
Reliable Computing� �� �� ����� pp� ��������

Interval Operations Involving NaNs

Evgenija D� Popova

� Introduction

Ten years ago IEEE standard ��� for �oating�point arithmetic became o�cial� Each
IEEE �oating�point format supports	 its own set of 
nite real numbers� ��� two dis�
tinguished values �
 and �
 and a set of special values called NaNs �Not�a�Number��
Arithmetic operations include operations on numeric� non�numeric or mixed operands
in four rounding modes� A number of exceptional situations may arise during numer�
ical computations� Every exception� when it occurs must raise a �ag that a program
may subsequently sense and�or take a trap intended to handle the detected exceptional
condition� The mandatory default response to the exceptional situations is not to trap
on them� but to compute and deliver to the destination a default result� speci
ed for
each possible exception�

Now� an increasing number of computers and software feature IEEE arithmetic� Con�
trary to the programs written before IEEE Standard became o�cial� programs which
are written to be used under IEEE arithmetic should be prepared to expect any ex�
ceptions that can arise and deal with them properly� Some recent works ��� show that
algorithms working uniformly and robustly across rather di�erent systems and lan�
guages are a lot easier to design and usually more e�cient if they rely on non�trapping
exception handling paradigm�

Most recent interval arithmetic implementations ��� are in Standard conforming en�
vironment� Recently� some speci
cations of Basic Interval Arithmetic Subroutines
�BIAS� appeared ��� �� showing a movement toward standardization of the user inter�
faces for interval arithmetic software�

Although IEEE Standard has been intended to facilitate� between other things� the im�
plementation of interval arithmetic ��� nowadays there are no general implementation
requirements for interval arithmetic under IEEE systems� Since there is no meaning
of the arithmetic operations on intervals involving NaNs their implementation is up
to the implementor�s option� Moreover� no agreement exists about how to deal with
the exceptions arising on interval operations and no default interval response has been
proposed� The emphasis in computing was traditionally on speed but we have to de�
velop also credible and accurate programs� For a program to be credible� the result it
produces must never be misleading�



� Evgenija D� Popova

Goals of this paper are to consider some algorithmic aspects of the implementation of
interval arithmetic involving NaNs or signed zero �Section �� and to propose �Section
�� a simple model of interval arithmetic exceptions and their handling in IEEE non�
trapping mode facilitating thus an extension of the BIAS for IEEE systems�

� Interval operations involving NaNs or ��

Here we shall point out some of the pitfalls for the interval arithmetic implementation
in IEEE environment� We presume Invalid Operation �IO� trap is disabled� the
IEEE system works in the default non�trapping mode�

De�nition� An interval over the set of �oating�point numbers supported by an IEEE
format is called unordered if its end�points compare unordered�

According to the Standard two operands are in relation �unordered� only when at least
one operand is a NaN� In addition to the TRUE�FALSE response an IO exception shall
be signaled when unordered operands are compared using a predicate not involving
��� ���� being a predicate for unordered comparison��

Proposition� Interval operations �and functions� implemented by using �oating�
point comparison not involving unordered will signal IO exception on unordered and
mixed type operands�

Corollary� Unlike scalar �oating�point arithmetic where quiet NaNs propagate through
arithmetic operations without precipitating exceptions� interval arithmetic multiplica�
tion and division operations� implemented by predicates not involving unordered� will
signal IO exception on unordered or mixed type operands�

Examples for interval operations satisfying the above proposition are operations multi�
plication and division� interval hull and intersection� all relational operations� Suppose
a classical unexceptional Algorithm ��� for interval hull is implemented in an IEEE en�
vironment and let the hull of the intervals �qNaN���� and ���� ��� have to be computed
by this algorithm� Although the 
rst comparison operation will signal IO exception�
in non�trapping mode it will return FALSE as a default result� Thus a misleading
result ���� ��� will be produced instead of the indeterminate but more correct result
�qNaN� ���� Same is the reason for obtaining ���� �� � ���� qNaN�� ���� �� using a clas�
sical algorithm for interval multiplication� Furthermore� di�erent implementations of
the multiplication and division operations may result in di�erent but equally danger�
ous numerical results� That is why some additional programmer�s e�ort is required
to ensure a reasonable interval result� Various implementation schemes are possible	
Algorithm ��� checks the IO exception �ag after each �oating�point comparison to
detect the existence of an unordered operand� Function exc

