REAL NUMBERS AND COMPUTERS 3 April 28,1998

On the Efficiency of Interval Multiplication
Algorithms

Evgenija D. Popova *

Abstract

In this paper we present the theoretical base for some modifications
in interval multiplication algorithms. A diversity of proposed implemen-
tation approaches is summarized along with a discussion on their cost-
efficiency. It is shown that some improvements can be achieved by uti-
lizing some properties of interval multiplication formulae and no special
hardware support. Both conventional and extended interval multiplica-
tion operations are considered.

Keywords : interval multiplication operation, performance analysis

1 Introduction

Recent years are characterized by an increasing number of interval arithmetic
applications in science and industry, and a wide variety of interval arithmetic
software tools. The necessity of interval software performance improvements
for numerical intensive applications has led to a number of hardware designs
involving interval arithmetic [12]. Recent efforts in establishing several interval
conventions and standards facilitate the development of commercial hardware
and compiler support for interval arithmetic. However, speed remains the most
important goal for system suppliers. Providing high-speed support for interval
arithmetic operations requires joint efforts of mathematicians and engineers.
In this paper we consider probably the hardest and most expensive inter-
val operation — multiplication — from both theoretic and algorithmic point
of view. Next Section presents a new formula for interval multiplication which
gives an analytic proof and theoretical reasons for some improvements in the
algorithms for interval multiplication. The algebraic extension of conventional
interval arithmetic is considered as a general case retaining all properties of
classical interval analysis and containing conventional interval arithmetic as
a special case. All theoretical derivations will be done in the general case
of extended intervals, while the implementation algorithms will be discussed

*Institute of Mathematics and Informatics, Bulgarian Academy of Sciences,
Acad. G. Bonchev str., block 8, BG-1113 Sofia, Bulgaria, E-mail : epopova@bio.bas.bg
partially supported by the Bulgarian National Science Fund under grant No. I-507/95

117

REAL NUMBERS AND COMPUTERS 3 April 28,1998

for classical and extended multiplication operations separately. In Section 3
we discuss the efficiency of several algorithms implementing classical interval
multiplication operation. Implementation of the outwardly rounded operation,
based on floating-point arithmetic, is considered. Since changing the rounding
direction is an expensive operation on many systems, we consider implementa-
tion algorithms using rounding in only one direction. This is possible because
IEEE floating-point arithmetic [2] in round-to-negative-infinity mode is sym-
metric with the arithmetic in round-to-positive-infinity mode. The reader is
supposed to be familiar with the definition of computer interval arithmetic [8].
On the example of the classical algorithm, based on nine sign-dependent cases,
we demonstrate how some properties of interval multiplication formulae can be
exploited to gain an increased efficiency of interval multiplication operation.
Further on, we give a short overview of several algorithms representing differ-
ent approaches for the implementation of interval multiplication operation and
discuss their cost-effectiveness. Algorithms for interval multiplication in the ex-
tended interval spaces are presented in Section 4 and their implementation cost
is compared to the implementation cost of algorithms for conventional interval
multiplication.

2 End-Point Representation of Interval Multi-
plication

Consider the set D = IR U IR of usual (proper) intervals IR = {[a~,a*] | a~ <
at,a”,a™ € R} and improper intervals IR = {[a=,a™] | a= > a*,a",at € R}.
For an extended (generalized) interval A = [a~,at] € D, a* € R denotes the
first or second end-point of A depending on the value of A € A = {+,—}. The
binary variable A is sometimes expressed as a ”product” of two or more binary
variables, A\ = pv, u,v € A, defined by ++ = —— =4+ and +— = —+ = —.
Every interval A € D can be characterized by several functionals which are
essentially used in the subsequent discussion.
Direction 7 : D — A is defined by

_f + if e <aty
T(A)_{ —, if a= >at.

