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Abstract  Considered are parametrised linear systems which parameters are sub-
ject to tolerances. Rump’s fixed-point iteration method for finding outer
and inner approximations of the hull of the solution set is studied and
applied to an electrical circuit problem. Interval Gauss-Seidel iteration
for parametrised linear systems is introduced and used for improving the
enclosures, obtained by the fixed-point method, whenever they are not
good enough. Generalised interval arithmetic (on proper and improper
intervals) is considered as a computational tool for efficient handling of
proper interval problems (to obtain inner interval estimations without
inward rounding and to eliminate the dependency problem in parametri-
sed Gauss-Seidel iteration). Numerical results from the application of
the above methods to an electrical circuit problem are discussed.

1. Introduction

This work was imposed by the necessity to obtain sharp enclosures
for the hull of the solution set of parameter dependent interval linear
systems. Latter arise often in solving engineering problems which para-
meters may be subject to uncertainties.

We consider the application of Rump’s fixed-point iteration method
[10] to linear systems with several parameters which are subject to vary-
ing degree of uncertainties. Whenever the quality of the obtained outer
and inner estimations of the interval hull of the parametrised solution
set is not good enough, it is desirable that we could improve such inclu-
sions. Interval Gauss-Seidel iteration for parameter dependent interval
linear systems is introduced and used for the above purpose. The appli-
cation of generalised interval arithmetic [3], [11] as a computational tool
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for efficient handling of conventional interval problems (obtaining inner
numerical approximations without inward rounding and eliminating the
dependency problem in parametrised Gauss-Seidel iteration) is demon-
strated. An electrical circuit example [7] is used in Section 5 to illustrate
the computational aspects and the results given by the various methods
and also to indicate the importance of the varying degree of uncertainties
and the number of parameters.

We use the following notations. R™ R™*™ denote the set of real vec-
tors with n components, the set of real n X m matrices. By normal
(proper) interval we mean a real compact interval

[a] :=[a",a"]:={a€R|a” <a<a"}

The set of proper intervals is denoted by IR. This set is extended in
[3] by the set IR = {[a™,a™] | a~,a™ € R,a™ > a™} of improper inter-
vals obtaining thus the set I'IR = IRUIR = {[a~,a™] | a=,a™ € R}
of all ordered couples of real numbers called here generalised intervals.
Normal (proper) intervals are a special case of generalised intervals and
the conventional interval arithmetic! can be obtained as a projection of
generalised interval arithmetic on IR. In Section 2 we present only those
basic facts from generalised interval arithmetic which are necessary to
use it as a computational tool for handling proper interval problems.
By IR", I*IR"™ denote interval n-vectors and IR™*™ T*IR"™*™ denote
interval n x m matrices. The hull of a bounded set S € PR" is the
interval vector 0JS := [inf S, sup S]. Often it is important to know the
quality of an outer approximation of a solution set ¥. The amount of
overestimation can be estimated by means of inner approximations [9],
[10]. [z] € IR™ is called inner approximation for some set 3 € PR" if

inf 0; <x; and x;" < sup oy, for every 1 <i¢ < n.
oex oEX

2. Generalised Interval Arithmetic

The conventional (arithmetic and lattice) operations, order relations
and other functions are isomorphically extended onto the whole set of
proper and improper intervals [3]. “Dual” is an important monadic
operator that reverses the end-points of the intervals and expresses an
element-to-element symmetry between proper and improper intervals in
I*IR. For [a] = [a~,at] € I*IR, its dual is defined by Dual([a]) =
[a™,a~]. Dual is applied componentwise to vectors and matrices.

