
TEM Journal. Volume 11, Issue 4, pages 1906-1914, ISSN 2217-8309, DOI: 10.18421/TEM114-59, November 2022.

1906 TEM Journal – Volume 11 / Number 4 / 2022.

Advanced Record Linkage Techniques
for Improving the Data Matching

between Cultural Heritage Datasets
from Different Sources

Jordan Stoikov 1, Alexandra Nikolova 1, Vladimir Georgiev 2

 1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
 2 Computer Science Department, American University in Bulgaria, Bulgaria

Abstract – The paper's goal is to investigate a
matching algorithm that can be used to connect
records of cultural heritage data from various data
sources and enhances the precision and effectiveness of
the matching operations involved in this process. The
foundation of this work is a fuzzy match similarity
(FMS) function, which explicitly associates weights
with tokens to measure their relative relevance while
reading a string as a series of tokens.

Keywords – record linkage, probabilistic linkage,
similarity function.

1. Introduction

The process of developing bibliographic databases
[1] with cultural heritage data is facing numerous
challenges related to data quality and record linkage.

DOI: 10.18421/TEM114-59
https://doi.org/10.18421/TEM114-59

Corresponding author: Jordan Stoikov,
Institute of Mathematics and Informatics, Bulgarian
Academy of Sciences, Sofia, Bulgaria.
Email: jstoikov@shieldui.com

Received: 01 September 2022.
Revised: 12 October 2022.
Accepted: 08 November 2022.
Published: 25 November 2022.

© 2022 Jordan Stoikov, Alexandra Nikolova &
Vladimir Georgiev; published by UIKTEN. This work is
licensed under the Creative Commons Attribution‐
NonCommercial‐NoDerivs 4.0 License.

The article is published with Open Access at
https://www.temjournal.com/

 Multiple data sources are one of the factors to take
into account; if data is collected from several
organizations or systems, in various places, during
various time periods, or through inconsistent data
input techniques, then it is probable that the data is
unreliable. The largest issue is that there are often
several input techniques used when entering the same
surname and initials into a database since there is no
set format for abbreviations, etc.

In Database repositories, the received data flow
from peripheral origins should be purged and
authenticated in order to assure excellent data
quality. The majority of the time, data from external
sources that are received at the data warehouse
include substantial mistakes, such as misspellings,
abbreviations, special characters, variant spellings,
and name variations. The clean data set must, in the
vast majority of cases, match the permitted dataset
values in reference tables. For instance, the fields for
the description and name of the artifact in a cultural
heritage dataset originating from a new data source
must coincide with the name and description fields
already recorded in the reference relation for the
item. Implementing a precise and effective matching
procedure that can properly clean an incoming data
set in the event that it does not precisely match with
any dataset value in the reference relation would
provide a considerable problem in such a
circumstance. An effective matching method is
developed in this paper using a novel similarity
function that substantially reduces the drawbacks of
frequently used comparison functions. On actual
datasets, the exhibited technique's efficacy is
assessed.

The necessity for fuzzy-join parameterization has
grown in importance as a result of recent
considerable improvements in scalability. The fuzzy-
join implementations specifically propose a rich set
of complex setup parameters, most of which have to
precisely configured in order to be generated precise

https://doi.org/10.18421/TEM114-59

TEM Journal. Volume 11, Issue 4, pages 1906 ‐1914, ISSN 2217‐8309, DOI: 10.18421/TEM114‐59, November 2022.

TEM Journal – Volume 11 / Number 4 / 2022. 1907

and accurate results. This is determined by the
necessity to amend the linkage quality for diverse
entry tables, incoming from disparate datasets. For
instance, Data Ladder [2] makes use of a well-liked
fuzzy-join capability that is a component of its
toolbox. It makes use of a sophisticated setup user
interface with 3 dialogs and 19 adjustable settings. 12
of these choices are Boolean (may be true or false),
giving rise to 212 = 4096 distinct combinations,
which make manual programming difficult. Similar
to this, the well-known open-source fuzzy-join tool
py_stringmatchin [3] makes use of a total of 92
parameters. You'll see that we haven't yet considered
parameters from numeric domains, such a "similarity
threshold" that may contain any value I the range of
[0, 1].

End-user inquiries asking for an explanation of
how fuzzy-joins may be coded in accordance with
various use cases, including how to configure
parameters such as similarity-thresholds, weights of
tokens, distance-functions, etc., have been seen often
in places like Power Query [4] user forums. Users
with functional rather than technical background
(such as those using Tableau or Excel) need to try
many different parameter combinations or use the
sub-optimal default parameters. Experienced
practitioners can examine entry data and utilize their
prior knowledge to make refined estimation of
appropriate parameters (based on the trials and errors
approach). This study's premise is that this is a
serious problem that prevents fuzzy-join from being
widely used. In this study, the feasibility of auto-
programmable fuzzy-joins using suitable parameters
specifically designed for the provided input tables is
investigated. The suggested method is designed to
function independently and without input from
consumers (e.g., educational illustrations with labels
for non-linked and linked data). It is based on a
fundamental characteristic of fuzzy-join operations
that mandates the entry tables to serve the function of
an "indicative table," or an optimized principal table
with limited or no duplicates. It is well known that
reference tables are often used in the literature [5]
and incorporated into business systems (e.g., SQL
Server [6], OpenRefine [7], etc.). Without requiring
labelled data, it is feasible to infer superior fuzzy-join
algorithms by taking use of this crucial characteristic
of reference tables.

This paper's goal is to investigate a matching
technique that may be used across several domains
and does not need explicit parametrization. The
similarity function that is employed to compare data
sets is a crucial part of a matching procedure. The
matching procedure should return the reference data
set—an ordered data set in the reference relation—
that is most similar to the entry dataset value based
on the comparison function and an entry dataset.

The fuzzy match similarity (FMS) [8] function that
construes the strings as a sequence of tokens and
explicitly associates weights indicating their
relevance, is the foundation of this work. Compared
to matching tuples on low weight tokens, matching
data sets on high weight tokens yields better
similarity findings. In order to gauge the token
significance concept for this resolution, inverse
document frequency (IDF) weights have been
applied. Accordingly, the token relevance depends on
its occurrence, represented by the frequency of its
appearance in the reference relation [9]. In order to
achieve the objective of returning the nearest
reference data set with a high probability, a
probabilistic [10] technique is used. The reference
relation is initially processed to create the error
tolerant index (ETI) [11] relation, which is utilized to
get a limited number of potential reference data sets
during runtime and compare them to the input tuple.
Instead of needing to examine the whole set of
reference relation and compare each input dataset
value to it, as is customary for the naive technique,
this approach develops an "index" on the reference
relation with the purpose to efficiently extract a
superset of the goal fuzzy matches.

The sequence of the sections of the paper is as
follows. Related works are included in Section 2.
Information on the similarity function is provided in
Section 3. The method for building the ETI and the
algorithm that makes it easier to identify the target
reference data set value are detailed in Section 4.
Results of an experiment using actual data are shown
in Section 5.

2. Informational Origin and Associated Work

When measuring similarity, the majority of
approximation string matching algorithms ignore
variations in token significance.

By pre-processing the text strings, the approximate
string-matching approach matching [12] creates q-
gram [13] tables that include tuples for each string of
a certain length that appears as a substring of a text
string that is use as a reference. The list of string IDs
for the strings it is a substring of is also included in
the record. Only a portion of all q-grams per tuple are
chosen in the method [14] to generate the error
tolerance index ETI, and the retrieval technique for
locating the target reference data sets (ii) encrypts the
limits of columns that are particular to relational
area.

The IDF weights have been effectively used in the
area of information retrieval to make it easier to
distinguish between the significance of tokens or
words. The use of the presumption that every input
token suggested in a query is accurate, however, does
not further address the potential problems. Numerous

TEM Journal. Volume 11, Issue 4, pages 1906 ‐1914, ISSN 2217‐8309, DOI: 10.18421/TEM114‐59, November 2022.

1908 TEM Journal – Volume 11 / Number 4 / 2022.

well-known search engines have lately begun to
consider little spelling mistakes. The processed data
sets for the fuzzy match [15] operation include
relatively few tokens; thus, the incorrect input tokens
cannot be ignored since they may be essential for
differentiating among thousands of reference tuples.
The flaw with the cosine similarity measure with IDF
weighting-based clustering and reference matching
algorithms [16] is that they ignore incorrect input
tokens. The similarity function, which enhances
efficiency by noting the variation in input token
weights, is explored in this work without assuming
the correctness of the input tokens.

Table 1. Bibliographic Reference Relation

ID Name City State Born
R1 Sophronius of Vratsa Kotel BG 1739
R2 Sofroniy Vrachanski Kotel BG 1741
R3 Vrachansky Kotel BG 1737

Table 2. Entry Bibliographic Dataset Values

ID Name City State Born
I1 Sofronius of Vratsa Kotel BG 1739
I2 Sophronius of Vr. Kotel BG 1739
I3 Sofronii Vratchanski Kotel BG 1739

I4
Vratchanski
Sofronius

Kotel NULL 1741

In Certain recent generic metric space efforts [17]

are too complicated and perform poorly for high-
output systems that manage data from external data
sources. Furthermore, many of these solutions
demand the retention of certain index structures,
which makes it difficult to implement them over
modern data warehouses (e.g., M-trees).

By using a similarity function and classifying very
comparable data sets as duplicates, several recent
solutions tackled the related issue of removing
"duplicates" in a relation. There are some that
employ the notion of edit distance (ED) [18], others
are based on IDF weights implemented by cosine
similarity [19], some that are grounded on learning
similarity functions for derivation of training datasets
[20], and others that are based on the use of
dimension hierarchies [21]. The productivity
demands of the online matching procedure, where
input data sets must be swiftly corresponded to the
aimed location value set before insertion into the
database management system, cannot be answered by
any of these approaches since they are all designed
for offline usage. A comparable approach to these
difficulties is to enhance a connection by removing
replacements, and after that commit the
supplementary elements via the matching procedure
for avoiding the generation of further identical
values.

Many successful companies (like Axciom) include
address-specific elements into their closed source
algorithms for comparing and coupling point of
contact information of private or organizational
information. The record linkage studies that originate
in [22], also take into account the issue of finding
identical records across interconnections and utilize a
selection similarity functions specific for a given
domain.

Amid the unassisted approaches, our assessment
assumes that the finely-tuned Excel is a robust
reference point as it utilizes a variant of the
widespread fuzzy comparison, which is a weighted
grouping of several distance methodologies.

Additional entity-matching methods embrace Ditto
[23] and AutoEM [24], employing pre-trained
models for matching of entities.

Contrary to this the goal of this paper is to progress
a strategy that is autonomous of any particular
domain.

3. FMS

Times An overview of the FMS function's

specification for comparing data sets is provided in
this section. The following list provides definitions of
the various components:

The minimum amount of character editing actions
(remove, addition, and replace) needed in order to
convert s1 to s2 is identified as the editing distance
(ED) among two threads, s1 and s2, and it is
determined by the maximum lengths of s1 and s2. The
ED between the strings "Sofroniy" and "Sophronius"
for the sample presented in the used figure is
6/10=0.6, and the order of editing actions is shown.
The upright lines designate replacements at a rate of
1, or exact matches at a cost of 0. There is always a
unit cost associated with the operation of deletion or
insertion for italicized letters.

Relation to Reference: Assume that the relation to
the reference is R [tid, A1, ...,An], where Ai stands for
the ith column. Each Ai is acknowledged to be an
attribute of string-value type. The notion that tid, or
data set indicator, is a core element of R is also
widely accepted. The term "tuple r" refers to a data
collection whose tid property takes the value "r". The
element ai from the dataset v[r, b1, ...,bn] is denoted
by the v[i] notation.

Tokenization: The tokenization function,
designated by the symbol tok, divides a thread s into
a collection of indications, tok(s), that are specified
by a set of delimiters. For instance, {Sophronius,
Vratsa} is tok(v[1]) of the value set v = [R1,
Sophronius of Vratsa, Kotel, BG,]. Please be aware
that while creating tokens, case does not matter. The
attribute of the column from which a token originates
is connected with tokens that are formed from

TEM Journal. Volume 11, Issue 4, pages 1906 ‐1914, ISSN 2217‐8309, DOI: 10.18421/TEM114‐59, November 2022.

TEM Journal – Volume 11 / Number 4 / 2022. 1909

attribute values of data sets. For instance, col is the
tokens' column attribute in tok(v[col]). The sets
tok(b1), ...,tok(bn) of indications out of the data set
v[r, b1, ...,bn] are combined into the set tok(v). If a
token t occurs in more than one column, it is
expected that an individual copy for each column in
tok(v) is kept, enabling each copy to be identified by
its column attribute. For 1 ≤ i ≤ n, a representation is
contained in tok(v) if it is in association with the
tok(bi).

Weight Function: With regards to this research, the
IDF weight function is modified by considering each
data set as a tokenized document. The frequency of
occurrence of dataset values v in R, so as to tok(v[i])
includes t will be the existence of the token t in
column I, which is signified as freq(t, i). When freq(t,
i) > 0, then the IDF element, IDF(t, i) of a token
denoted with t, concerning the column signified as ith
within the R scheme is calculated appropriately.

𝑤ሺ𝑡, 𝑖ሻ ൌ 𝐼𝐷𝐹ሺ𝑡, 𝑖ሻ ൌ log
|𝑅|

 freq ሺ𝑡, 𝑖ሻ

Assuming that the token denoted as t is an unfitting
variation of a token from the data set that is used for
reference and that the related token is unknown when
the token t's occurrence in column i is equal to 0, the
token is given the estimated significance of all
representations contained the column signified as ith
within the R relation.

3.1. Fuzzy Similarity Function

 The cost of converting the input dataset from the
reference dataset in this research is based on how
similar the two datasets are; the greater the similarity,
the lower the cost. The three conversion operations—
token replacement, insertion, and deletion—are being
taken into account. The weight of the token that was
changed determines how much each operation will
cost. In the context of this investigation, the datasets
u and v have the scheme R[A1, ...,An]. Only the case
where u signifies the entry value and v is a reference
dataset value will be taken into account, with a
conversion of u into v as the desired outcome.

(i) Token replacement: It costs ed(t1, t2).w(t1, i) to
replace a representation t1 within tok(u[i]) with
a represenation t2 in tok(v[i]). The cost is
evaluated as unlimited if t1 and t2 come from
distinct columns.

(ii) Inserting a token: Entering a representation in
u[i] outlays cins.w(t, i) where the representation
cins entering component is a fixed cost among 0
and 1.

(iii) Deleting a representation: It costs w(t,i) to
eliminate a token t from u[i].

The datasets are compared without taking the tid
attribute into account. Each column in u must be
changed into v by a series of transformation
operations, the cost of which is determined by adding
up the expenses of each operation in the sequence.
The rate of the lowest cost of the alteration order to
change u[i] into v[i] is represented by the
modification fee, or tc(u[i], v[i]). The total of the
expenses tc(u, v) of transforming u into v in all
strings signified as i is the cost tc(u[i], v[i]) of
transforming u[i] to v[i].

𝑡𝑐ሺ𝑢, 𝑣ሻ ൌ ෍  
௜

𝑡𝑐ሺ𝑢ሾ𝑖ሿ, 𝑣ሾ𝑖ሿሻ

Be By aiding the dynamic programming technique
used for the calculation of ED, it is possible to
determine the least cost of transformation tc(u[i],
v[i]).
 The input dataset tuple [Sofronii Vratchanski,
Kotel, BG, 1739] in Table 2 and the associated
reference tuple [Sofroniy Vrachanski, Kotel, BG,
1741] will be subject to analysis. Two operations
must be performed in order to convert u[1] into v[1]
at the lowest possible cost: replacing "Sofronii" with
"Sofroniy" and "Vratchanski" with "Vrachanski."
The costs of these two operations are added up in the
function tc(u[1], v[1]), which, when accounting for
the unit weights on all tokens, yields a result of 0.97
by adding 0.34 for changing "Sofronii" to "Sofroniy,"
which has an ED of 0.34, and 0.63 for changing
"Vratchanski" to "Vrachanski," which has an ED of
0.63. In this example, the only column-related
alteration cost that is not zero is tc(u[1], v[1]).
 The FMS between an entry value u and a reference
dataset value v is described in this section with
regards to the conversion fee tc(u, v). It is expected
that the level of importance of all the tokens in the
entry dataset value u's token set, tok(u), will be added
together to form w(u). What is meant by u and v
being similar is:

𝑓𝑚𝑠ሺ𝑢, 𝑣ሻ ൌ 1 െ m ൬
𝑡𝑐ሺ𝑢, 𝑣ሻ

𝑤ሺ𝑢ሻ
, 1.0൰

Subsequently six tokens are contained in tok(I1)
and every token has a weight of 1, the
aforementioned sample involving I3 and R1 has
w(I3) = 6.00. Consequently, fms(I3, R1) = 1 -
0.97/6.0 = 0.838. The fee for modification of a filthy
entry dataset value into a correct reference dataset
value, differentiates from the cost of the opposite
transformation, hence the FMS is defined
asymmetrically.

TEM Journal. Volume 11, Issue 4, pages 1906 ‐1914, ISSN 2217‐8309, DOI: 10.18421/TEM114‐59, November 2022.

