Simplification of Symbolic-Numerical Interval Expressions*

E. D. Popova

Inst. of Mathematics & Comp. Sci.

Bulgarian Academy of Sciences
Acad. G. Bonchev str., block 8

BG-1113 Sofia, Bulgaria
epopova@iph.bio.bas.bg

Abstract

Although interval arithmetic is increasingly used in com-
bination with computer algebra and other methods, both
approaches — symbolic-algebraic and interval-arithmetic —
are used separately. Implementing symbolic interval arith-
metic seems not suitable due to the exponential growth in
the “size” of the end-points. In this paper we propose a
methodology for “true” symbolic-algebraic manipulations
on symbolic-numerical interval expressions involving inter-
val variables instead of symbolic intervals. Due to the bet-
ter algebraic properties, resembling to classical analysis, and
the containment of classical interval arithmetic as a special
case, we consider the algebraic extension of conventional in-
terval arithmetic as an appropriate environment for solving
interval algebraic problems. Based on the distributivity re-
lations, a general framework for simplification of symbolic-
numerical expressions involving intervals is given and some
of the wider implications of the theory pertaining to interval
algebraic problems are discussed.

1 Introduction

Interval arithmetic [1], [16] is widely recognized nowadays
as a valuable computing technique. It is increasingly used
in combination with symbolic, algebraic and other methods.
Answering the objective requirements for controlling round-
off errors and handling uncertain input data, the general-
purpose computer algebra systems Reduce, Maple, Math-
ematica supply interval arithmetic [6], [12]. The usage of
validated computations at critical points of some algebraic
algorithms improves the stability of the complete solution
[23]. Several hybrid algorithms [4], [8], [14], using floating-
point and/or interval arithmetic in intermediate computa-
tions, combine the speed of numerical computations with
the exactness of symbolic methods providing still guaranteed
correct results and a dramatic speed up of the corresponding
algebraic algorithm.

*This work was partially supported by the Bulgarian National Sci-
ence Fund under grant No. I-507.95.
Permission to make digital/hard copy of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication and its date appear, and
notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. ISSAC’98, Rostock,
Germany. (©1997 ACM 0-89791-875-4/ 97/ 0007 $ 3.50

207

C. P. Ullrich

Institute for Informatics
University of Basel
Mittlere str. 142
CH-4056 Basel, Switzerland
ullrich@ifi.unibas.ch

Several constraint satisfaction systems, based on combi-
nation and/or cooperation of different (including interval)
methods, have been proposed during the last years [2], [5],
[9]. Constraint solvers act either independently, dynami-
cally sharing their results, or some solvers perform some
preprocessing for the others. Most of the systems combine
symbolic computations to transform the initial constraint
system and interval-based techniques to compute the solu-
tions. It is a common practice that interval arithmetic pack-
ages, even developed as part of a computer algebra system,
support only numerical interval computations. The interval
arithmetic package INTPACK of the Maple share library al-
lows computations on intervals involving only floating-point
numbers, infinity and FAIL [6]. The Mathematica kernel
function Interval allows combined usage of all types of ex-
act numbers, mathematical constants and/or exact single-
tons with inexact (approximate real) numbers at the inter-
val end-points, providing that former are handled exactly
and later rounded correctly by the interval arithmetic op-
erations and functions [12]. Symbolic interval arithmetic,
however, is not supported “because combinatorial explosion
of expressions involving Min and Max functions would quickly
render any symbolic result useless” [13]. The reason for a
combined but independent usage of symbolic-algebraic and
interval methods is that the well-known interval arithmetic
is an incomplete algebraic structure inappropriate for both
symbolic and algebraic computations.

Among several extensions of the classical interval arith-
metic [1], [16] which have been proposed, we consider that
one aiming at its algebraic completion'. First developed by
H.-J. Ortolf [17] and E. Kaucher [11], further investigated
by E. Gardenes et al. [7], S. Markov [15] and others, it is
obtained as an extension of the set of conventional (proper)
intervals by improper intervals and a corresponding exten-
sion of the definitions of all interval arithmetic operations
and functions. The obtained extended interval arithmetic
structure possesses group properties regarding addition and
multiplication. Handling of norm and metric are very simi-
lar to norm and metric in linear spaces. An attractive goal is
to make use of the algebraic completeness of extended inter-
val arithmetic, embedding it in a computer algebra system,
and investigating how the algebraic properties can be ex-
ploited for true symbolic-algebraic manipulations on inter-
val expressions, automatic theorem proving, developing of
explicit interval algorithms and effective solution of certain

!completion to a group structure obtained by valid algebraic con-
structions [15]

interval algebraic problems.

Some basic formulae and algebraic properties are viewed
in Section 2 in concise functional notations. In Section 3
we discuss the implementation of numerical extended inter-
vals in computer-algebra system Mathematica [24] and which
extra functionalities in comparison to conventional interval
arithmetic can be achieved by working in the extended inter-
val space. Section 4 is devoted to the conditionally distribu-
tive law on addition and multiplication of extended intervals.
Two equivalent forms of the distributive relations are pre-
sented — one defining rules how to multiply out a sum of
intervals and the other defining rules how to take a common
variable out of brackets. Based on the distributivity rela-
tions for extended intervals, we give a general framework
for simplification of symbolic-numerical expressions involv-
ing intervals. A discussion concerning possibilities and use-
fulness of what has been thought as impossible (or useless)
by now — symbolic-algebraic manipulation of interval for-
mulae — is followed by a summary of some of the wider
implications of the theory pertaining to interval algebraic
problems and some further implementation considerations.

2 Basic Formulae and Properties

The set of conventional (proper) intervals {[a™,a™] | a~ <
at,a”,a" € R} is extended by the set {[a",a™] | a= >
at,a",at € R} of improper intervals obtaining thus the
set D = {[a”,a"] | a”,a" € R} = R? of all ordered cou-
ples of real numbers called extended (or directed) intervals.
Extended intervals will be denoted by capital letters and
a® € R with A € A = {+,—} is the first or second end-
point of A € D depending on the value of A\. The binary
variable A will be sometimes expressed as a ”product” of
two or more binary variables, A\ = uv, u,v € A, defined by
++4+ = —— =+, and +— = —+ = —. Degenerate (point)
intervals are those for which a™ = a™.

The inclusion order relation between normal intervals is
extended for A, B € D by

ACB <= (b"<a) and (at <bh). (1)
Several functionals are used extensively for characteriz-
ing extended intervals. For an interval A € D “direction”

7: D — A is defined by

:{+,

An extended interval A is called proper, if 7(A) = + and
improper otherwise. Improper intervals should not be con-
fused with external (Kahan’s [10]) intervals, obtained as a
result of division by zero containing normal intervals. An
extended interval can be considered as a set of values be-
tween two real numbers which is equipped with a direction
of tracing this set. An interpretation of extended intervals
by ranges of monotonous functions leads to some valuable
applications. Let f(z) be a continuous, monotonous func-
tion over an interval X = [z7,z"]. f[X] = [f(z7), f(z1)] is
called “directed range” of f over X. For a proper interval X,
the extended interval f[X] is proper, if f is monotonously
increasing and f[X] is improper, if f is monotonously de-
creasing over X (see Figure 1). This way, an extended in-
terval contains information about not only a set of values
but also about which direction this set is traced (that is the
monotonicity type of a function). Another interpretation of

if a= <at,
otherwise .

7(4) (2)

208

f(x)

Tf[A] - proper

-

f[B]-inproper l

Figure 1: Interpretation of extended (directed) intervals as
directed ranges of monotonous functions.

proper and improper intervals as tolerance or control sets
can be found in [7]. From an algebraic point of view, im-
proper intervals play the same role in interval arithmetic
which negative numbers play in real arithmetic (remember
Diophantus equations) [15].

Denote T = {A € D | a~a™ < 0}. For an interval
A€ D\T, “ign” o: D\ T — A is defined by

dm:{

In particular, o is well defined over R\ 0.
Functional x : D — [—1,1] is defined by

if a7 >0,
if a™™ <o.

3)

-1, it A=10,0]
Xa = { a~v4/a"4, otherwise , (4)
where v4 = {+, if |a™| = |a~|; o(Ja™| —|a~]|), otherwise}.

Thus a*4 = {a™, if |a™| > |a”|; a~, otherwise}. Func-
tional x admits the geometric interpretation that A is more
symmetric than B iff xa < xB.

Dual is an important operator that reverses the end-
points of the intervals and expresses an element-to-element

symmetry between proper and improper intervals. For
A=[a",a"] € D, “dual” is defined by

Dual[A] = A_ =[a",a"]. (5)
We shall also use the functional notation A, with A € A and

A+ - A
The arithmetic operations + and x are extended from
the familiar set of normal intervals to D.

A+B = [a +b ,at +b"], for A, B e D;
[afcr(B)bfa(A)7 aU(B)bU(A)L
if A, BeD\T
[AT(B)p=0(4) 4o (A)r(B)po(A)]
ifAe D\T,BeT
AxB = { [ao@®prBrA) qoByrB)r(A)]

iftAeT, Be D\T

[min{a"b",atd"}, max{a b, a'*'b'*'}]T(A)7
it A,BeT,7(A)=1(B)
ifA,BeT,7(A)=—-7(B)

0,

Interval subtraction and division can be expressed as
composite operations A — B = A+ (—1) x B and A/B =

Ax (1/B), where 1/B = [1/b7,1/b7] if B€ D\ T.

A-B = [a —-b"a"-b7], A BeD;
[a—a(l‘3)/bv(A)7 azf(J‘B)/b—U(A)]7
A/B if A, Be D\T

[a=oB) [p=o(B)T(4) o(B) fp=c(B)T(A)]
ifAeT, Be D\T.

The restrictions of the arithmetic operations to proper
intervals produce the familiar operations in the conventional
interval space.

D is a conditionally complete lattice regarding C with
the following lattice operations:

infc (A, B) [max{a~,b” },min{a™,b"}],
supc (A, B) [min{a~,b” },max{a™,b"}].

Some basic properties of the extended interval arithmetic
structure (D, +, x, C) are:

1. The operations o € {+, x} are commutative and asso-
ciative in D.

2. X =0and Y =1 are the unique neutral elements with
respect to + and X operations. That is for all A € D

A=X+AX=0,0A=YxA<sY =][11].