�

io�� returns TRUE if the
IO status �ag is raised� then the procedure io

�

reset�� clears it and a quiet NaN
constant is assigned to the corresponding end�point of the result� Algorithms ��� and
��� use unordered predicate to test the existence of unordered arguments instead of
handling IO status �ag� In IEEE style �IO is raised when NaN is created from non�NaN



Interval Operations Involving NaNs �

operands� Algorithm ��� prevents the occurrence of IO exception while Algorithm ���
signals IO on unordered operands� If a ��� predicate is not supported� an implementa�
tion may use predicates x �� x and x� � x� which do not signal IO and deliver FALSE�
resp� TRUE on unordered arguments� or a classi
cation function in order to account
for NaNs�

Algorithm ��� �x� y� � �a� b� � �c� d�

if �a � c� then x � a

else x � c

if �b � d� then y � d

else y � b

Algorithm ��� �x� y� � �a� b� � �c� d�

if �a � c� then x � a

elseif �exi
�

io��� then x � q
�

NaN

io
�

reset��

else x � c

if �b � d� then y � d

elseif �exi
�

io��� then y �q
�

NaN

io
�

reset��

else y � b

Algorithm ��� �x� y� � �a� b� � �c� d�

if �a � c� then x �q
�

NaN

elseif �a � c� then x � a

else x � c

if �b � d� then y �q
�

NaN

elseif �b � d� then y � b

else y � d

Algorithm ��� �x� y� � �a� b� � �c� d�

if �a � c� then x � a

elseif �a � c� then x �q
�

NaN

else x � c

if �b � d� then y � b

elseif �b � d� then y �q
�

NaN

else y � d

Interval arithmetic implementations are so far left ambiguous about the behavior of
interval operations with respect to the special elements supported by IEEE formats
causing confusion and controversy insofar as programmers have to agree upon their
de
nitions� For example� interval arithmetic in PASCAL�XSC is always trapping
on operands involving NaNs and on interval division when the divisor has zero at
some end�point despite the result of such operation is a mathematically well de
ned
semi�in
nite interval and in
nities participate in all other interval operations� Al�
though IEEE comparisons say �
 and �
 are equal� division operation is a�ected by
zero sign� ����
� � �� but ����
� � ��� Zero sign propagates through certain
arithmetic operations according to rules derived from continuity considerations� for
instance ���� � ��
� � �
� ��
������ � �
 and ��x� x� � �
 for every 
nite real
x� Let us consider the expression ��� �����
� �������
�� � ��� �����
� �� computed under
IEEE arithmetic� The division operation will produce	 ���� ����� if implemented by
min�max functions� ��������� if implemented by checking signs of the intervals and
�������� if implemented by test for zero end�point� First two completely wrong results
will be due to not sensing the sign of zero while the correct result in terms of Kahan�s
outer intervals should be �������� ��������

Two implementing paradigms are possible with respect to the zero elements of the



� Evgenija D� Popova

IEEE system� One is the algebraic sign of zero not to be interpreted by the interval
arithmetic which will lead to a simpler but restricted implementation� The other is to
consider the algebraic sign of zero as speci
ed by the Standard� This will complicate
the basic interval software but will allow implementation of a wider understanding
of intervals ���� We can consider intervals with end�points zero as open or closed�
for instance ��
� �� includes 
 as an internal point but ��
� �� does not� Whatever is
the implementor�s decision about these two paradigms� it should be followed for all
interval operations�

� Interval Exceptions and their Handling

General Principle� Since interval operations are compound operations besides
empty set intersection and division by interval containing zero as internal point in�
terval operations themselves will signal no exceptions� All the exceptions arising on
execution of an interval operation are �oating�point exceptions arising on �oating�point
operations which compound the corresponding interval operation�

Next we specify credible results for interval operations on unordered operands irrespec�
tive of whether IO will be signaled by underlying �oating�point comparisons �Section
�� or not�

� The result delivered by interval operations multiplication and division should involve
at least one quiet NaN as end�point on unordered or mixed type operands�

� The result delivered by the operations interval hull and intersection should be an
interval with a quiet NaN at that end�point at which NaN is involved in the argu�
ments�

� IO exception should be signaled on all interval relational operations and FALSE should
be delivered as a default result if some operand is unordered�

� The result delivered by an auxiliary interval function of unordered argument should�
if a �oating�point result is to be delivered� deliver a quiet NaN as a result�

� IO exception may be signaled by an interval standard function when its argument
does not belong to the de
nition domain of that function� The default result deliv�
ered if the exception occurs without trap may be the result of the same function of
an argument which is intersection of the user�de
ned argument and the de
nition
domain of the corresponding function�

The proposed scheme of interval exceptions and their handling has the advantages to	
permit an undoubted and correct implementation of interval arithmetic operations and
functions on IEEE arithmetic� permit a maximal closure to the interval algorithms for
non IEEE arithmetic� allow full user control on the �oating�point exceptional situations
and their handling� permit a non�contradictory performance in both trapping and
non�trapping mode� be applicable to the most extensions and generalizations of the
conventional interval arithmetic�



Interval Operations Involving NaNs �

� Conclusion

Keeping to rigorous de
nitions of the operations on intervals involving NaNs and in�
terval arithmetic exception handling will bene
t the end users of interval software in
being able to rely on its credible execution in IEEE environment and software devel�
opers to write portable code which uses features of the Standard� An implementation
of the proposed model is provided by the PASCAL�XSC module EXI

�

ARI ��� for
extended interval arithmetic where conventional interval arithmetic is involved as a
special case� This implementation proves that the proposed scheme is suitable and
gives the opportunity to be tested in di�erent situations�

Acknowledgements� This work was partially supported by the Bulgarian National
Science Fund under grand No� I��
�����

References

��� IEEE Standard for Binary Floating�Point Arithmetic� ANSI�IEEE Std ��� �����
New York� �����

��� Corliss� G� F�	 Proposal for a Basic Interval Arithmetic Subroutines Library
�BIAS�� Tech� Rep�� Marquette Univ� Dept� of Maths� Statistics and Computer
Science� Milwaukee� Wisc�� �����

��� Demmel� J�� Li� X�	 Faster Numerical Algorithms via Exception Handling� IEEE
Trans� on Computers� ��� No� �� ����� pp� ��� ����

��� Kahan� W� M�	 Interval Arithmetic Options in the Proposed IEEE Floating Point
Arithmetic Standard� In	 Nickel� K� �Ed��	 Interval Arithmetic �	
�� Academic
Press� ���
� pp� �� ����

��� Kn!uppel� O�	 BIAS � Basic Interval Arithmetic Subroutines� Bericht ����� TU
Hamburg�Harburg� Hamburg� �����

��� Moore� R� E�	 Interval Analysis� Prentice�Hall� N� J�� �����

��� Popova� E�	 Extended Interval Arithmetic in IEEE Floating�Point Environment�
Interval Computations� �� ����� pp� �

 ����

��� Wol� von Gudenberg� J�	 Programming Language Support for Scienti
c Compu�
tation� Interval Computations� ����� ����� pp� ��� ����

Addresses�

E� D� Popova� Institute of Biophysics� Bulgarian Academy of Sciences� Acad� G�
Bonchev str�� bldg� ��� BG����� So
a� Bulgaria� e�mail	 epopova"bgearn�acad�bg�


