Rn j p 2 [p]g
are the non-parametric interval matrix, resp. vector, that correspond to the parametric ones (theelements of A([p]), b([p]) are assumed to be independent) and � ([A]; [b]) is de�ned in (14). Since it isquite expensive to obtain �p or ��p, the solution of interest is seeking an interval vector [y] 2 IRnsuch that [y] � ��p � �p, and the goal is [y] to be as narrow as possible.Parametric linear systems are common in practice, where the coe�cients in the system are de-scribed by complicated dependencies between di�erent factors (cf. [2, 3, 17]). The result-veri�cationmethods based on interval analysis combine the rigor in algorithm design with the controlled roundingof computer arithmetic to guarantee that the stated problem has (or does not have) a solution inan enclosing interval. In view of the relation (3) and the increasing demand of the marketplace, thedevelopment of e�cient result-veri�cation methods for sharp enclosure of ��p is highly appreciated.Probably the �rst general purpose method computing outer and inner bounds for ��p is based onthe �xed-point interval iteration theory developed by S. Rump. In [31, Theorem 4.8] Rump appliesthe general veri�cation theory for systems of nonlinear equations and explicitly states the method forsolving parametric linear systems involving a�ne-linear dependencies. This method was generalizedin [23] by proving that a sharp enclosure of the iteration matrix expands the scope of applicationof the method over problems involving the so-called column-dependent matrices. Meanwhile, therewere many attempts (mainly in applied sciences) to construct suitable methods for solving parameterdependent interval linear systems [3, 9, 10, 15, 16, 17]. While Rump's parametric �xed-point iterationis reformulated in [3] in terms of factored parameters, Muhanna and Mullen use construction meth-ods, based on the application of FEM in structural mechanics, to overcome the overestimation due tocoupling and multiple occurrences of interval parameters [15, 17]. The methods developed by Kolev[9, 10] are based on an expansion of the interval multiplication operation but they are not designedas self-veri�cation methods. Recently, a new e�cient method with result veri�cation was proposed byNeumaier and Pownuk for the special case of parametric linear systems involving a particular struc-ture of the dependencies that arise in the analysis of truss structures [20]. We do not intend to givehere a complete overview of methods used for solving linear systems with dependent data. For otherapproaches in solving mechanical problems involving uncertainties see e.g. [16], [17] and the literature
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cited therein. Most of the methods developed so far address linear systems involving a�ne-linear de-pendencies between the parameters. In [3] and [10] nonlinear dependencies are handled by linearizingthe elements of A(p); b(p) and then solving parametric system with a�ne-linear dependencies.As stated in [31], the inclusion theorems for systems of nonlinear equations or (with obvious modi�-cations) the corresponding theorems for linear equations can be applied directly even for linear systemsinvolving nonlinear dependencies between the parameters in A(p), b(p). In this paper we combine theinclusion theory, developed by S. Rump in [28, 31], with methods for sharp range estimation of con-tinuous and monotone rational functions, based on the arithmetic of proper and improper intervals, inorder to compute inner and outer bounds for ��p(A(p); b(p); [p]) where the elements of A(p), b(p) arerational functions of the parameters p. Section 2 contains some basic properties of generalised intervalarithmetic that will be used for the purpose of this work, rounded interval operations, and theorems forrange computation. Section 3 summarizes the evolution of the inclusion theorems related to di�erentkinds of linear systems, and the background of our approach in solving parametric linear systems withnonlinear dependencies. One goal of this work is to provide a free software for veri�ed enclosure ofthe parametric solution set in the environment of technical computing system Mathematica [32]. Thesoftware tools, we describe here, are intended and used for exploring the behavior of the �xed-pointiteration method applied to linear systems involving nonlinear dependencies. Because it is free andopen-source software with result veri�cation, it could be used as a benchmark for other methodologyand performance investigations related to parametric linear systems. Computer implementation ofthe algorithm for solving linear systems whose data are rational functions of interval parameters isdiscussed in Section 4 where an illustrative example is also given. Section 5 contains a detailed casestudy of a small but realistic practical problem coming from structural engineering and initially solvedin [2] by methods based on the EBE approach [15]. Methodology and software tools presented in thispaper are applied to the structural steel frame system and the results obtained by various methods arecompared. Some speculations with di�erent measures of overestimation assessing the quality of thesolution enclosures are discussed. It is demonstrated that the parametric �xed-point iteration methodis superior to the EBE approach for small parameter tolerances, providing in addition guaranteedinclusions in 
oating point at no additional cost of human preprocessing.Below we use the following notations. Rn;Rn�m denote the set of real vectors with n componentsand the set of real n�m matrices, respectively. By normal (proper) interval we mean a real compactinterval [a] = [a�; a+] := fa 2 R j a� � a � a+g. By IRn; IRn�m we denote interval n-vectors andinterval n �m matrices. The end-point functionals (�)�; (�)+, the mid-point function mid(�), wheremid([a�; a+]) := (a� + a+)=2, and the diameter (width) function !(�), where !([a�; a+]) := a+ � a�,are applied to interval vectors and matrices componentwise. The absolute value of a matrix A = (aij)is denoted by jAj = (jaij j); for [a] 2 IR, j[a]j := maxfjaj j a 2 [a]g. For two matrices of the samesize matrix (vector) inequalities A � B and the interval subset relations [A] � [B] are understoodcomponentwise. A < B if A � B and A 6= B, analogously [A] � [B] if [A] � [B] and [A] 6= [B].The above matrix notations apply to vectors, considered as one-column matrices, as well. %(A) is thespectral radius of a matrix A, I denotes the identity matrix. For interval quantities [A]; [B], operationsbetween them are always interval operations. The result is the smallest interval quantity containingthe corresponding result when using power set operations. For example,

[A] 2 IRn�n; [b] 2 IRn : [A] � [b] := \f[c] 2 IRn j 8 a 2 [A]; 8 b 2 [b] : a � b 2 [c]g:
We assume the reader is familiar with conventional interval arithmetic on proper intervals (cf. [1], [14],[19]).



Popova, E.: Solving Linear Systems whose Input Data are Rational Functions of Interval Parameters 4
2 The Arithmetic on Proper and Improper Intervals
In this section we present only those basic facts from generalised interval arithmetic which are necessaryto use it as an intermediate computational tool for handling conventional interval problems. The set ofproper intervals IR is extended in [8] by the set f[a�; a+] j a�; a+ 2 R; a� � a+g of improper intervalsobtaining thus the set I�R = f[a�; a+] j a�; a+ 2 Rg of all ordered couples of real numbers calledhere generalised intervals. The conventional arithmetic and lattice operations, order relations andother functions are isomorphically extended onto the whole set of proper and improper intervals [8].The theory of modal interval analysis imposes a logical-semantic background on generalized intervals(considered there as modal intervals), de�nes semantic extensions of continuous rational functions,establishes their properties, thus making possible to compute the semantic extensions and to givea logical meaning to the interval results [5]. By modal interval analysis the algebraic completion ofconventional interval arithmetic turns into a valuable and practically useful computing theory. Normal(proper) intervals are a special case of generalised (and modal) intervals, and the conventional intervalarithmetic can be obtained as a projection of generalised interval arithmetic on IR.\Dual" is an important monadic operator that reverses the end-points of the intervals and expressesan element-to-element symmetry between proper and improper intervals in I�R. For [a] = [a�; a+] 2I�R, its dual is de�ned by Dual([a]) = [a+; a�]. Dual is applied componentwise to vectors andmatrices. For [a]; [b] 2 I�R and � 2 f+;�;�; =g,

Dual(Dual([a])) = [a]; Dual([a] � [b]) = Dual([a]) � Dual([b]): (4)
The generalised interval arithmetic structure possesses group properties with respect to + and �operations: for [a]; [b] 2 I�R, 0 62 [b]

[a]� Dual([a]) = 0; [b]=Dual([b]) = 1: (5)
Lattice operations are closed with respect to the inclusion relation; handling of norm and metric arevery similar to norm and metric in linear spaces [8]. For more details on the theory, implementationand applications of generalized interval arithmetic consult [5], [8], [27].
2.1 Inner and Outer Estimations in Floating PointLet F � R denote the set of 
oating-point numbers on a computer, respectively IF; I�F denote thecorresponding sets of 
oating-point intervals. Denote by5;4 : R �! F the directed roundings toward�1, resp. +1 as speci�ed by the IEEE 
oating-point standard (cf. [6]). For intervals [a] = [a�; a+] 2IR, outward (�) and inward (
) roundings �;
 : IR �! IF are de�ned as

�([a]) := [5(a�); 4(a+)] � [a]; 
[a] := [4(a�); 5(a+)] � [a]: (6)
If � 2 f+;�;�; =g is an arithmetic operation in IR and [a]; [b] 2 IF, the corresponding computeroperations �� ;
� : IF� IF �! IF are de�ned by