3. The substructures (D, +,C) and (D \ 7T, x, C) are iso-
tone groups [11]. Hence, there exist unique inverse el-
ements —(A_) and 1/(B-) with respect to the opera-
tions + and x such that

A—A_ =0 and B/B_=1. (6)

4. A conditionally distributive law holds true [18]. Full
characterization of the distributive relations will be
given in Section 4.1.

5. ACB+= A_ D B_;

(AoB)_=A_oB_ for o€ {+,—,%,/}. (7

Definition of norm and metric, as well as many topolog-
ical properties of (D, +, x, C) are given in [11]. Some other
properties, references and applications of the extended in-
terval arithmetic can be found in [7], [20]. In what follows
we shall be concerned with computer algebra implications
of the extended interval space.

3 Numerical Directed Intervals

A Mathematica [24] package for extended interval arithmetic
(directed.m) [20] was designed as an experimental demon-
strative package intended to provide functionality that can
not be obtained by conventional interval arithmetic. At a
first stage, Mathematica interval capabilities were extended
by the definitions of a new data object Directed and a num-
ber of functions handling numerical extended intervals.

Usually, the symbolic-processing systems do not consider
mathematical constants and exact singletons as numerical
objects. Some conditional functions also remain unevalu-
ated on these arguments. Due to the many conditionals
involved in the interval formulae, a correct handling of in-
tervals involving such quantities at the end-points requires
that numerical evaluation takes substantial part of interval
arithmetic operations and functions.

209

Definition 1 Numerical expression is called any expression
whose numerical approximation gives an approrimate real
number or infinity.

Definition 2 Numerical interval is called any interval
whose end-points are numerical expressions.

Data object Directed supports numerical extended in-
tervals considered in Section 2. Being an extension of nor-
mal intervals, Directed intervals contain latter as a special
case. Some applications (see e. g. [22]) require handling sets
of a finite number of disjoint proper intervals, called Ka-
han’s intervals [10]. Directed multi-intervals, supported by
directed.m, generalize Kahan’s intervals but in what follows
we shall be concerned only with single directed intervals.

Exact numbers, mathematical constants and exact sin-
gletons participating in intervals are handled exactly, while
the approximate real numbers are rounded in the corre-
sponding direction according to the strict definitions for out-
wardly rounded computer operations [21], providing that the
resulting interval always encloses the true result according to
(1). The outward rounding is performed a posteriori rather
than as implicit rounding in hardware.

Sometimes, an inner inclusion of the true interval solu-
tion can be very useful giving an estimation of the tightness
of the obtained outer interval solution. An inner inclusion
interval is an interval which is contained in the true solution
interval. Some safety problems also search for a minimum
set of the solutions instead of an inclusion. Inner inclusions
in conventional interval arithmetic can be obtained only if
inwardly rounded interval operations are implemented in
addition to the outwardly rounded ones which requires an
extension of the set of operation symbols. An important
property of the extended interval arithmetic is that inner
inclusions can be obtained only by outwardly rounded op-
erations and the corresponding dual of the input interval
expression [7]. Roundings O,¢ : D — RD (where RD
is the set of computer representable extended intervals) are
defined by OA = [Aa",wva'] (inward rounding), and
OA = [va ,Na’] (outward rounding); <7, A are the
floating-point directed roundings toward —oco and +oo, re-
spectively. For A € D we have [7]

Dual[QDual[A]] = QA C A C QA = Dual|ODuallA4]].
If o € {4+, —, X, /} is an operation in D, the properties

(O4) ® (OB) € AoB C (0'4) ¢ (0B)
Dual[(¢Duall[A]) & (ODual[B])] = (OA4) ® (OB)

are extended for rational expressions to facilitate obtaining
an inner inclusion. In order to give the user the opportunity
for both outward and inward rounding of an extended inter-
val involving inexact numbers, an optional parameter Round,
specifying outward rounding for the intervals, was included
in the syntax of the data object Directed. A function R is
defined to give the approximate real interval including the
directed interval argument.

Example 1 Find an interval F', such that
F C {(23+b)/c|be B,ceC},

wherein B,C € D are proper intervals.
In outwardly rounded conventional interval arithmetic we
can obtain only

2.3+ B)/C D {(2.3+b)/c|be B,ceC},

while in extended interval arithmetic we get

(®)

F = (2.3 + Dual[R[Dual[B]]]) / Duall[R[Dual[C]]]
satisfying (8).

Basic arithmetic on extended intervals is automatic, per-
formed in machine or user-specified precision. For the sake
of efficiency interval arithmetic operations and functions
are implemented by giving upvalues for (definitions asso-
ciated with) Directed. Properties (6), implemented as cor-
responding rewrite rules for the interval operations provide
no blowing-up of the interval result if the arguments involve
approximate real numbers.

Symbolic manipulation proved to be an efficient tool for
detection and removal of dependency relations between vari-
ables and the reduction of the number of occurrences of vari-
ables in range computation of interval functions [3]. How-
ever, the limited possibilities for reduction and the varying
character of expressions mean that we never can be sure
to have been producing the best computable form for an
expression (if existing) but only a more suitable one. Re-
duction of the dependency problem in range computation of
rational interval functions can be simply achieved working
in the extended interval space [7].

