Interval Computations, No 4, 1994, pp. 100-129.

Extended Interval Arithmetic
in IEEE Floating-Point Environment

Evgenija D. Popova!

Abstract

This paper describes an implementation of a general interval arithmetic extension, which comprises
the following extensions of the conventional interval arithmetic: (1) extension of the set of normal
intervals by improper intervals; (2) extension of the set of arithmetic operations for normal intervals
by nonstandard operations; (3) extension by infinite intervals. We give a possible realization
scheme of such an universal interval arithmetic in any programming environment supporting IEEE
floating-point arithmetic. A PASCAL-XSC module is reported which allows easy programming
of numerical algorithms formulated in terms of conventional interval arithmetic or of any of the
enlisted extended interval spaces, and provides a common base for comparison of such numerical
algorithms.

1 Introduction

Conventional interval arithmetic [1], [30] has been extended in the following three main
directions:

e Extension of the set of normal (proper) intervals by improper intervals, which in-
volves an extension of the definitions of the interval-arithmetic operations for the set
of proper and improper intervals. The corresponding extended interval arithmetic
structure K has been studied by E. Kaucher [14]-[16], H. -J. Ortolf [31], E. Gar-
denes [11], [12] and others. The conditional distributivity in K has been recently
formulated [8].

e Extension of the set of arithmetic operations for normal intervals by nonstandard
operations. The corresponding extended interval arithmetic structure M has been
investigated in [24], [26] and applied in a number of numerical algorithms [7], [25],
[28] etc.

e Extensions by infinite intervals [13], [14], [23], [26].

It has been demonstrated [8], [26], [32] that the extended interval arithmetic structures
K and M are strongly interrelated and can be equally well used for practical purposes. All
the above three extensions can be naturally combined into a common universal structure
based on the extended concept of interval.

Except for SIGLA-PL/1 [11] (using radial representation of the intervals) to our knowl-
edge there is no implementation of the extended interval arithmetic for generalized inter-
vals. Meanwhile, a number of numerical algorithms (see Section 5) based on the enlisted

!This work has been partially supported by the National Science Fund of the Ministry of Science and
Education under grant No. MM 10/91.

above extensions of the conventional interval arithmetic appeared. But their usage and
comparison are hampered by the lack of an appropriate base software.

Another reason for the development of this collection of routines includes possible
applications of the extended interval arithmetic. According to the extended concept of
interval a generalized interval [a,b] = {r € R|a <z <b, ifa<b; b <z <a, ifa> b}
is a subset of real values supplemented by a direction. The reacher set of generalized (di-
rected) intervals implies reacher algebraic properties of the arithmetic operations involved.
The interval structures considered here have a potential for applications to computation
of sharp bounds for the ranges of functions, inner and outer numerical approximations
etc. which are reviewed in Section 5.

Most of the implementations of the conventional interval arithmetic can actually per-
form interval operations on directed (proper/improper) intervals as well. This is due to
the fact that the structure components of the interval data type are user accessible and
no checking procedure for the type of the arguments is provided by the interval operation
routines. The arithmetic routines designed for proper intervals can also produce results
if (some of) the arguments are improper intervals. To be more specific, a PASCAL-XSC
[17] program for subtraction of intervals works if some of the arguments are improper, for
example

[1.07,2.82] — [3.59E2, 3.58E2] = [~3.569E2, —3.5718E2].

Addition and subtraction operations produce correct results regardless of the type of the
operands (proper/improper) since the end-point expressions for these operations are sim-
ple and offer no choice. However this is not true for multiplication and division operations
where different expressions can be used. Interval multiplication when implemented ac-
cording to the expression

[a”,a®] x [b7,b7] = [min{a b ,a " b",a"b",at b}, max{a"b",a b, atb,aTb}]

always gives wrong result if some of the operands is improper interval. Procedures for
interval multiplication which use an expression involving checking of the signs of the
interval end-points give correct result when some of the operands are improper intervals
not containing zero in its interior. The result is wrong if an operand is an improper
interval containing zero. Moreover, different implementations give different results in this
situation, e. g.

[21,—10] in PASCAL-SC,
[2,3] x [7,—5] = { [14,—15] in MODULA-SC,
[14,—-10] in PASCAL-XSC.

The correct answer in K is [21, —15]. The results of the division for operands of different
types are analogous to those for multiplication. There is an obvious need to implement
the correct definitions for all interval arithmetic operations for directed (proper/improper)
intervals. This can be done at no additional cost in comparison to standard interval
arithmetic implementation.

Main purpose of this paper is to present a convenient, portable and universal pro-
gramming tool supporting ordinary interval arithmetic as well as the enlisted extensions.
Sections 2-3 give the necessary theoretical base which underlies the implementation and
the usage of the interval arithmetic based on the extended concept of interval. Concise
end-point representations are given which are particularly suitable for computer imple-
mentation. Section 3 summarizes the semimorphic definitions of the computer interval

operations and some of their properties. A PASCAL-XSC [17] module EXI_ARI is pre-
sented in Section 4 as a current implementation of extended interval arithmetic in pro-
gramming environment supporting IEEE floating-point arithmetic [2], [3]. In order to
preserve type compatibility within the existing structure of PASCAL-XSC language, the
EXI_ARI module does not support outer (Kahan’s) infinite intervals [13], which imple-
mentation requires new interval data type. Based on a special theoretic consideration,
given in Section 2, a specific scheme is proposed for implementation of the interval di-
vision operation, extended to perform division by interval containing zero. Most recent
interval arithmetic implementations are based on floating-point arithmetic conforming the
IEEE standard 754 [2]. But no agreement exists in the interval community on how to deal
with interval arithmetic exceptions and no standard concerning interval arithmetic on no
numbers has been proposed. In this paper we pay attention to those interval operations,
which may have doubtful implementation in an IEEE floating-point environment and give
the corresponding definitions of the interval arithmetic exceptional situations and their
default response used in this realization.

