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Abstract
Being algebraic completion of the conventional interval arithmetic, the arithmetic on ex-tended (proper and improper) intervals possesses group and other algebraic properties suit-able for implementation in computer algebra systems. We give an overview of a Mathematicapackage directed.m supporting the completed set of intervals and discuss the bene�ts, pro-vided by this package, for doing numeric and symbolic-algebraic interval computations.
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1 Introduction
Several extensions of the classical interval arithmetic [2] have been proposed but the only pro-viding an algebraic completion of interval arithmetic is that leading to the set of generalised(proper and improper) intervals. First developed by H.-J. Ortolf [10], E. Kaucher [5, 6] andE. Garde~nes [4], further investigated by S. Markov [8, 9] and others, generalised interval arith-metic is obtained as an extension of the set of normal (proper) intervals by improper intervalsand a corresponding extension of the de�nitions of the interval arithmetic operations. The cor-responding extended interval arithmetic structure possesses group properties with respect toaddition and multiplication and a number of other advantages.Consider the algebraic completion D = f[a�; a+] j a�; a+ 2 Rg = IR [ IR of conventionalinterval arithmetic, obtained as an extension of the set of normal (proper) intervals IR =f[a�; a+] j a� � a+; a�; a+ 2 Rg by improper intervals IR = f[a�; a+] j a� � a+; a�; a+ 2 Rg,a corresponding extension of the inclusion order relation

A � B () (b� � a�) and (a+ � b+); for A;B 2 D; (1)
interval arithmetic and lattice operations [4, 6].Dual is an important operator that reverses the end-points of the intervals and expresses anelement-to-element symmetry in D. For A = [a�; a+] 2 D \dual" is de�ned by

Dual[A] = A� = [a+; a�]:
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We utilize functional \�" notations: a� for the interval end-points and A� for the intervals,where � 2 � = f+;�g, so that extended interval formulas can be written in a closed form. Thebinary variable � can be expressed as a \product" of two or more binary variables, � = ��,�; � 2 �, de�ned by ++ = �� = +, and +� = �+ = �.The extension of the arithmetic and lattice interval operations from the familiar set of normalintervals [2] into D leads to extended interval arithmetic. Corresponding interval arithmeticformulae can be found in [4, 6] (in table form) and [12]{[14] (in functional \�" notations). Therestrictions of the extended interval arithmetic operations in the conventional interval spaceproduce the familiar operations [2] for normal intervals.The substructures (D;+;�) and (DnT ;�;�), where T = fA 2 D j A = [0; 0] or a�a+ < 0gare isotone groups [6]. Hence, there exist unique inverse elements (�A� and 1=B�) with respectto the operations + and � such that

A�A� = 0 and B=B� = 1: (2)
Dual operator is distributive with respect to the arithmetic operations.

(A1 � ::: �An)� = (A1)� � ::: � (An)�; Ai 2 D; i = 1; :::; n; � 2 f+;�;�; =g (3)
Recently, a full characterization of the distributivity relations on multiplication and addition ofgeneralised intervals has been done [12].The following functionals characterize extended intervals and most of the interval arithmeticproperties. For an interval A 2 D de�ne \direction" � : D ! � and for an interval A 2 D n Tde�ne \sign" � : D n T ! � by

�(A) = � +; if a� � a+;�; if a� � a+: �(A) = � +; if a��(A) � 0;�; if a�(A) � 0:
An generalised interval A is called proper, if �(A) = + and improper otherwise. With everyinterval A 2 D we can associate a proper interval A�(A) = [a��(A); a�(A)] where a��(A) � a�(A).In particular, � is well de�ned over R n 0. For A 2 T , �(A) = 0.Functional � : D ! [�1; 1] is de�ned by �([0; 0]) = �1 and

