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Abstract

Consider linear systems involving affine-linear dependencies on interval parameters. Presented is a free C-XSC software imple-
menting a generalized parametric fixed-point iteration method for verified enclosure of the parametric solution set. Some specific
features of the corresponding algorithm concerning sharp enclosure of the contracting matrix and inner approximation of the solution
enclosure are discussed.
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1. Introduction

Consider the linear system A(p) · x = b(p) represented as(
A(0) +

k∑
�=1

p�A
(�)

)
· x = b(0) +

k∑
�=1

p�b
(�), p ∈ [p] ∈ IRk , (1)

where A(0) := (a
(0)
ij ), . . . , A(k) := (a

(k)
ij ) ∈ Rn×n are numerical matrices, b(0) := (b

(0)
i ), . . . , b(k) := (b

(k)
i ) ∈ Rn are

numerical vectors. When the parameters p1, . . . , pk vary within a range [p] ∈ IRk the parametric solution set is

�p = �(A(p), b(p), [p]) := {x ∈ Rn | A(p) · x = b(p) for some p ∈ [p]}. (2)

For a nonempty bounded � ⊆ Rn, define interval hull ♦ : P Rn → IRn by ♦(�) := [inf �, sup �]. Here we discuss
the computation of [y] ∈ IRn such that [y] ⊇ ♦(�p) ⊇ �p.

An iteration method for verified enclosure of �p, which accounts for arbitrary affine-linear dependencies in the
matrix and the right-hand side vector, is proposed by Rump in [12] and generalized for strongly regular parametric
matrices in [9].
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The goal of this work is to provide a free, open-source software for the verified enclosure of the parametric solution
set in the environment of C-XSC [4]. The software tool, we describe here, implements a generalized fixed-point
iteration method for parametric linear systems and has our expertise and experience in implementing validated interval
computations built in [10].

We use the following notations. Rn, Rn×m denote the set of real vectors with n components and the set of real n×m

matrices, respectively. By normal (proper) interval we mean a real compact interval [a] = [a−, a+] := {a ∈ R |
a− �a�a+}. By IRn, IRn×m we denote interval n-vectors and interval n × m matrices. The end-point functionals
(·)−, (·)+, the mid-point function mid(·), where mid([a−, a+]) := (a− + a+)/2, and the diameter function diam(·),
where diam([a−, a+]) := a+ − a−, are applied to interval vectors and matrices componentwise. �(A) is the spectral
radius of a matrix A. Denote by A([p]) := ♦{A(p) ∈ Rn×n | p ∈ [p]}, b([p]) := ♦{b(p) ∈ Rn | p ∈ [p]} the
non-parametric interval matrix, resp. vector, that corresponds to the parametric ones. Hence, A([p]) · x = b([p]) is the
non-parametric system corresponding to the parametric one.

2. Theoretical background

A detailed presentation of the theory of the enclosure methods for our problem can be found in [12,8,9,10]. Rump’s
parametric fixed-point method for enclosing the solution of (1) requires strong regularity of the non-parametric interval
matrix [12]. The original theorem is generalized for strongly regular parametric matrices [9] by replacing [C] = I −
R · A([p]) with (3). Although similar iteration methods are used also by other authors [1,7] without addressing the
rounding errors and not referring to [12], the necessity of using an iteration matrix of type (3) is not justified therein.
The latter is proven in [8], where classes of matrices are defined for which the generalization is efficient. The advantages
of the generalized method are demonstrated in Section 4, [9,10] by examples comparing both methods.

Theorem 1. Consider (1). Let R ∈ Rn×n, [Y ] ∈ IRn, x̃ ∈ Rn and define

IRn � [Z] := R · (b(0) − A(0)x̃) +
k∑

�=1

[p�](R · b(�) − R · A(�) · x̃),

IRn×n � [C(p)] := I − R · A(0) −
k∑

�=1

[p�](R · A(�)). (3)

Initialize [U ] := [Y ] and define [V ] ∈ IRn by means of the following Einzelschrittverfahren:

1� i�n : Vi := {[Z] + [C(p)] · [U ]}i , Ui := Vi (update of [U ]).

If [V ]�[Y ], then R and every matrix A(p), p ∈ [p] are regular, and for every p ∈ [p] the unique solution x̂ =
A−1(p)b(p) of (1) satisfies x̂ ∈ x̃ + [V ].