Example 2 Compute the exact range of function

t+[1/5,2]

O = Thjag

over T = [3,36/5].

By conventional interval arithmetic we obtain inter-
val [64/139,69/5] for the range of f. Because f(t) is
monotonously decreasing ont over T', monotonously increas-
ing on t in the numerator and monotonously decreasing on t
in the denominator, we can apply a theorem from [7] to elim-
inate the effect of multi-incidence of variable t. According
to this theorem

Dual[T]+ [1/5,2]
T —[1/4,7/3]

f(T)
obtaining thus [148/139,15/2], which is the exact range.

4 Symbolic-Algebraic Interval Computations

Having implemented numerical extended intervals we would
like to utilize the algebraic extension of interval arithmetic
to handle algebraic formulae including numerical intervals
and/or interval variables. Algebraic manipulations involve
simplifying rational expressions and finding algebraic solu-
tions for several kinds of equations. Due to the existence
of inverse additive and multiplicative elements in D, we can
solve some simple kinds of interval algebraic equations by
elementary algebraic transformations, which is not possible
in conventional interval arithmetic. To be able to trans-
form interval expressions into other interval expressions or
to solve more complicated equations involving intervals we
need rules how to multiply out interval sums and how to
take a common variable out of parentheses in interval ex-
pressions. These rules are given by the distributive relations
between extended intervals.

4.1 Interval Distributive Relations

In this section we present the conditionally distributive law
for multiplication and addition of extended intervals.

For any A € D, define p(A) = { :((ﬁ))7 ;tf‘ﬁg?\?’;

210

and distinguish between five assumptions which are used in
the following two theorems.

Theorem 1 Let A;, i = 1,..

,o..,n and C be extended in-
tervals. Denote 1 | A; = S.

The equality

(i A¢> X CH(S)’ (9)

holds true iff exactly one of the assumptions i) to v) holds
true.

n

Z (Ai X CM(Ai)) =

1=1

i) A;,S€ D\7T,i=1,...,n and C € D;
ii) Ay e D\7T,i=1,...,n, S€T, and
either C =c € R,
or CeT, S=0,
or CeT, 7(C)={+, if Thl; 7(5), if Th2},
Xc < Xs, Vs =+
i) Ai,SeT,i=1,...
either C' € D\ 7,
or Ce€T,{r(C)=—,if Thl; 7(C) # 7(5), if Th2},
or CeT,7(C)={+, if Thl; 7(S5), if Th2}, and
either Vi,j =1,..,n 7(4;) = 7(4;),
XC 2 Xa;, Or
XC < XA, VA, =Vay,
or Jp,q so that 7(A,) # 7(A,) and
Xc <min{xa,;, xs}, va, =vs Vi=1,..,n;

iv) A, €T,i=1,...,n, S€D\T and

,n and

either C =c € R,
or CeT,{r(C)=—,if Thl; 7(C) # o(S), if Th2},
s =0,
or C €T, 7(C)={+, if Thl; o(S), if Th2},
VAi :+a XC SXAiai:17"'an;

v) there exist index sets P,Q # 0, PUQ
PNQ =0 such that A, € D\ T for p €
q € Q, and

either C =c € R,
or CeT, 7(C)={+,if Thl; u(S), if Th2},
xc < mingeg{xa,}, va, =+,
or CeT,{r(C)=—,if Thl; 7(C) # u(S), if Th2}
- { Seqts =0, ifSeED\T,
S o _pay =0, ifSeT.

Theorem 1 gives rules how and when we can take a com-
mon multiplier out of brackets. Another equivalent distribu-
tive relation giving rules for multiplying out a sum of ex-
tended intervals is presented by the next theorem.

sy,

{1,
Aq €T for

P’

peP

Theorem 2 Let A;, i = 1,..
tervals. Denote Y 1 | A; = S.

i=1
holds true iff exactly one of the assumptions i) to v) holds
true.

.,n and C be extended in-
The equality

n

D (A x Cuanus)) »

i=1

(10)

A complete proof of the above two theorems is given in
[18]. From the conditionally distributive law we can obtain
the special cases of general distributivity:

Corollary 1 Forany A, € D,i=1,...,nand C=c€ R

Al Xc+ Ay xe+...+A, Xc

Corollary 2 For any C € D and A; = a; € R,
i=1,...,n ands=>"_ a; ilis
n
a1 X Cg(al) +...+an X Cg(an> = <Z ai) X CU(S).
i=1

Corollary 3 For A;,C € D such that 7(C) = 7(As)
i=1,...,n, the equality

+,

Cx(Ai+...4A4,)=CxA +...+Cx A, (11)

holds true iff exactly one of {), zAn), 0) holds true.
i) Ay € D\T,0(Ai) =0(A)),i,j=1,...n, C € D;
W) AseT,i=1,...,n and
either C € D\T;
or C €T, xc>maxj—1{xa,;};
or Ce€T, xc <minj{xa,}, v(A:) =v(4;);
0) AP,Q £ 0, PUQ ={1,...,n},PNQ = 0 such that
A, € D\T forpe P, A, €T forq€e @, and
either C' =c € R;
or C €T, xc <mingeg{xa,}, o(4p)=v(4)

+.