2 Extended interval arithmetic

In this section we shall briefly outline some basic formulae of the extended interval arith-
metic structure I proposed by E. Kaucher [14]-[16]. This structure is of major importance
for our software implementation since it involves a new concept of interval. We shall omit
any discussion of the nonstandard extended arithmetic [24]-[26] since it only concerns new
arithmetic operations which present no problem for the implementation.

The set of all finite normal (proper) intervals IR = {[a,b] | a,b € R, a < b} is extended
into the set H = {[a,b] | a,b € R} = R? of all ordered couples of finite real numbers further
called directed intervals. A directed interval A = [a~,a™] € H is either proper if a~ < a™,
or improper if a~ > a™, so that

H ={[a,b] |a,b€ R} =IR U IR, m:{[a_,(ﬁ”a_ >a'; a_,a+€R}.

Denote 7T = {A € IR|a at <0}U{A€TR|a"a*t <0} =ZUZ. For A € H the symbol
a® with s € {+, —} denotes certain end-point of A and the “product” st for s,t € {+,—}
is defined by ++ = —— = + and +— = —+ = —, so that a*" is well defined.

For a directed interval A define “sign” o0 : H\ {[a",a"] |a"at <0} — {+,—} by

_ i (0<a)&(0<a");
o) = { —, if (a7 £0) & (a* <0) (but A#[0,0]),

and a binary variable “direction” by

(A) _{ +, if a” <a", (1)

—, otherwise .

The operations of the extended interval arithmetic structure K = {H,+, x,C} are
extensions of the interval arithmetic relation and operations from the conventional interval

space {IR,+, x,/,C} into H

ACB < (b <a) & (at <b™), for A, Bc H; (2)
A+B = Ja +b,a" +b"], for A, BcH; (3)

adTBp=0 @9TBI] . §=o(A), for A€e H\T, BeT,
a7 @A) § =o(B), for AT, Be H\T,
min{a~b*,a*b"}, max{a"b",aTb"}], for A, Be Z,
max{a~b~,a"b"}, min{a"b",aTb"}], for A,B€ Z,
L 0, forAeZ BeZ or AcZ BeZ.

[
[
Ax B = {
[

Note that according to definition (2) any improper interval A = [a~,a™] such that
at < b<a" is contained in the point interval B = [b,b], A C B.

From (4) we have (—1) x B = [-b", —b"] = —B for B € H. Thus the extension of the
conventional interval subtraction into H can be obtained as a composite operation

A-B=A+(-B)=[a" —b",at -b"], ABeH. (5)

The substructures (H, +,C) and (H\7, x, C) of K are isotone groups [14]. The inverse
elements with respect to the operations + and x are:

—pA = [-a",—a"], for Ac H;
1/hA = [1/a",1/a"], for Ac H\T.

The monadic operator conjugation (called dual in [11], [12]) defined by
Ao =[a*a7] = —h(~A) = —(~44) (6)
expresses an element-to-element symmetry in H and has the properties:
ACB<«<= A_DB_, (AoB)_=A_oB_, oe{+,—,x,/}

For A € H \ T there exists also an unique operator “set inversion” 1/A = 1/,A_ =
[1/a™,1/a"] such that 1/,(1/A) = 1/(1/,A) = A_. The extension of the conventional
interval operation A/B for A € H, B € H\ 7T is thus obtained as a composite operation,
too
[a=o(B) /po(A) qo(B) jp=o(A)] " for A, Be H\T,

A/B=Ax(1/B) = { (a0 /b=07(A) 8 /p=T(N)] § = o(B), for Ac T, Be H\T. g

H is a lattice with respect to C with the following lattice operations:

infc(A,B)=A A B = [max{a",b”},min{a®,b"}], (8)
supc(A,B)=A Vv B = [min{a”,b” },max{a™,b"}]. 9)

The lattice operations satisfy the following properties

(AoB)+C=(A+C)o(B+C) for A,B,C € H and o€ {A,V},
(AoB)xC=(AxC)o(BxC(C) for A,B,C € H\T and o€ {A,V},
(ANB). = A_VB_.

Another order relation is also defined by
A=B < (a <b)& (a™ <) (10)
with the properties
A<XB<=A_<B., AXB<—=-A <X-B, AXB=—A+C=<B+C.
Kaucher [14] introduces the so-called hyperbolic product as
AxpB=a"b",a"b"], A, Be€H. (11)

The interval arithmetic addition (3) together with the hyperbolic multiplication (11)
form the semifield H = {H \ 7, +, x5} [15]. The inverse elements —, A, 1/,A generate
operations

A-pB = A+ (—3B)=[a" —b ,at -b"], A Be€H, (12)
A/pB = Ax,(1/pB)=a"/b",at/bT], A€ H, Be H\T, (13)

called hyperbolic subtraction, resp. hyperbolic division.

Let R* = RU {—o00,00}. Denote by Hz = {[a,b] | a,b € R*} the set of all finite
and infinite directed intervals. The intervals from Hy7 are called inner directed intervals
in contrast to the outer directed intervals (proper or improper), obtained by division by
intervals containing/contained in zero to be defined below.

Using that —oo < a < 400 for all @ € R* and the conventional rules for manipulations
with infinities (see for example [21]) the definitions of the relation C and the arithmetic
operations +, —, X, / are extended from H x H into Hz x Ht by replacing H with Hr
in (2)-(5), (7). The special cases of end-points of the form £(co — 00) or £(0 - co0) are
considered as exceptions (see Section 4.3).

For some Newton-like algorithms using conventional interval arithmetic it is essential
to divide by a zero containing interval, so we need to implement an extended division
operation. Some interval arithmetic specifications [4] require a separate procedure for
an extended division producing two semi-infinite intervals, other specifications [19] allow
division by intervals having zero only as an end-point. In what follows we consider the
extension of the interval division operation and point out the possibility of a compressed
representation of the result of the division by interval having zero in its interior as a finite
directed interval.

The operation 1/B for B € L = {[a”,a"] | a"a’ < 0} is defined [14] as a set of two
intervals as follows:

1/B=1/b",b"] = {[-7(B)oo,1/b7], [1/b",7(B)x]}.

Such a set of two equally directed inner intervals (one involving oo, the other —oo) is
called outer directed interval. These intervals are generalization of the so called Kahan’s
intervals [13], [23]. The following new propositions present some simple expressions which
have been used in our implementation.