With [D] := [C(p)] · [V ] ∈ IRn the following inner estimation of ♦(�p) holds true:

[x̃ + [Z]− + [D]+, x̃ + [Z]+ + [D]−] ⊆ [inf(�p), sup(�p)].

In the implementation we choose R ≈ A−1(pm) and x̃ ≈ A−1(pm)·b(pm), where pm=mid([p]). To force [V ]�[Y ],
the concept of �-inflation is introduced. For a real interval [w], �-inflation is defined by

blow([w], �) =
{ [w] + diam([w])[−�, �] if diam([w]) > 0,

[pred(w), succ(w)] if diam([w]) = 0,

where pred(w), succ(w) are the predecessor and successor of a floating-point number w in the floating-point screen,
see [10].
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3. Inner and outer estimations in floating point

The first part of Theorem 1 defines how to find an interval vector [y], which is verified to contain ♦(�p). However,
it is important to know how much this inclusion overestimates the exact hull of the parametric solution set. The quality
of the outer enclosure can be estimated by a componentwise inner estimation of the exact hull [11]. [x] ∈ IRn is called
componentwise inner approximation for some set � ∈ Rn if

inf
�∈�

�i �x−
i and x+

i � sup
�∈�

�i for every 1� i�n.

It should be noted that [x] ⊆ [inf(�), sup(�)] but [x]��.
Let F ⊂ R denote the set of floating-point numbers on a computer. Denote by %,$ : R −→ F the directed

roundings toward −∞, resp. +∞ [6]. For intervals [a] = [a−, a+] ∈ IR, outward (♦) and inward (©) roundings
♦, © : IR −→ IF are defined as

♦([a]) := [%(a−),$(a+)] ⊇ [a], ©[a] := [$(a−),%(a+)] ⊆ [a]. (4)

If ◦ ∈ {+, −, ×, /} is an arithmetic operation and [a], [b] ∈ IF, the corresponding computer operations , :
IF × IF −→ IF are defined by

[a] [b] := ♦([a] ◦ [b]) = [%(([a] ◦ [b])−), $(([a] ◦ [b])+)] ⊇ [a] ◦ [b], (5)

[a] [b] := ©([a] ◦ [b]) = [$(([a] ◦ [b])−), %(([a] ◦ [b])+)] ⊆ [a] ◦ [b]. (6)

To compute an inner estimation of the solution enclosure by the second part of Theorem 1 on a computer one
needs an inner estimation ©[Z] of [Z]. Obtaining guaranteed inner approximations on a computer in conventional
interval arithmetic is possible only if the four interval operations are implemented with inward rounding in addition
to the four operations. Since most of the wide-spread interval packages do not support inwardly rounded interval
arithmetic, here we give an alternative computational technique based on the properties of an algebraic extension of
the conventional interval arithmetic.

The set of proper intervals IR is extended in [5] by the set {[a−, a+] | a−, a+ ∈ R, a− �a+} of improper intervals
obtaining thus the set IR∗ = {[a−, a+] | a−, a+ ∈ R} of all ordered couples of real numbers called here generalized
intervals. The conventional (arithmetic and lattice) operations, order relations and other functions are isomorphically
extended onto the whole set of proper and improper intervals [5]. The same is done for the inward and outward roundings
so that formulae (4)–(6) are valid for generalized intervals. We present only those basic facts from generalized interval
arithmetic which are necessary to use it as an intermediate computational tool for handling proper interval problems.

“Dual” is an important monadic operator that reverses the end-points of the intervals and expresses an element-to-
element symmetry between proper and improper intervals in IR∗. For [a] = [a−, a+] ∈ IR∗, its dual is defined by
Dual([a])=[a+, a−]. Dual is applied componentwise to vectors and matrices. For [a], [b] ∈ IR∗ and ◦ ∈ {+, −, ×, /},

Dual(Dual([a])) = [a], Dual([a] ◦ [b]) = Dual([a]) ◦ Dual([b]). (7)

As the following properties show inner numerical approximations can be obtained at no additional cost only by outward
directed rounding and the Dual operator in IF∗ [2].