[a] �� [b] := �([a] � [b]) = [ 5(([a] � [b])�); 4(([a] � [b])+)] � [a] � [b]; (7)[a] 
� [b] :=
([a] � [b]) = [4 (([a] � [b])�); 5(([a] � [b])+)] � [a] � [b]: (8)
Obtaining inner approximations on a computer in conventional interval arithmetic is possible onlyif the four interval arithmetic operations are implemented with inward rounding 
� in addition to thefour �� operations. Since most of the wide-spread interval packages do not support inwardly rounded
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interval arithmetic, we use an alternative computational technique based on the properties of thealgebraic extension of conventional interval arithmetic.For intervals [a] = [a�; a+] 2 I�R, outward (�) and inward (
) roundings �;
 : I�R �! I�Fare de�ned by the same formulae (6) preserving the inclusion properties (6) in I�F. Analogously,if � 2 f+;�;�; =g is an arithmetic operation in I�R and [a]; [b] 2 I�F, the corresponding computeroperations �� ;
� : I�F � I�F �! I�F are de�ned by formulae (7), (8) also preserving the inclusionproperties (7), (8) of the arithmetic in I�F.The following additional properties show that inner numerical approximations can be obtained atno additional cost only by outward directed rounding and the Dual operator in I�F [4, 5].

For [a] 2 I�R; 
([a]) = Dual(�(Dual[a])): (9)For [a]; [b] 2 I�F; � 2 f+;�;�; =g; [a] 
� [b] = Dual(Dual[a] �� Dual[b]): (10)
In order to obtain inner estimations of proper interval problems, the above properties can be alsoapplied in computing environments not supporting the arithmetic on proper and improper intervals(cf. [25]).

2.2 Elimination of the Dependency ProblemLet f : Df � Rn �! R be a real-valued rational function continuous in a domain [x] 2 IRn, [x] �Df . Denote the range of f over [x] 2 IRn by rf ([x]) = ff(x) j x 2 [x]g. Since f is continuousrf ([x]) is an interval rf ([x]) 2 IRn. If a rational function is totally monotonic for all its variablesover a box [x], the exact lower and upper bounds of the range can be obtained in exact arithmeticevaluating the function at suitable end-points of the intervals according to the monotonicity type. Theinclusion properties of conventional (proper) interval arithmetic can be used for sharp range inclusiononly if all the incidences of a variable in a function depending on a multi-incident variable have thesame monotonicity type, otherwise the dependency causes overestimation. This is the de�ciency ofconventional interval arithmetic in bounding the range of a monotone function, and one of the greatadvantages of generalised interval arithmetic, presented in the next Theorems of this section.De�ne a generalized rational extension of f as the interval function Rf ([x]) : I�Rn �! I�R de�nedby the syntactic expression of f where real variables are replaced by generalized intervals and realoperations are replaced by operations between generalized intervals. When [x] 2 IRn, Rf ([x]) is theclassical natural interval extension of f .In modal interval analysis inner and outer estimations of functional ranges over a box are connectedto an enhanced interpretation of quanti�ed propositions which has many promising applications [5]but this is out of the scope of this work. Here we specify how to eliminate the dependency problemby using generalised interval arithmetic in range computation over a domain of proper intervals. Thecorresponding formulation for the domain of modal intervals can be found in [5] and the literature citedtherein. For a better understanding, �rst we give a simple one-dimensional case and then formulatethe general theorems.We need the following de�nitions. A real function f(x; y) : R1+m �! R is x-uniformly monotonicfor x on a domain ([x]; [y]) if it is monotonic for x on [x], and it keeps the same monotonicity forall y 2 [y]. A real function f is x-totally monotonic for a multi-incident variable x 2 R if f isuniformly monotonic for this variable and for each one of its incidences (considering each incidence asan independent variable).
Theorem 2.1. Let f(x; a) be a rational function multi-incident on a. Let [x]; [a] 2 IR, f be a-totallymonotonic on [x] � [a], and there exist a splitting a0 = (a01; ::; a0p), a00 = (a001; ::; a00q ) of the incidencesof a. Let f�(x; a0; a00) correspond to the expression of f with explicit reference to the incidences of
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a and f�(x; a0; a00) be continuous on [x] � [a0] � [a00]. Suppose that f�(x; a0; a00) is �-isotone for anycomponent of a0 and �-antitone for any component of a00 on [x]� [a0]� [a00], then

� if f(x; a) is �-isotone for a on [x]� [a],
rf ([x]; [a]) = Rf� �[x]; [a0]; Dual([a00])� � Rf ([x]; [a]);

� if f(x; a) is �-antitone for a on [x]� [a],
rf ([x]; [a]) = Rf� �[x]; Dual([a0]); [a00]� � Rf ([x]; [a]):

If f : D � Rn �! R be a real-valued rational function it can be speci�ed by several expressionswhich are isomorphic by equivalent algebraic transformations. Suppose that we have chosen f to berepresented by an expression with hopefully minimal number of the variable incidences. In Theorem 2.1and hereafter the expressions of f�(x; a0; Dual(a00)), resp. f�(x; Dual(a0); a00), where the Dual-operatoris involved at the incidences of a having monotonicity type opposite to the global monotonicity of fwith respect to a, will be called dual-transformed expressions of f . A dual-transformed expression f�corresponds to a quanti�ed proposition connecting the function f , the interval vector of variables, andthe range enclosing interval. The evaluation of f� in generalised interval arithmetic provides betterrange estimation for monotone functions with multi-incident arguments. Equivalently, we may also sayRf� ([x]; [a0]; Dual([a00])), resp. Rf� ([x]; Dual([a0]); [a00]), is a dual-transformed generalised extensionof f over the domain of proper and improper intervals.The following theorem is a special case of Theorem 5.2 (*-Partially Optimal Coertion) from [5].
Theorem 2.2. Let f : Rn �! R be a real-valued rational function continuous in a given intervalvector [x] 2 IRn, and multi-incident on its variables. Let Rf ([x]) be de�ned on [x] and let thereexist splitting x = (xn; xt) such that f be totally monotonic for the components of xt. Let [xt�] bethe enlarged vector of [xt], such that each incidence of every component of xt is included in [xt�]as independent component, but transformed into its dual if the corresponding incidence-point has amonotonicity type opposite to the global one of the corresponding xt-component. Then

rf ([x]) � Rf ([xn]; [xt�])) � Rf ([x]):
In case a function f is totally monotonic for all its variables, we have a sharp range estimation,speci�ed in more details by the following theorem. For a set of indices I = fi1; : : : ; ing, the vector(xi1 ; : : : ; xin)> will be denoted by xI .Theorem 2.3. Let f : Rn �! R be a rational function continuous in a given interval vector [x] 2 IRn,multi-incident on its variables and totally monotonic on all variables. De�ne two sets of indicesP = fi1; : : : ; iqg, N = fi1; : : : ; irg such that P \ N = ;, P [ N = f1; : : : ; ng, and f be �-isotone forxi : i 2 P, f be �-antitone for xi : i 2 N . Let for each variable xi, 1 5 i 5 n, there exist splittingx0i = (x0i1; : : : ; x0ik), x00i = (x00i1; : : : ; x00im) of the incidences of xi. Let f�(x0P ; x00P ; x0N ; x00N ) correspondto the expression of f with explicit reference to the incidences of every variable, f� be continuous on[x0P ]� [x00P ]� [x0N ]� [x00N ], and Rf�([x0P ]; [x00P ]; [x0N ]; [x00N ]) be de�ned. If f�(x0P ; x00P ; x0N ; x00N ) is �-isotonefor the components of x0P ; x0N and �-antitone for the components of x00P ; x00N , then

rf ([x]) = Rf� �[x0P ]; Dual([x00P ]); Dual([x0N ]); [x00N ]� � Rf ([x]): (11)
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The application of the above theorem is illustrated in Section 4.1 below.In general, a dual-transformed expression of a function f on variables x 2 Rn will be denotedby f�(xI ; Dual(xJ )), where I and J are index sets involving the indexes of the incidences for allthe variables x such that I contains the indexes of those variable instances which are not dual-transformed, J contains the indexes of those variable instances which are dual-transformed accordingto the application of Theorem 2.1 or Theorem 2.2 or Theorem 2.3.The inclusion properties of rounded generalised intervals, rounded interval operations in I�F, andtheir inclusion properties allow a rigorous implementation of Theorems 2.1, 2.2, 2.3 on the computerproviding inner and outer inclusion of the true range