An extended interval A is called proper, if 7(A) = + and improper otherwise.
Denote 7 ={A €D | A=10,0] or a”a™ < 0}.
For an interval A € D\ T signo : D\ T — A is defined by
+, if a7 > 0;
s={ T E o 1)

In particular, o is well defined over R \ 0.
The symmetry of an interval with respect to the point zero is represented by

118

REAL NUMBERS AND COMPUTERS 3 April 28,1998

x:D—[-1,1]

[-1, if A=10,0]
XA = { a="A /g¥(A) | otherwise,
where v(A) = {+, if |a™| ~|; o(Ja*| —|a~]), otherwise}. It is obvious that
a*™ = {a*t, if |at|>]a a~, otherwise}.
In what follows we consider only multiplication operation which has the
following end-point representation:

la
;

[a=oB)p=o(d) | qo(B)po(A)], A,BeD\T,;
[aa(A)T(B)b—a(A), aa(A)‘r(B)ba(A)], AeD\T,BeT;
[a—o(B)pT(A)a(B) qo(B)pr(A)a(B)], AeT,BeD\T;

Ax B= (2)

[min{a=b",a*b"},max{a"b",a*b"}], A, BeT,
r(4) = 1(B) = +
[max{a=b~,a™bt}, min{a=b",a™b"}], A, BeT,
r(4) = 7(B) =
0, A BeT,
7(A) # 7(B).

The restriction of this formula to the conventional interval space IR results in the
well-known classical interval arithmetic formula [1]. Details about generalized
interval arithmetic can be found e.g. in [5], [10].

The occurrence of min and max functions at the end-points of the result
on multiplication of two zero-involving intervals hampers not only analytical
derivations in interval analysis but affects the performance of corresponding
computer operation as well. Recently, an explicit representation for the end-
points of the interval product has been found by the end-points of the zero
involving arguments.

Theorem 2.1 For A,B € T such that T(A) =7(B) =7

Axp - [a7y g By, if xa < xB;
= [au(A)bfu(A)T, al/(A)bV(A)”'}7 zf XA 2 XB-

A complete proof of this Theorem can be found in [10]. In what follows, we
discuss the impact of this formula for the computer implementation of interval
multiplication operation.

Denote Z ={[t7,tT] € IR [t~ <0<¢h}
Corollary 2.1 For A, Be Z

R e C I R I TR R
= [ay(A)b—l/(A), aV(A)bD(A)]’ Zf XA = XB-

119

REAL NUMBERS AND COMPUTERS 3 April 28,1998

Corollary 2.2 For A,Be€ Z

[ay(B)b—y(B)7 G_V(B)b_”(B)],
a*V(A)bl/(A) a*l/(A)bfu(A)
[7 B

if xa < xB;

Ax~ B = ;
{ if xa > XB,

where X~ is inner (nonstandard) interval multiplication (the definitions of inner
interval operations can be found e.g. in [5]).
Proof. For A,B € Z

Ax B =[min{a"b",atb”}, max{a"b",a"b"}]

and
A x~ B =[max{a b",atb"}, min{a b~ ,aTb"}],

The representations of A x B and A x~ B complements each other, which proves
this corollary.

Proposition 2.1 For A,B € T such that 7(A) = 7(B)

x(4) < x(B)

where <M= {<, if \=+; >, if \=—} for A € A.

— afu(A)bu(B) SV(A)U(B) au(A)bfu(B)’

The proof follows from the definition of x-functional and the property
o(a’) = v(A)T(A) for AcT.

Next Corollary from Theorem 2.1 and Proposition 2.1 shows that interval
multiplication requires only three (not four) real products in the worst case of
arguments involving zero.

Corollary 2.3 For A, Be Z

a~bt,aTbt], if a”bT <atbhb”

{a"'bﬂa*‘b"’i if atb <a~bt and v(A)=v(B) = +;
ath™,a"b7], if atbt <a"b”

{cﬁbﬂa*b%, if a=b~ <atbt and v(A) =+ = -v(B);

Ax B=

a~bt,aTbt], if a”bT <aTb™

{a‘b“‘,a_b_%, if atb™ <abt and —v(A) =v(B) = +;
ath™,a"b7], if ath” <a"b*

{a*bﬁa*b*i if a-bt <atp- ¢ YA =v(B)=-

The possibility for using only three floating-point multiplications in the worst
case of multiplication of two zero involving normal intervals was first mentioned
in [6]. Next analysis gives the theoretical basis for the algorithms considered in
[4], [6] and Section 3.4.

120

REAL NUMBERS AND COMPUTERS 3

April 28,1998

For A € D denote

o(A), ifAeD\T,;
(A){u((A)), ifAeT\

and for A € A,)\A{

A, if A\ =+;
(—DA, ifx=-—.

Next Lemma follows from the associativity and commutativity of interval

multiplication.