For [a] ∈ IR∗, ©([a]) = Dual(♦(Dual([a]))). (8)

For [a], [b] ∈ IF∗, ◦ ∈ {+, −, ×, /}, [a] [b] = Dual(Dual([a]) Dual([b])). (9)

We apply the above properties to obtain inner estimations of proper interval problems in a computing environment not
supporting generalized interval arithmetic.

Now, we consider the computation of ©([Z]). With the notations of Theorem 1, let

z(�) := R(b(�) − A(�)x̃), � = 0, 1, . . . , k.
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Table 1
Multiplication Dual ([a−, a+]) × [b−, b+] for [a], [b] ∈ IR

Dual([a]) × [b] b− �0 b+ �0 b− < 0 < b+

a− �0 [a+b−, a−b+] [a−b−, a+b+] [a−b−, a−b+]
a+ �0 [a+b+, a−b−] [a−b+, a+b−] [a+b+, a+b−]
a− < 0 < a+ [a+b−, a−b−] [a−b+, a+b+] [0, 0]

Then [Z] = z(0) +∑k
�=1 [p�]z(�). Using the well-known inclusion properties of interval arithmetic we obtain

[Z] = z(0) +
k∑

�=1

[p�]z(�) ⊆ ♦
(

♦(z(0)) +
k∑

�=1

[p�] · ♦(z(�))

)
and ©

(
©(z(0)) +

k∑
�=1

[p�] × ©(z(�))

)
⊆ [Z].

The operator × indicates multiplication of proper and improper intervals. We will see that we must implement this
operation only for the case improper interval multiplied by a proper interval. The definition of this operation is given
in Table 1.

Applying properties (8) to the last inclusion in IR∗n, we get

Dual

(
♦
(

Dual(©(z(0))) +
k∑

�=1

Dual([p�]) × Dual(©(z(�)))

))
⊆ [Z]. (10)

For fixed � = 0, . . . , k, let d(�) ∈ Fn be a floating-point approximation of b(�) − A(�)x̃, d(�) ≈ b(�) − A(�)x̃. The
error e(�) of this approximation is e(�) = b(�) − A(�)x̃ − d(�).

Hence, ©(e(�)) := ©(b(�) −A(�)x̃ −d(�)) is an inner approximation of the error, while ♦(e(�)) := ♦(b(�) −A(�)x̃ −
d(�)) is an outer one

©(e(�)) ⊆ b(�) − A(�)x̃ − d(�) ⊆ ♦(e(�)).

Multiplying both sides above by R and applying the inclusion properties of interval operations, we get

©(z(�)) := ©(R · ©(e(�)) + R · d(�)) ⊆ z(�) ⊆ ♦(R · ♦(e(�)) + R · d(�)) =: ♦(z(�)). (11)

If computed by a real dotproduct accumulator, ©(e(�)) = Dual(♦(e(�))) and thus left-hand side inclusion in (11) is
equivalent to

©(R · Dual(♦(e(�))) + R · d(�)) ⊆ z(�).

Applying (8) we get

Dual(♦(R · ♦(e(�)) + R · d(�))) ⊆ z(�),

that is,

©(z(�)) = Dual(♦(R · ♦(e(�)) + R · d(�))) = Dual(♦(z(�))).

Substituting the last expression into (10) and applying (7), we obtain ©([Z]) only by outwardly rounded interval
operations between proper and improper intervals.

©([Z]) = Dual

(
♦
(

♦(z(0)) +
k∑

�=1

Dual([p�]) × ♦(z(�))

))
.

The product Dual([p�]) × ♦(z(�)) for � = 0, 1, . . . , k, where ♦(z(�)) is a proper interval vector and Dual([p�]) is an
improper interval, should be implemented according to Table 1 defining the product of a proper and an improper interval
as a special case of the multiplication of generalized intervals considered in [5].
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Above we have proven the following:

Theorem 2. Consider (1) with p ∈ [p] ∈ IFk . Let R ∈ Fn×n, [Y ] ∈ IFn and x̃ ∈ Fn. For � = 0, 1, . . . , k, define
d(�) :≈ b(�) − A(�)x̃, ♦(e(�)) := ♦(b(�) − A(�)x̃ − d(�)) and ♦(z(�)) := ♦(R · ♦(e(�)) + R · d(�)). Define ♦([Z]) ∈ IFn,
[C(p)] ∈ IFn×n by

♦([Z]) := ♦
(

♦(z(0)) +
k∑

�=1

[p�] · ♦(z(�))

)
,

[C(p)] := ♦
(

I − R · A(0) −
k∑

�=1

[p�] × (R · A(�))

)
.