IWe assume familiarity with interval arithmetic on proper intervals (cf. [1], [5], [6]).
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For [a], [b] € I*IR and o € {+, —, X, /},
Dual(Dual([a])) = [a],  Dual([a] o [b]) = Dual([a]) o Dual([?]). (1.1)

The generalized interval arithmetic structure possesses group proper-
ties with respect to + and X operations: for [a], [b] € T*IR, 0 & [b]

[a] — Dual([a]) =0, [b] /Dual([b]) = 1. (1.2)

Lattice operations are closed with respect to the inclusion relation; hand-
ling of norm and metric are very similar to norm and metric in linear
spaces [3]. For more details on the theory, implementation and applicati-
ons of generalised interval arithmetic consult [2], [3], [8], [11].

Inner Approximations

Let IF C R denote the set of floating-point numbers on a computer and
I*F = {[a~,a™] € I*IR | a~,a’ € F} is the set of generalised intervals
over F. Denote by v/, resp. /A the floating-point directed roundings
(V,A : R — ) towards —oo, resp. +00, defined in the IEEE binary
(or radix-independent) floating-point standard or in [4].

Outward (¢) and inward (O) roundings ¢, : I*IR — I*F are
defined for generalised intervals by a semimorphism the same way as for
normal intervals [4]. For [a] = [a™,a™] € T*IR,

Ola] = [va™, Aa™] 2 [a], Ola] :=[Aa™, va™] € [a].

If o € {+,—, x,/} is an arithmetic operation in I*IR, the correspon-
ding computer operations ¢ ,©® : I*F x I*F — I*FF are defined by

[a] & [b] :== O ([a] o [B]) =[v ([a]o[b)™, A (la]o[B])"]
: [A(la]oB])7, v ([a] o [B)T ).

Usually, an inner approximation of the correct interval result is sought
together with the outer enclosure in order to estimate the degree of
sharpness of the latter. Some safety problems also search for a minimum
set of the solutions instead of an enclosure. Obtaining inner approximati-
ons on a computer in conventional interval arithmetic is possible only
if the four interval arithmetic operations are implemented with inward
rounding @ in addition to the four © operations. The overloading
concept of some programming environments does not allow the operators
to be distinguished by their result type, which imposes the implementati-
on of inwardly rounded interval operations as functions or subroutines.
Unfortunately, most of the wide-spread interval packages do not support
inwardly rounded interval arithmetic. The following three properties [2]
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of the rounded generalised interval arithmetic are of major importance
for obtaining inner numerical approximations at no additional cost and
show that the latter can be obtained only by means of outward directed
rounding and the Dual operator in I*F.

For [a] € I"IR, Ola] = Dual({Dual([al)). (1.3)
For [a], [b] € T'F, oe{+,—,x,/}
[a] ® [b] = Dual(Dual([a]) © Dual([b])). (1.4)

Let f[{o1,...,om},{[a]1,...,[a]n}] be a rational function wherein o; €
{+,—.x,/},i=1,...,mand [a]; e IR, j =1,...,n, then

f{@i}i%, {Olal;}izi] = Dual (f[{0: 12y, {ODual(la];)}j=i]).  (1.5)

We can apply the above three properties to obtain inner estimations of
proper interval problems in a computing environment supporting gener-
alised interval arithmetic (cf. [8]). For some input intervals the inwardly
rounded conventional interval arithmetic may result in an empty set in-
terval. The corresponding result in generalised interval arithmetic will
be an improper interval. That is why, when using generalised interval
arithmetic as a computing environment of a proper interval problem, we
have to interpret improper interval results as empty sets.

Elimination of the Dependency Problem

Let f(x1,...,2,) be a rational function. Denote the range of f over
[] € IR™ by f([z]) = {f(z) | * € [z]} and by F([z]) the interval
extension of f over [z] € I*IR". The next theorem specifies how to
eliminate the dependency problem by using generalised interval arithme-
tic in range computation over a domain of proper intervals. The corres-
ponding formulation for a domain of generalised intervals can be found
in [2], [11].

Theorem 1 ([2]) Let f(z,a) be a rational function multi-incident on
a and there erists a splitting o' = (aj, ..,a,), a" = (af,..,ay) of the
incidences of a. Let g(x,a’,a") corresponds to the expression of f with
explicit reference to the incidences of a and g(x,a’,a") is continuous on
[] x [a)' x [a]". Suppose that g(x,d’,a") is unconditionally <-isotone for
any component of a' and unconditionally <-antitone for any component

of d” on [x] X [a]' X [a]”, then
w if f(x,a) is unconditionally <-isotone for a on [x] X [a],

(2], [a]) = G ([z], [a], Dual([a]")) € F([z], [a]);
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w if f(z,a) is unconditionally <-antitone for a on [x] x [a],
(], [a]) = G ([x], Dual(la]'), [a]") € F([z], [a])-
The application of this theorem is illustrated in Section 5.

3. Fixed-Point Iteration Method

Consider linear system

Alp) -z = b(p), (1.6)

where A(p) € R™ " and b(p) € R™ depend on a parameter vector p €
R¥. When p varies within a range [p] € IR¥, the set of solutions to all

A(p) -z =0b(p), p€[p], is

P =3 (A(p),b(p), [p])

:={z e R" | A(p) - x = b(p) for some p € [p|}. (17)

Each individual component {A(p)}; and {b(p)}; of A(p), resp. b(p) de-
pends linearly on p means that there are vectors

w(i,j) €RF for 0<i<n, 1<j<n with
{A(p)};; = w(i,5)" -p and  {b(p)}; = w(0,5)" - p.

Theorem 2 (Rump [10]) Let A(p)-x = b(p) with A(p) € R™*™, b(p) €
R™, p € R¥ be a parametrised linear system, where A(p),b(p) are given
by (1.8). Let R € R™" [Y] € IR", 2 € R" and define [Z] € IR",
[C] € IR™™ by

[Z) = (Y (R (w(0,5) = & -w(Gw)} ) - o],

7,v=1

[C] == TI—-R-A(p]).

(1.8)

Define [V] € IR™ by means of the following Einzelschrittverfahren
1<i<n : V;:={0(Z]+[C]-[UD}i, [U]:=Vi,....Vic1, Vi, ..., V) '

If [V]& [Y], then R and every matriz A(p),p € [p] are regular, and
for every p € [p] the unique solution T = A~Y(p)b(p) of (1.6) satisfies
Tex+[V]. With [A] :=T{[C] - [V]} € IR" and the solution set ¥P,
defined by (1.7), the following inner estimation holds true.

[ + inf([Z]) + sup([A]), &+ sup([Z]) + inf([A])] <
[inf(XP), sup(XP)]. (1.9)
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It was proven in [9] that for [Q] = & + [Z] with the notations of
Theorem 2,

(@ ¢ OXP-0{[C]- (X —2)} € 0¥ —[A]. (1.10)

The above inclusions, which are in IR, present a special case of the same
inclusion in I*IR. Applying property (1.2) and due to the isotonicity of
the arithmetic operations in I*IR, we get

[Q] + Dual([A]) C O 7. (1.11)

Latter inclusion can be also obtained from (1.9), which is a restriction
of (1.11) to IR.
The left-hand side of (1.9), written in computer arithmetic, is

[z @ inf(O[Z]) @ sup(0[A]), T @ sup(O[Z]) @ inf(O[A])], (1.12)

which is equivalent to (1.11) written in computer arithmetic, that is, due
to the properties (1.3)—(1.5) and (1.1),

Dual (Z ¢ (ODual([Z])) $ (O[A])) C O =P

This way, we can easily compute inner estimation of the interval hull
either of the parametrised solution set, or of the general solution set
corresponding to a non-parametrised system.

For [a] € IR, [b] € IR, [a] + [b] € IR <= w([a]) > w([b]), wherein
w(la]) = {at —a” if [a] € IR; a~ — a™ if [a] € IR} defines the width of
an interval. Since [A] € IR and Dual([Z]) € IR,

Dual (z ¢ (ODual([Z])) ¢ (O[A])) € IR <= w(ODual([Z])) > w(O[A]),

that is, the inner estimation (1.9) is empty iff w([Z]) < w([A]). In
practice, empty inner estimations can be obtained either due to round-
off errors when the intervals are tight but the matrix is near to singular,
or when the tolerances for the parameters are big.