Lemma 2.1 For A, B€D

AxB = (u(A)u(B)) (u(A)A x u(B)B),
that s

% o U X ‘/7 A) = ,U/(B)v

AxB = {@anvx u(A) # u(B),

where U = p(A)A, V = p(B)B are such that p(U) = u(V) = +.

Lemma 2.2 For AeT

—AeT, 7(-A4) =1(A), u(—A)

- M(A)7

These properties can be verified by a straightforward examination.

Proposition 2.2 For A,B € D and A\ = p(A)u(B)

u"vT, utot],

u"ToT, uTvT],

AxB =)\

o, wt,

0,

wherein [u™,ut] = p(A)A, [v=,vT] = u(B)B.

[
[uTBly=, By],
[
[

A,BeD\T;

AeD\T, BeT;

AeT, BeD\T;

A,BeT, 7(A)=7(B)=r,
u vt <utv;

ABeT, 71(A)=1(B)=r,
utv™ <u vt

A,BeT,7(A) #7(B),

The proof follows from Theorem 2.1, Proposition 2.1 and previous two Lemmas.

Corollary 2.4 For A,B € IR and A = p(A)u(B)

A, BelIR\ Z;
A€IR\ Z, Be Z;
AeZ BelR\ Z
A,BcZ utv <u vt
ABc Z u vt <utv.

REAL NUMBERS AND COMPUTERS 3 April 28,1998

3 Algorithms for Classical Interval Product

3.1 Sequential Algorithms

Usually, designers make choice between two classical alternatives for the im-
plementation of interval multiplication. First alternative involves nine cases
determined by the algebraic signs of the end-points of the interval operands
(the restriction of formula (2) to IR). Second alternative involves computation
of minimum and maximum of the four possible products of the operands end-
points. The average number of floating-point multiplications required for the
first alternative is less than that required by the second one. Implemented in
software, the relative efficiency of both alternatives are architecture dependent,
although the first alternative is often preferred in low-level implementations
designed for efficiency. As a typical representative of the first alternative we
consider Algorithm 3.1, given in [3]. This algorithm computes the product
A x B for A, B € Z by finding maximum of four floating-point products and
requires four floating-point multiplications and two floating-point comparison
operations as a whole. According to Corollary 2.3, interval result in the consid-
ered case can be obtained only by three floating-point multiplications. Hence,
Algorithm 3.1 can be modified at the step corresponding to A, B € Z, so that
interval result be computed by three floating-point multiplications and three
floating-point comparison operations (see Algorithm 3.2).

Remark 3.1 Note, that this modification does not require any change in the
other concepts (e. g. for supported intervals or exception handling) adopted in
[3].

3.2 Zero involving arguments

In this paper we consider the prevealing case of interval arithmetic implemen-
tations that, although being in IEEE floating-point environment [2], do not
distinguish the sign of zero. All considerations in this section remain valid, with
minor modifications, for intervals involving signed zero.

From set-theoretical point of view 0 € [—a, 0] and 0 € [0, a], where a € R, a >
0. However, from algebraic point of view the sign of the interval A = [a™, a™] €
D such that a~a™ = 0 and a~ # a™, is well defined by the nonzero end-point
sign (see (1)). It can be easily verified the correctness of the following

Proposition 3.1 For A=[a",a"] € D, witha a™ >0 and B=[b",b"| € D,
with b=bT =0, the interval product A x B is such that
[(T (B)=a ()| qo(A)r(B)po(A)]
if a”at > 0;
[min{a7b+1a+f)f—~}_, max{a~b",atbhT}], _ [afa(B)b—a(A% ao(B)bcr(A)]_
ifa"at =0, 7(A) = 7(B) = +;
[max{a=b~,a*b"}, min{a"b",aTb"}],
ifaaT =0, 7(4) =7(B) = —

122

REAL NUMBERS AND COMPUTERS 3

April 28,1998

Algorithm 3.1 Interval multiplication according to [3].
A=la",a"], B=[Db",b"], Ax B=[r",r7]