�(A) = � a�=a+; if ja�j � ja+j;a+=a�; otherwise:
Functional � admits the geometric interpretation that A is more symmetric than B i� �(A) ��(B). For A 2 D we have �(A�) = �(A).De�nition of norm and metric, as well as many topological properties of (D;+;�;�) aregiven in [6]. Some other properties of the extended interval arithmetic can be found in [4, 5].In order to emphasize that an extended interval can be considered also as a proper interval (inset-theoretical sense) coupled with \direction", sometimes the algebraic extension of the con-ventional interval arithmetic is called directed interval arithmetic. A technique [8] for projectingintervals from D onto conventional interval space allows an interpretation of the improper inter-vals and corresponding extended interval arithmetic assertions in terms of the interval arithmeticspace of proper intervals. Generalised interval arithmetic seems to be useful and quite promisingfor a straightforward computation of inner and outer inclusion of functional ranges, for the ef-fective solution of some interval algebraic problems and some problems related to interpolationand identi�cation under uncertainties, control theory etc.Although extended interval arithmetic has been implemented as a PASCAL-XSC module[11], the most natural environment for its implementation is a powerful and versatile computeralgebra system like Mathematica [15], where the better algebraic properties of the extended in-terval arithmetic can be exploited e�ectively. In the following we present aMathematica packagedirected.m that extends Mathematica interval capabilities by providing a new data object rep-resenting extended multi-intervals, as well as operations and functions for basic arithmetic onthem. We give here an overview of the package design, its usage and demonstrate the advantagesof the implemented extension on some examples.
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2 Numerical Computations with Extended Intervals
The Mathematica package directed.m [1] was designed as an experimental demonstrative pack-age intended to provide functionality that can not be obtained by conventional interval arith-metic supported by the Mathematica [15] kernel function Interval [7]. At a �rst stage, Mathe-matica interval capabilities were extended by the de�nitions of a new data object Directed anda number of functions handling numerical extended intervals.
Directed[fa, bg] is the directed interval from a to b.
Directed[fa1, b1, Roundg, fa2, b2, Roundg, . . . ] is the set of outwardly roundedextended intervals a1 to b1, a2 to b2, ... called extended multi-interval.
An optional parameter Round is included in the syntax of the Directed data object toensure correct outward rounding of the inexact numbers participating in the extended intervalsaccording to the strict de�nitions of interval computer operations [3, 5]. Symbols Infinityand Indeterminate, mathematical constants (E, Pi, etc.), exact singletons (e. g. Sqrt[11],Sin[2], Log[12], ...) can be involved at the interval end-points and combined with inexactnumbers providing that interval operations handle former exactly while the latter are roundedin the corresponding direction.Intersecting, equally directed elements of an extended multi-interval are merged into singleintervals which are put into normal order. To provide correct handling of intervals involvingexact singletons and/or mathematical constants numerical approximation takes a substantialpart of the corresponding operations/functions, in particular to decide whether interval elementsintersect.

In[1] := a = Directed[{3, 2}, {0, Pi}, {0., Sqrt[26], Round}]Out[1] = Directed[{-2.22507 10^(-308), Sqrt[26]}, {3, 2}]
Basic arithmetic on numerical extended multi-intervals is automatic, performed in machineor user-speci�ed precision with outwardly rounding. Arithmetic operations are implementedaccording to the strict de�nitions of outwardly rounded computer operations [3, 5] providingthat the resulting extended interval always encloses (according to the extended order relation)the true result. The outward rounding is performed a posteriori rather than as directed roundingin hardware.

In[2] := Directed[3., {E, 2}] - 3Out[2] = Directed[{-3+E, -1},{-4.44089 10^-16, 4.44089 10^-16}]
Normal intervals are special case of the single extended intervals and extended multi-intervalsgeneralize Kahan's intervals. Division by a directed interval with 0 in its interior results in twosemi-in�nite directed intervals.

