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Introduction. We shall survey some resent results in numerical treatment of initial and
boundary value problems for time fractional differential equations involving both Riemann-
Liouville and Caputo fractional derivatives. Examples of such problems include fractional
time dependent diffusion equation, convection-diffusion problems, and multi-term transient
diffusion equation.

Problem formulation. We shall survey the latest development in numerical methods for
solving initial and boundary valued problems for fractional differential equations. Our focus
will be the following time fractional diffusion and diffusion-wave equations:

∂αt u(x, t)−∆u(x, t) = f(x, t) x ∈ Ω, t ∈ (0, T ). (1)

Here ∂αt u denotes the Caputo fractional derivative with respect to t and Ω ⊂ Rd (d = 1, 2, 3)
is a bounded convex polygonal domain with a boundary ∂Ω. We assume that problem (1) is
subject to the following initial and boundary value conditions

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = v(x), x ∈ Ω, (and ∂tu(x, 0) = w(x) x ∈ Ω, if 1 < α < 2).

Here f(x, t), v(x), and w(x) are given functions.
We shall also briefly discuss the steady-state sub-diffusion convection-reaction problem

−∂αx u(x) + b(x)u′(x) + q(x)u(x) = f(x), x ∈ D = (0, 1), u(0) = u(1) = 0, (2)

where the source term f belongs to L2(D) or suitable subspace, and ∂αx u denotes either
the left-sided Riemann-Liouville or Caputo fractional derivative of order α ∈ (3/2, 2). We
assume a convection coefficient b ∈ W 1,∞(0, 1) and a potential coefficient q ∈ L∞(0, 1).
When α = 2, the problem recovers the canonical one-dimensional steady-state convection
diffusion-reaction equation.

Main topics to be discussed. It is impossible to survey all important and relevant works in
a short talk. Instead, we aim at only reviewing relevant works on the numerical methods for
the sub-diffusion model (1) with non-smooth problem data. This means that the initial data
v belongs only to L2(Ω) or the source term f is not compatible with the initial data or/and
boundary condition. First, this choice allows us to highlight some distinct features common
to many nonlocal models, especially how the smoothness of the problem data influences the
solution and the corresponding numerical methods. These are the features that pose substan-
tial new mathematical and computational challenges when compared with standard parabolic

1



problems – and extra care has to be taken when developing and analyzing relevant numeri-
cal methods. In particular, since the solution operators of the fractional model have limited
smoothing property, a numerical method that requires high regularity of the exact solution
will impose severe restrictions (compatibility conditions) on the data and generally does not
work well. Schemes that are constructed and analyzed under high regularity assumptions on
the solution, substantially limit their potential applications. For example, non-smooth data
analysis is fundamental to the rigorous error analysis of various applications in optimal con-
trol, inverse problems, and stochastic fractional diffusion. For relevant discussion on this
important topic we refer to recent paper [1]. We shall review briefly the following four topics
and give some representative results:

(i) Importance of the regularity theory in Sobolev spaces;

(ii) Spatial discretization via Galerkin finite element and finite volume element methods;

(iii) Temporal discretization via time-stepping schemes;

(iv) Space-time formulations (Galerkin or Petrov-Galerkin type).

The talk is based on our resent works in this area [2, 3, 6, 4, 5, 7].
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