For proper intervals, Theorem 2 and Theorem 1 give the
same characterization of the equality (11) with the exception
that in case I) all additive terms must have positive signs in
order to take a common multiplier out of brackets.

4.2 Applying the Distributive Laws

As intended to be appropriate for the broadest range of cal-
culations some of the built-in computer algebra rules are not
valid for extended intervals. For example,

In[1] := Directed[{1, 7}] x + Directed[{3, 2}] x
Out[1] = x Directed[{1, 7}] + x Directed[{3, 2}]
In[2] := 3 x +x"2 -4 x

Qut[2] = - x + x°2

Simplification of the expression In[1] is possible but has
not been done because Mathematica automatically simplifies
expressions involving only numbers. Simplification Out[2],
however, is not valid if the symbolic variable x represents a
non-degenerate (extended) interval. To model the algebra
of extended intervals we have to

e distinguish between symbols representing non-degene-
rate intervals and symbols representing point intervals
or other objects for which built-in rules are valid;

e define new transformation rules corresponding to the
specific algebra of extended intervals.

211

Any symbol (name of variable) can represent an extended
interval if its type is explicitly specified as Directed. A
symbol symb can be considered as directed interval in Math-
ematica by the explicit assignment

symb /: Head[symb] = Directed

where the kernel Head function identifies the type of the ob-
jects. This way we can use symbols representing extended
intervals instead of symbolic data objects Directed (e. g.
Directed[{a, b}]). Symbols without explicit type assign-
ment are considered as degenerate (point) intervals for which
the built-in algebraic rules are valid.

Definition 3 An expression is called interval expression if
it tnvolves at least one numerical directed interval or symbol
representing directed interval.

The predicate DirectedQ returns true for any interval
expression. The predicate NumericQ returns true for any
numerical expression.

We consider symbolic-numerical expressions being finite
interval sums involving two-terms products of a common
symbolic multiplier and a coefficient which is either a nu-
merical expression or a numerical directed interval. In what
follows simplification of such expressions by taking the com-
mon variable out of parentheses is discussed.

Due to the associativity of interval addition the algo-
rithm for simplification of a finite sum is reduced to a re-
cursive execution of an algorithm for simplification of a two-
terms symbolic-numerical interval sum. The following two
corollaries of Theorem 1 specify how to take a common vari-
able in such a sum out of parentheses.

Corollary 4 Let A, B, T be directed intervals such that
w(A) = u(B) and T ¢ R. The equality

AxT+BxT (A+B)xT (12)

holds true if and only if al, or a2, or a3.

al. ABeD\7T and T € D;
a2. A/ Be7T and

either T € D\ T,
or TeT, (T)# 7(A) and
xr = max{xa, x8},
xr < min{xa, x5},
a3. Ae D\7T,Be7T, TeT and

xr <xB, v =+, if7(T)=0(A)
a” =0, otherwise.

or
VA = VBj;

Corollary 5 Let A, B, T be directed intervals such that
u(A) # w(B) and T & R. The equality

AxT+BxT_ (A-&-B)XT#(/H_B)#(A) (13)

holds true iff exactly one of the assumptions bl to b5 holds
true.

bl. A, B,A+BeD\T, and T € D;

b2. ABeD\7,Te€eT,A+BeT
A+B=0, or
7(T) = 0(A), XxT < XA+B, Va+B = +;

b3. A, B, A+ B€7 and

either T € D\ T,

or Te€T, 7(T) #7(A), xr < min{xa, X5, XA+B},
VA = VB = VA4+B;

b4. ABeT, A+ BeD\T, TeT and
{a—+b—:o, if 7(T) # 7(A),

va=vp =+, xr <min{xa, xB}, otherwise;

b5. A¢ D\7, Be7T, Te€T and
if T(T) # o(A),

a =0,

vB =+, Xt < XB, oOtherwise.

The general implementation scheme is based on the me-
chanism of pattern-matched rewrite rules. The database
of rewriting rules for simplification of symbolic-numerical
interval expressions is built of three types of rewrite rules:

e For the special case of Corollary 1 define a rewrite rule
simplifying a two-terms symbolic-numerical interval sum
where the common multiplier is a non-interval symbolic ex-
pression.

_ _+ b_. x_ :=(a + b) x/; Not[DirectedQ[x]] &&

(MatchQ[a, Directed[{_7NumericQ, _7?NumericQ}]] ||
NumericQ[al) &&

(MatchQ[b, Directed[{_7NumericQ, _7?NumericQ}]] ||
NumericQ[bl) ;

a_. X

e For the special case of Corollary 2 define rewrite rules
transforming every numerical expression, involved in a two-
terms symbolic-numerical interval sum with interval com-
mon symbolic multiplier into numerical degenerate directed
interval.

a_. x_7?DirectedQ + b_. x_7?7DirectedQ :=
Directed[a] x + Directed[b] x /;
NumericQ[al || NumericQ[bl;

a_. x_7DirectedQ + b_. Dual[x_7DirectedQ]
Directed[a] x + Directed[b] Dual[x]
NumericQ[a] || NumericQ[b] ;

/;

e According to Corollary 4.3 and Corollary 4.4, define
rewrite rules simplifying a two-terms symbolic-numerical in-
terval sum with interval common symbolic multiplier and
interval numerical coefficients.