Define [V ] ∈ IFn by 1� i�n: Vi := {♦([Z]) [C(p)] [U ]}i , [U ] := (V1, . . . , Vi−1, Yi, . . . , Yn)
�. If [V ]�[Y ], then

R and every matrix A(p), p ∈ [p] are regular, and the solution set (2) satisfies [inf(�p), sup(�p)] ⊆ x̃ [V ].
With [D] := [C(p)] [V ] the following inner estimation holds true:

Dual

(
x̃ ♦

(
♦(z(0)) +

k∑
�=1

Dual([p�]) × ♦(z(�))

)
[D]

)
⊆ [inf(�p), sup(�p)], (12)

where the operator × is defined in Table1.

The inner estimation (12) should be interpreted in terms of proper intervals. Components of the inner estimations
(12) may be improper intervals which are interpreted in IR as empty sets. In this case no inner estimation for these
components can be given.

4. New open source software ParLinSys

ParLinSys is a new open source module for verified solving of parametric linear systems which is implemented in
C++ using C-XSC [4,6] and some routines from the C++Toolbox forVerified Computing [3]. The algorithm, based on
the above theoretical considerations, and the implementation details are given in [10]. ParLinSys uses entirely numerical
representation for the parametric matrix and r.h. side vector. Since our implementation is intended also for education and
experimentation purposes, the implemented function for computing enclosures for the parametric solution set involves
arguments for switching on/off the sharp enclosure of the iteration matrix, specifying a value for the constant of epsilon
inflation, and switching on/off the computation of an inner approximation for the outer enclosure. For a more detailed
documentation and examples about how to use the new module refer to [10]. The software and the paper [10] are freely
available at http://www.math.uni-wuppertal.de/wrswt/xsc/cxsc_software.html.

Below we give three numerical examples demonstrating the advantage of the generalized iteration method. The
matrices specified by the following parameter dependent system are all symmetric and regular:(

1 p

p
31

10
p + 9

100

)
· x =

(
1
1

)
, [p] =

[
29

10
,

31

10

]
∈ IR1.

The corresponding non-parametric interval matrix

A([p]) =

⎛⎜⎜⎝
1

[
29

10
,

31

10

]
[

29

10
,

31

10

] [
908

100
,

970

100

]
⎞⎟⎟⎠

is not strongly regular. The spectral radius �(|I − mid−1(A[p]) · A([p])|) = 7
6 +

√
8437
78 is greater than 1 (as it is

readily seen the matrix A([p]) even contains singular point matrices). This means that all methods based on strong
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Table 2
ParLinSys results for the three-diagonal parametric problem

n 0.1% 1% 10%

[C] [C(p)] [C] [C(p)] [C] [C(p)]

it min–max it min–max it min–max it min–max it min–max it min–max

5 1 7.99–9.97 1 8.64–9.97 2 0–9.70 2 1.61–9.72 3 0–6.19 2 0–7.20
20 1 9.67–9.98 1 9.97–9.98 1 6.86–9.76 1 9.67–9.78 4 0–7.12 1 6.95–7.91
30 1 9.49–9.97 1 9.97–9.98 2 5.31–9.65 1 9.67–9.78 5 0–0 1 6.93–7.88
35 2 3.57–9.80 1 9.03–9.96 2 0–7.71 2 3.19–9.60 — 3 0–6.00
40 1 9.33–9.97 1 9.97–9.98 2 3.99–9.64 1 9.67–9.78 — 1 6.93–7.88
50 1 9.15–9.92 1 9.97–9.98 2 2.61–9.11 1 9.67–9.77 — 1 6.89–7.80