Rf� (
[xI ]; Dual(
[xJ ])) � rf ([x]) � �Rf� (�[xI ]; Dual(�[xJ ])) : (12)
Hereafter we use the notation that an arithmetic expression in parentheses preceded by a roundingsymbol (
;�) implies that all operations are performed in 
oating-point in the speci�ed roundingmode. The notation �f([x]) indicates that the argument of �f([x]) is a 
oating-point interval and
oating-point interval operations with outward rounding are to be used for evaluation.Furthermore, by applying the remarkable properties (9), (10) it is possible to obtain inner inclusiononly by outwardly rounded operations. Thus, the left inclusion relation in (12) becomes

Rf� (
[xI ]; Dual(
[xJ ])) = Dual (�Rf� (�(Dual[xI ]); Dual(�(Dual[xJ ])))) � rf ([x]): (13)

3 Inclusion Theorems
In this section we give a brief summary of the theory of the enclosure methods for our problem. Theinclusion theorems for the solution set of a parametric linear system present a direct consequence fromthe inclusion theory for nonparametric problems developed by S. Rump and discussed in many works(cf. [28, 29, 30, 31] and the literature cited therein).The basic idea of combining the Krawczyk-operator [11] and the existence test by Moore [13] isfurther elaborated by S. Rump in [28] who proposed several improvements leading to the followinginclusion theorem for the solution to an interval linear system [A] � x = [b].
Theorem 3.1 ([28, 31]). Let [A] 2 IRn�n, R 2 Rn�n, [b]; [y] 2 IRn, ~x 2 Rn be given. De�ne[z] 2 IRn, [C] 2 IRn�n by

[z] := R � ([b]� [A] � ~x) ;[C] := I �R � [A]:
De�ne [v] 2 IRn by means of the following Einzelschrittverfahren

1 � i � n : [vi] := f[z] + [C] � [u]gi; where u := (v1; : : : ; vi�1; yi; : : : ; yn)> :
If [v] $ [y], then R and every matrix A 2 [A] are regular, and for every A 2 [A], b 2 [b] the uniquesolution bx = A�1b of Ax = b satis�es bx 2 ~x+ [v]. De�ne the solution set � by

� ([A]; [b]) := fx 2 Rn j 9A 2 [A] 9 b 2 [b] : Ax = bg: (14)
Then with [d] := [C] � [v] 2 IRn the following inner estimation of �� holds true�~x+ [z]� + [d]+; ~x+ [z]+ + [d]�� � [inf(�); sup(�)] :
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When aiming to compute an inclusion of the solution to a given problem, an iteration scheme isproven to be very useful [28, 30]. Several improvements in the inclusion theory have lead to a self-veri�cation algorithm which computes an enclosure of the solution to a system of linear equations andproves the existence and uniqueness of the solution within the bounds computed in �nite precisionarithmetic. The most important features of the iterative algorithm providing an automatic resultveri�cation by the computer will be discussed in Section 4.When applying Theorem 3.1 to the solution of an interval linear system with matrix [A] 2 IRn�nand right hand side [b] 2 IRn, we assume A and b to vary componentwise independently within [A]and [b]. However, in most practical applications there are complicated dependencies between thecomponents of A and possibly the components of b. The main reason for the dependency is thatthe errors in several di�erent components may be caused by same parameters (see Section 5). Therestriction of componentwise variation to parameter variation usually shrinks the size of the solutionset signi�cantly. Computing veri�ed inclusions for the solution set of an interval linear system withdata dependencies was �rst considered by C. Jansson [7]. He treated systems with symmetric andskew-symmetric matrices, as well as dependencies in the right hand side, by improving the inclusionTheorem 3.1 to account for the dependencies in the system. In [31, Theorem 4.8] S. Rump gives astraightforward generalization to a�ne-linear dependencies in the matrix and the right hand side.In case of parameter dependent linear systems, Theorem 2.4 from [31], or with obvious modi�-cations, Theorem 3.1 can be applied directly. In order to obtain sharp inclusions, the problem isto obtain sharp bounds for the ranges of functions z(p) := �R � f(p; ~x) = R � (b(p)�A(p) � ~x) andC(p) := I � R � A(p) on the domain [p] 2 IRk because a straightforward evaluation (natural intervalextension) causes overestimation. The a�ne-linear dependencies between the parameters in A(p); b(p)allow an explicit representation of the ranges of z(p); C(p) by interval expressions, as it is stated bythe following theorem.

Theorem 3.2. Consider parametric linear system (1a) where A(p); b(p) are de�ned by
aij(p) := a(0)ij + kX

�=1 p�a(�)ij ; bi(p) := b(0)i + kX
�=1 p�b(�)i ; i; j = 1; : : : ; n:

Let R 2 Rn�n, [y] 2 IRn, ~x 2 Rn be given and de�ne [z] 2 IRn, [C] 2 IRn�n by
[z] := R � (b(0) �A(0)~x) + kX

�=1[p� ](R � b(�) �R �A(�) � ~x);
[C] := I �R �A(0) � kX

�=1[p� ](R �A(�));
where A(0) := �a(0)ij �, : : : ; A(k) := �a(k)ij � 2 Rn�n, b(0) := (b(0)i ); : : : ; b(k) := (b(k)i ) 2 Rn.De�ne [v] 2 IRn by means of the following Einzelschrittverfahren

1 � i � n : [vi] := f[z] + [C] � [u]gi; u := (v1; :::; vi�1; yi; :::; yn)>:
If [v] $ [y], then R and every matrix A(p); p 2 [p] are regular, and for every p 2 [p] the uniquesolution bx = A�1(p)b(p) of (1a) satis�es bx 2 ~x+ [v].With [d] := [C] � [v] 2 IRn and the solution set �p, de�ned by (2), the following inner estimation holdstrue �~x+ [z]� + [d]+; ~x+ [z]+ + [d]�� � [inf(�p); sup(�p)] :
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The above theorem generalizes Theorem 4.8 from [31] by requiring computation of the range ofC(p) instead of using an interval extension C([p]) (cf. [23]). Although a sharp enclosure of the iterationmatrix [C] is required also by other authors [3], the necessity of this improvement is not well justi�edtherein. The generalization of Theorem 4.8 from [31] is �rst proven theoretically and by severalnumerical examples in [22, 23]. Indeed, for a class of so-called column-dependent parametric matrices(cf. [22]), the following relation holds

[Cp] := �fC(p) j p 2 [p]g � C([p]) =: [C];
which implies j[Cp]j < j[C]j. If in addition, j[Cp]j+ j[C]j is irreducible, from the theory of nonnegativematrices it follows that %(j[Cp]j) < %(j[C]j). Thus the range enclosure of C(p) will provide convergenceof the iteration method for %(j[Cp]j) < 1, while a worse enclosure (e.g. C([p])) may not for somecolumn-dependent parametric matrices and some interval domains for the parameters. Examplesdemonstrating the expanded scope of application of the generalized inclusion Theorem 3.2 can befound in [22, 23, 25, 26].In case of arbitrary nonlinear dependencies between the parameters in a linear system we can giveonly a general formulation of the inclusion theorem, as given bellow.Theorem 3.3. Consider parametric linear system de�ned by (1a{1d). Let R 2 Rn�n, [y] 2 IRn,~x 2 Rn be given and de�ne [z] 2 IRn, [C] 2 IRn�n by

[z] := �fR (b(p)�A(p)~x) j p 2 [p]g;[C] := �fI �R �A(p) j p 2 [p]g:
De�ne [v] 2 IRn by means of the following Einzelschrittverfahren

1 � i � n : [vi] := f[z] + [C] � [u]gi; u := (v1; :::; vi�1; yi; :::; yn)>:If [v] $ [y], then R and every matrix A(p) with p 2 [p] are regular, and for every p 2 [p] the uniquesolution bx = A�1(p)b(p) of (1a{1d) satis�es bx 2 ~x+ [v].
By the same reasons as in the case of a�ne-linear dependencies, the computation of �fCij(p) jp 2 [p]g, i,j=1,. . . ,n, is important when the matrix A(p) involves column dependencies.In case of arbitrary nonlinear dependence of the coe�cients on the uncertain parameters, com-puting [z] and [C] in Theorem 3.3 requires sharp range enclosure for nonlinear functions. This isa key problem in interval analysis and there exists a huge amount of methods and techniques de-voted to this problem, no one being universal. In what follows we will restrict ourselves to linearsystems where the elements of A(p) and b(p) are rational functions of the uncertain parameters. Inthis case the elements of z(p) and C(p) are also rational functions of p. Computing enclosure of�z(p) = �fR (b(p)�A(p)~x) j p 2 [p]g, respectively of �C(p) = �fI � R � A(p) j p 2 [p]g can beperformed by computing enclosure of the range for every component function zi(p); Cij(p), de�ned by

zi(p) := nX
�=1 ri�b�(p)�

nX
�;�=1 ri�~x�a��(p); (15)