Proposition 2.1 For Ac H\7T and B€ L
A/B = {[c”,—71(C)oa], [T(C)o0,ct]},
where C' = [c™,ct] = [aT(B)/ba(A), aT(B)/b—a(A)]_

For A € T and B € L we obtain

_ [—OO,OO]T(A), T(B> =+
A8 = {{[w/bﬁa/bﬂ, la=Jb=.a* o]}, T(B) = .

The above proposition suggests a “compressed” form of presentation for the result
of the division by interval containing/contained in zero through only one finite directed
interval C and the corresponding rule for a subsequent backward splitting of C' into two
inner directed intervals according to the direction of C. This presentation is exploited in
the computer implementation of the division operation avoiding thus the necessity of a
separate procedure for extended division.

Extension of the hyperbolic inversion 1/, B for B € L gives
1/aB = {[1/b~,—7(B)oc], [r(B)oo, 1/5+]}.

Proposition 2.2 For A€ H and B € L
A/nB = {la” /b", sign(a” /b")oc], [sign(a® /b)o0,a’ /b]}, (14)

and

. a” _ o(A)r _ sz’gn(g), if AeT
“g”(zﬁ) = o(A)7(B) { —sigrf(g;), if Ac H\T.

It can be seen from (14) that the hyperbolic division by interval containing/contained
in zero is also suitable for compressed representation C' = [a~ /b%,a™ /b™] of the result.
The two semi-infinite intervals can be composed by the end-points (and their signs) of the
compressed result.

3 Computer arithmetic

Analogous to the conventional interval computer arithmetic [21] a computer arithmetic
for directed intervals is defined by semimorphism [9].

Let SR* be a symmetric screen over R* and SHr = {[a”,a"] € Hz | a~,a™ € SR*},
then {SHz,C} is a screen of {Hz, C}.

Define rounding [0 : H7 — SH7 as a monotonic function with the properties:

1. O0(A)=A, A€ SHyz;
2. ACB=0(4) CO(B), for A, B € Hr;
3. For A,B € Hy

ACOA, O=¢ (outward rounding),
ADOA, O=(Q (inward rounding),
OA = [va~,Na™], OA = [Aa~,vat],

where 7, A are the corresponding directed roundings 7, A : R* — SR* [21].

If o € {+,—,x,/} is an arithmetic operation in Hz, the corresponding computer
operation [in SH7z is defined by

AR B =0(AoB), for A,BeSHz, Oc{0,0}.

The explicit formulae for the computation of the result of the extended interval operations
in SH7 are summarized as follows:
For A,B € SH7 and o € {+,—, X, /}

A® B:=0(AoB)= [v(AoB)~, A(AoB)*];
A® B:=0(AeB)= [A(AoB)", v (AoB)T]

The extended interval computer operations are inclusion isotone
ACB= AR CCB@ O, for A,B,C<c SHz, oc{+,—,x,/}, Oc{0,0O}.

The following inclusion assertions [11] are of major importance in obtaining inner and
outer numerical approximations:

e For Ae SHy
(0A-). =04 c A C 04 =0(4A)
O(A) = (04). € A C (OA) = O(4).
e For A€ SHz and o € {+,—, %, /}
(A.6 B.) C AoB C A® B
A® B C AoB C (A_® B_)_.

e Let F[{o1,...,om},{A1,..., A,}] be a rational function where o; € {4, —, x,/},
i=1,...,mand A; € H7,j=1,...,n, then

FROZ{OA L] © Fl{oahiZ {Ai}jo] © FRO iy, {0A4;}7-1]
and
F[{0 121, {0 (A4)-)}joi]- = F{O ., {OA4; 1]
FI{6 1121, {04} o1] = F{@i 121, {O ((45)-) Hi=u]-
Note, that according to these inclusion relations both inner and outer computer ap-

proximations could be obtained through only one of the rounding modes.
The hyperbolic computer operations oy, € {—p, Xp, /n} are defined analogously.

For A,B € SHy and o € {+,—, %X, /}
AOpB:=0(AopB)= [v(a ob7), A(aTobh)];
A@LB=0AoB)= [A(aob), v (atob)]

Some of the inclusion properties of the computer hyperbolic operations are as follows

O (=rd) = =n(OA), for A€ Hr;
ACB=A0,CCB&,C, for A B,C € SHz;
ACB=A®,CCB&,C, for A, BeSH;, C€SHr\ST, o€ {x,/}.

4 Implementation

4.1 Principles and requirements

Designing the extended interval arithmetic implementation our objective is to provide a
comprehensive, portable and well-documented collection of routines, which allows easy
programming of numerical computations in the extended interval spaces.

The only prerequisite concerning these routines is the presence of a reliable floating-
point arithmetic with directed roundings conforming the IEEE floating-point standard [2]
or [3]. Main reason for this choice were

e The IEEE standard provides mathematically well-defined computer arithmetic with
maximum accuracy and directed roundings. This arithmetic ensures all obtained
interval results to be accurate to 1 ULP (Unit in the Last Place);

e The IEEE standard gives accurate definitions of the floating-point exceptions and
their handling, which is an appropriate base for defining the corresponding interval
arithmetic exceptions and their handling;

e The IEEE floating-point arithmetic supports a set of non-numeric symbols — NaNs
(Not-a-Number) and the two infinities, which is essential for the extended interval
arithmetic;

e The IEEE standard ensures portability of the numerical software;

e The IEEE standard has been widely adopted to most hardware platforms and soft-
ware implementations.

The major difficulty is that so far no common programming language allows access to
the IEEE floating-point operations with directed roundings provided by some processors.
Therefore, some machine-dependent routines should be written to provide first floating-
point operations with maximum accuracy and directed roundings, and second suitable in-
terface for testing and handling the exceptions. The alternative is to choose a SC-language
([10], [17], [18], [29]) which provides software emulation of the IEEE arithmetic. For cur-
rent implementation we chose PASCAL-XSC as a wide-spread programming language for
scientific computation.

Carefully designed language independent specifications containing clear mathematical
definitions in computer arithmetic and definitions for the exceptions and their handling
are developed for all routines.

The collection of extended interval arithmetic routines ensures full compatibility with
the generally accepted interval operations and functions. Furthermore, the power of the
conventional interval arithmetic is enhanced by

e extension of the definition domain of the conventional interval arithmetic providing
thus tools for computations in extended interval spaces; in particular interval division
operation is extended to perform division by an interval containing zero;

e providing additional set of arithmetic operations with inward rounding;
e providing routines supporting an additional order relation;

e providing hyperbolic arithmetic operations with inward and outward roundings;

e diversity of utility functions;

e certain definitions of the interval arithmetic exceptions and their handling providing
thus consistency of the numerical results obtained through these operations.

In what follows we describe the PASCAL-XSC module EXI_ARI.

4.2 The PASCAL-XSC module EXI_ARI

This new PASCAL-XSC module for extended interval arithmetic is intended to be able
to replace the existing module I_ARI for interval arithmetic in PASCAL-XSC language
[17]. The new module supplies all operations, functions and procedures provided by I_ARI
module and many other ones necessary for computations in extended interval arithmetic
spaces.

The new module uses the definition of the type INTERVAL

type interval = record inf, sup : real end;
which is part of the language core of PASCAL-XSC. The inf component of the interval
data type corresponds to the first component of a directed interval and the sup component
corresponds to the second component of the directed interval comprising thus the definition
for a real generalized (directed) interval as an ordered couple of real numbers.

All predefined arithmetic and lattice operators (Table 1) deliver an interval result. The
two monadic operators +, - and the four basic operations +, -, *, / performing the
corresponding operation in the module I_ARI with the rounding to the smallest enclosing
interval (outward rounding) are predefined to perform the same operation for directed
(proper/improper) intervals. An enclosing interval is a directed interval which contains
according to the extended inclusion relation (2) the true interval solution.

Table 1. The operators of module EXI_ARI

left
Operand intege)
) peratt Lnteger interval
right real
Operand
unary +7 —, -, Opp
<>7 O’ []
integer AHO, AHI, o =, <>, in, ><
real 43, %ok cC, >
+k, kk
<>7 O’ [
% 0 8 =, <>, in, ><
interval =, J<r>7 cC, > ’ E’, E’
k, kek
’ 4k, k%

o€ {+,—,%/,+<,—<,x<,/ <}, o€ {SHO,MHO,DHO,SHI, MHI,DHI}
e € {AI,SI,MI,DI, 0A,0S,0M, 0D}
Ce{<, <=,>,>=}, > ¢ {LT, LE, GT, GE}

Besides the usual interval operations with outward rounding, interval operations com-
puting an inner inclusion of the true interval solution (inwardly directed rounding) can

also be very useful. An inner inclusion interval is a directed interval which is contained
(according to the extended inclusion relation) in the true solution interval. The four
operations +<, -<, *<, /< are predefined to perform the corresponding operation for
directed intervals with inward rounding.

Two new monadic operations are defined: conjugation “_” of a directed interval, which
is essential for the conversion between proper and improper intervals, and the hyperbolic
unary minus opp.

The hyperbolic operations can be derived from the extended interval arithmetic op-
erations and functions [32]. A direct and thus faster implementation of the hyperbolic
operations according to formulae (12), (11), (13) is provided by the new operators SHO,
MHO, DHO for hyperbolic subtraction, multiplication and division with outward rounding,
and by the operators SHI, MHI, DHI for the same three operations with inward rounding.
The four hyperbolic operators with outward rounding for real operands (Table 1) deliver
the smallest proper interval enclosing the corresponding true result; the corresponding
operators with inward rounding deliver the corresponding improper interval so that

a oHOb = _(a oHIb), o€ {A,S,MD}.

The module also comprises eight new operators (Table 1): AT, SI, MI, DI — for non-
standard addition, subtraction, multiplication and division operations between directed
intervals [26] with inward rounding and 0A, 0S, OM, 0D — for the corresponding non-
standard arithmetic operations between directed intervals with outward rounding. The
detailed description of the necessary expressions involving computer arithmetic will be the
subject of another publication.

The relational operators = (equal) and <> (not equal) are to be interpreted as the
corresponding set-theoretic operators. The operator = is implemented in such a manner
that it delivers true if and only if all components of the interval data type fulfill the
equality. A <> B :=not(A = B). The relational operations <, <=, >, >=are predefined
according to the extended order relation (2) for directed (proper/improper) intervals and

A<B = (A<=DB)and(A<>B),
A>B = B<A, (15)
A>=B = B<=A

Four new relational operations LT, LE, GT, GE are defined to supply testing the second
order relation (10) between directed intervals. The operator LE satisfies

ALE B <= (A.inf <= B.inf) and (A.sup <= B.sup).

The implementation of LT, GT, GE is according to ordering rules analogous to (15).

The operators in and >< are predefined to test the set-theoretic relations “proper
subset”, resp. “disjointedness” between two intervals or between a real- and an interval
operand. An interval A is a proper subset of an interval B if the proper part of A is
contained in the proper part of B. Notationaly, operator in satisfies

AinB <= b7 <a ™) and (aT™W < pt7B)),

Two directed intervals are disjoint if the intersection of their proper parts is an empty set.
The two lattice operations +* and ** are predefined according to the corresponding
extended definitions (9) and (8). Note, that both operations make sense even for two

10

real/integer operands and therefore can be used as conversion operations: +* for transfer
from reals to a proper interval, and ** for transfer from reals to an improper interval.
A set of utility functions is provided:

’ Function \ Result Type ‘ Meaning
intval (rl, r2) interval Interval with inf = r1 and sup = r2
intval (r) interval Interval with inf = sup =r
prop (i) interval The corresponding to ¢ proper interval
inf (i) real The smaller end-point of i
sup (i) real The greater end-point of 4
first (i) real The left end-point of
second (i) real The right end-point of ¢
split (i,a) interval The a-th of the two semi-infinite intervals
or the interval itself
abs (i) interval Absolute value | i |={| r |:r € i}
mid (i) real Midpoint of ¢
diam (i) real Diameter of i

a = integer expression, r, rl, r2 = real expression, 1 = interval expression

Two integer functions sign and drc are defined for a directed interval A to give its
sign, resp. direction as:

1, if a <0&a™ <0, A#]0,0]; 1, if a= <a™;
sign(A) = 0, if a~at <0, or A involves NaN; drc(A) = 0, if A involves NaN;
—1, if a=>0&a™ > 0; —1, if a= >a™.