100 1 8.21–9.79 1 9.96–9.97 3 0–6.41 1 9.63–9.75 — 2 6.39–7.45
150 1 6.92–8.58 1 9.96–9.96 — 1 9.56–9.63 — 2 5.63–6.27
250 3 0–0.43 1 9.89–9.90 — 1 8.96–8.97 — 3 0–0
450 3 0–1.10 1 9.82–9.92 — 1 8.32–9.19 — 3 0–1.57
650 2 0–4.38 2 2.84–9.96 — 2 0–9.62 — 3 0–5.01
800 5 0–0 2 0–9.87 — 2 0–8.74 — 4 0–0
830 — 2 0–9.84 — 2 0–8.37 — 6 0–0
850 — 1 4.04–9.80 — 2 0–7.98 — —
900 — 2 0.81–9.54 — 2 0–5.33 — —

1500 — 2 0–9.55 — 2 0–5.43 — —
2000 — 2 0–9.83 — 2 0–8.23 — —

regularity of the matrix A([p]) will fail. However, the improved iteration matrix [C(p)] leads to a spectral radius

�(|[C(p)]|) = 31
78 +

√
877
78 = 0.777 . . . < 1. Running our solver ParLinSys we find e.g. the following outer estimation:

([-4.188067739E+01,7.464990816E+01], [-2.464361101E+01,1.438720075E+01]).

Consider A(p) · x = b(p, q) with

A(p) =

⎛⎜⎜⎜⎜⎝
1 p

p 1 p

p 1 p
. . .

p 1

⎞⎟⎟⎟⎟⎠ , b(p, q) = (−p, 0, . . . , 0, −q)�,

where p ∈ [100±�], q ∈ [1±�/100]. ParLinSys module was used to solve the above parametric problem for dimensions
up to 2000, three different tolerances � ∈ {0.1, 1, 10} for the parameters and applying either non-parametric iteration
matrix [C] or the improved matrix [C(p)]. A function Sharpness([x], [y])was involved to compute a measure
for the quality of a solution enclosure [x] ⊇ ♦(�) based on an inner estimation [y] ⊆ ♦(�).

Sharpness ([x], [y]) := {1 if diam ([x]) = 0, 0 if [y] = ∅, diam ([y])/diam ([x]) otherwise}.
Table 2 presents the obtained results, where “it” denotes the number of iterations, and “min/max” are the corresponding
min/max of sharpness estimations for the solution components. Sharpness values are multiplied by 10 and dash (–)
indicates that the corresponding method has failed to find a solution enclosure.

Consider the parametric systems Q(2, p)x = b(p), where for i, j = 1, . . . , n

qij (2, p) :=

⎧⎪⎨⎪⎩
pj if i�j,

0 if i = j + 2,

1 otherwise,

b(p) = (p1, . . . , pn)
�,

pk ∈ [k ± k ∗ �/100], k = 1, . . . , n,

� ∈ {2.5, 5, 10}.
The results for these dense systems with many parameters are presented in Table 3.
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Table 3
ParLinSys results for the systems Q(2, p)x = b(p)

n 2.5% 5% 10%

[C(p)] [C] [C(p)] [C] [C(p)] [C]

it min–max it min–max it min–max it min–max it min–max it min–max

4 1 8.22–8.93 3 0–2.14 2 6.48–7.82 6 0–0 2 3.33–5.71 —
10 1 6.86–9.15 5 0–2.36 2 4.17–8.26 — 2 0.06–6.51 —
50 2 3.98–9.42 — 2 0.39–8.84 — 2 0–7.68 —

100 2 2.08–9.43 — 2 0–8.87 — 2 0–7.75 —
200 2 0–9.44 — 2 0–8.89 — 2 0–7.78 —
300 2 0–9.45 — 2 0–8.89 — 2 0–7.79 —
400 2 0–9.45 — 2 0–8.89 — 2 0–7.80 —
500 2 0–9.45 — 2 0–8.90 — 2 0–7.80 —

5. Conclusion

ParLinSys seems to be the first open source software able to compute inner and outer estimations for the solution set
hull of parametric linear systems with affine-linear dependencies. Our generalized method requires strong regularity of
the parametric matrix. In contrast to former methods the improved iteration matrix extends the scope of applicability
to systems where the corresponding non-parametric interval matrix is not necessarily strongly regular. The examples
show that the improved approach often allows bigger dimensions and larger intervals for the parameters (Tables 2 and
3). In many cases less iterations are necessary and in general the sharpness of the inner and outer estimations is better.
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