Cij(p) := �ij � nX
�=1 ri�a�j(p); (16)

where �ij = f1 if i = j; 0 otherwiseg, R = (rij), i; j = 1; : : : ; n. Our goal will be to use Theorem 2.3,or at least Theorem 2.2, for enclosing the ranges of zi(p), Cij(p). It may seem impossible to prove
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the total monotonicity for the parameters since this requires enclosing the range of the derivative.However, since [z] is an enclosure of the residual, its components should have small width for reasonableparameter tolerances. Therefore, we may hope that will be able to prove the total monotonicity ofzi(p) with respect to the parameters, even for large parameter intervals. Furthermore, the expressionsof zi(p) can be considered as an analogy of the expression f(x) = x�x, for which we have !(Rf ([x])) =2!([x]), while [x] � Dual([x]) = 0 and rf ([x]) = Rf ([x]; Dual([x])). Although sharp enclosure of theelements of [C] is necessary only for column-dependent parametric matrices, the diameter of [C] isalso not too big and we may prove the required total monotonicity. That is why, for the computationof [zi], [Cij ] from Theorem 3.3 we apply Theorem 2.3 or Theorem 2.2. A combination of Theorem 2.2with a preliminary algebraic simpli�cation of the expressions (15), (16) will be helpful for reducing thenumber of the incidences. It may seem quite restrictive to require that the elements of z(p), C(p) bemonotone functions of the parameters on some interval domains. However, we shall demonstrate inSection 5 that there are realistic practical problems which can be solved successfully by this approach.Of course, more sophisticated techniques for range enclosure will possibly expand the scope of theapplication of Theorem 3.3.The above theorems de�ne how to compute an outer enclosure of the solution set of an intervallinear system, i.e. an interval vector which is veri�ed to contain the exact solution set hull, respectivelythe true solution set of the system. However, it is important to know the quality of the computedenclosure, in other words: how much such an enclosure overestimates the exact hull of the solutionset. The amount of overestimation can be approximated by an inner inclusion of the solution set hullwhich is a componentwise inner estimation of the solution set [18, 29].
De�nition 3.1. An interval vector [x] 2 IRn is called componentwise inner approximation for someset � 2 Rn if inf�2��i � x�i and x+i � sup�2��i; for every 1 � i � n:

The inner box (interval vector) [x] 2 IRn has the property that the projection to every coordinateis an inner inclusion of the corresponding projection of the true solution set �. We estimate everycomponent of the solution set from inside. An inner inclusion of the solution set hull should bedistinguished from an inner inclusion of the solution set, that is [x] � [inf(�); sup(�)] but [x] 6� �.The outer and inner inclusions of the solution set hull together with the true solution set for theproblem from Example 4.1 are displayed in Figure 1.Basing on ideas developed in [18], a cheap method for computing rigorous inner inclusion of thesolution set hull is proposed in [29]. The next theorem, resp. the second part of Theorems 3.1, 3.2,establish how to compute the componentwise inner estimation of the (parametric) solution set.
Theorem 3.4. Let A(p) � x = b(p), where A(p) 2 Rn�n, b(p) 2 Rn, p 2 [p] 2 IRk, and R 2 Rn�n,~x 2 Rn, [y] 2 IRn be given. De�ne

[z] := � fR � (b(p)�A(p) � ~x) j p 2 [p]g ;[�] := [C] � [y]; where [C] := � fI �R �A(p) j p 2 [p]g :
Let the solution set �p = �(A(p); b(p); [p]) be de�ned as in (2) and assume

[z] + [�] $ [y]:
Then [~x+ [z]� + [�]+; ~x+ [z]+ + [�]�] j ��p j ~x+ [z] + [�]
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or, in coordinate notations, for all i = 1; : : : ; n there exists x�; x+ 2 �p with

~xi + [zi]� + [�i]� 5 x�i 5 ~xi + [zi]� + [�i]+ and~xi + [zi]+ + [�i]� 5 x+i 5 ~xi + [zi]+ + [�i]+:
In order to have a guaranteed inner inclusion all the computations should be done in computerarithmetic with directed roundings.The method from Theorem 3.4 has its limits. When widening the intervals for the parameters,respectively the interval components of the linear system, the inner inclusion becomes smaller andsmaller, and �nally vanishes. The latter means that no quantitative measure for the quality of theouter enclosure can be given. For wide parameter intervals empty inner inclusion usually means badouter enclosure and, when further widening the input intervals, the outer solution enclosure will failat a certain point. Numerical examples demonstrating this e�ect can be found in [26]. The sameresult of empty inner inclusion intervals can be obtained also for very tight parameter intervals dueto the rounding errors in computing inner approximations. A necessary and su�cient condition for anon-empty inner inclusion is provided by the following relation [21]

!([�i]) 5 !([zi]);
where the notations are as in Theorem 3.4, [�i] is computed with outward rounding and [zi] iscomputed with inward rounding.When somehow we have sharpen the outer solution enclosure � �p � [v̂] � [v] = ~x+ [z] + [�],then the improved outer estimation [v̂] can replace [v] in Theorem 3.4 to get an improved innerestimation of ��p. Numerical example demonstrating this property can be found in [21].
4 Algorithm and Implementation
The basic goals of self-validating methods are to deliver rigorous results by computations in �niteprecision arithmetic, including the proof of existence (and possibly uniqueness) of a solution. Inorder to achieve this goal the inclusion theorems from the preceding section should be veri�able oncomputers. With the de�nitions of rounded 
oating-point interval arithmetic (cf. Section 2.1) anddue to its inclusion properties, the following Theorem holds true.
Theorem 4.1. Consider parametric linear system de�ned by (1a{1d) with p 2 [p] 2 IFk. Let R 2Fn�n, [y] 2 IFn, ~x 2 Fn be given. De�ne

z(p) := R (b(p)�A(p)~x) ;C(p) := I �R �A(p)
and suppose that the elements of z(p), C(p) are real-valued rational functions. With the notations andthe assumptions of Theorems 2.2, 2.3 de�ne [z] 2 IFn, [C] 2 IFn�n by

[zi] = �z�i ([pIi ]; Dual[pJi ])[Cij ] = �C�ij([pIij ]; Dual[pJij ]); i; j = 1; : : : ; n:
De�ne [v] 2 IFn by means of the following Einzelschrittverfahren

1 � i � n : [vi] := f�([z] + [C] � [u])gi; u := (v1; :::; vi�1; yi; :::; yn)>:
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If [v] $ [y], then R and every matrix A(p) with p 2 [p] are regular, and for every p 2 [p] the uniquesolution bx = A�1(p)b(p) of (1a{1d) satis�es bx 2 �(~x+ [v]).With [d] := �([C] � [v]) 2 IFn the following inner estimation of ��p holds true�4 �~x+ (
[z])� + [d]+� ; 5(~x+ (
[z])+ + [d]�)� � [inf(�p); sup(�p)] :

In the implementation of the above Theorem we choose R � A�1(pm) and ~x � A�1(pm) � b(pm),where pm = mid([p]).The inclusions of the residual vector [z] and the iteration matrix [C] should be sharp. Supposethat rangeExpr(f(p), [p]) is a function which veri�es the conditions of Theorem 2.2 and yields thecorresponding dual-transformed expression f�(pI ; DualpJ ) for a rational function f(p) continuous on[p]. The evaluation of this expression in rounded generalised interval arithmetic for p 2 [p] gives acorresponding inner/outer inclusion of the true range of f(p), as presented in (12), (13). In order toreduce the number of occurrences of the parameters, a rearrangement of the expressions (15), (16)(e.g. by algebraic simpli�cation) is usually helpful as a preliminary step before applying the functionrangeExpr.When aiming to compute a self-veri�ed enclosure of the solution to a linear system by the aboveinclusion methods, an iteration scheme, usually called �xed-point iteration, is proven to be very useful[28, 30]. To force [V ] $ [Y ], the concept of "-in
ation is introduced. Epsilon in
ation blows up theintervals somewhat in order to \catch" a nearby �xed-point. For a real interval [a], "-in
ation isde�ned by
blow([a]; ") = ([a] + !([a])[�"; "]; if !([a]) > 0[pred(a); succ(a)]; if !([a]) = 0;where pred(a), succ(a) are the predecessor and successor of a 
oating-point number a in the 
oating-point screen. The "-in
ation is applied to interval vectors componentwise. Usually, " = 0:1 or " = 0:2are reasonable values. A complete overview of the convergence behavior of the a�ne iteration withthe "-in
ation is given in [28]. The classical veri�cation step is extended by an Einzelschrittverfahrenwhich accelerates the iteration.The following algorithm computes guaranteed inclusions of the solution set hull to a linear systemwhose input data are rational functions of interval parameters.