In[3] := 1 / Directed[{3, -2}]Out[3] = Directed[{-1/2, -Infinity}, {Infinity, 1/3}]
Properties (2), implemented as corresponding rewrite rules for the interval operations provideno blowing-up of the interval result if the arguments involve approximate real numbers.D is a conditionally complete lattice regarding � with the following lattice operations:

inf�(A;B) = [maxfa�; b�g;minfa+; b+g];sup�(A;B) = [minfa�; b�g;maxfa+; b+g]:
The lattice operations convex hull and intersection provide set theoretical functionality fornormal intervals but not for improper intervals. Functions IntHull and IntIntersectionperform lattice operations on extended intervals.
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IntHull[int1, ... , intp] gives convex hull of a number of extended intervals
IntIntersection[int1, ... , intp] gives intersection of a number of extended intervals

In[5] := IntHull[Directed[{2, 3}], Directed[{5, 7}]]Out[5] = Directed[{2, 7}]In[6] := IntIntersection[a, Directed[{-11, -Infinity}, {7, 2}]]Out[6] = Directed[{7, -Infinity}]
Mathematica package directed.m contains two functions InclusionQ and InclusionEQ test-ing the antire
exive, resp. re
exive inclusion relations between extended intervals.

InclusionQ[int1, int2] delivers True if every element of the extended multi-interval int2is contained (1) in but is not equal to some element of the multi-interval int1and False otherwise.
InclusionEQ[int1, int2] delivers True if every element of the multi-interval int2is contained in or is equal to some element of the multi-interval int1and False otherwise.
These functions were extended to test the corresponding relation between a sequence ofdirected intervals and/or numbers.

In[7] := InclusionQ[Directed[{-7, -12}, 5, {3, 13}],Directed[{3, 5}, {6, 7}]], Directed[{Pi, 4}], Pi]Out[7] = True
Comparison operations <=, <, >=, > are rede�ned to test an order relation, de�ned by

A � B () (a� � b�) and (a+ � b+): (4)
int1 <= int2 delivers True if every element in the extended multi-interval int1 isin relation (4) with some element in the multi-interval int2 and False otherwise.
A sequence of extended multi-intervals can be compared

In[8] := Directed[{0.7, 5, Round}, {12, 3}] >Directed[{2/3, Cos[3]}, 0.] >= Directed[{-E, -1}]Out[8] = True
Function IntMemberQ provides set theoretical functionality for extended intervals.

IntMemberQ[int1, arg2] delivers True if the set of values de�ned by every element ofthe multi-interval (or numerical value) arg2 is contained in the set of values de�nedby some element of the directed multi-interval int1 and False otherwise.
Extended interval b contains 4 and 5 as set theoretical members but not according to theextended inclusion relation.

In[9] := IntMemberQ[b=Directed[{7, 4}, {12, Infinity}], 4]Out[9] = TrueIn[10] := IntMemberQ[b, 5]Out[10] = True
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Several utility functions provide convenient manipulations with extended intervals. Theutility functions Direction, Sign, Chi, First, Second and Proper are speci�c for manipu-lation with extended intervals. Function Proper delivers the proper projection of an extendedmulti-interval. Using Interval instead will cause double rounding of the end-points.

In[11] := {Proper[a], Interval @@ a}Out[11] = {Directed[{-(2.22507 10^-308), Sqrt[26]}],Interval[{-(4.45015 10^-308), Sqrt[26]}]}
Dual is an important functional which reverses the end-points of an extended interval.

In[12] := Dual[b]Out[12] = Directed[{4, 7}, {Infinity, 12}]
Kernel Min, Max functions are overloaded to deliver the greatest lower or the least upperbound of an extended multi-interval. The function Abs maps Directed to a numerical value.

In[13] := Abs[Directed[{-11, -7}, {2, 3}]]Out[13] = 11
Sometimes, an inner inclusion of the true interval solution can be very useful giving an es-timation of the tightness of the obtained outer interval solution. An inner inclusion interval isan interval which is contained in the true solution interval. Some safety problems also searchfor a minimum set of the solutions instead of an inclusion. Inner inclusions in conventional in-terval arithmetic can be obtained only if inwardly rounded interval operations are implementedin addition to the outwardly rounded ones which requires an extension of the set of operationsymbols. An important property of the extended interval arithmetic is that inner inclusionscan be obtained only by outwardly rounded operations and the corresponding dual of the in-put interval expression [4]. Roundings 
;� : D �! RD (where RD is the set of computerrepresentable extended intervals) are de�ned by 
A = [4a�;5a+] (inward rounding), and