Current implementation of EXI_ARI module provides mathematical standard functions
F for a directed interval argument X by using the predefined interval standard functions
of the PASCAL-XSC module I_ARI

Frxy arr (X) = Fl art (prOP(X))

and thus always deliver a proper interval as a result. An improved version of the EXI_ARI
standard functions is designed to deliver a directed interval result; the direction of the
result will depend on the monotonicity of the function and the direction of the input
interval.

4.3 Exceptions

A number of exceptional situations such as Invalid Operation, Overflow, Underflow, Divi-
ston by Zero and Ineract Result may arise during numerical computations in a floating-
point environment conforming IEEE standards [2], [3]. Every exception, when it occurs
must raise a flag that a program may subsequently sense and/or take a trap engineered
to pass control to some code to handle the detected exceptional condition. The IEEE
standards require that the default response to the exceptional situations is not to trap on
them, but to compute and deliver to the destination a default result, specified in a reason-
able way if not universally acceptable, for each possible exception. The proper handling
of the exceptional conditions is an important part of any reliable numerical algorithm. A
well-designed exception handling could result in a faster numerical algorithm [6]. IEEE
floating-point arithmetic supports a set of special values called NaNs (Not-a-Number) for

11

communicating results of Invalid Operation exceptions, attempt to extract the square root
of a negative number etc. There are two types of NaNs: quiet NaN which propagate
through the arithmetic operations without precipitating exceptions and signaling NaN
which precipitate an Invalid Operation exception whenever an attempt is made to use one
as arithmetic operand. This provision of NaNs complicates IEEE definition of comparison
operations and as a consequence the correct implementation of some interval arithmetic
operations. An example will illustrate the necessity of some additional programmer’s ef-
fort for the correct implementation of some interval arithmetic operations in standard
conforming environments.

A typical implementation of the operation for convex hull of two intervals is as in the
following MODULA-SC operator.

OPERATOR ChulII (A,B:INTERVAL) +x: INTERVAL;
VAR Temp:INTERVAL;
BEGIN
IF A.INF <= B.INF THEN
Temp.INF := A.INF
ELSE
Temp.INF := B.INF
END;
IF A.SUP >= B.SUP THEN
Temp.SUP := A.SUP
ELSE
Temp.SUP := B.SUP
END;
RETURN Temp
END ChullI;

Let us suppose that the interval values A = [gNaN, —5] and B = [12, 16] are obtained
as a result of some computational process in MODULA-SC [10], which floating-point
arithmetic is in full conformance with IEEE Std 754. Although line 4 of the above code will
signal Invalid Operation exception on floating-point comparison, a continued computation
in non-trapping mode without checking for this exception in line 7 at the body of the
operator will produce a misleading result [12, 16] for those intervals instead of the correct
indeterminate result [gNaN, 16]. Therefore a test whether some of the operands is NaN or
a test for Invalid Operation exception should be provided in the operator above in order
a correct result to be supplied.

Same is the reason for producing

[—3,6] = [3,qNal] x [—2, 1]

by interval multiplication in MODULA-SC. Actually none of the interval arithmetic spec-
ifications known to us pays special attention to the IEEE floating-point exceptions arising
during the execution of the interval arithmetic operations and the definition of an un-
doubted interval default result. Below we give a short description of the interval arithmetic
exceptions and their handling as they were adopted for this implementation.

Since the current implementation of the extended interval arithmetic operations is
based on an underlying floating-point arithmetic conforming the IEEE standard [2], most
of the interval arithmetic operations themselves will signal no exceptions. The exceptions

12

arising on an interval operation are all the exceptions caused by exceptional operands
and exceptional results on the underlying floating-point operations. As they are, for
example, on the interval addition and subtraction. For other interval operations such as
the unary “+” and “—” the exceptions will depend on whether the underlying floating-
point arithmetic considers copying and unary minus as arithmetic operations or not.

Invalid Operation exception is signaled on all interval relational operations if NaN is
involved in some of the operands. FALSE is delivered as a default result when the exception
occurs without a trap.

Unlike floating-point arithmetic where quiet NaNs propagate through arithmetic op-
erations without raising exceptions, some of the interval arithmetic operations whose al-
gorithms involve floating-point comparison will signal Invalid Operation exception if some
of the operands involves quiet or signaling NaN (see the example above). Such operations
are the operations for multiplication, division, convex hull, intersection and some auxiliary
functions.

Lattice operations convex hull and intersection of interval, real and mixed (interval
and real) arguments will signal an Invalid Operation exception if some of the operands
involves NaN. The default result delivered when the exception occurs without a trap is
an interval with a quiet NaN (qNaN) at that end-point at which NaN is involved in the
arguments.

Beside the exceptions on the corresponding underlying floating-point operations, inter-
val multiplication and division operations will signal Invalid Operation exception if some of
the operands involves NaN. The default result delivered in non-trapping mode will involve
at least one qNaN as end-point.

Division by Zero exception will arise on interval division when Division by Zero excep-
tion arise on the corresponding floating-point division operation involved in the interval
division or when the interval divisor contains zero as an internal point. The result deliv-
ered to the destination when the trap is disable is either an infinite/semi-infinite interval
corresponding to a divisor having zero end-point, or a finite directed interval. The latter is
a concise representation of the two semi-infinite intervals resulting the division by interval
containing zero in its interior (see section 3.2). An interval function split is provided for
a backward splitting of the finite interval into two semi-infinite intervals and to return one
of them.

Invalid Operation exception will also be signaled on the auxiliary mathematical func-
tions sign, drc, mid, diam if their argument involves NaN. The delivered default
result by sign and drc is zero, the others deliver qNaN.