Algorithm 4.1. Inner and Outer Inclusions of the Parametric Solution Set Hull
1. Initialization.�p := mid ([p]); �A := A(�p); �b := b(�p);Compute R � �A�1; ~x = R � �b.
2. Enclosures.

2.1 Compute the analytic expressionsz(p) := R (b(p)�A(p) � ~x);C(p) := I �R �A(p);2.2 Apply algebraic simpli�cation to z(p) and C(p) in order to reduce the number of incidencesof the variables.2.3 Obtain the corresponding dual-transformed expressions. For i; j = 1; : : : ; nz�i (pIi ; Dual(pJi)) = rangeExpr(zi(p); [p])C�ij(pIij ; Dual(pJij )) = rangeExpr(Cij(p); [p]);
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2.4 For i; j = 1; : : : ; n[z]i = �z�i ([pIi ]; Dual[pJi ]);[C]ij = �C�ij([pIij ]; Dual[pJij ]);3. Veri�cation.
[x] := [z];repeat[y] := [x] := blow([x]; ")for i = 1 to n do [xi] := �([zi] + [Ci] � [x])until [x] $ [y] or max iteration exceeded
If [x] $ [y] then ��p � �(~x+ [x]);else the algorithm fails.

4. Inner Estimation of the Outer Enclosure. (If [x] $ [y])[y] = Dual (� (~x+ �z�(Dual[pI ]; [pJ ]) + [C] � [x]));for i = 1 to n, If [yi] 62 IR then [yi] = ;;[y] � ��p � �(~x+ [x]).
By the next example we illustrate the above algorithm.

Example 4.1. Consider a linear system the elements of whose matrix are rational functions of �veinterval parameters Ap = ��(p1 + p2)=p4 p5p2p4 p3=p5
� ; bp = �11

� ;
where p1; p3 2 [0:96; 1:04], p2 2 [1:92; 2:08], p4; p5 2 [0:48; 0:52].

In the initialization step we have
�p = (1; 2; 1; 0:5; 0:5)>; R = ��0:16 0:040:08 0:48

� ; ~x = (�0:12; 0:56)>
After an algebraic simpli�cation, the residual vector is

z(p) =  �0:12 + 0:0192(p1 + p2)=p4 + 0:0048p2p4 � 0:0224p3=p5 + 0:0896p50:56� 0:0096(p1 + p2)=p4 + 0:0576p2p4 � 0:2688p3=p5 � 0:0448p5
! :

Function rangeExpr proves the total monotonicity of both components with respect to all the pa-rameters. For the �rst component function we have one incidence of p3 and the same monotonicityfor all the incidences of p2 and p5, so that there will be no dual-transformation for these parameters.The �rst component function is globally �-antitone with respect to p4 while �-isotone for the �rst p4incidence and �-antitone w.r.t. the second p4 incidence. Analogously, the second component functionis globally �-isotone with respect to p2, p5 and has di�erent monotonicity w.r.t their incidences. Thus,the rangeExpr function yields the following dual-transformed expressions for the residual function
z�(p; Dual) =  �0:12 + 0:0192(p1 + p2)=p4 + 0:0048p2Dual(p4)� 0:0224p3=p5 + 0:0896p50:56� 0:0096(p1 + Dual(p2))=p4 + 0:0576p2p4 � 0:2688p3=p5 � 0:0448Dual(p5)

! :



Popova, E.: Solving Linear Systems whose Input Data are Rational Functions of Interval Parameters 14
The evaluation of the above z�(p; Dual) in generalised interval arithmetic gives the following enclosurewith outwardly rounded arithmetic (for simplicity the results are presented with 6 digits accuracy)

[z] = ([�0:0143946; 0:0148305]; [�0:0500198; 0:0466349])>:
The interval evaluation of z(p) overestimates the evaluation of z�(p; Dual) by 2.5%, resp. 9.1% forthe vector components. The evaluation of C�(p; Dual) in generalised interval arithmetic gives thefollowing enclosure

[C] = � [�0:079936; 0:0739102] [�0:00986667; 0:00935385][�0:0514757; 0:0509653] [�0:0784; 0:0722462]
� :

For this particular example, the natural interval extension of C(p) is also convergent. The veri�cationiteration converges in one iteration yielding the following outer solution enclosure
��p � ([�0:136242; �0:103329]; [0:505062; 0:611791])>:

The corresponding inner inclusion of the solution set hull is
([�0:132555; �0:107016]; [0:515136; 0:601717])> � ��p:

The obtained inner and outer inclusions of the solution set hull are presented on Figure 1 together

Figure 1: Solution set of the system from Example 4.1 and its inner (dashed line) and outer inclusionsby the parametric �xed-point iteration.
with the true solution set. The true overestimation of the exact solution set hull is 11.19 %, 9.51 %for the components.

Interval methods and the algorithm discussed in this paper are implemented in the environmentof Mathematica [32]. The Mathematica package IntervalComputations `LinearSystems` containsa collection of functions which compute guaranteed inclusions for the solution set of an interval linearsystem [24]. The particular solvers di�er upon the type of the linear system to be solved and theimplemented solution method. Now, the existing functions are updated to handle sparse arrays asinput data, and several new functions are implemented.ParametricSSolve[Ap, bp, tr] computes a guaranteed enclosure of the solution set to a para-metric linear system Ap.x = bp involving nonlinear dependencies by the algorithm presented abovein this section. The parameters and their interval values are speci�ed by a list tr of transformation
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rules1. The function can take two optional arguments a�ecting the computational process, respec-tively the output of the function. Options in Mathematica are set by giving rules of the form name ->value. Each rule must appear after all the other arguments of a function. Rules for di�erent optionscan be given in any order. If no explicit rule is given for a particular option, a default setting for thatoption is used. InnerEstimation is an option associated to everyone of the iterative solvers of intervallinear systems. InnerEstimation, when set to True, speci�es the computing of component-wise innerapproximation of the solution set in addition to the outer enclosure. The option is set to False by de-fault. Even set to True, the option is active only if the Mathematica package IntervalComputations`GeneralisedIntervals` is available [27]. Refinement is an option also associated to everyone ofthe iterative solvers of interval linear systems. Refinement set to True implies an iterative re�nementprocedure applied to the computed outer solution enclosure. The default setting is False.Since traditional numerical systems do not have integrated symbolic capabilities with which toperform symbolic preprocessing, the role of computer algebra systems increase. Such environmentsallow not only convenient symbolic-numeric representation of the input parameter-dependent data butprovide also a variety of functions for converting expressions from one form to another. Simpli�cationis the \killer application" of computer algebra (application that everyone wants but only one can).The Mathematica function Simplify tries to �nd the simplest form of an expression by applyingvarious standard algebraic transformations. The newly developed function ParametricSSolve whichsolves parametric linear systems involving nonlinear dependencies applies algebraic simpli�cation tothe expressions of the residual function z(p) (15) and the iteration matrix C(p) (16) as a symbolicpreprocessing step before the application of the function rangeExpr.rangeExpr[expr, pars, pvals] is a newly developed function which veri�es the conditions ofTheorem 2.2 and generates the corresponding dual-transformed expression for an input expressionexpr which should be a rational function of a number of variables speci�ed by a list pars. Theinterval values for the parameters are speci�ed by a list pvals of rules having the form name ->value. rangeExpr uses symbolic di�erentiation and algebraic simpli�cation when trying to �nd themonotonicity type of expr with respect to parameters.Approaching to parametric linear systems with nonlinear dependencies, the integration of symbolic-algebraic and self-validating numerical computations based on interval arithmetic is found to be afruitful synergism. The power of Mathematica to support rigorous exact and/or variable precisioninterval computations, the functionality of a generalized interval arithmetic package and the tools pro-vided by the presented interval problem solving package, make a suitable environment for explorationand solving real-life parametric problems with uncertainty.In order to provide a broad access to the above solvers for interval linear systems a web interfaceis developed and can be found athttp://cose.math.bas.bg/webComputing/Accessing the webComputing pages users enter or upload data, choose between di�erent options, andsubmit data to build up a sequence of results in a numeric, symbolic, graphics or combined form.The end-users do not need to buy, install, and maintain software; they do not need to develop usersoftware or to learn di�erent software applications training time being considerably reduced. Theycan be certain that use the most recent version. The technical professionals and interval researcherscan easily explore newly developed methods; compare the e�ciency of di�erent methods and softwaretools; teach interval methods involving students in an active exploration by doing. Since algebraiccomputations are time consuming and webMathematica applications have a �xed time limit for usingthe Mathematica kernel, the nonlinear parametric web solver is suitable only for small size problems,while large problems involving a�ne-linear dependencies can be solved remotely. The parametric web

1Mathematica transformation rules have the form name -> value.
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solvers allow uploading data �les from the client machine onto the server. For a parametric system,3 data �les (containing the matrix, the right-hand side vector and the rules for the parameters) arerequired. Present restriction to the maximum size of a data �le is 4MB. Matrix/vector data in a �lepresently should be speci�ed by Mathematica lists, or as sparse arrays [32]. Future enhancement ofthe solvers include di�erent data formats, downloading the generated results on the client machineand combining/reusing the results from di�erent pages.
5 Practical Case Studies
The case studies, considered here, illustrate the method presented in this paper as well as its com-bination with other interval techniques for obtaining sharp bounds to the solutions of linear systemsinvolving nonlinear dependencies between uncertain parameters. These are small but realistic prob-lems coming from structural engineering where the analysis of linear mechanical systems, in particularframes, by Finite Element methods leads to parametric linear systems.Example 5.1. A simple one-bay structural steel frame, initially considered in [2], is presented inFig. 2.

Figure 2: One-bay structural steel frame (after [2]).
Applying conventional methods for analysis of frame structures the authors of [2] have assembleda system of linear equations K � x = F;where K is the following global sti�ness matrix0
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whose elements are, in general, nonlinear functions of the following parameters: material propertiesEb; Ec, cross sectional properties Ib; Ic; Ab; Ac, lengths Lb; Lc, and the joint sti�ness �. The right hand
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Table 1: Parameters involved in the steel frame example, their nominal values, and worst case uncer-tainties.

parameter nominal value uncertaintyEb 29 � 106 lbs/in2 �348 � 104Young modulus Ec 29 � 106 lbs/in2 �348 � 104Ib 510 in4 �51Second moment Ic 272 in4 �27:2Ab 10:3 in2 �1:3Area Ac 14:4 in2 �1:44External force H 5305:5 lbs �2203:5Joint sti�ness � 2:77461 � 109 lb-in/rad �1:26504 � 108Length Lc 144 inLb 288 in
side vector F = (H; 0; 0; 0; 0; 0; 0; 0)> in this example is considered to depend only on the appliedloading H. Typical nominal parameter values and the corresponding worst case uncertainties, asproposed in [2], are shown in Table 1.In [2] all the parameters, except the lengths, are considered to be uncertain and varying withingiven intervals. Replacing Lb and Lc with their nominal values we come to the problem of solving aparametric linear system K(p) � x = F (p); (17)where the vector of the uncertain parameters is p = (Eb; Ec; Ib; Ic; Ab; Ac; �;H)>, the right hand sidevector is F (p) = (H; 0; 0; 0; 0; 0; 0; 0)>, and the parametric matrix K(p) is
0
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:

In what follows we solve the system (17) by the parametric iteration algorithm given in Section 4and by other interval techniques based on the parametric iteration. The results will be compared towhat is obtained by alternative methods based on the Element-By-Element approach [2], [17].To judge about the quality of an outer enclosure we need a measure of overestimation. As itwas discussed at the end of Section 3, the parametric iteration is internally equipped with an innerprojection inclusion allowing estimation of the quality of the outer inclusion. For two intervals [a]; [b] 2IR such that [a] � [b], the standard measure of overestimation that is usually applied is the percentageby which [b] overestimates the interval [a], de�ned as O! : IR� IR �! R+O!([a]; [b]) := 100(1� !([a])=!([b])):Distance-based measures of overestimation are sometimes used in the engineering literature (e.g., [17]).Od : IR� IR �! R� R is de�ned byOd([a]; [b]) := 100 �1� a�=b�; 1� a+=b+� :
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Since we will compare our results to those obtained in [2], we will need the measure of overestimationused therein. For [a]; [b] 2 IR, [a] � [b] and c 2 R, c 2 [a], de�ne Oc : IR� IR� R �! R+ by

Oc([a]; [b]; c) := 100 �b� � a� + a+ � b+� =c:
Overestimation measures are applied to interval vectors componentwise.In order to compare the results generated by di�erent methods, we strictly follow the structuresystem and the uncertainties for the parameters considered in [2]. Initially, the system (17) is solvedwith parameter uncertainties which are 1% of the values presented in the last column of Table 1,
Eb; Ec 2 [28965200; 29034800]; Ib 2 [509:49; 510:51]; Ic 2 [271:728; 272:272]; Ab 2 [10:287; 10:313]Ac 2 [14:3856; 14:4144]; � 2 [276195960; 278726040]; H 2 [5283:465; 5327:535]: (18)A straightforward replacement of the parameters in the system matrix and in the right hand sidevector with their interval values result in a nonparametric interval linear system where all the elementsin the matrix and the right hand side vector are assumed to vary independently within their intervals.This approach, called na��ve interval approach, obscures and does not account for the dependenciesbetween the parameters in solving practical problems which by their physical nature depend on manyparameters. It is well-known that the solution of a na��ve interval system greatly overestimates thesolution of the original parametric linear system (cf. [2]). Nevertheless, many recent papers stillcompare the results of parametric methods to the corresponding na��ve interval solution (e.g. [2], [15],[17]). In this paper, instead comparing to the na��ve solution, we will use a numerical estimation forthe quality of the obtained parametric solution enclosure, the latter will be compared to the exact hullof the solution range for small size problems, and will apply a combination of interval techniques toachieve the sharpest possible bounds on the system response for large worst case parameter tolerances.
Table 2: Crisp mid-point solution and exact hull of the solution set for one-bay steel frame examplewith uncertain parameters (18). The results are rounded outwardly to 10 digits accuracy.

solution Mid-pointcomponent solution { � Hull [h] Result from [2]1. d2x 0.1532674393 [ 0.1522337225, 0.1543064583] [ 0.15237484, 0.15476814]2. d2y � 103 0.3267821043 [ 0.3238038302, 0.3297806172] [ 0.32940418, 0.33533906]3. r2z � 103 -0.9646668639 [-0.9716802606, -0.9576972256] [-0.97085151, -0.95490139]4. r5z � 103 -0.4656795813 [-0.4690776187, -0.4622956573] [-0.4638112, -0.45611532]5. r6z � 103 -0.4270205236 [-0.4301833247, -0.4238710974] [-0.44930811, -0.4418354]6. d3x 0.1507136505 [ 0.1496936077, 0.1517389545] [ 0.14985048, 0.15221127]7. d3y � 103 -0.6709042527 [-0.6773755655, -0.6644898010] [-0.33533906, -0.32940418]8. r3z � 103 -0.9327734470 [-0.9396132343, -0.9259770093] [-0.95100335, -0.93531196]
It is rigorously proven, by using a hybrid numerical approach combining veri�ed parametric linearsolver and proven global and local monotonicity properties of the parametric solution [24], that the ex-act hull of the parametric solution set can be obtained by the combinatorial approach. In combinatorialapproach, the exact bounds for the parametric system response are obtained as minimum/maximumof the solutions to all point linear systems corresponding to an exhaustive combination of the extremevalues of the interval parameters. This way, by a rigorous application of the monotonicity approach,we can �nd the exact hull of the parametric solution set to our system involving the uncertain interval
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parameters (18). The results presented in Table 2 are obtained �rst in rational arithmetic and thenrounded to 10 digits of accuracy.The parametric linear system (17) is solved by the present parametric �xed-point iteration. Thesystem involves eight uncertain parameters which are considered to vary independently within tol-erance intervals (18). One single execution of the parametric solver function guarantees the outerenclosure of the system response which could be observed from any combination of the values of cross-sectional properties, loading, material properties and connections. Table 3 shows the results obtainedin just one single execution of the parametric solver function: the guaranteed outer enclosure of thesystem response and an inner estimation of the outer enclosure allowing to estimate the quality of theouter enclosure.
Table 3: One-bay steel frame example with uncertain parameters (18): outer enclosure [u] of thesolution set and its inner estimation [v] computed by the present parametric �xed-point iteration.

solutioncomponent solution inclusions O!([v]; [u])
1. d2x 1.66 %outer [ 0.1522222356, 0.1543123381]inner [ 0.1522396156, 0.1542949581]2. d2y � 103 1.15 %outer [ 0.3237760067, 0.3297873075]inner [ 0.3238105628, 0.3297527514]3. r2z � 103 9.17 %outer [-0.9719730914, -0.9573591990]inner [-0.9713028984, -0.9580293920]4. r5z � 103 17.31 %outer [-0.4693539781, -0.4620039136]inner [-0.4687177899, -0.4626401019]5. r6z � 103 27.08 %outer [-0.4306060526, -0.4234337856]inner [-0.4296350039, -0.4244048344]6. d3x 1.68 %outer [ 0.1496821686, 0.1517448275]inner [ 0.1496994940, 0.1517275021]7. d3y � 103 1.59 %outer [-0.6773978325, -0.6644092806]inner [-0.6772948472, -0.6645122658]8. r3z � 103 6.80 %outer [-0.9398187649, -0.9257267319]inner [-0.9393393872, -0.9262061096]

The obtained solution inclusions of (17){(18) are used for comparison of di�erent measures ofoverestimation and the results are displayed in Table 4.



Popova, E.: Solving Linear Systems whose Input Data are Rational Functions of Interval Parameters 20
Table 4: One-bay steel frame example with uncertain parameters (18): comparison of overestimationmeasures in %. Oc([h]; [ui]) are after [2], i = 3 { Table V, i = 2 { Table IV, i = 1 { Table III,respectively, dash means no available data.
solution 12O! O! 102Od Oc Oc Oc Occomp. ([v]; [u]) ([h]; [u]) ([h]; [u]) ([h]; [u]; �) ([~h]; [u3]; �) ([~h]; [u2]; �) ([~h]; [u1]; �)
1. d2x 0.83 0.83 -0.75, 0.38 0.011 0.29 0.40 78.022. d2y 0.57 0.57 -0.86, 0.20 0.011 0.004 0.13 85.383. r2z 4.58 4.31 3.01, -3.53 0.065 0.75 0.84 81.184. r5z 8.65 7.73 5.89, -6.31 0.122 1.62 1.63 85.325. r6z 13.54 11.99 9.81, -10.32 0.201 { { {6. d3x 0.84 0.84 -0.76, 0.39 0.011 { { {7. d3y 0.79 0.79 0.33, -1.21 0.015 { { {8. r3z 3.40 3.23 2.19, -2.70 0.049 { { {
The most precise estimation of the quality of an outer enclosure [u] is given by Ow([h]; [u]) whichgives the percentage by which [u] overestimates the exact solution set hull [h] = ��p. However,obtaining [h] is an NP-hard problem. That is why, [u] should be compared to an easy computableinner estimation of [h]. The presented parametric �xed-point method provides a guaranteed innerestimation [v] of the hull at no additional cost. Since the computation of [v] uses the computed outerenclosure [u] in a \symmetric " way, it can be expected that [v] is almost symmetric to [u] with respectto the exact solution set hull. That is why, 12Ow([v]; [u]) � Ow([h]; [u]) as demonstrated in Table 4.Note that Ow([v]; [u]) is an upper bound on the true overestimation Ow([h]; [u]). So, if [v] 6= ;, thepresent method provides also a good measure for the quality of the solution enclosure by 12O!([v]; [u]).Often, for an inner estimation of the solution set hull, the authors use a solution [~v] obtained bythe combinatorial approach or the monotonicity approach. In general, both approaches give a solution[~v] � ��p. Since the size of underestimation is unpredictable and could be considerable, a measureOverestimation([~v]; [u]) could be arbitrary weak. When rigorously applied (by proven monotonicityproperties), both approaches give the exact solution set hull in exact arithmetic. Usually, the exactsolution set hull for structural engineering problems can be described by the combinatorial approach.In this case, the combinatorial approach applied in 
oating-point arithmetic without directed roundingmay give a solution [~v] 6� �(�p) (compare the results in Table 2) and O!([~v]; [u]) would not be correct.Distance-based measure Od gives two numbers with di�erent signs corresponding to the end-points of the intervals. As demonstrated in Table 4, the distance-based measure Od([h]; [u]) yieldsvalues which are two orders of magnitude less than the overestimation measure O!([h]; [u]). The otheroverestimation measure Oc([h]; [u]; �) is also not comparable to O!([h]; [u]) giving values with oneorder of magnitude less than the latter.The last three columns in Table 4 present the quality of the solution enclosures obtained in [2] bythe application of EBE approach [17] to the system (17){(18). The application of the EBE approachwas successively improved in [2] by applying subdistributivity property and scaling which has resultedin improved solution enclosures measured by Oc([~h]; [ui]; ~�), where [~h] is the solution set hull fromthe last column of Table 2, [ui] is the corresponding solution enclosure. Comparing the best solution
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enclosure, obtained by the EBE approach | Oc([~h]; [u3]; ~�), to the quality Oc([h]; [u]; �) of the solutionenclosure obtained by the present parametric method, we see the superiority of the present methodby one order of magnitude.It is well-known that the parametric �xed-point iteration gives sharper solution enclosures forsmaller interval tolerances. To illustrate this e�ect we subdivide the ranges (18) of some wide interval-valued parameters and obtain the enclosure of system response as a hull of the solution enclosuresin all sub-domains. Table 5 compares the results obtained after the application of the subdivisionapproach. The �rst column in the table demonstrates the improvement (between 0.37% and 3.05%)in the solution enclosure obtained by subdivision of the intervals. The overestimation for the di�erentcomponents of the system response is di�erent ranging from 0.2% to 9.22%.
Table 5: One-bay steel frame example with uncertain parameters (18) solved by subdivision of theparameter intervals (Eb; Ec; Ib; Ic; Ab; Ac; �;H)> correspondingly into (5; 5; 1; 1; 1; 1; 5; 1)> equal subin-tervals. Inner [vs] and outer [us] inclusions of the solution set hull are compared to the exact hull [h](Table 2) and to the inner and outer inclusions [v]; [u] (Table 3) computed without subdivision.

solution O! 12O! O! Occomponent ([us]; [u]) ([vs]; [us]) ([h]; [us]) ([h]; [us]; �)
1. d2x 0.53 % 0.30 % 0.30 % 0.004 %2. d2y 0.37 % 0.20 % 0.20 % 0.004 %3. r2z 1.36 % 2.96 % 3.00 % 0.045 %4. r5z 2.34 % 5.82 % 5.52 % 0.085 %5. r6z 3.05 % 9.71 % 9.22 % 0.150 %6. d3x 0.54 % 0.31 % 0.31 % 0.004 %7. d3y 0.49 % 0.30 % 0.30 % 0.006 %8. r3z 1.18 % 2.05 % 2.08 % 0.031 %

The presented parametric �xed-point iteration fails in solving the parametric linear system (17)for the worst case (over 40%) parameter uncertainties given in Table 1. For very large parameteruncertainties the iteration matrix is not strongly regular as required by the method. But we can solvethe problem by subdividing the parameter intervals. As small are the sub-domains (as many are thesubdivisions) as better will be the solution enclosure. For completeness, in Table 6 we present thecombinatorial solution [~h] to the system (17) with worst-case uncertain parameters. Since we havenot proven that the range of the system response coincides with the combinatorial solution, the lattershould be considered as an inner estimation of the hull.Inclusions (inner and outer) of the solution set hull are obtained by subdivision of the worst-case parameter intervals (Eb; Ec; Ib; Ic; Ab; Ac; �;H)> correspondingly into (2; 2; 1; 1; 1; 1; 6; 6)> equalsubintervals. The quality of the obtained outer enclosure is presented in Table 7. Although theinner estimations for some components are empty set intervals, the corresponding outer enclosure iscomputed with 20% to 56% overestimation of the combinatorial solution. These results show that evenfor comparatively large parameter intervals, having 6% to 10% uncertainty, the presented parametric�xed-point iteration is able to enclose the solution.
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Table 6: Combinatorial solution to one-bay steel frame example with worst-case uncertainty in theparameters (Table 1). The results are rounded outwardly to 10 digits accuracy.

solutioncomponent combinatorial solution [~h]1. d2x � 10 [ 0.7075232547, 2.941366859]2. d2y � 103 [ 0.1104840303, 0.7566847593]3. r2z � 103 [-2.0031328402, -0.4304905453]4. r5z � 103 [-0.8879147528, -0.1862032536]5. r6z � 103 [-0.8212198352, -0.1701250948]6. d3x � 10 [ 0.6939942045, 2.8996174023]7. d3y � 103 [-1.7622106815, -0.2355509106]8. r3z � 103 [-1.9522427316, -0.4139722766]
Table 7: One-bay steel frame example with worst-case parameter uncertainties (Table 1)solved by subdivision of the parameter intervals (Eb; Ec; Ib; Ic; Ab; Ac; �;H)> correspondingly into(2; 2; 1; 1; 1; 1; 6; 6)> equal subintervals. Inner [vs] and outer [us] inclusions of the solution set hull arecompared to the combinatorial solution [~h] (Table 6).

d2x d2y r2z r5z r6z d3x d3y r3z12O!([vs]; [us]) { 24.13 % { { { { 35.20 % {O!([~h]; [us]) 27.72 % 20.21 % 38.21 % 55.45 % 56.20 % 27.95 % 32.81 % 39.61 %
Example 5.2. Consider a simple planar frame with three types of support and an external loaddistributed uniformly along the beam as shown in Figure 3.

Assuming small displacements and linear elastic material law, and using the method of forces,the frame is described in [12] by a set of equilibrium equations for forces and bending moments, seeFigure 3 (b). The beam properties are Young modulus E and momentum of inertia J of the beamcross-section. The �nal matrix of the system is not symmetric. Moreover, the elements of the right-hand side vector depend on parameters of the beams, not only on external loads (this is partly dueto the presence of distributed load along one of the beams). The parameters of this frame will begiven as dimensionless numbers. It is assumed that all the beams have the same Young modulus Ebut momentum of inertia J of the beam cross-sections are related by the formula J12 = J23 = 1:5J24.Substituting that into the combined equations for the frame and making appropriate simpli�cations,a linear system A � x = b described by the following relations is obtained in [12] (all matrix elementsnot speci�ed below are equal to zero)
12a11 = a12 = a21 = a65 = �a74 = l12a22 = 2l12 + 2l23; a33 = 3l24 + 2l23; a66 = l12 + l24; a23 = a32 = �2l23; a68 = l23; a86 = l24a47 = a48 = a54 = a55 = a56 = �a61 = �a71 = a72 = �a83 = 1
b = (0; 0; �38q l324; 0; q l24; q l24(l12 + 12 l24); 0; 12q l224)>:



Popova, E.: Solving Linear Systems whose Input Data are Rational Functions of Interval Parameters 23

Figure 3: Planar frame (a) and its fundamental system of internal parameters (b), after [12].
The lengths of the beams and the load are considered to be uncertain with the following nominalvalues l12 = l24 = 1, l23 = 0:75, and q = 10. It is assumed that there is no prestressing of the structuredue to inexact dimensions of the beams. For that, the uncertainties are considered either as errorsof measurements of the elements of the already existing structure, or else assume the structure willbe assembled from inexact elements, but in a way that does not lead to prestressing (e.g., by slightlymoving appropriate supports when necessary).At �rst, the system is solved for 1% uncertainty in all parameters, that is

l12 2 [0:995; 1:005]; l24 2 [0:995; 1:005]; l23 2 [0:74625; 0:75375]; q 2 [9:95; 10:05]:
The solution enclosure [u] generated by the parametric iteration and its componentwise inner es-timation [v] are presented in Table 8. Using the obtained solution enclosure [u] and solving thecorresponding derivative systems, global and local monotonicity properties of the system responsewith respect to model parameters are proven numerically and listed in Table 9. Note that the last twosolution components are only locally monotone with respect to l12. Thus the quality of the solutionenclosure obtained by the parametric iteration is compared to the exact solution set hull in Table 8.The results show a good sharpness of the enclosures for all solution components, the last two of which(horizontal reactions Rx1 and Rx3) being about �ve times more sensitive to the variations in modelparameters than the other solution components.
Table 8: Solutions for moments and reactions of the planar frame system with 1% uncertain param-eters. The exact solution set hull and the outer enclosure are outwardly rounded while the innerinclusion of the solution set hull is rounded inwardly.

hull [h] inner [v] outer [u] O!([v]; [u]) Oc([v]; [u]; �)M1 [.24479, .25530] [.24487, .25520] [.24470, .25537] 1.55 0.07M21 [-.51059, -.48958] [-.51045, -.48970] [-.51070, -.48945] 1.15 0.05M24 [-1.0171, -.98309] [-1.0170, -0.98326] [-1.0173, -.98304] 0.63 0.02Ry1 [-.76973, -.73072] [-.76933, -.73090] [-.76990, -.73032] 1.43 0.08Ry3 [6.6698, 6.8309] [6.6702, 6.8301] [6.6691, 6.8312] 0.66 0.02Ry4 [3.9600, 4.0401] [3.9606, 4.0399] [3.9599, 4.0406] 0.77 0.02Rx1 [-.68421, -.64953] [-.68354, -.65133] [-.6860, -.64887] 6.61 0.37Rx3 [.64953, .68421] [.65133, .68354] [.64887, .68600] 6.61 0.37
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Table 9: Planar frame system: monotonicity properties of the system response.

solution componentparameter M1 M21 M24 Ry1 Ry3 Ry4 Rx1 Rx3l12 -1 1 1 1 -1 1 -1 -1 1 1l24 1 -1 -1 -1 1 1 -1 1l23 1 -1 1 -1 1 1 1 -1q 1 -1 -1 -1 1 1 -1 1
Table 10 lists the solutions for moments and reactions of the planar frame system with 2% uncertainlengths and 30 % uncertain load. Despite of the huge uncertainty in the load, except for the quitesensitive components of the horizontal reactions Rx1 and Rx3 , the overestimations for the other solutioncomponents have grown only twice. The monotonicity properties of the system response listed in Table9 are rigorously proven also for this case of larger uncertainties which allows us to �nd the guaranteedvery sharp hull enclosure presented in the second column of Table 10.

Table 10: Solutions for moments and reactions of the planar frame system with 2% uncertain lengthsand 30 % uncertain load. The exact solution set hull and the outer enclosure are outwardly roundedwhile the inner inclusion of the solution set hull is rounded inwardly.
hull [h] inner [v] outer [u] O!([v]; [u]) Oc([v]; [u]; �)M1 [.20577, .29681] [.20728, .29512] [.20409, .29831] 3.37 1.27M21 [-.59361, -.41155] [-.59101, -.41379] [-.59583, -.40897] 2.57 0.96M24 [-1.1778, -.82973] [-1.1766, -.83295] [-1.1811, -.82856] 1.26 0.44Ry1 [-.89941, -.61121] [-.89249, -.61471] [-.90278, -.60442] 3.41 1.35Ry3 [5.6585, 7.8708] [5.6648, 7.8510] [5.6390, 7.8768] 1.14 0.38Ry4 [3.366, 4.646] [3.3795, 4.6419] [3.3618, 4.6596] 1.36 0.44Rx1 [-.79948, -.54330] [-.78804, -.55743] [-.85082, -.49464] 28.08 14.99Rx3 [.54330, .79948] [.55743, .78804] [.49464, .85082] 28.08 14.99
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6 Conclusion
In this work we reported newly developed software tools for solving parametric linear systems whoseinput data are rational functions of interval parameters.Our goal was to study the behavior of the parametric �xed-point iteration in cases when we cancompute the range hull of the residual vector and the iteration matrix. To this end the iterationmethod was combined with a technique for sharp range enclosure based on the arithmetic of properand improper intervals. The latter is also used for computing a numerical estimation for the qual-ity of the solution set enclosure. Although the Mathematica package `GeneralizedIntervals` containsindispensable tools for solving many problems, the usage of methods based on generalised intervalarithmetic is by no means obligatory for the application of the parametric �xed-point iteration. Fur-thermore, combining the iteration method with more sophisticated advanced tools for range enclosurewill certainly expand its scope of application to systems involving more complicated dependencies.We have demonstrated the feasibility of the general-purpose parametric �xed-point iteration tosolve linear systems involving nonlinearly dependent data. As it is known in the case of a�ne-lineardependencies, the method provides very sharp and guaranteed inclusions for the solution set hullwhen the parameter intervals have relatively small widths. It was demonstrated by the examples thatfor small intervals the method is superior to other, although not self-veri�ed, methods like the EBEapproach [15, 17] generating sharper inclusions. Even for quite large parameter uncertainties, theinterval subdivision will guarantee the feasibility of the method and the accuracy of the inclusions ata price of bigger computing time. It is hoped that an application of more clever branch-and-boundstrategies will reduce the computing time. So, the biggest drawback of the parametric �xed-pointiteration is the requirement of strong regularity of the parametric matrix, while the most attractivefeature of the discussed methodology and software tools consists in the fact that they yield validatedinclusions computed by a �nite precision arithmetic.Since the discussed parametric method is the only, by now, general-purpose self-veri�ed method, itpresents an indispensable tool for computer-assisted proof of global and local monotonicity propertiesof a linear system solution with respect to the parameters. Basing on these properties, a guaranteedand highly accurate enclosure of the solution set hull can be computed. This was shortly demonstratedby the examples and a detailed presentation of this approach is forthcoming.Contrary to other approaches for modelling uncertain mechanical systems (e.g. the EBE approach[15, 17] which applies special techniques at the level of constructing the linear system to be solvedin order to reduce the dependencies), the present method requires no preliminary specialized con-struction methods. For example, there is no need to overcome the coupling as in the EBE approach.Present method is highly automated since engineers need to apply only conventional methods for ob-taining the linear system in a parametric form by software tools widely available in modern computingenvironments (Matlab, Mathematica, etc.). Uncertainties in all the system parameters (e.g., mate-rial, load and geometry properties) can be considered and handled simultaneously. A combinationof interval methods can ensure very sharp bounds for the system response range. Furthermore, thepresent method and all the methods combined to obtain sharp bounds for the system response, areimplemented rigorously in software tools which are freely available and ready for application.The present approach is also applicable to other uncertainty theories which rely on interval arith-metic for computations, such as fuzzy set theory, random set theory, or probability bounds theory.
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