a_ x_7DirectedQ + b_ x_7DirectedQ := (a + b) x /;

MatchQ[a, Directed[{_7?NumericQ, _?NumericQ}]] &&

MatchQ[b, Directed[{_?NumericQ, _7?NumericQ}]] &&
(set of conditions al.- a3.);

a_ x_7DirectedQ + b_ Dual[x_7DirectedQ] :=
If [mula+b] === 1, (a+b) x, (a+b) Duallx]] /;
MatchQ[a, Directed[{_7?NumericQ, _?NumericQ}]] &&
MatchQ[b, Directed[{_?NumericQ, _?NumericQ}]] &&
(set of conditions bl.- b5.);

These rewrite rules are tried successively in the above
order in which they are defined. Except for the first one, the
above groups of rewrite rules are divided into two subgroups
depending on the syntax of the patterns in the left-hand side
of the rules:

e patterns describing the left side of equality (12), i.e.
patterns involving the same common symbolic multiplier

a_ x_7DirectedQ + b_ x_7DirectedQ

212

e patterns describing the left side of equality (13), i.e.
patterns involving two dual common symbolic multipliers

a_ x_7DirectedQ + b_ Dual[x_7DirectedQ]

Due to the commutativity of interval addition and multi-
plication operations just one pattern is enough to cover all
possible cases of this subgroup.

The usage of a condition containing labels that appear
in a pattern narrows down the requirements of the pattern
match and a match is possible only if condition returns true.
Simplifying expressions follows the general principle: Take
the input expression and find those rewrite rules whose pat-
tern matches part of the expression. That part is then re-
placed by the replacement text of that rule. Evaluation
then proceeds by searching for further matching rules until
no more are found. Due to commutativity and associativity
of addition and multiplication the arguments of Plus and
Times functions are rearranged and all possible orders of ar-
guments are tested in trying to match patterns of the above
distributive rules.

In[3] := x /: Head[x] = Directed;
In[4] := Directed[{2, 7}] x - x"2 + Directed[{3, 5}] x
Out[4] = -x"2 + x Directed[{5, 12}]

Note that cases a2 and a3 for 7(T") # p(A) in Corollary
4, respectively cases b3, b4 and b5 for 7(T) # u(A) in
Corollary 5 result in an interval product equal to zero. An
overloading of the multiplication operation to deliver zero
on multiplication of a numerical and a symbolic extended
intervals, appropriately specified, provides an a priory sim-
plification of such products to zero. Thus there is no need
to involve a condition 7(T") # u(A) in the rewrite rules cor-
responding to the above cases of Corollaries 4 and 5.

The requirements of Theorem 1 for taking a non-degene-
rate common multiplier out of brackets can be classified in
three categories depending on the common multiplier:

sl. for any value of the common multiplier;

s2. for a common multiplier from D\ T;

s3. for a common multiplier from 7 depending in addition

on its direction and relations involving its x value;

Mathematica functions Sign, Direction and Chi are de-
fined to give the value of the corresponding functional o, 7, x
for a numerical directed interval. Sign and Direction func-
tions yield integer values 1 and —1 corresponding to “+4”
and “—”, and 0 is returned for the sign of a directed inter-
val from 7. Thus, the value of the Sign function is used
to identify whether an interval is from 7 or from D \ 7.
Beside a small number of cases for which simplification of
interval expressions is possible for any value of the com-
mon multiplier, an explicit assignment to the values of Sign,
Direction and Chi functions, associated with the common
multiplier, is required for simplification of an interval expres-
sion. For a symbol x, representing directed interval, case s2.
is characterized by Sign[x]# 0 independently of its value.
If simplification of an interval expression is possible only for
a common multiplier from 7, an explicit assignment of val-
ues to Sign, Direction and Chi functions associated with
the common multiplier is required. That is, specification
x/:8ign[x]=0 requires also specification of Direction[x]
and Chi[x]. Usually these values are known a priori from

the context of the problem we are solving. Most frequently,
conventional interval problems are solved by the extended
interval arithmetic, so that proper intervals are sought and
most practical problems seek for intervals not involving zero.
If there is no a priori information about a common symbolic
multiplier, the solution of the problem should be split into
at most three subproblems (s1, s2 and s3).

Two functions On/0ff [IntervalSimplification] are
defined to facilitate the user as much as possible. These
functions switch on/off printing prompt messages about pos-
sible simplification of any interval subexpression. Generat-
ing messages when Mathematica tries to simplify an expres-
sion is switched off by default.

In[5] := Directed[{2, 7}] x - Directed[{5, 3}] Duall[x]
Out[5] = x Directed[{2, 7}]+Directed[{-3, -5}] Duall[x]
In[6] := On[IntervalSimplification]
In[7] := Directed[{2, 7}] x - Directed[{5, 3}] Duall[x]
IntervalSimplification::usagel:
"Directed[{2, 7}] x + Directed[{-3, -5}] Duall[x]"

will be simplified if Sign[x]=0,
Direction[x]=1, Chil[x]<=-(1/2).