Save_Rounding_Mode;
Set_Rounding_ Mode_Up;
ifam>0 {A>0}
then if b~ > 0 then {B > 0}
r~=—(—a"b")
rt = (a™b")
elseif b™ < 0 then {B <0}

r~=—(—ath7)

rt = (a"b")
else {0 € B}

r~=—(—a*h")

rt = (aTbh)
elseif at <0 {A <0}
then if b~ > 0 then {B > 0}
r~=—(—a"b")
rt = (aTb7)
elseif b+ < 0 then {B < 0}

r~ =—(—atbh")
rt=(a"b7)
else {0 € B}
r~ =—(—-a"b")
rt=(a"b7)
elseif b= >0 {0 € A}
then {B > 0}
r~=—(—a"b")
rt = (a+b+)
elseif b+ < 0
then {B < 0}
r~ =—(—ath")
rt=(a"b")
else {0 € B}
r~ = —max(—a " b*t,—ath")

rT =max(a"b",aTbT)
if isnan(r~) or isnan(r™)
then if not (isnan(a™) or isnan(b~)) then r~ = —oo

Restore_Rounding_Mode;
return [r~, rT]

123

REAL NUMBERS AND COMPUTERS 3 April 28,1998

Algorithm 3.2 Improved algorithm for interval multiplication.
A=la",a"], B=[b",b"], AxB=[",r"]

Save_Rounding_Mode;
Set_Rounding_Mode_Up;
ifa™ >0 {A>0}

then if b= > 0then {B>0} r— =—(—a"b")
r+ = (atbt)
elseif b* <0 then {B <0} r~ =—(—a™bh")
rt = (a"b")
else {0 € B} r~=—(—atb")

rt = (atht)
elseif a™ <0 {A <0}

then if b= >0 then {B>0} r~ = —(—a"b")
rt = (atb7)
elseif b© < 0 then {B <0} r~ = —(—a™b™)
rt=(a"b")
else {0 e B} r~=—(—a"b")
rt=(a"b")

elseif b= >0 {0€ A}
then {B >0} r~ =—(—a"b")
rt = (aTbT)

elseif bt <0

then {B <0} r~ =—(—a™b)
rt = (a"b7)

else {0 e B}
if a™ < —a~ then if bT < —b~

then r~ = —max(—a~b", —a™b7)
rt =a"b"
else 1~ =—(—a"b")

r* =max(a"b",atbh")
elseif bT < —b~

then 7~ = —(—a™b7)
r* = max(a”b",aTb")
else r~ =-—max(—a"bt,—aTb")

r+ = (atbt)
if isnan(r~) or isnan(r™)
then if not (isnan(a~) or isnan(b~)) then r~ = —o0
rt =400
Restore_Rounding_Mode;
return [r—,r7]

124

REAL NUMBERS AND COMPUTERS 3 April 28,1998

This Proposition says that, when one or both arguments involve zero at one
or both end-points, instead of using one of the formulae in left-hand side of
the above equality, we can use the formula for two nonzero arguments. Let us
consider now what are the consequences, imposed by an implementation, guided
only by the set-theoretical properties of intervals, for the run-time performance
of the algorithms.

Both approaches (set-theoretic and algebraic) result in algorithms having
equal performance if only one of the arguments involves zero at the end-point(s).
This is not the case when both arguments involve zero at the end-point(s). The
Algorithm 3.1 processes operation A x B, for arguments

A=la",a"], a"at =0, a <a'; (3)
B=[b.b", b bt=0, b <bt

by the branch labeled {0 € A},{0 € B}, while the improved Algorithm 3.2
processes the operation with same arguments by those branches corresponding
to the signs of the arguments. Since the case 0 € A, 0 € B is computationally
the heaviest among the nine sign-dependent cases, the Algorithm 3.2 possesses
better performance then the Algorithm 3.1 for arguments defined by (3). A
comparison of both algorithms is presented in Table 1.

o(B) N B
a(4)
+ 2>, 21, 2% 1>, 2>, 2%
— 1>, 2, 2% 2, 2%

Table 1: Number of extra sign-tests (), floating-point comparisons (1) and
floating-point multiplication operations (x) performed by Algorithm 3.1 than
the Algorithm 3.2 in computation of [a™, a¥]x[b™,bT], where a~a™ = b~b" =0,
and a” <at, b~ <bt.

Example 3.1 Compute [—2,0] x [0, 3] by Algorithm 3.1 and Algorithm 3.2.

Algorithm 3.1 computes [r~,r"] = [~ max{6, -0}, max{—0,0}] = [-6,0] by
4 sign-tests, 4 floating-point multiplications and 2 floating-point comparisons,
while Algorithm 3.2 computes [r~,r%] = [—6,0] by 3 sign-tests and 2 floating-

point multiplications.