�A = [5a�;4a+] (outward rounding); 5, 4 are the 
oating-point directed roundings toward�1 and +1, respectively. For A 2 D we have [4]
Dual[�Dual[A]] = 
A � A � �A = Dual[
Dual[A]]:

If � 2 f+;�;�; =g is an operation in D, the properties
(
A) 
� (
B) � A �B � (�A) �� (�B)Dual[(�Dual[A]) �� (�Dual[B])] = (
A) 
� (
B)

are extended for rational expressions to facilitate obtaining an inner inclusion. In order togive the user the opportunity for both outward and inward rounding of an extended intervalinvolving inexact numbers, by analogy with the kernel function N converting all numbers to Realform and N[expr, n] performing computations with n-digit precision numbers, we have de�nedfunction R to produce the approximate real interval including the extended interval argument.Applying function R is often more convenient than using the parameter Round for roundinginexact intervals.
Example 1 Find an interval F , such that F � f(2:3 + b)=c j b 2 B; c 2 Cg,wherein B;C 2 D are proper intervals.In outwardly rounded conventional interval arithmetic we can obtain only

(2:3 +B)=C � f(2:3 + b)=c j b 2 B; c 2 Cg;
while in extended interval arithmetic we can get F satisfying the required property.
F = (2.3 + Dual[R[Dual[B]]]) / Dual[R[Dual[C]]]
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Symbolic manipulation proved to be an e�cient tool for detection and removal of dependencyrelations between variables and the reduction of the number of occurrences of variables in rangecomputation of interval functions. However, the limited possibilities for reduction and thevarying character of expressions mean that we never can be sure to have been producing thebest computable form for an expression (if existing) but only a more suitable one. Under certainmonotonicity conditions for the function, a theorem [4] for eliminating the dependency problemgives the best computable form for an expression in generalised interval arithmetic.

Example 2 Compute the exact range of function
f(t) = t+ [1=5; 2]t� [1=4; 7=3] over T = [3; 36=5]:

By conventional interval arithmetic we obtain interval [64=139; 69=5] for the range of f .Because f(t) is monotonously decreasing on t over T , monotonously increasing on t in thenumerator and monotonously decreasing on t in the denominator, we can apply the theoremfrom [4] to eliminate the e�ect of multi-incidence of variable t. According to this theorem
f(T ) = Dual[T ] + [1=5; 2]T � [1=4; 7=3] ;

obtaining thus [148=139; 15=2], which is the exact range of f .Function f(t) can be written in the equivalent form
f(t) = 1 + [1=5; 2] + [1=4; 7=3]t� [1=4; 7=3]

but last expression involves one arithmetic operation more than the expression in generalisedinterval arithmetic and thus one more round-o� error when doing approximate computations.
Computer algebra systems provide the best facilities for checking monotonicity conditions.Embedding generalised interval arithmetic in Mathematica allows a combined usage of bothtechniques: symbolic preprocessing and the theorem for eliminating the dependency problem inproducing the best computable form for the range of an expression.

3 Symbolic-Algebraic Interval Computations
One major class of calculations made possible by the symbolic computation capabilities of thecomputer algebra systems is that involving manipulation of algebraic formulas. The algebraicmanipulations involve simplifying rational expressions and �nding algebraic solutions for severalkinds of equations. Due to the many conditionals involved in the interval formulas, implementingsymbolic intervals and complete symbolic interval arithmetic is not suitable. We have chosenanother strategy: to de�ne inMathematica symbols representing extended intervals and to modelthe speci�c algebra of extended intervals by corresponding rewrite rules.Any symbol (name of variable) can represent an extended interval if its type is explicitlyspeci�ed as Directed. The package directed.m treats a symbol symb as extended interval ifthat symbol had been given an explicit assignment
symb /: Head[symb] = Directed
where the kernel Head function identi�es the type of the objects. This way, we can use symbolsrepresenting extended intervals instead of symbolic data objects Directed (e. g. Directed[fa,bg]). Symbols without explicit type assignment are considered as degenerate (point) intervalsfor which all built-in algebraic rules are valid.There are often many di�erent ways to write the same algebraic expression. From the deriveddistributive relations [12] between extended intervals we have inferred rules for taking a common
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symbolic multiplier out of brackets and rules for disclosing brackets on multiplication of a sumby extended interval, where either the sum or the multiplier involves symbolic extended interval.We consider symbolic-numerical expressions being �nite interval sums involving two-terms prod-ucts of a common symbolic multiplier and a coe�cient which is either a numerical expression ora numerical extended interval. The rules for taking a common multiplier out of brackets wereimplemented in the Mathematica package by corresponding simpli�cation equations [14]. Thesesimpli�cation equations being associated with the kernel operation addition are applied auto-matically so that any input expression involving extended intervals is automatically simpli�edif possible.
In[14] := x /: Head[x] = Directed;In[15] := Directed[{2, 7}] x - x^2 + Directed[{3, 5}] xOut[15] = -x^2 + x Directed[{5, 12}]

Since the validity conditions for the interval distributive relations involve values of Direction,Chi and/or Sign functions, associated with the common symbolic multiplier, often an explicita priori assignment to these values is required for simpli�cation of an interval expression. Twofunctions On/Off[IntervalSimplification] are de�ned to switch on/o� printing of messagesunder what conditions an interval subexpression can be simpli�ed. Generating messages whenMathematica tries to simplify an expression is switched o� by default.
In[16] := Directed[{2, 7}] x - Directed[{5, 3}] Dual[x]Out[16] = Directed[{2, 7}] x - Directed[{5, 3}] Dual[x]
In[17] := On[IntervalSimplification]
In[18] := Directed[{2, 7}] x - Directed[{5, 3}] Dual[x]IntervalSimplification::chi:"Directed[{2, 7}] x + Directed[{-3, -5}] Dual[x]"will be simplified if Sign[x]=0, Direction[x]=1, Chi[x]<=-(1/2).Out[18] = x Directed[{2, 7}]+Directed[{-3, -5}] Dual[x]
In[19] := x /: Direction[x] = 1; x /: Sign[x] = 0; x /: Chi[x] = -2/3;In[20] := In[16]Out[20] = Directed[{-1, 2}] Dual[x]

Distributivity (3) of the Dual operator on the interval arithmetic operations is another keypoint of the knowledge database for symbolic manipulation of interval expressions. FunctionExpandDual[expr] is de�ned to do all possible expansions of the Dual function around sums,products and powers. Actually this function transforms the Dual of a sum into a sum of dualterms, the Dual of a product into a product of dual terms and the Dual of a power into the powerof a dual argument everywhere in an expression. Further research is necessary for the de�nitionof functions Sign, Direction and Chi, so that they automatically determine the correspondingvalue for an arbitrary symbolic-numerical interval expression. A solution of this problem willallow the de�nition of a function IntervalExpand designed to disclose the brackets aroundsymbolic-numerical interval expressions and related functions allowing to transform intervalexpressions into other interval expressions.Note, however, that the most important application of the automatic simpli�cation of intervalexpressions is not for tight range computation but for the solution of interval equations. Whilein range computation we can do a proiri simpli�cation of the analytic expression according tothe common algebraic rules, transforming interval equations can be done only according thespeci�c properties of interval arithmetic, otherwise the initial interval problem will be changed.Due to the algebraic identities (2) many interval algebraic equations can be solved only byelementary algebraic transformations. Modelling equations in most of the real-life practicalproblems involve multiple occurences of the interval parameters. Applying the theorem for
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eliminating the dependency problem often leads to interval equations similar to that one in thefollowing example.
Example 3 Find a positive proper interval (if it exists) which is the algebraic solution to theequation

1 + [15=4; 19=6] t7=5 + [1=2; 3=5] Dual[t] + [1=3; 1=2] Dual[t] = [5=3; 2]:
We specify in Mathematica that the symbol t represents a directed interval and input asymbolic-numerical expression specifying the equation. Mathematica automatically simpli�es thedenominator in the left-hand side of the equation to the expression 7=5 + [5=6; 11=10] Dual[t].Applying successive elementary transformations, based on the algebraic identities (2), to thestructure of the equation, latter can be reduced to the equivalent one

1 + [15=4; 19=6] t+ [�5=3;�2](7=5 + [5=6; 11=10] Dual[t]) = 0:
Due to validity of corresponding distributive relation, the parentheses in the above equation canbe removed multiplying each of the additive terms by the interval [�5=3;�2]. By that we obtainthe following equivalent equation

1 + [15=4; 19=6] t+ [�7=3;�14=5] + [�11=6;�5=3] Dual[t] = 0;
which is automatically simpli�ed to the equation

[�4=3;�9=5] + [23=12; 3=2] t = 0:
Now, the sought solution [16=23; 6=5] is obtained as dual of the quotient of the negative interceptand the coe�cient of t in the last equation.This example shows that the distributive law for extended intervals is an indispensable toolfor the reduction interval algebraic equations, with multi-incidence of the unknown variable, tosimpler ones. The general normal form of simpli�ed interval algebraic equations is given in [13].This is helpful for the explicit algebraic solution of some interval equations which are not linearin generall. For example, the interval equation

[7;�11] + [1; 5]�XX = [3; 2]; 0 62 X
is algebraically equivalent to the equation

[1; 5]�X + [�3;�2]�X = [�7; 11]; 0 62 X:
However inD, like in conventional interval arithmetic, there are only conditionally valid distribu-tive relations and therefore these equations are not linear. Left-hand side of last equation cannotbe further simpli�ed and according to [13] the equation posesses two nonzero algebraic solutions:X1 = [2; 3] and X2 = [�15;�34]. Automatic simpli�cation of symbolic-numerical interval ex-pressions is also helpful for the reduction of the round-o� errors (when rational arithmetic is notused) due to the reduced number of arithmetic operations in the simpli�ed equation.Many interval algebraic equations having rational function in the left side can be reduced tosome basic type pseudo-linear algebraic equation [13] in extended interval arithmetic (this is dueto the distributivity relations and properties (2)). A Mathematica function AlgebraicEquationSolve[eqn] is de�ned to give all numeric algebraic solutions and/or all parametric algebraicsolutions to a pseudo-linear interval equation having normal form and in one variable.
In[21] := AlgebraicEquationSolve[Directed[{5, 6}] x + Directed[{-10, -3}] x ==Directed[{1, 2}]]Out[21] = { }
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In[22] := AlgebraicEquationSolve[Directed[{1, 5}] x + Directed[{-3, -2}] x ==Directed[{-7, 11}]]Out[22] = {Directed[{2, 3}], Directed[{-15, -34}], Directed[{-7/2, 11/2}],Directed[{7, -11}]}
In[23] := x /: Sign[x] = -1In[24] := AlgebraicEquationSolve[Directed[{1, 3}] x + Directed[{-2, -3}] x ==Directed[{3, 1}]]Out[24] = {Directed[{-2, -3}]}

All nonzero algebraic solutions to the equation [�4; 3]�X + [6;�2]�X = [2; 1] arefX1 = [�12 + 32�; �]; � � 13g; fX2 = [�; 13 + 23�]; � � 0g, fX3 = [13 + 23
; 
]; 
 � �12g;fX4 = [�; �12 + 32�]; � � 0g
Several otherMathematica functions are de�ned to help �nding algebraic solutions to systemsof linear and pseudo-linear interval equations.

4 Conclusion
The algebraic properties of extended interval arithmetic make it a powerful tool for explicitsolution of some interval algebraic problems and the best environment for exploiting these prop-erties is a computer algebra system. Calculating with interval variables is a novel approach incombining symbolic and interval computations showing the possibilities for developing intervalcomputer algebra. The implemented facilities for doing symbolic-numerical interval computa-tions allow an easy computation and exploration in the algebra of extended intervals facilitatingthe solution of many practical problems. Both computer algebra and interval computationsbene�t from this interaction: computer algebra turns into valuable tool for scienti�c computing,interval computations expand the methodology tools and get an increased e�ciency to serve theapplications.
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