When somehow we have sharpen the outer estimation 1J 37 C [V] -
[V], then the improved outer estimation [V] can replace [V] in (1.9),
resp. (1.12) to get an improved inner estimation of O ¥? (Section 5).

4. Parametrised Gauss-Seidel Iteration

For arbitrary [x] € IR"™ we are interested in good enclosures for the
truncated solution set

% (A(p), b(p), [p]) N [].
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Writing the system A(p) - x = b(p) componentwise
YioiAi(p)e = bi(p),  i=1,..,n
and assuming that A;;(p) # 0, we have

xi = (bi(p) — Lz Air(p)xr) [Aii(p)
C D{(bip) ~ Sessdlin (P)s) (Au(r) | )
x € [z],p € [p]} := [}
Suppose that A;;(p) # 0 for all p € [p], an interval vector [x] € IR"
containing x is known, and if we can find the above hull, then we can

apply (1.13) for i = 1,...,n and obtain another enclosure [z]" for x, such
that
% (A(p), b(p), [p)) N [2] € [a]' N [].

To simplify this presentation and due to the lack of space, further
on we shall assume that A;;(p) # 0 for all p € [p] and i = 1,...,n.
For given [z] € IR", [p] € IR* and rational functions a(p) : R¥ — R,
b(p,r) : R¥ x R” — R, by analogy with the non-parametric interval
Gauss-Seidel iteration (cf. [6]), we define

I'(a(p), b(p, x),[x], [p])
= O{z € [z] | a(p)z = b(p, z) for some p € [p]} (1.14)

= O{b(p,x)/a(p) | = € [z],p € [p]} N [2]

and

[Y]i :=T (Aii(p), bi(p) — Zk<iAik(P) W]k — Zi>iAir () [k, [7], [P]) ,
i=1,..,n. (L15)

Denote by T'(A(p),b(p), [z],[p]) the interval vector [y], defined by
(1.15), and call " (A(p), b(p), [z], [p]) the parametrised Gauss-Seidel ope-
rator, applied to A(p), b(p), and [z] for all p € [p]. The main problem in
the application of the parametrised Gauss-Seidel operator is the compu-
tation of

O{(i(p) — Zr<iAir(P)[Ylk — Zr>iAir(p)[]r) /Aii(p) [ p € [p]} . (1.16)

We recommend (and will demonstrate this in Section 5) to compute
(1.16) by applying Theorem 1 for elimination of the dependency problem
always whenever it is possible.

If [y] =T (A(p), b(p), [x], [p]) is strictly contained in [x], we may hope
to get a further improved enclosure of ¥ (A(p), b(p), [p]) by considering
the iteration

[l,]O = [z], [:C]H_l =T <A(p), b(p), [x]lv [P]) (1=0,1,2,..)
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which we call the interval parametrised Gauss-Seidel iteration. The
parametrised functional (1.14) and the parametrised Gauss-Seidel opera-
tor possess properties similar to the corresponding functional and opera-
tor from the non-parametric interval Gauss-Seidel iteration (see e.g [6]).
Beside the next theorem, a detailed presentation of the interval parame-
trised Gauss-Seidel iteration will be done in a separate work.

Theorem 3 Let [z] € IR" be given, T (A([p]),b([p]),[x]) be the non-
parametrised Gauss-Seidel operator, related to the general linear system
A([p]) - x = b([p]), and the interval vector [y] is defined by (1.15).

If there exists i, 1 <1 < n, such that the function

(bi(p) — Br<iAik(P)Ur — Bi>iAir(p)7r) /Asi(p)

satisfies Theorem 1 with respect to some parameter pj, 1 < j < k, then
for T'(A(p), b(p), [z], [p]), computed by using Theorem 1, it holds

' (A(p), b(p), [z], [p]) & T (A([p]), b([p]), []) -

5. Applications and Numerical Experiments

As example, we consider a linear resistive network, presented in [7].
The resistive network consists of two current sources J; and J> and nine
resistors. The problem of finding the voltages vy, ..., v5, when the voltage
of each conductance g;,7 = 1,...,9 varies independently in prescribed
bounds [g];,i =1, ..., 9, leads to the following parametrised linear system

91+ 96 —9J6 0 0 0
—96 92+ 96+ g7 —g7 0 0
0 —g7 93+ 97+ 98 —98 0 v=J,
0 0 —98 gat+9gs+9go  —gg
0 0 0 —99 g5 + g9

(1.17)
where J = (10,0,10,0,0)" and the parameters are subject to tolerances
lgi=[1—0, 1+9], i =1,...,9. We solve the system (1.17) for different
values of the tolerances ¢ varying from 0.1% to 10% of the nominal value.

The results from the application of Theorem 2 are presented in Table
1. A refinement iteration using intersection ([10], Theorem 2.2) was used
to sharpen the obtained outer, resp. inner approximations. The second
column of Table 1 gives the maximum improvement of the outer approx-
imation in percent. Let [v]* C OXP C [v] denote the corresponding
improved inner and outer approximations. The quality of the obtained
outer estimation is measured by the quotient w([v]*)/w([v]), presented
in the third column of Table 1. For this particular example, the exact
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bounds of the parametric solution set are given by

0P = [minA(g,) " Agy) ™t
[min A(g,)™"J, max A(gu)~J],
wherein g, is defined componentwise as
Foifu =1, _
wor={ % Hul =l

and each u € U = {u € R? | |u| = (1,...,1)T}. The forth column in
Table 1 gives the overestimation of [v] with respect to [ 3P in percent.

Table 1 Results from the fixed-point Rump’s method

* Y2
§ % ma Al 100 (1 - 2520

(%]  refinement min - maz min - maz
0.1 0.06 .99 - .99 0.33 — 0.52
1.0 0.51 .90 - .93 3.27 - 5.22
2.0 0.65 .79 — .86 6.57 — 10.36
3.0 2.16 .69 — .80 9.90 - 15.43
4.0 2.78 .09 - .73 13.26 — 20.43
5.0 3.06 49 — .66 16.67 — 25.35
6.0 3.30 .39 — .60 20.12 - 30.20
7.0 3.65 .29 — .52 23.62 — 34.98
8.0 3.79 .20 — .45 27.18 — 39.69
9.0 3.67 10 - .37 30.82 — 44.32
10.0 3.23 .01 - .30 34.52 — 48.88

Table 1 shows that the degree of sharpness of the outer inclusion
decreases with increasing the tolerances. The results in the fourth column
agree with the results in the third one. As it was pointed by Rump [10],
the refinement iteration by intersection does not contribute much to the
improvement of the estimations.

Now, we apply the parametrised Gauss-Seidel iteration in order to
sharpen the outer inclusion [v] D OXP. To get sharp bounds for the
parametrised Gauss-Seidel operator we apply Theorem 1 for elimination
of the dependency problem in each of the parameter-dependent functions
involved in the operator. Table 2 presents I'(A(g), J, [v], [g]) as a result
of the application of Theorem 1. Right to the expressions, by arrows
are presented: the total monotonicity of the function with respect to
the corresponding multi-incident parameter and the monotonicity with
respect to each of its incidences.
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Table 2 Theorem 1, applied to I'(A(g), J, [v], [¢]) for (1.17)

exact range monotonicity
10+Dual([g]e)-[v]2 1

= —nN 1
[y]l (o)1 +[gJo [ ]1 ! T

lgle-[y]1+]gl7-[v]3 1
— M —, P
[y]2 [g]2-+Dual([g]¢)+Dual([g]7) [U]Q Te ! T7 l

_ 10+Dual([g]7)-[yl2+Dual([gls)-[v]4 1 1
= N <. -
wls l9ls+lgl7+[gls wls b ! ls !

_ Dual([glo)-[v]5+[g]s-[¥]3
[g]4+Dual([g]s)+[glo

=
S

|
—
o0
—
—
©
J

[y]S _ [g]o-[y]a N ’U} T %

[g]5+Dual([g]o)

For the initial boxes [v], obtained at tolerances less than 10%, all the
components of I'(A(g), J, [v], [g]) were monotone with respect to the cor-
responding multi-incident parameters, satisfying thus Theorem 1. For
[v], obtained at § = 10%, at the first iteration y, and y3 were not mono-
tone with respect to g7, so that we had an outer inclusion for the exact
range of the corresponding component of I'(A(g), J, [v], [g]). The mono-
tonicity of y3 was proven after the first iteration and the monotonicity
of yo was proven after the second iteration.

Denote by [0] the improved outer approximation of [J ¥P computed
by the parametrised Gauss-Seidel iteration. The corresponding improved
inner approximation [0]* is computed by

Dual (Z ¢ (ODual([Z])) ¢ (O((C]([0] — )))),

wherein [Z], [C], Z are from Theorem 2.

The results after application of the parametrised Gauss-Seidel iterati-
on and the corresponding inner estimation are summarized in Table 3.
The table starts at § = 4% because the Gauss-Seidel iteration was not
able to improve any component of [v] for tolerances less than 3.4%. The
second column represents how much, in %, the parametrised Gauss-
Seidel iteration improves the outer estimation, obtained by the Rump’s
method. We see a substantial improvement, compared to the second
column of Table 1. The improvement increases with the increasing of
the tolerances. Computing the inner inclusion, corresponding to the im-
proved outer inclusion, we are able to estimate the degree of sharpness of
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the results, obtained by the parametrised Gauss-Seidel iteration, which
is presented in the third column of Table 3.

Table 3 Results after the parametrised Gauss-Seidel iteration

)
(%] min - mar  min - mac min — maz
4.0 0-1.41 .69 — .79 13.25 — 19.29
5.0 0—2.82 .61 — .74 15.73 - 23.93
6.0 1.33 - 5.10 .55 .70 17.58 — 27.61
7.0 4.83 - 9.67 49 — .65 19.06 — 29.55
8.0 8.28 — 14.08 43 — .62 20.11 - 31.70
9.0 13.29 - 19.18 .38 — .59 20.21 - 33.19
10.0  17.93 — 25.65 .36 — .62 14.78 - 31.29

As a whole, the parametrised Gauss-Seidel iteration was able to impro-
ve the quality of the outer and inner inclusions for the hull of the solution
set to some reasonable bounds. However, it deserves studying other
techniques for a further improvement.

6. Conclusion

Our experience and the example considered show that Rump’s method
is perfect for small to modest tolerances for the parameters. The introdu-
ced parametrised Gauss-Seidel iteration could be used as a refinement
step for the Rump’s method under big tolerances and empty inner esti-
mations. Generalised interval arithmetic is useful for efficient computati-
on of inner estimations and elimination of the dependency problem.

Both, the Rump’s method and the parametrised Gauss-Seidel iterati-
on, as well as some other methods for general and parameter-depende-
nt interval linear systems are implemented in the environment of CAS
Mathematica and a package for generalised interval arithmetic [8]. A
discussion on the implementation of these methods and the impact of
computer algebra on interval computations will be given separately.

The Rump’s method, coupled with parametrised Gauss-Seidel iterati-
on and other methods, should be used extensively in the engineering
applications, which as a rule involve dependencies and uncertainties.
Unfortunately, it can be seen from the literature that the rare engineering
applications of interval methods use general methods for non-parametric
or symmetric matrices to problems involving more dependencies than in
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a symmetric matrix. We hope that the presence of public software,
supporting the discussed methods, will increase their application.
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