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PREFACE

The Bulgarian Section of SIAM (BGSIAM) was formed in 2007 with the purpose
to promote and support the application of mathematics to science, engineering and
technology in Republic of Bulgaria. The goals of BGSIAM follow the general goals of
SIAM:

• To advance the application of mathematics and computational science to engi-
neering, industry, science, and society;

• To promote research that will lead to effective new mathematical and compu-
tational methods and techniques for science, engineering, industry, and society;

• To provide media for the exchange of information and ideas among mathemati-
cians, engineers, and scientists.

During BGSIAM’21 conference a wide range of problems concerning recent achieve-
ments in the field of industrial and applied mathematics will be presented and dis-
cussed. The meeting provides a forum for exchange of ideas between scientists, who
develop and study mathematical methods and algorithms, and researchers, who apply
them for solving real life problems.

The strongest research groups in Bulgaria in the field of industrial and applied math-
ematics, advanced computing, mathematical modelling and applications will be pre-
sented at the meeting according to the accepted extended abstracts. Many of the
participants are young scientists and PhD students.

LIST OF INVITED SPEAKERS:

• Clemens Hofreither (Johann Radon Institute for Computational and Applied
Mathematics, Linz, Austria)
“Recent advances in rational approximation methods for fractional diffusion”

• Julius Kaplunov (Keele University,UK)
“An asymptotic theory for a functionally graded plate”

• Svetozar Margenov (Bulgarian Academy of Sciences)
“Achievements and challenges in numerical methods for multidimensional spec-
tral fractional diffusion problems”

The present volume contains extended abstracts of the presentations (Part A) and
list of participants (Part B).



Ivan Georgiev
Chair of BGSIAM Section

Hristo Kostadinov
Vice-Chair of BGSIAM Section

Elena Lilkova
Secretary of BGSIAM Section

Sofia, December 2021
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Part A

Extended abstracts1

1Arranged alphabetically according to the family name of the first author.





Watermarking Audio Content: Data embedding
based on Fast Fourier Transform

T. Alexandrova, H. Kostadinov, N. Manev

The possibility of embedding watermarks robust against compression in musical audio
files is investigated in this paper. The compression itself can be considered as a com-
munication channel whose statistical characteristics are sensitive to the compressed
musical genre. We study the compression format Advance Audio Coding (AAC) and
collect statistical data for different musical genres. AAC is designed to be the suc-
cessor of the MP3 format and it generally achieves better sound quality than MP3
format at the same bit rate. AAC is the default audio format for the most modern
devices and platforms that dominates in recent years.
The process of embedding and retrieving a watermark can be regarded as a binary
communication channel. In our previous work we investigated an embedding method
based on wavelet transformation of the target audio file. In this work we replace
the wavelet transformation with Fast Fourier Transform preserving other stages of
investigation unaffected.
We are going to make a comprehensive investigation of an embedding technique ap-
plied to musical files which will be subject of subsequent AAC compression. We aim
to propose a method of choosing embedding parameters so that to achieve acceptable
probability of errors without perceptible loss of quality of the audio file.

References

[1] B. Chen and G.W. Wornell, Quantization index modulation: A class of provably
good methods for digital watermarking and information embedding, IEEE Trans.
on Information Theory, vol. 47 no.4, pp. 1423–1443, 2001.

[2] R. Martinez-Noriega, M. Nakano, B. Kurkoski, and K. Yamaguchi, High Pay-
load Audio Watermarking: toward Channel Characterization of MP3 Compres-
sion, Journal of Information Hiding and Multimedia Signal Processing, vol. 2, no.
2, 91-107, (2011).
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Residual Bounds of a Class of Nonlinear Matrix
Equations

V. Angelova

We consider the nonlinear complex matrix equation

Xp = A+M(B +X−1)−1M∗, p ≥ 1, (1)

where X,A,B and M are complex n× n matrices. X is the Hermitian positive
definite solution; the data matrices A and B are Hermitian positive semi-definite,
and M is an arbitrary matrix. The exponent p ≥ 1 is a positive integer number.
M∗ denotes the complex conjugate transpose of the matrix M . For this equation,
necessary condition for the existence of its Hermitian positive definite solution and
an elegant estimate of the solution, as well as one fixed-point iteration method and
one inversion-free variant iteration method for obtaining the positive definite solution
are derived by Meng and Kim in [J. Meng and H-M. Kim. The positive definite
solution of the nonlinear matrix equation Xp = A+M(B+X−1)−1M∗. Compt Appl
Math, 322:139–147, 2017]. Local and nonlocal perturbation bounds for the computed
solutionX to equation (1) are proposed in [V.A. Angelova. Sensitivity of the nonlinear
matrix equation Xp = A + M(B + X−1)−1M∗. In Proc. of extended abstracts 15th
Annual Meeting of the Bulgarian Section of SIAM, page 3, Sofia, Bulgaria, December
15-17, 2020].
The matrix equation (1) is a generalized version of the discrete-time algebraic Riccati
equation X = MX(I+BX)−1M∗+A, which has wide application in control and sys-
tems theory, dynamic programming, stochastic filtering, ladder network. In addition,
setting p = 1 and replacing B = 0 and M = M∗, equation (1) is simplified to the well
known from signal processing, systems and control theory, discrete-time algebraic
Lyapunov equation /or Hermitian Stein equation/ X = M∗XM + A. Generaliza-
tions of equation (1) are the nonlinear complex matrix equations Xs ± A∗XtA = Q,

A0 +
∑k
i=1 σiA

∗
iX

piAi = 0, σi = ±1 and C +
∑r
i=1AiXBi −DXsE = 0.

In this paper, we extend the knowledge on the sensitivity of equation (1) deriving
residual bounds for its approximate solution, computed by a numerically stable it-
erative algorithm. The residual bound is a useful criteria for judging whether the
approximation of the computed solution is acceptable for terminating the iterative
algorithm. The bounds proposed in the paper are limited to terms of second order
and are obtained, applying the techniques of the Fréchet derivatives, the method of
Lyapunov majorants and the Schauder fixed point principle. A numerical example
shows the efficiency of the bounds proposed in a wide range of values for the expo-
nent p. Useful facts on the affine approximation of the matrix rational power function
A→ Ap are proved as well.

Acknowledgments This work is accomplished with the partial support by the
Grant BG PLANTNET “Establishment of national information network genbank –
Plant genetic resources”.
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Parameter Identification Analysis of Food and
Population Dynamics in Honey Bee Colonies

A. Z. Atanasov, S. G. Georgiev, L. G. Vulkov

Honeybees play indispensable and important roles in human life, economy, and agri-
culture. For example, honeybees not only produce valuable products, such as honey,
royal jelly, bee wax and propolis for the market, but also are responsible for pollinating
crops such as blueberries, cherries and almonds, that is worth $ 215 billion annually
worldwide. Unfortunately, honeybee population has been decreasing globally. In the
United States, the total number of honey bee colonies has been reduced approximately
40 percent to 50 percent, while in the rest of the world the total number of colonies
is reduced by 5 percent to 10 percent.
The important and critical causes for honeybee colony mortalities include disease,
land-use change, pesticides, pathogens, parasites, and poor beekeeping management.
One of the most used in practice and the theory mathematical model of honey bee
population is proposed in Khoury et al. It only includes the adult bees, which are
divided into two classes: hive bees and foragers. It is assumed that the rate that
adults emerged from pupation is a function of hive size only and that food is not a
limiting factor in the hive population dynamics. It is also assumed that the hive had
sufficient available food so that food scarcity did not affect the population dynamics.
In the next papers of Khoury et al, [1, 2], they extended this model to include both
food and brood explicitly. Let B be the number of uncapped brood in the hive, H
be the number of hive bees and F the number of foragers. Let f be a measure of
the amount of food that is stored in the hive and available for the colony to use. We
assume that the survival of uncapped brood (eggs and larvae) is dependent on the
number of hive bees available to tend and feed brood, on food availability and on
the laying rate L of the queen. Adult bees emerge 12 days after pupation and it is
assumed that the mortality of capped brood is negligible. Foragers are recruited from
the hive bee class and die at a rate m. Let t be the time in days. Then the whole
process is described as a system of four differential equations:

dB

dt
= L.S(f,H)− φB ≡ g1(B, f,H), (1)

df

dt
= cF − γBB − γHH − γFF ≡ g2(B,H,F ), (2)

dH

dt
= φB(t− τ)−H.R(f,H, F ) ≡ g3(B, f,H, F ), (3)

dF

dt
= H.R(f,H, F )−mF ≡ g4(f,H, F ). (4)

The survival brood function S(f,H) at the assumption that it becomes constant as
f and H become large, is taken as follows
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S(H, f) =
f2

f2 + b2
· H

H + v
, (5)

where b and v are constant parameters that determine how rapidly S(f,H) tends to
one as f and H increase, respectively. The first multiplier in (5) models the way that
the brood survival declines when food stores are low. This decline in brood survival
has two causes: brood dies because there is not enough food to feed them as they
develop, and because workers cannibalize the eggs and young larvae when food is
scarce to recycle protein in the colony and so increase the likelihood of older larvae
surviving to pupation.
In the equation (3), the term φB(t − τ) is the rate that adult bees emerge from
pupation. The bees that are emerging at time t are the same bees that entered
pupation at t− τ . The function R(f,H, F ) gives the proportional rate that hive bees
make the transmission into foragers.
The recruitment function is suggested as follows

R(f,H, F ) = αmin + αmax

(
b2

b2 + f2

)
− σ

(
F

F +H

)
, (6)

where αmin is the rate that hive bees become foragers when there is a plenty of stored
food but no foragers in the hive, αmax governs the strength of the effect that low
food stores have on the transition to foragers and b controls the rate that the food-
dependent terms decrease as food stores increase. Social inhibition depends on the
proportion of the foragers in the adult population and the strength of this inhibition
is governed by σ.
In the equation (2) c is the average amount of food collected per forager per day and
is assumed that it is constant. The consumption of stored food by brood, hive bees
and foragers is given by γB , γH and γF , respectively.
Let all solutions {B(t; p), f(t,p), H(t; p), F (t; p)}, p ≡ (p1 = γB , p

2 = γH , p
3 = γF )

be defined on the interval t0 ≤ t ≤ tf given the initial conditions

B(t0) = B0, f(t0) = f0, H(t0) = H0, F (t0) = F 0. (7)

To find the unknown parameters p, we minimize the following cost functional:

J(p) =

KB∑
k=0

(B(tk)−Uk)2+

Kf∑
k=0

(f(tk)−Xk)2+

KH∑
k=0

(H(tk)−Yk)2+

KF∑
k=0

(F (tk)−Zk)2, (8)

where the known functions U(tk), X(tk), Y (tk), Z(tk) are the observed quantities in
practise.
We minimize the error functional (8) via the adjoint equation optimization approach.

References

[1] D.S. Khoury, A.B. Barron, M.R. Myerscough, Modelling food and population
dynamics in honey bee colonies, PLoS ONE 8: e59084, (2013).
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[2] M.R. Myerscough, D.S. Khoury, S. Ronzani, A.B. Barron, Why do hives die? Us-
ing mathematics to solve the problem of honey bee colony collapse, In: B. Ander-
ssen et al, The Role and Importance of Mathematics in Innovation, Mathematics
for Industry, 25, (2017).
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The Randomness in Shared Web Hostings

I. Blagoev, T. Balabanov, I. Iliev

Introduction The World Wide Web has been the most used Internet service for
the past three decades. In its base are group of protocols - TCP/IP and HTTP.
When used in their basic form, they do not provide any security for encryption. If
the data needs to be transferred securely, the TLS tunnel protocol takes action. TLS
at the packet level envelops the data transmitted in pure form. The level of security
is determined by a set of cryptographic algorithms. Asymmetric cryptography is used
and the quality of the random numbers is the basis of the security.

Secure Communication As a base of secure communication, TLS runs in two
phases - hand- shake and channel establishment via session key. Random numbers
exchange take place between the server and the client during the handshake phase.
The randomness of these numbers is extremely important for the asymmetric encryp-
tion of information. The efficiency of the random numbers is measured by the degree
of entropy [1]. The quality of the random numbers depends on the shared web hosting
organization. Platforms of this type share the entire hardware resource between many
users and their web service applications [2].

Public Hosting Service Survey The survey was done on the following services -
IP address; TCP ports; Web service; cPanel service; DNS administration panel; Mail
service. A special Python script has been written to establish a TLS connection as a
client. During the TLS handshake phases, the data from the remote random number
generator has been extracted. The open-source software Dieharder has been used for
quality estimation of the collected random numbers. From a total of 114 tests, only
25 had good level of randomness, 76 had compromised or predictable value and 13
were vulnerable.

Conclusions As a result of the investigation, from a set of public web services, it
can be con- cluded that the level of cybersecurity is not desirable when there are
systems with critical functionality and/or systems for processing personal data. In
real-life practice, it is better to provide hosting on our own server or a leased VPS,
where the number of concurrent systems will not exceed the capabilities of the shared
system resources used to secure the cryptography.

Acknowledgments This research is partially supported by the Bulgarian Min-
istry of Education and Science (contract D01–205/23.11.2018) under the National
Scientific Program “Information and Communication Technologies for a Single Digi-
tal Market in Science, Edu- cation and Security (ICTinSES)”, approved by DCM #
577/17.08.2018.
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[1] Blagoev I.: Method for Evaluating the Vulnerability of Random Number Gener-
ators for Cryptographic Protection in Information Systems. Proceedings of Ad-
vanced in High Per- formance Computing (HPC’19). Studies in Computational
Intelligence, vol. 902. Springer, Cham. https://doi.org/10.1007/978-3-030-55347-
0 33 (2021)

[2] Blagoev I.: Neglected Cybersecurity Risks in the Public Internet Hosting
Service Providers. Information & Security Journal, vol. 47, no. 1, 62-76.
https://doi.org/10.11610/isij.4704 (2020)
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Forecasting Models for the House Price Index in
Bulgaria

V. Boutchaktchiev

The House Price Index (HPI) is produced by the National Statistical Institute (NSI)
since 2005, first on an national levels and later, since 2015, on a regional level. In this
study we use the national data, as well, as the data for the metropolitan areas of the
six largest cities in the country: Sofia, Plovdiv, Varna, Rousse, Bourgass and Stara-
Zagora. It is a tool which is designed to measure the expenditure of the population
for residential real estate.
The task of forecasting future levels of the HPI arises with the introduction of a
new accounting standard, IFRS9, to the Bulgarian banks. Since 2018, the banks are
required to statistically estimate the future value of houses used as collateral for loans.
The nature of estimation of Expected Credit Loss requires the evaluation of the HPI
one and more years ahead based on currently available economic indicators. (Cf., e.g.,
[1].)
We study several specifications of forecasting models, to verify the corelation of HPI
with other financial and economic indicators, as previosly documented by the litera-
ture in the field. (Cf., e.g., [2].)
We find the following conclusions:

1. We develop an original instrumental-variable model forecasting the house price
index (HPI), confirming its correlation with various indicators, including real-
estate market demand, construction industry business cycle and general macroe-
conomic environment.

2. The general conclusion was, however, that the two most prominent drivers of
HPI remain the interest rates and the internal inertia of the RE market. The
best-fitting specification requires the estimation a hybrid autoregressive model.

Acknowledgment This work has been supported in part by UNWE Research Pro-
gram (Research Grant No. 17/2021.)

References

[1] Gaffney, E., R. Kelly, and F. McCann, (2014), A transitions-based framework for
estimating expected credit losses, Research Technical Papers 16/RT/14, Central
Bank of Ireland.

[2] Nagaraja, C. H., Brown, L. D., and Wachter, S. M. (2010). House
Price Index Methodology. UPenn Wharton School Statistics Papers
https://repository.upenn.edu/statistics papers/145
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Knowledge – Material Science in Medicine

S. Bushev

HUMAN BODY – SYSTEMS [1]: Skeletal anatomy (Anterior and Posterior
view); myology – muscles (Terrisodres); circulation lymphatique; Internal Hu-
man Organs: brain, eyes, ears, heart, lungs, esophagus, stomach, kidneys, bladder,
urethra, male, female, small and large intestines, pancreas, liver; Circulatory sys-
tem (angiology – venous and arterial blood); Nervous system.

Methodology [2, 3, 4, 5, 6 and 7] : I. From [2] Heuristic approaches to solv-
ing scientific problems; Submicroparticles and mega world [2]; a new possibility for
relationships between them [2], i.e. we use a multi-scale approach ; and the end
the logical formulation of physical laws is of the type Π(x) [W (x)→ Z (x)], where
W (x) is a description of conditions; Z (x) is the physical relationship between several
parameters [2]; if Z changes it is a new law; if W changes, it is a new wording of the
same law;

II. Thermodynamics system [3]: second law: Kelvin: an impossible process with the
end result in the conversion of heat taken from a source with the same temperature,
i.e. there is no change in the system; Clausius: not a possible process, heat transfer
from a colder body to a warmer body; system [3]: entropy or an infinitesimal process

is dS = dQ/T and S (A) =
∫ A

0
dQ/T , and the Boltzmann ratio is S = klnπ, where

π is probabilities [3]; Phase space of the system is the set
(
−∞2f

)
, where f is the

number of degrees of freedom; Nernst’s theorem [3]: At absolute zero, the dynamic
state of the system corresponds to only one state: the lowest energy compatible with a
given crystal structure or a given state of matter [3]. Arbitrariness in the relationship
between π and S in a classical interpretation, is removed using the principles of
quantum mechanics by discretizing the phase space of cells with volume ~f , where ~ is
the Planck constant (~=1.054571817· · ·×10−34 Js) [3]; f number of degrees of freedom.
III. Open thermodynamics system (OTS) [4]: extend form secon law of I. Prigogine
of OTS is the sum dS/dt = dSE/dt + dSI/dt, where dSE/dt entropy flow from the
system/environment interaction, and dSI/dt is entropy obtained in the system from
irreversible processes [4]. Consequences [4]: dSI/dt ≥ 0, if dSI/dt = 0⇒ equilibrium;
at dSE/dt = 0 ⇒ isolated system dS/dt = dSI/dt ≥ 0. The entropy term dSE/dt
is the difference between an open and a closed system. Always dSI/dt 6= 0; and
dSE/dt there is no definite sign. This allows us to present evolution as a process in
which the system reaches a lower entropy than the beginning [4]: ∆S =

∫
onway

dS < 0;

this condition is unlikely, but can take place indefinitely provided the system reaches
a steady state in which dS/dt = 0 or dSE/dt = –dSI/dt < 0 which is possible with a
large negative entropy flow and it is possible to maintain some orderly configuration
i.e. we have the principle: imbalance can be a source of order; IV. Sustainability
of (OTS) [6] i.e. physical system is not destroyed; V. Controlability [6 and 7]: in
order to be resistant to destroying an engineering system it is necessary to have the
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property of controlability, i.e. OTC parameters to be changed for control. Multi–scale
mathematical and mathematical physics description of human body is:

and next tasks
SCHRÖDINGER EQUATIONS [5]

− ~2

2m
∆Ψ (x, y, z, t) + U (x, y, z, t) Ψ (x, y, z, t) = i~

∂Ψ (x, y, z, t)

∂t
, (non− stationary)

∆Ψ (x, y, z) +
2m

~2
[E − U (x, y, z)] = 0, (stationary)

STEFAN’s TASK [6,7]

ciρi
∂Ti
∂x

= λi
∂2Ti
∂x2

, i = S;L (1)

λSGS − λLGL = ρSQmR, (2)

TL (x, t = 0) = const, forx ∈ (0÷∞) (3)

T0 = TL (x = 0, t = 0) , and

T0 = TS (x = 0, t) (4)

And the end general principle of OTS control [6]: Control on account of informa-
tion about the external effect on technological object feedback main processes (from
indirect information carrier).

We present everything presented to us to use the well-known concept of synergetics,
which according to H. Haken is: unification of sciences. Between 32,000 and 35,000
chemical reactions take place in the human body in a very short time ∆t accepted as
a basic scale unit ! When using full knowledge, times t�∆t can be used for example
t < 10−45 sec and less. This goes to the description of objects much smaller than the
cell.

We understand materials science in medicine: prostheses, for example, nitrogen steel
has been created at the institute and its prostheses have a very good tissue suscepti-
bility to the human body; 3D printer for obtaining soft tissues in the human body.

12



References

[1] H. Brundle, Human body infografics, BookLife Publishing Ltd. Norfolk. ISBN:
978-1-83927-324-7; H. Baum, The amazing human body.

[2] A. Polikarov, Methodology of scienific knowledge, Science and Art, Sofia, 1972.
[3] E. Fermi, Thermodynamics, second stereotypical edition, Kharkov University

Press, 1973. (In Russian).
[4] G. Nikolis, I. Prigogine, Knowledge of the complex, Mir, Moscow, 1990. (In

Russian).
[5] Ch. Wert, R. Thomson, Physics of Solids, Peace, Moscow (1969). (In Russian).
[6] S. M. Bushev, PhD dissertation:Controlability Problemof Crystallization Process

in Casting, Sofia, TU – Sofia, 1993.
[7] S. Bushev, V. Georgiev, Developing the Solution of Stefans’s Problem, Comptes
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Local Geometry of Different Grafting Schemes of
the CP4-Derived Linear Peptide onto Knotted

Scaffolding

Y. Cheng, X. Peng, P. Petkov, N. Ilieva

Cyclotides are special knotted peptides stabilized by three pairs of disulfide bonds.
With such a molecule as the scaffold, small peptides can be grafted onto it, thus engi-
neering some specific conformations and functions. It has been shown that MCoCP4,
formed by the peptide CP4 (CLATWAVG) grafted on loop 6 of the cyclotide MCoTI-
I, can reduce the cytotoxicity of α-synuclein and, hence, has potential to inhibit the
Parkinson Disease. In this study, we analyze the dynamical and geometrical properties
of this specific grafted molecule based on molecular dynamics (MD) simulations. By
visualizing the local geometry in a discrete Frenet frame (DFF) along the trajectory,
we locate several stable segments in MCoCP4. We find that the grafted peptide CP4
is the longest and most stable segment, which prefers a helical structure throughout
the simulation. Furthermore, we also analyze the backbone twisting and the side-
chain orientation in MCoCP4 by calculating the folding index and the orientation of
the Cβ atoms in DFF. Finally, several other grafting schemes between CP4 and loop
1-5 in MCoTI-I are proposed and analyzed in a similar way.

Acknowledgements This work was supported in part by the Bulgarian National
Science Fund under Grant KP-06-China-10 and KP-06-COST-9.

Computational resources were provided by the BioSim HPC Cluster at the Faculty
of Physics at Sofia University “St. Kl. Ohridski”, Sofia (Bulgaria) and the Centre for
Advanced Computing and Data Processing, supported under Grant BG05M2OP001-
1.001-0003 by the Science and Education for Smart Growth Operational Program
(2014-2020) and co-financed by the European Union through the European structural
and investment funds.
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An Asymptotic Theory
for a Functionally Graded Plate

M. Datcheva, N. Ege, B. Erbaş, I. Georgiev, J. Kaplunov

3D dynamic equations in linear elasticity for a transversely inhomogeneous isotropic
layer are analysed at the low frequency limit. The thickness of the layer is assumed to
be small in comparison with a typical wave length, while Young’s modulus, Poisson’s
ration and mass density are defined as arbitrary functions in the transverse variable.
For the sake of simplicity, the case of free layer faces is considered.

The same asymptotic scaling, as in the homogeneous setup, is adapted for 3D dis-
placements and stresses, e.g. see [1, 2]. In this case, characteristic time and length
scales are related to each other as in the classical Kirchhoff theory for plate bending.
As usual, all the sought for quantities are expanded in series in terms of a small geo-
metric parameter corresponding to the relative thickness. At leading order, we arrive
at a 2D fourth order equation for bending motion taking the same form as that in the
Kirchhoff theory to within the expressions for constant coefficients, which are now
given by certain integrals across the thickness involving variable problem parameters.

The asymmetry of the 3D original problem with respect to the transverse variable
results in presence of quasi-static extension governed at leading order by 2D equa-
tions similar to those for the generalised plane stress. It is remarkable that, in spite
of asymmetry, the aforementioned problem can be decoupled, i.e. the bending sub
problem is solved independently from the extension one, whereas the latter is treated
with terms determined from the solution of the bending sub problem in its right hand
side. It is also worth noting that the adhoc engineering formulations for functionally
graded plates, e.g. see, [3, 4, 5, 6] and references therein, do not assume the possibility
of such decoupling leading to differential equations of a doubled order.

The next order asymptotic approximation for plate bending is also derived. The
equation of motion is still of the fourth order as at the leading-order approximation,
i.e. it does not support spurious solutions similar to the homogeneous setup [1].
Higher-order corrections come through a mixed fourth order time-space derivative.
However, the constant coefficients in the refined 2D bending equation are expressed
through rather sophisticated multiple integrals across the thickness. Nevertheless,
decoupling of bending motions and extension deformations occur at higher order as
well.

Any comparison with related adhoc refined plate bending does not seem to be fruitful.
The point is that the asymptotic cross section thickness variation of the displacement
field at higher order nontrivially depends on variable problem parameters and cannot
be approximated through simple polynomials typical of many engineering assump-
tions. In addition, adhoc models usually deal with stress resultants and stress couples
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and therefore neglect the peculiarities of the cross thickness variation of the stress
field, which is of particular importance namely for functionally graded structures.

The developed asymptotic framework is also valid for layered plates with piecewise
uniform problem parameters. It also allows various extensions, including analysis of
functionally graded shells, coatings and interfacial layers.

Acknowledgement:The authors (I.G.) acknowledge the financial support provided
by the Bulgarian National Science Fund, grant KP-06-H27/6 from 08.12.2018.
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An Example for Application of the Simple Equaions
Method (SEsM) for Obtaining Exact Solution of a

Non-Linear Differential Equation with a
Non-Polynomial Nonlinearity

Z. I. Dimitrova, N. K. Vitanov

We discuss the Simple Equations Method for obtaininh exact solutions of non-linear
differential equations [1, 2, 3]. Recently we have shown that this method can be
used also for obtaining exact solutions of classes of non-linear differential equations
which contain non-polynomial non-lineairy [4]. In this presentation we demostrate
the methodology by applying it step-by step to a differntail equation with a non-
polynomial non-linearity. We discuss the ralationships among the parameters of the
obtained exact solutions.
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Reconstruction of the Initial Concentrations and
the Mass Transfer Coefficient in a Model of Porous

Media

T. B. Gyulov, L. G. Vulkov

A class of models in the theory of filtration in porous media are formed by systems
of parabolic partial and ordinary differential equations. A simple model [1] can be
reduced to the integro-differential equation:

∂u

∂t
−∇.(a∇u−−→v u) + r(x)u = f + αKsKH

∫ t

0

u(x, s)ds in QT , (1)

subject to the boundary and initial conditions:

u(x, t) = γ(x, t) on DT , a(x)
∂u

∂ν
= µ(x, t) on NT , (2)

u(x, 0) = u0(x) in Ω. (3)

Here Ω ⊂ Rd, d = 1, 2, 3, is a Lipschitz domain, QT = Ω× (0, T ), DT = Γ1 × (0, T ),
NT = Γ2 × (0, T ) with Γ1 ∪ Γ2 = ∂Ω, a = a(x) is a uniformly positive function and
r = r(x) = Ks(x) − αKH , Ks is the mass transfer coefficient. In this form, we pose
the direct problem in which the source f = f(x), the coefficients of the equation,
the Dirichlet and Neumann boundary conditions and the initial condition are given.
The inverse problem is to reconstruct

(Ks(x), u0(x), f(x), u(x, t)) ∈ L∞(Ω)×H1(Ω)× L2(Ω)×H2,1(QT )

satisfying (1)-(3) together with the concentrations at two time instants t1, t2, 0 <
t1 < t2 < T and at the final time T , i.e.,

u(x, t1) = φ1(x), u(x, t2) = φ2(x), u(x, T ) = φT (x), x ∈ Ω. (4)

Here φ1(x), φ2(x) and ϕT (x) are given data in L2(Ω) which may be subject to noise
due to measurement errors, as

‖φε1 − φ1‖L2(Ω) ≤ ε, ‖φε2 − φ2‖L2(Ω) ≤ ε, ‖φεT − φT ‖L2(Ω) ≤ ε,
where ε ≥ 0 represents the noise level. We also consider a time-averaged measurement∫ t

0

ω(t)u(x, t)dt = φ(x), where ω(t) is a weight. (5)

There is a great deal of problems which may be formulated for the determination of
the space dependent unknowns, e.g., reconstruction of the diffusion coefficient;
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reconstruction of the mass transfer coefficient Ks(x) at one of the above
measurements; reconstruction of the initial concentration u0(x); simultane-
ous reconstruction of the mass transfer coefficient at a pair of the above
measurements; simultaneous reconstruction of the mass transfer coefficient
and the source term f(x) at a pair of the above measurements; simultaneous
reconstruction of the mass transfer coefficient Ks(x) initial concentration
u0(x) and the source term f(x) at a triple of the above measurements.

We focus on the determination of the space-dependent mass transfer coefficient Ks(x)
from the final time or time-averaged measurement, i.e., the inverse problems (1)-(3)
with either (4) (problem IP1) or (5) (problem IP2). Let u(x, t;Ks(x)) ∈ H2,1(QT )
denote the solution of the direct problem given the unknown function Ks(x). The
input data φT (x) (or φ(x)) and the output data Ks(x) are both space-dependent
for the considered inverse problems. The quasi-solution of the IP1 and IP2 is the
respective minimizer over the admissible setA = {Ks ∈ L∞(Ω) : Ks(x) ≥ 0, a.e. x ∈
Ω} of the following least-squares objective functionals:

J1(Ks) =
1

2
‖u(·, T ;Ks)− φεT (x)‖2L2(Ω) (6)

J2(Ks) =
1

2

∥∥∥∥∥
∫ T

0

w(t)u(·, T ;Ks)dt− φε(x)

∥∥∥∥∥
L2(Ω)

, (7)

where φεT or φε are the noisy measurements. We formulate two results.

Theorem 1. There exists a minimizer to the optimization problem (1)-(3) with (6)
(or (7)).

Consider the adjoint problem for the minimizer of the functional J1(Ks):

∂z

∂t
+∇.(a∇z) +−→v .∇z + (Ks − αKH)z − αKsKH

∫ t

0

z(x, s)ds

= −2(u(x, T ;Ks)− φ2
T (x))δ(t− T ), (x, t) ∈ QT

z = 0, (x, t) ∈ QT ,
∂z

∂ν
= 0, (x, t) ∈ NT , z(x, T ) = 0, x ∈ Ω,

where δ is the Dirac delta function.

Theorem 2. The functional J1(Ks) in (6) is Frechet differentiable and its gradient
is

J ′1(Ks) = −
∫ T

0

u(x, t)z(x, t)dt, where z satisfies the adjoint problem.

The conjugate gradient method is developed and similar results about J2(Ks) are
obtained
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Recent Advances in Rational Approximation
Methods for Fractional Diffusion

C. Hofreither

Fractional calculus has recently seen a surge in interest in the applied mathematical
community as a tool for modeling such disparate phenomena as subdiffusion, elasto-
plasticity, and for image processing. In particular, this had led to increased interest
in more efficient numerical methods for solving partial differential equations involving
fractional derivatives.

After a short introduction to fractional diffusion equations, we discuss how methods
of rational approximation can be used to construct fast numerical solvers for such
problems, initially suggested in [6]: in fact, many disparate numerical approaches
can be cast into a unified rational approximation framework [7]. An analytical error
bound based on this observation suggests that best uniform rational approximations
of fractional power functions over the spectral interval should yield highly accurate
methods.

This leads naturally to the question of how to rapidly and accurately compute such
best rational approximations. We discuss the recently proposed BRASIL algorithm
(Best Rational Approximation by Successive Interval Length adjustments) [8], a fixed
point iteration which makes use of the so-called barycentric formula for rational in-
terpolation and iteratively rescales the intervals between the interpolation node in
order to equilibrate the error. The method computes best rational approximations
rapidly and stably, using only standard IEEE double precision arithmetic. Exper-
iments demonstrate that it significantly outperforms previous state-of-the-art algo-
rithms in several examples.

Going beyond direct rational approximation, in joint work with T. Danczul we es-
tablish an equivalence between two classes of methods for solving fractional diffusion
problems, namely, Reduced Basis Methods (RBM) and Rational Krylov Methods
(RKM) [2]. In particular, several recently proposed RBMs for fractional diffusion,
namely those by Danczul and Schöberl [4], by Bonito et al. [1], and by Dinh et al.
[5], can be interpreted as RKMs. This changed point of view has allowed us to give
convergence proofs for some methods that did not have such a proof previously. We
also propose a RKM for fractional diffusion problems with poles chosen using the
best rational approximation of the function x−s in the spectral interval of the spatial
discretization matrix. This method is competitive with or superior to many methods
from the reduced basis, rational Krylov, and direct rational approximation classes.

In more recent work jointly with T. Danczul and J. Schöberl [3], we have further
extended this framework of rational Krylov methods to also apply to problems which
are fractional both in time and in space. Here, rational approximations of the Mittag-
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Leffler function come into play. Making use of the theory of Stieltjes and complete
Bernstein functions, we obtain robust and efficient rational Krylov methods based on
poles obtained from the solution of Zolotarëv’s minimal deviation problem.

Finally, inspired by recent efforts of the group of S. Margenov to obtain more efficient
rational approximation methods by truncating certain poles, we discuss ongoing work
with I. Georgieva on the construction of a novel Newton’s method for best uniform
rational approximation of nondiagonal type, that is, with different degree of the nu-
merator and the denominator. The computation of nodal derivatives of barycentric
interpolants is somewhat involved and requires some tools from differential geometry.
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Newton’s Method for Computing Periodic Orbits of
the Planar Three-Body Problem

I. Hristov, R. Hristova, I. Puzynin, T. Puzynina, Z. Sharipov,
Z. Tukhliev

A breakthrough in numerical searching of periodic orbits of the planar three-body
problem was made in recent years. In 2013 Shuvakov and Dmitrashinovich found 13
new topological families applying a clever numerical algorithm in the standard double
precision arithmetic [1]. Since the three-body problem is very sensitive on the initial
conditions, working with double precision strongly limits the number of solutions
that can be found. This limitation was recognized by Li and Liao, in 2017 they
applied Newton’s method to find more than 600 new families of periodic orbits [2].
They formed the linear system at each step of Newton’s method by solving a system
of ODEs with the high order multiple precision Taylor series method. However, no
details of the numerical procedure are given in [2]. This numerical procedure is rather
technical and deserves its own attention. In this work we present in detail Newton’s
method and also its modification, based on the Continuous analog of Newton’s method
for computing periodic orbits of the planar three-body problem. Our programs are
tested in relatively short periods. We take candidates for correction with greater than
usual return proximity and correct them with the modified Newton’s method. As a
result we find some new topological families that are not included in the database
in [2]. The computations are performed in ”Nestum” cluster, Sofia, Bulgaria and
”Govorun” supercomputer, Dubna, Russia.
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Computational Homogenization and Parametric
Study for Materials with Closed Voids

R. Iankov, I. Georgiev, E. Kolosova, M. Chebakov,
M. Datcheva

In this work, a 3D hybrid numerical-experimental homogenization strategy is proposed
for determination of elastic characteristics of materials with closed voids. The per-
formed homogenization procedure employs experimental data from micro-computed
tomography (micro-CT) and instrumented indentation testing data (IIT). The results
from the micro-CT testing are used to assess basic geometrical characteristics of the
considered material with voids such as the volume fractions of the voids and the solid
phases, the average size of the voids, the void size distribution. Furthermore, the
elastic properties of the solid phase are determined based on IIT data from testing of
small volumes of the selected material with voids.

Figure 1: RVE with random particle distribution and spherical voids.

For the numerical homogenization procedure, a representative volume element (RVE)
is used and the micro-CT data allow to create a 3D geometrical model of the RVE
reflecting the average geometrical characteristics of the tested material with closed
voids. When the numerical model of the RVE is created, the following principle of
equivalence is respected: the porosity assigned to the RVE is the same as the porosity
calculated based on the micro-CT images. Next, this RVE geometrical model is used
to generate the corresponding finite element model where, for simplicity, the voids are
considered to have a spherical form as it is depicted in Fig. 1. The employed in the
homogenization constitutive model for the RVE and for the solid phase material is the
linear elastic model. In order to apply the homogenization technique, in the finite ele-
ment model of the created RVE of the material with voids, proper periodic boundary
conditions are imposed together with unit forces applied in normal (Ox,Oy,Oz) and
shear directions (Oxy,Oyz,Ozx) . The resulted within the numerical homogenization
procedure six boundary value problems with periodic boundary conditions are solved
using the finite element code ANSYS.
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Figure 2: Parametric study results for the elastic module depending on porosity.

Moreover, accounting the uncertainty in the experimentally determined elastic char-
acteristics and porosity, a parametric study was performed varying the porosity and
the elastic modules within the confidence intervals of the corresponding measured
values. An exaple for the elastic mudulus variation with varying the porosity is de-
picted in Fig. 2. The obtained results for the characteristics of the homogenized
material properties are presented in a graphical form and discussed. The determined
elastic characteristics are analysed against data from literature in order to reveal the
applicability of the used in this study homogenization procedure.
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Numerical Validation of Analytical Solutions of
Non-Stationary Wave Propagation Problems

R. Ivanov, S. Pshenichnov, M. Datcheva

The use of materials having hereditary properties in the industry is getting more
and more widespread. In light of this fact, it is important to be confident about
the fidelity of results obtained by numerical simulation of products made of such
materials subjected to mechanical actions. A number of analytical or semi-analytical
solution of generic problems of viscoelasticity are available, but their scope will never
be sufficient to cover the variety and complexity of circumstances which may arise in
practice. The importance of analytical solutions however lays in the fact that they
can serve as reference problems by which numerical modelling techniques may be
developed, calibrated and substantiated. The opposite is also true; once a theoretical
solution is obtained it is desirable that it be validated by a numerical solution to
eliminate a possibility for a discrepancy in the theoretical solution itself. It can be
therefore said that the validation process is reciprocal.

In this study, theoretical solutions obtained by the first author were compared to
solutions of the same problems obtained by the Finite Element Method (FEM), more
specifically by the commercial software package ABAQUS [3]. The theoretical so-
lutions were obtained by applying the usual in such cases Laplace transform tech-
nique with consequent inversion [1], [2]. In the course of preparing FEM input data,
the relation between kernel parameters in dimensionless time used in the theoreti-
cal developments, and the Prony series expansion used in the numerical simulation
of viscoelasticity in the time domain was established. Three generic problems were
considered:

(a) P-wave propagation through a layer subjected to a triangular or smoothed-step
normal stress pulse applied on the surface;

(b) P-wave propagation through the cross section of an infinitely long cylinder sub-
jected to a smoothed-step normal stress pulse applied on the surface and

(c) S-wave propagation through the cross section of an infinitely long cylinder sub-
jected to a smoothed-step shear stress pulse applied on the surface.

Several versions of viscoelastic material behavior were considered by changing the
parameters of the relaxation kernels. For the layer problem, a singular relaxation
kernel was considered as well.

An excellent match was achieved for the wave propagation velocities, the shape and
maginitude of the stress spikes, and the apparent damping of wave motion for all cases
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where regular relaxation kernels were applied, the results being practically identical.
For the singular kernel however, the numerical solution resembles the analytical one
only in an average sense; that is, the area of the peaks regions is practically identical,
and so is the apparent damping of both the analytical and the numerical solution.
The shape of the peak regions however is gently curved in the analytical solution,
while in the numerical solution it is sharp and trapezoid-like.
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Solitary Travelling Waves in a Model for
Spatial-Time Interaction of Populations

I. P. Jordanov

We have observed in the last decades of a fast growth of research on nonlinear phe-
nomena. Today this is a new established research area and the research on nonlinear
models finds its significant place within this area. Most nonlinear models in the
research are the model patterns composed of partial differential equations (PDEs).
Traveling wave solutions of these equations are of special interest as they describe
the motion of wave fronts or the motion of boundary between two different states
existing in this system. Unfortunately, an all encompassing method for the solution
of nonlinear PDEs does not exist. Thus, nonlinear wave solutions must be sought
on a case by case basis depending on the equation. In this study we study a gener-
alized reaction-diffusion model presented, which describes spatio-temporal dynamics
of interacting agents. The model describes several novel features of the interacting
agents compared to the well-known classic models in population dynamics. Various
analytical methods are available to find wave solutions of PDEs. In this study, we
will use a particular case of the recently developed SEsM (Simple Equations Method)
namely the Modified method of Simplest Equation [1, 2] and one of its extended
versions [3, 4]. We will obtain a new traveling wave solution of the model system.
Numerical simulations of this solution demonstrate propagation of nonlinear waves in
the considered model. The characteristics of the obtained traveling wave solution are
visualized and discussed.
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Using 3D Printers for Visualization of Nonlinear
Equations Solutions in the Learning Process

I. P. Jordanov, M. Georgieva, M. Ilieva, K. Damov, M. T. Iliev

Three-dimensional printing or so-called 3D printing is a state of the art technology
for arbitrary shapes visualization. This method is based on a pre-developed digital
model. The model is exported to a 3D printer, followed by sequential layers of ma-
terial. By this way the requested object is formed. In this sense, three-dimensional
printing is fundamentally different from traditional techniques in which material is
usually removed to form the requested object. We model the spatial and temporal
dynamics of economic agents by a system of nonlinear partial parabolic differential
equations. Depending on the nature of the system, the agents may have a variety
of properties, as well as to interact in a different way. In this paper we demonstrate
the capabilities of 3D printers to for visualization of solutions of non-linear parabolic
equations, applicable in the economy.
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Simultaneous Numerical Reconstruction of
Time-dependent Convection Coefficient and Source

in Magnetohydrodynamics Flow System

J. D. Kandilarov, L. G. Vulkov

We consider a simplified MHD Hartman flow with characteristic of incompressible
and Newtonian (constant viscosity) in 1-D space and the case in which the fluid flows
between two parallel solid plates and the velocity in perpendicular to the magnetic
vector. Moreover, the pressure in the channel is supposed to be constant and the
unit vectors of the velocity, the mathematical model of describing this 1-D MHD flow
system can be derived from the viscous incompressible MHD equations, which can be
formulated as the following form [1]:

∂u

∂t
− ν ∂

2u

∂x2
= β(t)

∂B

∂x
− f(t), (1)

∂B

∂t
− νm

∂2B

∂x2
= β(t)

∂u

∂x
, (2)

where the spatial variable x and the time variable t belong to the set (x, t) ∈ QT =
Ω× (O, T ), Ω = (0, X); u(x, t) denotes the flow velocity, B(x, t) is the magnetic field,
f(t) is the pressure difference per unit of the channel length; the function β(t) is a
given function of the induction of the extended magnetic field and can be considered
as the control input for the MHD flow; ν and νm are two coefficients which are related
with the Reynolds number of the flow. The boundary conditions for system (1)-(2)
are given as follows:

u(0, t) = ul(t), u(X, t) = ur(t), B(0, t) = Bl(t), B(X, t) = Br(t). (3)

Furthermore, the initial conditions are given by

u(x, 0) = u0(x), B(x, 0) = B0(x). (4)

In the form (1)-(4), we pose the direct problem in which f(t), the coefficients, the
boundary and the initial conditions are given. Consider the inverse problem in which
the coefficient β(t) and the source term f(t) are unknowns. The additional conditions
are often stated in the form∫

Ω

u(x, t)w(x)dx = ϕ(t),

∫
Ω

B(x, t)η(x)dx = ψ(t), (5)

where w(x) and η(x) are some weight functions. In particular, if some of these
functions are Dirac-Delta functions w(x) = δ(x−x∗), η(x) = δ(x−x∗), (x∗, x

∗) ∈ Ω,
then the conditions (5) take the form

u(x∗, t) = ϕ(t), B(x∗, t) = ψ(t). (6)
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We assume that inverse problem of finding {u(x, y, t), B(x, y, t), β(t), f(t)} has a
unique solution. It is nonlinear and we use a special decomposition for which the
transition to the new time level is carried out by solving three systems of boundary
value problems. To implement the Rothe’s method we define the time grid ωτ =
ωτ ∪ {T} = {tn = nτ, n = 0, ..., N, τN = T}. We approximate the system (1)-(2) on
the new time level:

un+1 − un

τ
− 1

2
ν

(
∂2un+1

∂x2
+
∂2un

∂x2

)
= βn+1/2 ∂B

n+1/2

∂x
− 1

2

(
fn+1 + fn

)
(7)

Bn+1 −Bn

τ
− 1

2
νm

(
∂2Bn+1

∂x2
+
∂2Bn

∂x2

)
= βn+1/2 ∂u

n+1/2

∂x
. (8)

The linearization is based on the approximation to the expression p(t)q(t) at t =
tn+1/2: p(tn+1/2)q(tn+1/2) = (p(tn+1)q(tn) + p(tn)q(tn+1))/2 + O(τ2). Then we use
the decompositions

un+1(x) = an+1(x) + βn+1bn+1(x) + fn+1cn+1(x), (9)

Bn+1(x) = dn+1(x) + βn+1en+1(x) + fn+1gn+1(x) (10)

to obtain three systems of ODEs:

an+1 − un

τ
− 1

2
ν
d2an+1

dx2
− 1

2
βn
ddn+1

dx
=

1

2
ν
d2un

dx2
− 1

2
fn, (11)

dn+1 −Bn

τ
− 1

2
νm

d2dn+1

dx2
− 1

2
βn
dan+1

dx
=

1

2
νm

d2Bn

dx2
,

bn+1

τ
− 1

2
ν
d2bn+1

dx2
− 1

2
βn
den+1

dx
=

1

2

dBn

dx
, (12)

en+1

τ
− 1

2
νm

d2en+1

dx2
− 1

2
βn
dbn+1

dx
=

1

2

dun

dx
,

cn+1

τ
− 1

2
ν
d2cn+1

dx2
− 1

2
βn
dgn+1

dx
= −1

2
, (13)

gn+1

τ
− 1

2
νm

d2gn+1

dx2
− 1

2
βn
dcn+1

dx
= 0,

equipped with proper boundary conditions. We first solve these ODEs boundary value
problems for an+1, bn+1, cn+1, dn+1, en+1, gn+1. Then, using the decompositions (9)-
(10) at the points x = x∗ x = x∗ and the observations (6) we obtain a system to find
βn+1 and fn+1:

un+1(x∗) = an+1(x∗) + βn+1bn+1(x∗) + fn+1cn+1(x∗) = ϕ(tn+1), (14)

Bn+1(x∗) = dn+1(x∗) + βn+1en+1(x∗) + fn+1gn+1(x∗) = ψ(tn+1). (15)

The approach described can be generalized to multi-dimensional space problems.

This work is supported by the Bulgarian National Science Fund under the Bilateral
Project KP/Russia 06/12 ”Numerical methods and algorithms in the theory and
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applications of classical hydrodynamics and multiphase fluids in porous media” from
2020.
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Determination of External Boundary Conditions of
a Stationary Nonlinear Problem on Disjoint

Intervals

M. N. Koleva, Z. D. M. Jeknić, L. G. Vulkov

We consider a mathematical model of fluid-porous interfaces in a simple channel geom-
etry. In this paper we deal with numerical identification of the external boundary con-
ditions for a stationary nonlinear problem on disjoint intervals. The direct(forward)
mathematical problem is to find the functions (u1, u2) ∈ H ′ ≡ H1(Ω1) × H1(Ω2)
which obey (in a weak sense ) the ordinary differential equations (ODEs)

L1u1 ≡ −
d

dx

(
p1(x)

du1

dx

)
= f1(x, u1), x ∈ Ω1 = (a1, b1), (1)

L2u2 ≡ −
d

dx

(
p2(x)

du2

dx

)
= f2(x, u2), x ∈ Ω2 = (a2, b2), (2)

at external boundary conditions

u1(a1) = ϕ1, u2(b2) = ϕ2, (3)

and internal (interface) mixed-type boundary conditions

l1u1 ≡ p1(b1)
du1

dx
(b1) = α1u1(b1) + β1u2(a2) + γ1, (4)

l2u2 ≡ p2(a2)
du2

dx
(a2) = α2u1(b1) + β2u2(a2) + γ2, (5)

where a1 < 0, b1 ≤ 0, a2 ≥ 0, b2 > 0, b1 6= a2 and ϕi, αi , βi , γi, i = 1, 2 are given
constants. For example, the case of right - hand side

fi(x, ui) = Ki sinh(ui) + gi(x), i = 1, 2 Ki > 0 constants. (6)

the equations (1)-(6) are Poisson-Boltzmann equations and the problem models cell-
foreign interaction [2]. The direct problem is concerned with the determination of the
function u1(x), u2(x) in Ω1 and Ω2, respectively, when all the input data in (1)-(5)
are given.

Consider the inverse problem in which the external boundary conditions (3) are un-
known, i.e. the constants ϕ1, ϕ2 are unknown. The additional conditions we take in
the form ∫ b

a

u1(x)w1(x)dx = ψ1,

∫ d

c

u2(x)w2(x)dx = ψ2, (7)

where w1(x), w2(x) are weighted functions. In particular, for

w1(x) = δ(x− x∗1), x∗1 ∈ Ω1 and w2(x) = δ(x− x∗2), x∗2 ∈ Ω2,
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where δ(·) is Dirac-delta function. From conditions (7), we have point observations

u1(x∗1) = ψ1, u2(x∗2) = ψ2. (8)

We show that at some conditions the inverse problem for finding the fourth {u1(x), u2(x),
ϕ1, ϕ2} is well posed and propose an iterative process for the forward problem. A
finite difference scheme is used to realize the algorithms proposed. First, we decouple
the full inverse nonlinear problem into two Dirichlet inverse problems. Then, for the
linear problem, we use a decomposition technique to obtain exact formulas for the
unknown boundary conditions at points and integral measurements:

u1(x) = U1(x) + u1(a1)W1(x), x ∈ Ω1,

u2(x) = U2(x) + u2(b2)W2(x), x ∈ Ω2

A discrete version of the analytical approach is employed for the linear problem. All
these techniques are realized to the nonlinear problems by an iterative monotone
process.

The solving of the inverse problem can be described by the following algorithm

Algorithm

• Input data: observations (8) and model parameters;

• Find u1(b1) and u2(a2), after solving the direct problem in the intervals [x∗1, b1],
[a2, x

∗
2], setting Dirichlet boundary conditions u1(x∗1) = ψ1, u2(x∗2) = ψ2. As a

result, the inverse problem is decoupled into two independent ones on Ω1 and
Ω2, respectively;

• Find analytically or numerically U1, W1 and U2, W2;

• Determine ϕ1 and ϕ2 and then find analytical or numerical solution (u1, u2)

ϕ1 =
ψ1 − U1(x∗1)

W1(x1)
, ϕ2 =

ψ2 − U2(x∗2)

W2(x2)
.

Let us note that the efficient technique for decoupling is the two-grid method [1].
Numerical examples are discussed. In a similar way can be solved the inverse problem
of the unknown boundary condition u2(b2) = ϕ2 at the observation u1(x∗1) = ψ2. The
proposed approach also works for 2D inverse problems.
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Interaction of hIFNγ and Heparin-Derived
Oligosaccharides

E. Lilkova, N. Ilieva, P. Petkov, L. Litov

Human interferon-gamma (hIFNγ) is a crucial immunomodulating cytokine, which
biological effects may range from proliferation to apoptosis. It mediates its pleiotropic
effects on cells by binding to the cell-surface domain of a high-affinity receptor hIFNγR1
to form a symmetric complex. On each side of the molecule there is a complex
receptor-binding interface for each receptor that encompasses the N-terminal part of
one monomer, and the C-terminal helix of the other monomer. The C-terminal do-
main of the cytokine does not appear to directly form a contact interface with the
receptor. This part of the cytokine is a highly positively charged, solvent exposed
tail, lacking a rigid conformation and is highly susceptible to proteolytic processing.
The length of the C-tails plays a modulating role in the affinity of hIFNγ towards its
receptor.

IFNγ is known to bind to the glycosaminoglycans (GAGs) heparin and heparan sulfate
(HS). These are linear negatively charged polymers of repeating disaccharide units,
containing glucosamine and uronic acid, that can bear multiple N-sulfate, N-acetyl,
and O-sulfate substitutions. The binding of hIFNγ to HS and heparin modulates
the blood clearance, the subsequent tissue targeting, the local accumulation of the
cytokine and the proteolytic processing of its C-terminal domain.

Here, we report computational studies of the interaction of hIFNγ and heparin-derived
oligosaccharides in two different scenarios – in the circulation, and at the cell-surface,
when the cytokine forms a complex with its receptor.

Overexpression of IFNγ is observed in a number of autoimmune diseases, and acute
states, such as a cytokine storm. A possible treatment strategy consists in inhibiting
the biological activity of IFNγ. Our in silico experiments show, that heparin-like
oligosaccharides bind to the C-termini of IFNγ with high affinity, forming very stable
complexes due to the strong electrostatic attraction. The carbohydrates also interact
with the positively charged solvent-exposed domains in the cytokine globule. After
binding of several oligosaccharides, the hIFNγ–heparin complex changes its net charge
from positive to neutral or even negative. This impedes further interaction of the
cytokine with the extracellular part of the IFNγR1 (also negatively charged) which
is the first necessary step in the IFNγ transduction pathway.

On the other hand, GAGs, and HS in particular, may be crucial participants in the
formation of the hIFNγ–hIFNγR complex at the cell surface. When the cytokine is
at distances greater than few Å from the receptors, the activity is determined mainly
by the electrostatic interaction between the positive electric charge in the cytokine
C-termini and the negative one in the receptors units. In the next stage, when the
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positively charged tails and the negatively charged receptors are closer and interact
more intensively, the high flexibility of the C-termini prevents proper formation of the
hIFNγ–IFNγR1 complex. One possibility is the interaction of the tails with another
negatively charged molecule, located at the cell surface, which would attract the C-
termini and allow the cytokine to adopt proper conformation. HS is appropriate
candidate, since it is the second known ligand of the hIFNγ and forms proteoglycans
on the cell surface. Our in silico results demonstrate, that placing heparin-derived
oligosaccharides between the two receptor units at the membrane surface does indeed
facilitate the formation of the cytokine–receptor complex by pulling down the hIFNγ
globule via electrostatic attraction of its C-termini.

Acknowledgements This work was supported in part by the Bulgarian National
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The Effect of the Diffusion Coefficient in a
Mathematical Model of Multiple Sclerosis

A. B. Manov, T. B. Ivanov

In the present work, we consider a mathematical model of Baló’s multiple sclerosis,
known in the literature [1], and extend the results, known from it. The model de-
scribes the spatiotemporal evolution of three main agents, connected to the process—
macrophages, cytokines, and oligodendrocytes, denoted by m̃, c̃ and d̃, respectively.
The model is given with a system of three nonlinear reaction-diffusion-chemotaxis
partial differential equations:

∂m̃

∂T
= ∇ · (ã(m̃)∇m̃)︸ ︷︷ ︸

Diffusion

+ λm̃(m̄− m̃)︸ ︷︷ ︸
Production/Decay

−∇ · (Ψ(m̃)∇c̃)︸ ︷︷ ︸
Chemotaxis

, with Ψ(m̃) = χ
m̃

m̄+ m̃
,

∂c̃

∂T
=

1

ν
( ε∆c̃︸︷︷︸
Diffusion

+ µd̃+ bm̃︸ ︷︷ ︸
Production

− αc̃︸︷︷︸
Decay

),

∂d̃

∂T
= κF (m̃)m̃(d̄− d̃)︸ ︷︷ ︸

Production

, with F (m̃) =
m̃

m̄+ m̃
,

where ã is the diffusivity of the macrophages; λ is the production rate of the activated
macrophages; m̄ is the characteristic density of macrophages, i.e., the mean value of
their initial distribution in the white matter of the brain; χ is the maximum chemo-
tattraction rate; ε is the diffusivity of the cytokines; ν is the characteristic time scale
of the cytokines’ rate of change; µ, b are the production rates of cytokines from de-
stroyed oligodendrocytes and macrophages, respectively; α is the natural decay rate
of cytokines; d̄ is the initial characteristic density of oligodendrocytes in the brain,
i.e., the average density of oligodendrocytes in a healthy brain; κ is the destructive
strength of the macrophages.

We consider the corresponding 1D model under the assumption of radial symmetry,
which is sensible for Baló’s multiple sclerosis. In particular, we study how altering
the diffusion coefficient affects the pattern formation of demyelinated plaques. Based
on numerical experiments we first consider the effect of increasing and decreasing the
constant diffusion coefficient. Then, we go on and show that introducing nonlinear
diffusion coefficient might lead to quailtatively different pattern formations.
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Achievements and Challenges in Numerical
Methods for Multidimensional Spectral Fractional

Diffusion Problems

S. Margenov

Fractional diffusion operators appear naturally in various areas in mathematics, physics,
ect. The most important property of the related boundary value problems is that they
are nonlocal. Let us consider a fractional power of a self-adjoint elliptic operator in-
troduced through its spectral decomposition. It is self-adjoint but nonlocal. Such
problems are computationally expensive. Several different techniques were proposed
during last decade to localize the nonlocal elliptic operator, thus increasing the space
dimension of the original computational domain.

An alternative approach is originally proposed in [5] and further developed in [2, 3],
see also the survey paper [4]. Let A be a properly scaled symmetric and positive
definite sparse matrix, arising from finite element or finite difference discretization
of the initial (standard, local) diffusion problem. Based on best uniform rational
approximations (BURA) of tα/(1+ qtα), q ≥ for t ∈ [0, 1], a class of solution methods
for solving algebraic systems of linear equations involving Aα + qI, 0 < α < 1, is
proposed and analysed. Robust error estimates with respect to the condition number
κ(A) are obtained, showing the exponential convergence rate of BURA methods with
respect to the degree of rational approximation k. At this point we assume that some
solver of optimal complexity (say multigrid or multilevel) is used for the involved
systems with matrices A + djI, dj ≥ 0, dj ≥ 0, j = 1, . . . , k. This leads at the end
to an almost optimal complexity O(N log2N) of the algorithm. The comparative
analysis demonstrates well expressed advantages of the BURA methods. A unified
theoretical explanation of these observations is discussed at the end.

Figure 1: Fractional order preconditioning in coupled multi-scale 3D-1D problems:
(a) Model problems with single line geometry of the interface(left); (b) More realistic
problem with more general geometry of the interface (right)

The second part of the talk is devoted to the following challenges:
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• Low regularity and local refinement. Some authors assume a high smooth-
ness of the solution. However, this is far from reality. The fractional diffusion
equations are less regular. Thus, the development of robust solvers for the case
of adaptive local mesh refinement in is among the difficult challenges.

• Time-dependen problems. In some sence, solving standard parabolic prob-
lems is easier than the elliptic ones. The situation is quite different in the case of
space frational time-dependent problems. It may be surprising that the matrix-
vector multiplication by Aα is a more difficult task than solving the system
Aαu = f .

• Coupled problems and preconditioning of fractional order operators.
The majority of real-life applications are described by coupled systems of PDEs.
An example of a multi-scale time-dependent problem (see Fig. 1) is considered
to illustrate some key ideas. The robust preconditioning is an important open
problem.

• Computational complexity. The degree k is commonly accepted as an uni-
versal measure in the comparative analysis. This is not very sharp looking in
the properties of the related k auxiliary linear system. This raises the question if
the computational complexity can be reduced from O(N log2N) to O(N logN),
see [2].

• Parallel scalability. Three levels of parallelism were implemented to prove
the advantages of the BURA method in [1]. However, the real picture is sub-
stantially reacher. Balancing the parallel tasks and developing of hibrid parallel
algorithms for the modern supercomputers with hibrid architecture is a key
challenge for the case of extremely large-scale multiphysiscs applications.
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Digital Transformation Multidimensional Security
Analysis with Future Quantitative Assessment

Z. Minchev

Understanding properly the digital transformation security transcendents (like: risks,
challenges, threats, opportunities, uncertainties) is a rather challenging problem es-
pecially for the future. In this context, joining human with machine beliefs and
objectives solving could be a rather helpful solution [1]. Three key problems have
to be outlined here: (i) the correct fusion and prioritizing of multiple dynamic infor-
mation sources; (ii) successfully representing the multidimensional evolution space,
using the dynamic information effectively. The (iii) resulting aggregation needs to
be reasonably shown, producing a flexible classification, readjustment as neither dy-
namic, information sources’ reliability or real dimensionality is preliminary known for
the future.

The work tries to briefly present a hybrid experimentation on heuristic approach for
solving the correct dimensionality of the digital transformation security multidimen-
sional scenario modelling, and further transcendents analysis [2]. Both human future
beliefs and machine scenarios smart evolution, with ad-hoc future multicriteria ob-
jectives assessment are implemented in the accomplished approach. Finally, different
future findings [3] and uncertainties with the security transcendents of the digital
transformation are also discussed with the outlined analytical ideas real implementa-
tion.
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Implemenation, Performance and Scalability of a
Large Scale Air Pollution Model on the New

Eurohpc Petascale Supercomputer DISCOVERER
in Bulgaria

T. Ostromsky

The environmental modelling and air pollution modelling in particular is one of the
toughest problems of computational mathematics (together with the meteorological
modelling). All relevant physical and chemical processes in the atmosphere should
be taken into account, which are mathematically represented by a complex PDE
system. To simplify it a proper splitting procedure is applied. As a result the initial
system is replaced by several simpler systems (submodels), connected with the main
physical and chemical processes. These systems should be calculated in a large spatial
domain, as the pollutants migrate quickly on long distances, driven by the atmosphere
dynamics, especially on high altitude. Here they are exposed to temperature, light
and other condition changes in extremely wide range, so does the speed of most
chemical reactions. One of the major sources of difficulty is the dynamics of the
atmospheric processes, which require small time-step to be used (at least, for the
chemistry submodel) in order to get a stable numerical solution of the corresponding
system. All this makes the treatment of large-scale air pollution models a tuff and
heavy computational task. It has always been a serious challenge, even for the fastest
and most powerful state-of-the-art supercomputers.

The first crucial point on the way to this goal is domain decomposition technique.
This is a natural way to achieve distributed memory parallelization of any numerical
problem over a large spatial domain. For some of them however, like the advection-
diffusion equations in our case, there is always certain overhead due to the boundary
conditions. Minimizing this overhead is a key point towards efficient optimization.
On the other hand, optimization should not restrict the portability of the parallel
implementation, as the intensive development in the computer technology inevitably
leads to regular updates or complete replacement of the outdated hardware. Standard
parallel programming tools as MPI and OpenMP (for distributed / shared memory
models) are used in order to preserve portability of the code. Another important
parallel optimization issue is the load-balance. MPI barriers, used to force synchro-
nization between the processes in data transfer commands, often do not allow good
load-balance. This obstacle can be avoided to some extent by using non-blocking
communication routines from the MPI standard library.

The basic MPI version of the Danish Eulerian Model (DEM) [5, 6] has been imple-
mented and run on the new petascale supercomputer DISCOVERER, installed this
year by Atos company at Sofia Tech Park in Bulgaria. The machine is part of the Eu-
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ropean High Performance Computing Joint Undertaking (EuroHPC). The results of
preliminary scalability experiments of the basic MPI parallel implementation of DEM
on a relatively small set of nodes and with just automatic compiler-level optimiza-
tions are presented in the talk. They are compared with similar earlier experiments
performed on the Mare Nostrum III supercomputer (petascale too) at Barcelona Su-
percomputing Centre – the most powerful supercomputer in Spain by that time,
upgraded currently to the pre-exascale Mare Nostrum V, also part of the EuroHPC
JC infrastructure.

DEM is a powerful and sophisticated large scale air pollution model, with some 30-
year development history [1, 2, 6, 7]. Over the years it was successfully applied in
different long-term environmental studies in various areas. Parallelization is primarily
based on the space domain partitioning [3, 4, 6, 7].

Times (T) in seconds and speed-ups (Sp) for running DEM (the basic MPI version)
on the EuroHPC supercomputer DISCOVERER (in Sofia Tech Park) are given in the
table below.

NP # Advection Chemistry TOTAL
NODES T [s] (Sp) T [s] (Sp) T [s] (Sp) E [%]

4 1 23408 ( 4.0 ) 20825 ( 4.0 ) 48604 ( 4.0 ) 100 %
8 1 11830 ( 7.9 ) 11072 ( 7.5 ) 25045 ( 7.8 ) 97 %

12 1 7785 ( 12.0 ) 7112 ( 11.7 ) 17036 ( 11.4 ) 95 %
16 1 6023 ( 15.5 ) 5438 ( 15.3 ) 13061 ( 14.9 ) 93 %
24 2 4075 ( 23.0 ) 3630 ( 22.9 ) 9148 ( 21.3 ) 89 %
36 3 2786 ( 33.6 ) 2314 ( 36.0 ) 6248 ( 31.1 ) 86 %
60 4 1790 ( 52.3 ) 1358 ( 61.3 ) 3638 ( 53.4 ) 89 %
80 5 1420 ( 65.9 ) 978 ( 85.2 ) 3050 ( 63.7 ) 80 %

120 8 1072 ( 87.3 ) 662 ( 125.8 ) 2394 ( 81.2 ) 68 %
160 10 895 ( 104.6 ) 498 ( 167.3 ) 2052 ( 94.7 ) 59 %
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Classification of Images for Reverse Engineering of
Slot Machines

D. Parvanov, G. Mateeva, T. Balabanov

Introduction Slot machines are the most popular gambling games. Reels with
drawn symbols spin on the screen. When the reels stop, the winning combinations
are formed according to predefined patterns. Symbols placement in the reels is a
discrete probability distribution. According to this distribution, the parameters of
the game are determined. The most important parameters are - return to player and
volatility. Return to player is controlled by the government authorities. Volatility
shows how often and how big the wins will be. The distribution of the symbols is
unknown to the player. Reverse engineering is one of the approaches to its discovery.

Reverse Engineering Slot machine screen is organized in virtual reels. Since reels
are not known, the only approach to reconstructing drums is by observing chunks of
them [1,2]. Approximated reconstruction is possible when chunks are strictly tagged.
Tagging is a process of transforming symbols’ images into exact numbers. With
enough chunks of reels, reconstruction is a problem for solving a linear puzzle. The
quality criterion is the achievement of the desired return to the player and variability,
even when the reels are not exactly reconstructed.

Classification of Images Image classification starts by obtaining manual screen-
shots on the game screens. The exact areas of the locations of the symbols are given
manually into the screen capture tool. The image processing software library is in-
volved in the classification. The images are separated into classes based on a difference
threshold. The main difficulties in classification come from the fact that not all sym-
bols are pure images. Some of the symbols are included in the animations, mainly
when there is prize on the screen.

Conclusions Automated classification of images has real applicability in real-life
industrial analysis of slot machine gambling games. The most time-consuming part
of reverse engineering in the problem described is tagging of the symbols.
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Nano Computing in Bioinspired Systems

A. Slavova, V. Ignatov

Information processing in the brain takes place in a dense network of neurons con-
nected through synapses. The collaborative work between these two components
(Synapses and Neurons) allows basic brain functions such as learning and memoriza-
tion. An efficient emulation of these computational concepts is possible only over-
coming the so call von Neumann bottleneck which limits the information processing
capability of conventional systems. To this end, the mimicking the neuronal architec-
tures with silicon-based circuits, on which neuromorphic engineering is based on, is
accompanied by the development of new devices with neuromorphic functionalities.

In this talk we shall study Hodgkin–Huxley equations [1] of the cardiac Purkinje fibre
(CPF) model of morphogenesis which describes the long-lasting action and pacemaker
potentials of the Purkinje fibre of the heart. The FitzHugh Nagumo equation [2,3],
which is a simplification of the Hodgkin-Huxley model, describes the generation and
propagation of the nerve impulse along the giant axon of the squid. For dynamical
systems in neuroscience, the type of bifurcation determines the computational prop-
erties of neurons. Based on the finite propagating speed in the signal transmission
between the neurons, we shall derive various neural systems and study their dynamics.

We shall use concepts from nonlinear system theory to derive model representations
of the mathematical description of the physical structure for analytical treatment
and time efficient simulations. We then plan to investigate the dynamics of the
model representations taking the stochastic variability in its nonlinear behaviour into
account. It is a further goal of our experiments to reduce this variability to a suitable
low level as required by the application under investigation through the optimization
of the device structure and material choice. Finally, the outcome of the experimental
and theoretical investigations shall support the design and fabrication of electrical
circuits chosen from two distinct applications - spatio-temporal pattern recognition
and digital logic - and based upon the locally-active threshold switching behaviour of
our device.

Based on the local activity of cells [4], analytical criteria for computer simulations
with four state variables and one diffusion coefficient will be presented. The criteria
can be easily implemented by a computer program to produce bifurcation diagrams
for the corresponding Hodgkin–Huxley model. Although no chaotic phenomenon is
observed, the cell parameters which cause the heart to stop beating are always located
near the edge of chaos domains.
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Charge-Dependence of the Membrane Destruction
Modes of Linear Antimicrobial Peptides: a Case

Study

P. Petkov, N. Ilieva, E. Lilkova, L. Litov

AMPs have broad-spectrum activity against a wide variety of pathogens, including
gram-positive and gram-negative bacteria, fungi, parasites, and even some viruses.
They exert their action by interacting with target cellular membranes, whereas they
either insert into or penetrate the lipid bilayer. It is widely accepted that the mech-
anism of action of AMPs is based on their cationic and amphiphilic nature, which
enables them to interact with negatively charged bacterial surfaces and membranes,
thus causing membrane disruption or altering metabolic processes. Therefore, un-
derstanding of the AMP’s mechanism of action requires experimental studies and
computational modelling of the peptide-membrane interaction. However, this in-
teraction presents some challenges to standard atomistic simulations, due to slow
relaxation times of the lipid bilayer, conformational changes in the peptides upon
interaction with the membrane, peptide self-assembly and pore formation, requiring
prohibitively long simulation times.

Here, we report the computational study of the interaction of a particular putative
AMP with a model bacterial membrane. The studied AMP was isolated from the
mucus of garden snails Helix aspersa. The model membrane is constructed to resem-
ble the E. Coli membrane: asymmetric, with POPE (neutral) and POPG (negatively
charged) phospholipids in ratios 85/15 and 70/30 in the external, resp. internal
layer. To enhance the conformation space sampling of the AMP–membrane complex
we employed well-tempered metadynamics, which allowed for exploration of multi-
dimensional free energy surfaces in terms of appropriate collective variables. We
demonstrate, that there are well defined minima in the free energy landscape of the
interaction of the peptide and the lipid bilayer, that are dependant on the charge of
the attacking peptide segment.
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Extreme Learning DANFA Model for Electricity
Consumption Prediction

M. Terziyska, K. Yotov, E. Hadzhikolev, Zh. Terziyski,
S. Hadzhikoleva

Electricity consumption is an important indicator of the living standard of the popula-
tion and the efficiency of economic activities. In recent years, there has been a steady
increase in electricity consumption worldwide. In general, this is due to population
growth, a higher level of personal comfort for people (larger homes, new and larger
appliances and equipment, new services [1 ]), and economic growth in all sectors. All
this shows that the management of energy demand is very important. Effective en-
ergy management is essential for economic success, environmental preservation, and
suitable planning of existing resources [2 ]. Therefore, various techniques have been
used for energy demand management to forecast future energy demands accurately
[3 ]. Along with the well-known autoregressive models (such as ARIMA, SARIMA),
data-driven machine learning algorithms such as fuzzy logic, genetic algorithm, neu-
ral network and support vector regression models are increasingly used for forecasting
of the national and regional energy demand. A neural network model for long-term
energy consumption prediction in Greece is presented in [4 ]. To develop this model,
the authors tested ten different neural architectures. This shows the main problem
with the use of neural networks, namely the lack of a unified theory to regulate the
determination of the number of hidden layers and the number of neurons in them.
In addition, neural networks have a large number of parameters (weights) that must
be determined in the course of their training, and then this task might require high
computational power. It is proven that fuzzy logic gives good results to deal with
a high level of uncertainty in data. Therefore, in [5 ], [6 ] fuzzy models for electric-
ity consumption prediction respectively in Jordan and in Brazil are proposed. The
hybrid neuro-fuzzy structures are also used for energy demand forecasting [7 ], [8 ].
The Extreme Learning Distributed Adaptive Neuro-Fuzzy Architecture (ELDANFA)
model, which is a modification of ANFIS is presented in this paper. The main goal
for the development of such a model is to obtain an accurate model that works with
minimal error and reduced computational load. The proposed model was tested by
forecasting the consumed electricity in Stanimaka substation, Asenovgrad, Bulgaria.
The results show that the set goals have been achieved. On one hand, the number of
fuzzy rules is reduced, which makes the model suitable for real-time operation, and
on the other hand, the predicted error is very small.
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A Comparative Study of Methods for Scattered
Data Interpolation using Minimum Norm Networks

and Quartic Triangular Bézier Surfaces

K. Vlachkova, K. Radev

Scattered data interpolation is an important problem in approximation theory and
geometric modeling and has numerous applications in practice. The problem can be
formulated as follows: Given a set of points (xi, yi, zi) ∈ R3, i = 1, . . . , n, find a
bivariate function F (x, y) defined in a certain domain containing points Vi = (xi, yi),
such that F possesses continuous partial derivatives ∂F/∂x, ∂F/∂y, and F (xi, yi) =
zi.

Nielson [1] proposed a solution to the problem as follows. First, he constructed a
smooth interpolation curve network with minimum L2-norm of the second derivative
(MNN) defined on the edges of an associated triangulation T . The MNN is a cubic
curve network. Then he extended the MNN to a smooth rational surface using a
blending method. Andersson et al. [2] gave a new proof of Nielson’s result which allows
them to consider and handle the case where the data are convex and a minimum L2-
norm network which is convex on the edges of T is sought. Vlachkova [3, 4] extended
the results in [2] to minimum Lp-norm networks for 1 < p < ∞. In [5] the MNN
was degree elevated to quartic and an algorithm for its extension to a smooth surface
consisting of quartic triangular Bézier patches was proposed.

Here we consider the following two curve networks: (i) the edge convex cubic MNN
which is degree elevated to quartic; (ii) the edge convex minimum Lp-norm network
for p = 3/2 which is slightly modified to quartic. Using the algorithm proposed in
[5], we construct the corresponding two interpolation surfaces consisting of quartic
triangular Bézier patches. Our goal is to evaluate and compare the quality and the
shape of these surfaces. We performed a large number of experiments using data of
increasing complexity and analysed the results with respect to different criteria. Here
we present the results of our numerical experiments.

Example 1. The data are (−1/2,−
√

3/6, 0), (1/2,−
√

3/6, 0), (0,
√

3/3, 0), (0, 0,−1/2).
The triangulation and the corresponding edge convex MNN are shown in Fig. 1. The
highlight lines on the surface and the gaussian curvature are visualized in Fig. 2.
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Figure 1: The triangulation and the corresponding edge convex MNN for the data in
Example 1.

Figure 2: The surface interpolating the modified edge convex MNN for the data in
Example 1: (left) Highlight lines on the surface; (right) Gaussian curvature: the color
scale goes from blue (low) to red (large)
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Numerical Simulations of the Process of Adsorption
onto Activated Carbon in Water Treatment

Applications

M. N. Zarcheva, T. B. Ivanov

The present work is concerned with modelling water treatment using activated car-
bon filters—a widely used technology, whose proper management is essential for its
effectiveness.
Activated carbon is a highly porous medium, which makes it very suitable for re-
moving variety of pollutants from water and wastewater through the physical process
of adsorption. We are interested in a particular type of activated carbon filters—
granular activated carbon (GAC) column filters, in which tiny carbon particles are
loosely arranged in a column. We consider a 1D setting of the process, assuming
that water flows from the top (x = X) to the bottom (x = 0) of the filter at a con-
stant rate (Figure 1). During the purification process, the liquid passes through the
porous structure of the AC particles, which allows the pollutants dissolved in it to be
attracted to the internal surface of the porous medium.

Figure 1: Inlet and outlet of a GAC filter.

The process of water purification with activated carbon can be described using a
system of 2N non-linear partial differential equations, where N is the number of
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contaminants in the water. Each contaminant can be characterized by two main
quantities:

• ci, i = 1, . . . , N—the concentration of the i-th contaminant in the water;

• qi, i = 1, . . . , N—the amount of the i-th contaminant inside the carbon particles.

There are three main processes that underlie water treatment with activated carbon—
advection, diffusion and adsorption. If one assumes that the adsorption is the rate-
limiting process and diffusion is negligible with respect to advection, the following
advection-adsorption model can be formulated:

∂ci
∂t

=
ν

ε

∂ci
∂x
− ρ1− ε

ε
γ(Qi − qi),

∂qi
∂t

= γ(Qi − qi).
(1)

The physical meaning of the given quantities is as follows: ν is the constant velocity of
the water flow; ε is the porosity of the filter bed (the fraction of voids volume over the
total body volume); γ = 6·10·Ds

d2p
is the rate of transfer of a compound from the outer

surface of the particle to its interior, where Ds is the intraparticle diffusion coefficient
and dp is the activated carbon particle diameter; ρ is the density of carbon; Qi is a
nonlinear term that describes the load of compound i on the surface of the carbon
particle and it depends on the adsorption properties of each particular contaminant—
we use a generalization of the Freundlich isotherm with a simplified ideal adsorbed
solution (SIAS) model [1].

In a recent ESGI [2], however, the numerical solution of this model was identified as a
problem for various values of the model parameters. We propose a novel semi-implict
scheme that allows for the efficient solution of the differential problem. The robustness
of the scheme is validated for a wide range of model parameters, expected to appear
in practice. The proposed numerical scheme is successfully applied to the solution of
the system of 20 PDEs, corresponding to 10 different contaminants in the water. We
also study numerically the rate of convergence of the scheme and the computational
efficiency of the implemented algorithms for various numbers of contaminants in the
water.
One of the main reasons for simulating the process is the prediction of the time when
a particular carbon filter will get exhausted and needs to be replaced. Thus, we
compute the so-called breakthrough curves that give information about the quality
of the water treatment (i.e., how much of the pollutant is still present in the water
after passing through the filter).
The numerical experiments conducted with the proposed scheme appear to reflect
very well the qualitative behaviour of the process of adsorption of natural organic
matter and nine different micro-pollutants onto activated carbon.
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