Out[7] = x Directed[{2, 7}]+Directed[{-3, -5}] Dual[x]
In[8] := x /: Direction[x] = 1; x /: Sign[x] =
x /: Chi[x] = -2/3;
In[9] := In[16]
Out[9] = Directed[{-1, 2}] Duall[x]

If a common multiplier is not a single symbolic variable
but an interval expression, the assignments should be done
to the whole expression. Further research is necessary for
the definition of functions Sign, Direction and Chi, so that
they automatically determine the corresponding value for
an arbitrary symbolic-numerical interval expression. A so-
lution of this problem will allow the definition of a function
IntervalExpand designed to disclose the parentheses around
symbolic-numerical interval expressions according to Theo-
rem 2.

Distributivity (7) of the Dual operator on the arithmetic
operations is another key point of the knowledge database
for symbolic manipulation of interval expressions. Function
ExpandDual [expr] is defined to do all possible expansions
of the Dual function around sums, products and powers.
Actually this function transforms the Dual of a sum into a
sum of dual terms, the Dual of a product into a product of
dual terms and the Dual of a power into the power of a dual
argument everywhere in an expression.

Now, we can turn back to the interval algebraic equations
and show the application of distributivity relations for their
solution.

Example 3 Find a positive proper interval t (if exists)
which is the algebraic solution to the equation
(b+ ¢ x t) x Dualqa)
v/2 + a x Dual[t] 4 Duall[t]/b

where a = [1/2,3/5],b = [2,3],c = [15/2,19/2].

We specify in Mathematica that the symbol t represents
a directed interval and input a symbolic-numerical expres-
sion specifying equation (14), where a, b, and ¢ are replaced
by their numerical values. The obtained equation

(12,3] + [15/2,19/2] t) [3/5,1/2]
V2 + [5/6,11/10] Dual[t]

b, (14)

[2,3]

213

shows that due to the implemented rewrite rules Mathe-
matica has automatically simplified the denominator in left-
hand side of the equation. We solve this equation by ap-
plying elementary transformations, based on the algebraic
identities (6). First divide both sides of the equation by
dual of its right-hand side Then multiplying both sides of
the equation by dual of the denominator in the left-hand
side delivers the equivalent equation

2.3+ 5,19 [, 2]

Duallv/2 + [6 10] Dual[t]]

Subtracting from both sides of the last equation dual of its
right-hand side we obtain next equivalent equation

15 19
\/’

@3+ [0 510 [, 21

[7] Duallt] = O
To proceed later we need to disclose parentheses in the

above equation which we can do because the requirements

of Theorem 2 are fulfilled under the assumptions for t. By

that, we obtain another equivalent equation

5 -VE5-Va + oo 3]t = 0

showing that another automatic simplification has been ta-
ken effect. Now, the sought solution [(—12+20+/2)/23, (—
44/2)/3] is obtained as dual of the quotient of the negative
intercept and the coefficient of t.

This example shows that the distributive law for ex-
tended intervals is an indispensable tool for the reduction
interval algebraic equations, with multi-incidence of the un-
known variable, to simpler ones. The general normal form of
simplified interval algebraic equations is given in [19]. This
is helpful for the explicit algebraic solution of some interval
equations which are not linear in generall. For example, the
interval equation

[7,—11] +[1,5] x X
X

(3,2], 0¢€X

is algebraically equivalent to the equation

[1,5] x X +[-3,-2] x X [-7,11], 0¢&X.

However in D, like in conventional interval arithmetic, there
are only conditionally valid distributive relations and there-
fore these equations are not linear. Left-hand side of last
equation cannot be further simplified and according to [19]
the equation posesses four algebraic solutions: X; = [2, 3]
and X, [—15, —34]. = [-7/2,11/2], X4 = [7,-11],
the first two being algebraic solutions to the initial equa-
tion. Automatic simplification of symbolic-numerical in-
terval expressions is also helpful for the reduction of the
round-off errors (when rational arithmetic is not used) due
to the reduced number of arithmetic operations in the sim-
plified equation. The techniques applied above can be used
in definition of function IntervalSolve giving all numerical
and/or parametric solutions to certain kinds interval alge-
braic equations, providing thus facilities for true symbolic-
algebraic computations.

5 Notes on the Applications

The right approach in applying interval distributive rela-
tions is not to restrict these relations to the set of normal
intervals but to transform the initial problem in terms of

extended intervals and to solve the new problem in an al-
gebraically straightforward way. Thus, we obtain the op-
portunity to apply distributive relations which are valid in
many more cases for extended intervals than for normal in-
tervals (compare Corollary 3 and Theorem 2). Note, that
the problems in Examples 1 and 2 were formulated in terms
of normal intervals but solved efficiently by extended inter-
val arithmetic. Due to the lack of space, the preliminary
considerations that had led to equation (14) were omitted.

Of course, extended interval arithmetic is not an univer-
sal cure for all interval pains. However, in many cases ex-
tended interval arithmetic gives functionalities that cannot
be achieved by conventional interval arithmetic. Examples
1, 2 and 3 give hints for some basic applications. Other
class of applications is illustrated in [7]. More sophisticated
practical applications can be found in the theory of quality
control, interpolation and parameter identification, etc. (see
also http://ima.udg.es/SIGLA /X/mod_interval).