3.3 Handling of NaNs

Algorithm 3.1 [3], designed for IEEE 754 compliant processors, provides a non-
stop handling of Invalid Operation exception arising on floating-point operations

125

REAL NUMBERS AND COMPUTERS 3 April 28,1998

0% (+00). The IEEE 754 default exceptional result gNaN is used at the end of the
Algorithm 3.1 (last two if statements) to detect when a result end-point needs
to be set to +o0o according to the exception handling mechanism, proposed in
[3]. Handling interval arguments, both involving zero at their end-point(s), the
same way as arguments, both containing zero in the interior, (case 0 € A, 0 € B)
requires some additional waste of efficiency. The following example illustrates
this effect.

Example 3.2 Compute [—3,0] x [0, 00] by Algorithm 3.1 and Algorithm 3.2.

Algorithm 8.1 computes: Algorithm 3.2 computes:
r~ = —max{—o00,0} rT = —00
r* = max{0, NaN} rt =0

To handle NaNs correctly determining r*, Algorithm 3.1 requires either some
hardware primitives that support efficient implementation of max satisfying

max(z,NaN) = NaN for any z,

or max, based on IEEE comparisons, should be implemented by one comparison
more using the unordered paradigm [9]. The alternative (“algebraic”) approach,
used by Algorithm 3.2, provides efficiency in this situation, too, because no

Invalid Operation exception 0 x (£00) can arise in the branch {0 €A D€ B},
using max-function (i.e. floating-point comparison). This branch of Algorithm
3.2 handles only the product of two empty set intervals, represented by [NaN,
NaN], which does not cause problems because both arguments of the IEEE
comparison in this case are NaN.

Remark 3.2 In addition to the efficiency, Algorithm 3.2 gains a sharper in-
terval result on floating-point Invalid Operation exception. Latter concerns,
however, the concept of exception handling which will not be discussed here.

Remark 3.3 We moved last two if statements from Algorithm 3.1 to Algo-
rithm 3.2 without any change because we do not discuss the exception handling
mechanism in this paper.

3.4 Parallel Approach

The Algorithms 3.1 and 3.2 are entirely sequential and thus both will be less
than optimal on modern, heavily pipelined superscalar processors. The tests
and branches in these algorithms tend to prevent hardware and compilers from
cooperating to fully utilize the floating-point pipeline to exploit instruction-
level parallelism. The idea for a brute force approach in implementation of
interval multiplication operation was proposed in [7]. It was suggested that an
implementation of interval multiplication be based on the usual definition for
A Be€IR

AxB = [min{a b ,a b",a™b ,a"b"}, max{a” b ,a b, aTb,at bt}

126

REAL NUMBERS AND COMPUTERS 3 April 28,1998

and some hardware support for branchless implementation of min and max
instructions, so that the result can be computed with eight multiplications and
six min/max operations but no explicit conditions. “The general case could
exploit dual multipliers if available in hardware, although a single pipelined
multiplier that could initiate a new operation on every cycle might suffice.”

Further discussion on this approach and the design of special hardware, ded-
icated for interval operations, is provided in [13]. Based on the assumption that
one arithmetic operation as well as a floating-point comparison lasts one unit of
time while switches controlled by the sign bit are free of charge, the Algorithm
3.3 was pointed out in [13] as optimal. If two floating-point multipliers and one
floating-point comparison units are available in parallel, this algorithm performs
interval multiplication in case of 0 € A, 0 € B in four time steps and all other
cases of interval multiplication — in one time step. Applying the considerations
from Sections 3.2 and 3.3, this algorithm and the others, considered in [13],
will gain an increased performance for the special cases of arguments involving
zero at the end-point(s). However, whether sign-tests can be neglected or not
is system dependent. On some superscalar processors testing the floating-point
sign bit is performed by using integer operations. Hence, the Algorithm 3.3 will
not be optimal on such systems.

Algorithm 3.3 Interval multiplication according to [13].
A=la",a"], B=[b",b"], AxB=R
W, A denote floating-point product rounded toward —oo, resp. +00.

1. s7 = b= >0V (at <OAbT >0)) then a= else a™) v

(if ()

(if (a >0V (at >0AbT <0)) then b~ else b")
st=(if (b~ >0V (at™ >0AbT >0)) then a* else a=) A

(if (a >0V (at >0AbT >0)) then bT else b~)

if (am<0AaT™>0Ab" <0OAbT >0) then step (2), (3), (4)
else [r~,rt]=[s",s7]

2. p=a" bt g=atyb-
3. r~ =min(p,q); p=a~ Ab"; g=aT AbT

4. rT = max(p,q)

A completely different approach for the implementation of interval multipli-
cation was proposed in [4] (see also [1]) and modified in [6] to reduce the number
of floating-point products in multiplication of two zero containing intervals from
four to three. This approach uses an initial transformation of the arguments to

127

REAL NUMBERS AND COMPUTERS 3 April 28,1998

have non negative sign and v-functional value, so that Corollary 2.4 be applied
(see Algorithm 3.4). A sequential implementation of this approach is superior
to the others for interval operands A, B € Z but in all other sign-dependent
cases this approach requires at least one floating-point comparison more than
the Algorithm 3.2. Algorithm 3.4 presents the sequential algorithm from [6],
slightly modified, to show its potential for parallelisation. Transformation of
interval arguments could be performed in parallel. Upper bound (r*) of the
result could be computed in parallel to the computation of lower bound (r7),
too. Finding lower bound (r~) of the result requires two sign-tests in order
to avoid the necessity of special support for correct floating-point comparison
with NaNs (see Section 3.2). This algorithm possesses considerably less condi-
tionals than Algorithm 3.2 and equal performance for all sign-dependent cases
of interval arguments. It supports all efficiency considerations from the pre-
vious sections and do not require special hardware support providing correct
comparison with NaNs. We believe that the execution of this algorithm may be
essentially accelerated by parallel processing and some pipeline techniques.

Algorithm 3.4 Interval multiplication, parallel version of [6].
A=la",a"], B=[",b"], Ax B=R

Save_Rounding_Mode;
Set_Rounding_Mode_Up;

V. t=-a" 1", t=—-b"
pA=1t>a~ uB=1t>b"
if uA then a™ =a~ if uB then bT = b~
a” =t b- =t
else a= =—a~ else b~ =—-b"
2. if b <0
then if a= <0 then r~ = —(a"b") || t=—(aTb")
rt =atdt || if t<r” thenr =t
else r*=a™d" || v~ =—(ath7)
else if a= <0 then r* =a*bot | r= =—(a"b")
else r*=a’bt | r~=—(—a"b")

3. Restore_Rounding_Mode
if uA=pB then R=[r,r"]
else R=[-rt,—r7]

128

REAL NUMBERS AND COMPUTERS 3 April 28,1998

4 Nonstandard Interval Products

It was demonstrated in [11], that a credible implementation of inner interval
multiplication X~ requires three floating-point multiplications for each sign-
dependent case. The algorithm, given in [11], can be modified to process the

case 0 € A0 €B according to Corollary 2.2. Conventional interval arithmetic,
extended by inner interval operations, provides the same functionality as the
algebraic extension, called here generalised interval arithmetic [5]. Former ap-
proach, however, requires implementation of eight interval operations, which is
a considerable drawback.

An implementation of generalised interval arithmetic provides extended func-
tionality [5] at a cost-efficiency compared to that of conventional interval arith-
metic. For an efficient implementation, we propose Algorithm 4.1, wherein

_f true, if p(A)=—; | a(4), it Ae D\ T;
04 = { false, ifpu(A) =+ 0 A= L)), itAeT

_) true, if0 e A;
ZA = .
false, otherwise.

Algorithm 4.1 Multiplication of Generalised Intervals.
A=la",a"], B=[b",b%], AxB=R

0s=at <a”
if 64 then A=-A
za=(a" <0orat <0)

Op =bt < b~
if g then B=—-B
zg=(b" <0orbt <0)

if za & zp then if (a™ < 0) # (b* < 0)
then R =[0,0]
elseif (a™ < 0) then R = [a~ b~ ,max{a b",atb" }]
else R=[min{a b",atb"}, atb’]
elseif z4 then if (a* < 0) then R =[a"b",a"b]
else R=[a"b",a®bh"]
elseif zp then if (b7 <0) then R=1[a"b",a b"]
else R=[ath™,a™b"]
else R=[a"b",a"bh"]

if 4 =60p then Return R
else Return —R

129

REAL NUMBERS AND COMPUTERS 3 April 28,1998

To achieve a better lucidity of Algorithm 4.1, only the end-points of the result are
specified without explicit referring to a directed rounding. An implementation
should provide that left end-point is rounded toward —oco and right end-point
is rounded toward +o0.

For normal intervals, Algorithm 4.1, performed on parallel processors, would
have performance comparable to that of Algorithm 3.4. The average slow-down
of Algorithm 4.1 would be about 2-3 sign-tests. However, a small implementa-
tion and interpretive overhead would be at the expense of an increased func-
tionality of generalised arithmetic.

Other implementation approaches, based on formula (2), seem to be less
than optimal since the direction of an extended interval is determined by a
floating-point comparison and an interval sign-test involves two floating-point
sign-tests.

5 Conclusion

We presented here the theoretical basis of interval multiplication algorithms
using at most three floating-point products and discussed several approaches
for the implementation of interval multiplication operation. The proposed cost-
efficiency related improvements require no special hardware support. We share
the opinion of [7] “the final verdict on cost-effectiveness would require com-
parison of comparable hardware and software implementations” and hope that
the approaches, presented in this paper, would contribute toward (or at least
would provoke searching) an optimal hardware implementation attracting more
interval applications.

References

[1] Alefeld, G.; Herzberger, J.: “Einfithrung in die Intervallrechnung”. Bib-
liographisches Institut Mannheim (1974). English translation: “Interval
Analysis”, Academic Press (1981).

[2] American National Standards Institute/Institute of Electrical and Elec-
tronics Engineers: “IEEE Standard for Binary Floating-Point Arithmetic”;
ANSI/IEEE Std 754-1985, New York (1985).

[3] Chiriaev, D.; Walster, G. W.: “Interval Arithmetic Specification”, Draft
revised October 1997.
(http://www.mscs.mu.edu/~georgec/Classes/GlobSol /Papers/spec.ps)

[4] Christ, H.: “Realisierung einer Maschinenintervallarithmetik mit beliebigen
ALGOL-60 Compilern”, Elektron. Rechenanlagen, 10 (1968), 217-222.

[5] Dimitrova, N.; Markov, S.; Popova, E.: “Extended Interval Arithmetics:
New Results and Applications”, in Atanassova, L.; Herzberger, J. (Eds.):

130

REAL NUMBERS AND COMPUTERS 3 April 28,1998

[13]

“Computer Arithmetic and Enclosure Methods”, Elsevier Science Publish-
ers B.V. (1992), 225-232.

Heindl, G.: “Improved Algorithm for Computing the Product of Two Ma-
chine Intervals”, Interner Bericht der integrierten Arbeitsgruppe Math-
ematische Probleme aus dem Ingenieurbereich Fachbereich Mathematik
der bergischen Universitit-Gesamthochschule Wuppertal, TAGMPI — 9304,
September (1993).

Hough, D.: “Hardware Support for Interval Arithmetic”, posts to numeric-
interest@validgh.com mailing list, March 1994; October 1995.
(http://www.validgh.com /numeric-interest /numeric-interest.archive)

Kulisch, U., Miranker, W. L.: “Computer Arithmetic in Theory and Prac-
tice”; Academic Press, New York (1981).

Popova, E.: “Interval Operations Involving NaNs”; Reliable Computing,
No. 2 (1996), 161-166.

Popova, E.: “Generalized Interval Distributive Relations”; Preprint No
2, Institute of Mathematics & Computer Science, Bulgarian Academy of
Sciences, February 1997, 1-18.

Popova, E.; Markov, S.: “Towards Credible Implementation of Inner Inter-
val Operations”. 15th IMACS World Congress on Scientific Computation,
Modelling and Applied Mathematics. Volume 2 Numerical Mathematics;
1997, 371-376.

Schulte, M. J.; Swartzlander, E. E. Jr.: “Software and Hardware Techniques
for Accurate, Self-Validating Arithmetic”, in: Kearfott, R. B.; Kreinovich,
V. (Eds.): “Applications of Interval Computations”. Applied Optimization
2, Kluwer Academic Publishers (1996) 381-404.

Wolff von Gudenberg, J.: “Hardware Support for Interval Arithmetic. Ex-
tended Version”; Report No. 125, Lehrstuhl fiir Informatik II, Universitat
Wiirzburg, October 1995, 1-14.
(ftp://sunshine.informatik.uni-wuerzburg.de/pub/publications/tr125.ps)

131