1910 TEM Journal – Volume 11 / Number 4 / 2022.

3.2. ED and FMS

In order to distinguish between cases where they
consent or contradict on the logic for fuzzy matching,
this research compares the implied weight
assignment technique taken by the ED with that of
the FMS for a large subclass of mistakes. The
comparison also supports our belief that FMS is the
better option in reality.

Subsequently, every entry token is plotted to the
token used for reference that matches it the closest,
and after every entry token is translated to its equal in
the reference dataset value, an input dataset value
and its aimed reference dataset value are reliable in
the positioning amidst tokens under this errors class.
If the list of representations in the entry data set u is
u1,…,um, sorted by their location in u. In the category
of the errors related to order-preserving, the entry
representation ui is changed to the associating
representation vi and v1,…,vm is the uniformly
arranged set of tokens in the reference tuple v.

Recognize that the ui →vi alignment is given a
significance index similar to max (|ui|, |vi|)/L(u).
Since longer tokens have larger weights, ed
automatically allocates the alignment between a
token and its proportionally to the respective lengths.
Because "Sofronii" to "Sofroniy," for instance, is
given more weight than "Vratchanski" to "Vratsa,"
this explains why ed correlates input dataset value R1
(in Table 1) with I3 (in Table 2) rather than the
intended aim, R2, which is the proper one.
demonstrating that IDF weights are more effective
than token lengths in capturing the idea of token
significance.

4. FMS Approximation

This section's goal is to arrive at fmsapx, an
approximate representation of FMS that may support
indexed relationships. A customized version of FMS
called fmsapx is created by (i) ignoring the order in
which the tokens in the entry and reference dataset
values are arranged, and (ii) permitting each entry
token to bond with the token that is "closest" to it in
the reference tuple. fmsapx is an upper limit of FMS
since neglecting these two distinguishing factors
while connecting tuples will only lead to an increase
in similarity between tuples. For instance, fmsapx
measures the dataset values [Sofroniy Vrachanski,
Kotel, BG, 1741] and [Vratchanski Sophroniy, Kotel,
BG, 1741] as identical since the only difference
between them is how the tokens are organized in the
first field. In fmsapx, the parallel between sets of
token substrings, or "q-gram sets," allows for the
measurement of the closeness between two tokens
(instead of ED among tokens used in FMS). The
cohesiveness between the tiny, probabilistically

selected subsets of the two q-gram sets also
contributes to a good estimation of this q-gram set
parallel. This property will make it easier to establish
an indexed relation for fmsapx as it is necessary to
identify reference tuples for each input dataset values
with tokens that have a certain quantity of specified
q-grams with the entry dataset value. The
approximate level of q-gram set resemblance among
tokens is determined first. Then, employing an
"amendment term" thatis solely reliant on the value
of q, this similarity is connected to the ED between
tokens.

The multitude QGq(s) comprised of q-grams of a
string that is made up of a large scope of q subsets of
the string for which s and q each stand for a positive
integer. For example, the 3-gram set
QG3("Sofroniy") consists of {sof, ofr, fro, ron, oni,
and niy}. QG(s) is used to signify QGq(s) since q is
set to be a constant.

Jaccard Coefficient: Between two sets, S1 and S2,
the Jaccard coefficient sim(S1, S2) is

|𝑆1 ∩ 𝑆2|
|𝑆1 ∪ 𝑆2|

Min-hash [25] Similarity: When a component of S
is initiated, the computation of the min-hash
signature is finished. Consequently, the likelihood
that one element is discovered in S1∩S2 before a
distinct one from S1US2 is identical to sim(S1 ,S2).
The token parallel is then characterized in terms of
how similar their respective q-gram sets' min-hashes
are to one another. Q and H are assumed to be
positive integers. Tokens t1 and t2 have a min-hash
similarity of simmh(t1, t2) as follows:

sim௠௛ ሺ𝑡ଵ, 𝑡ଶሻ ൌ
1
𝐻

෍  

ு

௜ୀଵ

𝐼ൣ𝑚ℎ௜൫𝑄𝐺ሺ𝑡ଵሻ൯ ൌ 𝑚ℎ௜൫𝑄𝐺ሺ𝑡ଶሻ൯൧

The similarity function fmsapx is first developed,
followed by the observations that (i) it is expected to
be more than the FMS, and (ii) the prospect of
fmsapx to be bigger than FMS may be completed as
randomly high by selecting an acceptable min-hash
size of signature.