6 Conclusion

The algebraic properties of extended interval arithmetic
make it a powerful tool for explicit solution of some interval
algebraic problems and the best environment for exploiting
these properties is a computer algebra system. The imple-
mented facilities for simplification of symbolic-numerical in-
terval expressions allow not only an easy computation and
exploration in the algebra of extended intervals. We made a
first step in constructing a methodological framework and a
knowledge database for performing true symbolic algebraic
manipulation on interval expressions. A next step involves
development of tools for automatic solution of classes inter-
val equations.

Calculating with interval variables is a novel approach
in combining symbolic and interval computations. Integrat-
ing the algebra of extended intervals and this approach in
some general purpose systems would increase the efficiency
of interval applications.

References

[1] Alefeld, G.; Herzberger, J.: Introduction to Interval
Computations. Academic Press, 1983.

[2] Benhamou, F.; Mc Allester, D.; Van Hentenryck, P.:
CLP (Intervals) Revisited. In Proceedings of ILPS’94,

Ithaca, NY, USA, 1994, pp. 124-138.

Caplat, G.: Symbolic Preprocessing in Interval Func-
tion Computing. In Goos, G.; Hartmanis J. (Eds.):
Symbolic and Algebraic Computation. Lecture Notes in
Computer Science 72, Springer, 1979, pp. 369-382.

Collins, G. E.; Krandick, W.: A Hybrid Method for
High Precision Calculation of Polynomial Real Roots.
In Bronstein, M. (Ed.): Proceedings of the 1993 Inter-
national Symposium on Symbolic and Algebraic Com-
putation, ACM Press, 1993, pp. 47-52.

[5] Colmerauer, A.: Specifications of Prolog IV, 1996.

Connell, A. E.; Corless, R. M.: An Ezperimental In-
terval Arithmetic Package in Maple. Interval Compu-
tations, No. 2, 1993, pp. 120-134.

214

[7] Gardenes, E.; Trepat, A.: Fundamentals of SIGLA, an
Interval Computing System over the Completed Set of
Intervals. Computing, 24, 1980, pp. 161-179.

Hong, H.: An Efficient Method for Analyzing the Topol-
ogy of Plane Real Algebraic Curves. Mathematics and
Computers in Simulations, 42, 1996, pp. 571-582.

Hyvonen, E.; De Pascale, S.; Lehtola, A.: Interval Con-
straint Programming in C++. In Mayoh, B.; Tyugu, E.;
Penham, J. (Eds.): Constraint Programming. NATO
Advanceed Science Institute, Series F, Springer, 1994.

Kahan, W. M.: A More Complete Interval Arithmetic.
Lecture Notes for a Summer Course at the University
of Michigan, 1968.

Kaucher, E.: Interval Analysis in the Extended Interval
Space I R. Computing Suppl. 2, 1980, pp. 33—49.

Keiper, J. B.: Interval Arithmetic in Mathematica. In-
terval Computations, No. 3, 1993, pp. 76-87.

Keiper, J. B.: Interval Computation. In Major New
Features in Mathematica Version 2.2. Technical Re-
port, Wolfram Research, 1993, pp. 20-23.

Krandick, W.: Isolierung reeller Nullstellen von Poly-
nomen. In Herzberger, J. (Ed.): Wissenschaftliches
Rechnen. Akademie Verlag, 1995, pp. 105-154.

Markov, S. M.: On the Algebra of Intervals and
Convexr Bodies. J. UCS 4, 1, 1998, pp. 34-47.
(http://www.iicm.edu/jucs_4_1)

Moore, R. E.: Interval Analysis. Prentice Hall, Engle-
wood Cliffs, N. J., 1966.

Ortolf, H. -J.: Eine Verallgemeinerung der Intervallar-
ithmetik. Gesellschaft fiir Mathematik und Datenverar-
beitung, Bonn, 11, 1969, pp. 1-71.

[18] Popova, E. D.: Generalized Interval Distributive Rela-
tions. Preprint No 2, Institute of Mathematics & Com-

puter Science, BAS, February 1997, pp. 1-18.

[19] Popova, E. D.: Algebraic Solutions to a Class of Inter-

val Equations. J. UCS 4, 1, 1998, pp. 48-67.

Popova, E. D.; Ullrich, C. P.: Directed Interval Arith-
metic in Mathematica: Implementation and Applica-
tions. TR 96-3, Univ. Basel, 1996, pp. 1-56.
(http://www.math.acad.bg/ epopova/directed.html)

Popova, E. D.; Ullrich, C. P.: Generalising BIAS Spec-
ification. J. UCS 3, 1, 1997, pp. 23-41.

Shackell, J.: Asymptotic Estimation of Oscillating
Functions Using an Interval Calculus. In Gianni, P.
(Ed.): Symbolic and Algebraic Computation. LN in
Computer Science 358, Springer, 1989, pp. 481-489.

20]

21]

22]

[23] Stetter, H. J.: Analysis of Zero Clusters in Multivari-
ate Polynomial Systems. In Lakshman, Y. N. (Ed.):
Poceedings of the 1996 International Symposium on
Symbolic and Algebraic Computation, ACM Press,

1996, pp. 127-136.

Wolfram, S.: Mathematica A System for Doing Math-
ematics by Computer. Addison-Wesley, 1991 (2nd ed.).