For all mathematical standard functions Invalid Operation exception will be signaled
if the argument does not belong to the definition domain of the corresponding function.

Due to the extended inclusion relation the result of the extended interval arithmetic
operations with inward rounding will never be an empty set and no such exception will
be signaled. The same is valid for the extended operation ** . If computations in one
of the subsets IR (proper intervals) or IR (improper intervals) of the extended interval
space H = IR U IR have to be performed, a possible test for an empty set result in the
corresponding subset is the different direction of the delivered result (i. e. an improper
interval delivered as a result of the operation ** between two proper intervals will mean
an empty set intersection).

13

5 Some application hints

In this section we shall present some simple examples illustrating the advantages of the
implemented extensions of the conventional interval arithmetic.

An interpretation of the elements of H as “directed” ranges of monotone functions
[26], [27] leads to an important application of the extended interval arithmetic to obtain
sharp bounds for the range of a function over an interval. Let f be a continuous and
monotone function on the interval 7' € IR and its range be f(T) = {f(t) | t € T}. The
type of monotonicity of f determines the “direction” into which the range f(7') is traced
when the argument ¢ ranges its interval domain 7" in a fixed direction, say from left to
right. Indeed, if f is isotone (nondecreasing) in 7', then the interval f(t) is traced from
its lower to its upper bound whenever ¢ traces T' from left to right. Alternatively f(7)
is traced from its upper to its lower bound if f is antitone (nonincreasing) in 7' and ¢
ranges T from left to right. That is why the interval f[T] = [f(¢t7), f(tT)] € H is called
directed range of the function f over the interval T. The binary variable 7(A), defined by
(1), called direction of the interval A € H, represents the type of the monotonicity of the
corresponding monotone function which directed range is A.

Consider the function f(x) = fi(z)o fa(x), here o € {4, —, x, /}. We seek the range of
the function using the already known ranges f1(X), f2(X). Since fi and f; are continuous
on R then the ranges f1(X) and f2(X) are intervals and for the range of f we have
f(X) ={fi(x)o fo(x) | x € X} C fi1(X) o fo(X). It is highly desirable to obtain an
equality in the above relation. However, such equality relation could be achieved by the
conventional interval arithmetic only when both functions are equally monotone on the
interval X. The familiar interval arithmetic can not provide an exact expression for f(X)
when f; and fs have different monotonicity on X. In [24] Markov defines an extension of
the conventional interval arithmetic by introducing four special interval operations which
provide equality relation for differently monotone functions. Nonstandard operations of
M were used for a better bessel function evaluation [35] and in some numerical algorithms
[7], [28] etc. Some authors use special techniques to achieve the result of the nonstandard
interval operations. See for example [34] where an “interior difference” of two sets is
defined with the meaning of the nonstandard subtraction operation, or [5] where a special
algorithm based on the monotonicity of the functions is proposed to obtain sharp bounds
for ranges of functions. Note, that any assertion in M has equivalent one in K and H and
vise verse. Transition formulae [32] between the arithmetic operations of the extended
interval spaces K and M, and between them and the hyperbolic operations can be helpful
in transferring numerical algorithms between K, M, H. So, the exact representation of
the range of monotone functions can also be achieved by means of directed intervals as
follows:

Assume CM(T) is the set of continuous and monotone functions defined on T' € TR.

Proposition 5.1 For f,g, foge CM(D), X CD, o€ {+,—,%x,/} and g[X] € D\ L
for o=/, we have

(f o g)[X] = f[X] on g[X].

In the conventional interval computations when a given variable occurs more than once,
it causes so called dependency problem. Considerable effort has been expended by interval
analysts in attempting to produce systematic methods for representing an interval function
to most sharply bound the range of a given real function over an interval. It follows from
the above proposition that the dependency problem does not occur for rational monotone

14

functions in the hyperbolic semifield. Monotonicity of rational functions can be assured
by subdividing an interval into parts where the given function is monotonic.

Corolary 5.1 Let f(x) be a rational function which computational graph consists of p
functions fi, fa, ..., f, s0 that f(z) = F ({oi};.gl, {f(z) le)- IS fi.. f, € CM(X),
then

fIX] = Fl{opbty {fIX1Y]
is the exact directed range of f over X € H.

Example 5.1 Evaluate the function f(x) = sin(x)/x over the interval X = [1/2,x].

We have
fIX] = sin[X]/p X = [1,0]/p[r/2,7] = [2/7,0]

and f is decreasing in X since f[X] is improper interval.

Example 5.2 FEvaluate the function f(z) = (z + 1/z) * 472% — 2z over the interval X =
[—2,-1].

We have

fIX] = (X +1/nX) #4720 = 2X
= (=2, ~ 1+ [0.5,~1]) s 43— [-4, 2]
= |
[

2.5, —2] %5, [256, 16] —p, [—4, —2]
640, —32] —p, [-4, —2] = [~636, —30],

while the result in the conventional interval arithmetic is [-766, —20].
A major property of the extensions considered here is the algebraic completeness of
the corresponding structures:

e The lattice operations are closed with respect to the extended inclusion relation (2).

e Due to the existence of inverse elements with respect to the addition and multiplica-
tion operations the equation A+X = B has an unique solution X = B—A_ = B—; A
in H and the equation A x X = B has an unique solution X = B/A_ = B/, A_ for
A€ H\T and B€ H.

e Distributivity of the hyperbolic operations and conditional distributivity of the op-
erations in K and M.

Initiated by Gardenes et al. [12] the algebraic completeness of the extended interval
arithmetic structure K has been used by several Russian authors [22], [33], [36], [37] to
develop an algebraic approach in finding inner approximations of an interval system of
linear equations.

Consider the linear interval system of equations

Az = B, (16)
where A € TR"*" B € IR". The solution set of (16) is defined as

Yami={re€eR"| (A€ A)(FIbeB)(Axz =b)}.

15

A key role in the algebraic approach to the solutions of a linear interval system of
equations plays the interval algebraic solution. Interval algebraic solution to (16) is an
interval vector x, such that substituting it into (16) and performing all interval arithmetic
operations results in the valid equality Ax, = B.

It has been proved [22], [33] that if x, is an algebraic interval solution to the system
Az = B_ in K and all its components are improper intervals, then (x,)— C > 55. That
is (x4)— is an inner approximation of the solution set of (16).

The following two solution sets of (16) are also important for numerous practical ap-
plications:

e the tolerable solution set) 5:={x € R" | (VA€ A)(3be B)(Ax =10)};
e the control solution set > 4, :={x € R" | (34 € A)(Vb € B)(Az =1b)}.

Let x, be the interval algebraic solution of (16) obtained in K. If all components of x,
are proper intervals, then x, C) 5 if all components of x, are improper intervals, then
(Xa)- € 35y [33].

The tolerable and control solution sets are closely related to some problems of iden-
tification and interpolation under bounded uncertainties with an impact on automatic
control. Below we demonstrate the application of extended interval arithmetic on a sim-
ple practical example taken from [11].

Example 5.3 Let v = ex1/(p+ 1+ s) be the equation describing an electrical circuit,
where e, and p are given constants varying in prescribed intervals: e € B, r € R, p € Ry,
E R, Ry € IR. The goal is to determine an interval value S for the resistance, so that for
any s € S the voltage v to be kept in prescribed bounds, that is v CV € IR.

Due to the inclusion monotonicity of the interval operations (conventional and ex-
tended) for any s € S we have E « R/(R+ Ro+ s) C V and S might be either proper or
improper interval. Thus the algebraic solution of the interval equation

ExR

— 1
R+ Ry+ S (7)

over the wider set H will be the sought solution of the above problem. We shall find the
algebraic solution S of (17) by some algebraic transformations:

Since A/JA_ = A_/A =1 for A € H, multiplying both sides of the equation (17) first
by (R+ Ry + S)— and then by 1/V_, supposing 0 ¢ V we obtain consecutively

ExR = Vx(R+Ro+S)_,
ExR
V_

= R_+ (Ro)f +S5_.

Due to A — A_ = 0 subtraction of (R + Ry) leads to E x R/(V_) — R — Ry = S_, which
after a conjugation becomes

S = (ExR)_/V —(R+ Ro)_. (18)

We have to compute an inner approximation ()S C S in order to guarantee the
inclusion E* R/(R+ Ry + (OS) C V (extended interval operations are inclusion isotone).

16

Using the inclusion properties of the extended interval arithmetic computer operations
(Section 3) we obtain the following expression for ()S in computer arithmetic

OS5 =(OE-) @ (OR-) © (OV) © (OR)- © (ORo)--

Assuming the data F = [9.0,11.0], R = [2.0,4.0] and Ry = [1.5,2.5], if the voltage is
to be kept inside the interval V' = [2.0,4.0], from (18) we obtain S = [7.5,2.5]. Since the
resulting interval is improper, this is a control interval. In other words for any s € S there
exist e € E, p € Ry and r € R such that exr/(p+r+s) € V.

Allowing the voltage within the wider range V' = [2, 8] the resulting resistance would
be S = [2.0,2.5] showing the tolerance for the electrical circuit, that is for any s € S and
anye€ E,pec Rpandr € R exr/(p+r+s)eV.

Finally, we point out that the algebraic approach to solving some interval problems
could be applied straightforward in a computer algebra system supporting extended in-
terval arithmetic.

6 Conclusion

The implemented collection of extended interval arithmetic routines provides full compat-
ibility with the generally accepted interval operations and functions. Furthermore, the
power of the conventional interval arithmetic is enhanced by the operations with inward
rounding and a natural extension of the definition domain of the conventional interval
arithmetic providing thus tools for computations in extended interval spaces. Giving
certain definitions of the interval arithmetic exceptions and their handling in an IEEE
floating-point environment we allow a consistent transfer of this software to other IEEE
software/hardware platforms and provide the corresponding consistency of the numerical
results obtained by these interval arithmetic routines.

The extended interval arithmetic routines are a suitable base for transfer, testing and
comparison of the numerical algorithms involving the ordinary interval arithmetic and the
considered interval extensions as well as a necessary tool for implementing the forthcoming
algorithms.

Acknowledgements

The author would like to thank the anonymous reviewers for their helpful comments and
suggestions.

References

[1] Alefeld, G.; Herzberger, J.: Einfihrung in die Intervallrechnung. Bibliographisches
Institut Mannheim, 1974.

[2] American National Standards Institute/Institute of Electrical and Electronics Engi-
neers: [EEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754—
1985, New York, 1985.

[3] American National Standards Institute/Institute of Electrical and Electronics Engi-
neers: [EEE Standard for Radiz-Independent Floating-Point Arithmetic. ANSI/IEEE
Std 854-1987, New York, 1987.

17

[4]

[5]

[10]

Corliss, G. F.: Proposal for a Basic Interval Arithmetic Subroutines Library (BIAS).
preprint, 1990.

Corliss, G. F.; Rall, L. B.: Computing the Range of Derivatives. In Kaucher, E.;
Markov, S. M.; Mayer, G. (Eds.): Computer Arithmetic, Scientific Computation and
Mathematical Modelling. IMACS Annals on Computing and Appl. Math., 12, J. C.
Balzer, Basel, 1992, pp. 195-212.

Demmel, J.; Li, X.: Faster Numerical Algorithms via Exception Handling, In Swart-
zlander, E.; Irwin, M. J.; Jullien, G. (Eds.): Proceedings of the 11th Symposium on
Computer Arithmetic, IEEE Computer Society Press, 1993, pp. 234-241.

Dimitrova, N. S.: On Some Properties of an Interval Newton Type Method and its
Modification. Computing, Suppl. 9, 1993, pp. 21-32.

Dimitrova, N.; Markov, S. M.; Popova, E.: Extended Interval Arithmetics: New Re-
sults and Applications. In Atanassova, L.; Herzberger, J. (Eds.): Computer Arithmetic
and Enclosure Methods. Elsevier Sci. Publishers B. V., 1992, pp. 225-232.

Durst, E.: Realisierung einer erweiterten Intervallrechnung mit Uberlaufarithmetik.
Diplomarbeit, Universitat Karlsruhe, 1975.

Falc6 Korn, C.; Gutzwiller, S.; Konig, S.; Ullrich, Ch.: Modula-SC. Motivation,
Language Definition and Implementation. In Kaucher, E.; Markov, S. M.; Mayer, G.
(Eds.): Computer Arithmetic, Scientific Computation and Mathematical Modelling.
IMACS Annals on Computing and Appl. Math., 12, J. C. Balzer, Basel, 1992, pp.
161-181.

Gardenes, E.; Trepat, A.: Fundamentals of SIGLA, an Interval Computing System
over the Completed Set of Intervals. Computing, 24, 1980, pp. 161-179.

Gardenes, E.; Trepat, A.; Janer, J. M.: Approaches to Simulation and to the Linear
Problem in the SIGLA System. Freiburger Interval-Berichte 81/8, 1981, pp. 1-28.

Kahan, W. M.: A More Complete Interval Arithmetic. Lecture Notes for a Summer
Course at the University of Michigan, 1968.

Kaucher, E.: Uber metrische und algebraische FEigenschaften einiger beim nu-
merischen Rechnen auftretender Raume. Dissertation, Universitat Karlsruhe, 1973.

Kaucher, E.: Uber FEigenschaften und Anwendungsmdglichkeiten der erweiterten In-
tervallrechnung und des hyperbolischen Fastkorpers tber R. Computing Suppl. 1,
1977, pp. 81-94.

Kaucher, E.: Interval Analysis in the Extended Interval Space I R. Computing Suppl.
2, 1980, pp. 33-49.

Klatte, R.; Kulisch, U.; Neaga, M.; Ratz, D.; Ullrich, Ch.: PASCAL-XSC Language
Reference with Examples. Springer, Berlin, 1992.

Klatte, R.; Kulisch, U.; Lawo, C.; Rauch, M.; Wiethoff, A.: C-XSC A C++ Class
Library for Extended Scientific Computation. Springer-Verlag, Berlin, 1993.

18

[19]

[20]

[21]

[22]

[23]

[24]

Kniippel, O.: BIAS — Basic Interval Arithmetic Subroutines. Bericht 93.3, Technis-
che Universitat Hamburg-Harburg, Hamburg, 1993.

Kulisch, U. (Ed.): PASCAL-SC: A PASCAL FExtension for Scientific Computation;
Information Manual and Floppy Disks; Version IBM PC/AT, Operating System DOS.
Wiley-Teubner Series in Comp. Sci., B. G. Teubner, J. Wiley & Sons, 1987.

Kulisch, U., Miranker, W. L.: Computer Arithmetic in Theory and Practice. Aca-
demic Press, New York 1981.

Kuprianova, L.: A Method of Square Root for Solving Interval Linear Algebraic Sys-
tem. Int. Conference on Interval and Computer-Algebraic Methods in Science and
Engineering, Interval’94, St-Petersburg, 1994.

Laveuve, S. E.: Definition einer Kahan-Arithmetik und ihre Implementierung. In
Nickel, K. (Ed.): Interval Mathematics. Lecture Notes in Computer Science, 29,
Springer, Berlin, 1975, pp. 236—245.

Markov, S. M.: Extended Interval Arithmetic. Compt. Rend. Acad. Bulg. Sci., 30, 9,
1977, pp. 1239-1242.

Markov, S. M.: Some Applications of the Extended Interval Arithmetic to Interval
Tterations. Computing Suppl. 2, 1980, pp. 69-84.

Markov, S. M.: Eztended Interval Arithmetic Involving Infinite Intervals. Mathemat-
ica Balkanica, New Series, 6, 3, 1992, pp. 269-304.

Markov, S. M.: On the Presentation of Ranges of Monotone Functions using Interval
Arithmetic. Interval Computations, No 4(6), 1992, pp. 19-31.

Markov, S. M.; Angelov, R.: An Interval Method for System of ODE. In Nickel, K.:
Interval Mathematics 1985. Lecture Notes in Computer Science, 212, Springer, 1986,
pp. 103-108.

Metzger, M.; Walter, W. V.. FORTRAN-SC: A Programming Language for En-
gineering/Scientific Computation. In Ullrich, Ch. (Ed.): Contribution to Computer
Arithmetic and Self-Validating Numerical Methods. IMACS Annals on Computing
and Appl. Math., 7, J. C. Balzer, Basel, 1990, pp. 427-441.

Moore, R. E.: Interval Analysis. Englewood Cliffs, N. Y., Prentice-Hall 1966.

Ortolf, H. -J.: Fine Verallgemeinerung der Intervallarithmetik. Geselschaft fiir Math-
ematik und Datenverarbeitung, Bonn 11, 1969, pp. 1-71.

Popova, E.: Transition Formulae between Interval Arithmetic Structures. preprint,
1994.

Shary, S. P.: Algebraic Approach to the Interval Linear Static Identification, Tol-
erance and Control Problems or One More Application of Kaucher Arithmetic. Int.
Conference on Interval and Computer-Algebraic Methods in Science and Engineering,
Interval’94, St-Petersburg, 1994.

19

[34]

Stetter, H. J.: Validated Solution of Initial Value Problems for ODE. In Ullrich,
Ch. (Ed.): Computer Arithmetic and Self-Validating Numerical Methods. Notes and
Reports in Mathematics in Science and Engineering, 7, Academic Press, 1990, pp.
171-187.

Zakovic, S.: Evaluation of Bessel-Ricatti Functions using Interval Arithmetic. Work-
ing Paper, Numerical Optimisation Centre, University of Hertfordshire, 1994.

Zakharov, A. V.: Constructing an Interval Algebraic Solution in Extended Interval
Arithmetic. Proc. of All-Union Conference on Actual Problems of Applied Mathe-
matics, Saratov, 1990, pp. 311-317. (in Russian)

Zyuzin, V. S.: On a Way of Finding Two-Sided Approximation to the Solution of Sys-
tem of Linear Interval Equations. Differential Equations and the Theory of Functions,
Saratov State University, Saratov, 1987, pp. 28-32. (in Russian)

20