The meaning of fmsapx If dq = (1-1/q) is an
adjustment term, and u, v are two values from a data
collection. It applies the following function:

𝑓𝑚𝑠௔௣௫ሺ𝑢, 𝑣ሻ ൌ
1

𝑤ሺ𝑢ሻ
෍  

௜

෍  
௧∈୲୭୩ ሺ௨ሾ௜ሿሻ

  𝑤ሺ𝑡ሻ

⋅ 𝑀𝑎𝑥
௥∈୲୭୩ ሺ௩ሾ௜ሿሻ

൬
2
𝑞

sim௠௛ ሺ𝑄𝐺ሺ𝑡ሻ, 𝑄𝐺ሺ𝑟ሻሻ ൅ 𝑑௤൰

Examine the tuple R2 in 1 and the dataset values I4
in Table 2 of the first. Let q be 3 and H be 2. A token
with weight w is indicated by the notation t:w.
Assume that the tokens in I4 have the following
weights: vrachanski:0.27, sophroniy:0.6, vratsa:1.1,

TEM Journal. Volume 11, Issue 4, pages 1906 ‐1914, ISSN 2217‐8309, DOI: 10.18421/TEM114‐59, November 2022.

TEM Journal – Volume 11 / Number 4 / 2022. 1911

and 1741:2.1, for a total of 4.07. Let's say that their
respective min-hash signatures are [sop, hro], [vra,
cha], [vra, tsa], [174, 741]. Sofroniy, Vrachanski,
Vratsa, BG, and 1741 are the tokens in R2. Assume
that they each have the following min-hash
signatures: [sof, ron], [vra, cha], [vra, tsal], [bg], and
[174, 741] Then, "Vrachanski" matches
"Vrachanski," "Sophroniy" matches "Sophroniy,"
"vratsa" matches "vratsa," and "1741" matches
"1741." Matching "Sofroniy" with "sophroniy" yields
the following score: w(sophroniy)*(2/3*0.6 + (1-
1/3)) = w (sophroniy). Contrarily, fmsapx(I4, R2)
would likewise take into account the fee for resolving
discrepancies in the ordered sequence amidst tokens
in the exact range of I4 and R2 and the fee for
inserting token 'bg'. As a result, every second
representation links correctly with an indicative
representation, fmsapx(I4, R2) = 4.07/4.07. fms(I4,
R2) is thus smaller than fmsapx (I4, R2).

4.1. Conclusion Fuzzy Similarity Function

ETI's main goal is to enable the competent
invocation of an applicant set S of indicative data set
values for each input tuple u which has resemblance
to u higher than the nominal parallel criterion c. As
stated in the description of fmsapx, fmsapx (u, v) is
calculated by associating the tokens' min-hash mark
in tok(v) and tok (u). Consequently, in order to
identify the applicant set, we must expertly identify a
group of reference dataset values that share min-hash
q-grams with each token t in tok(u). Study the sample
entry dataset from Figure 1 (Sofronius of Vratsa,
Vratsa, BG, 1739). In the picture, the top row shows
the representations in the entry value set, the bottom
series order sets (S1 to S8) of tids of reference dataset
values that have corresponding tokens with min-hash
signatures included the appropriate q-gram, and the
peak row displays the tokens in the input tuple. For
instance, the set S1US2 consists of reference tuples
with tokens in the Name column that include the
word "sofronius" as part of their min-hash q-gram.
The blending of all Si's includes the applicant set S,
and this behavior extends to the q-gram signatures of
all tokens. Every q-gram is deposited in ETI together
with an ordered set of all the reference tuple tids that
have tokens with min-hash signatures that include s,
in order to detect such groupings of tids.

Figure 1. Generation of candidate set

It might be assumed that R is the link to the
reference and H signifies the magnitude of the min-
hash mark if the building of the ETI is being properly
stated.

Table 3. Sample Correlation of ETI

Q-Gram Coordinate Column Frequency Tid-list
oph 0,5 0,5 0,5 {R1}
oni 2,5 0,5 0,5 {R1}
vra 0,5 0,5 2,5 {R3,R1}
tsa 2,5 0,5 2,5 {R3,R1}
sof 0,5 0,5 0,5 {R2}
vra 0,5 0,5 0,5 {R2}
ius 0,5 0,5 0,5 {R2}
kot 0,5 2,5 3 {R1,R2,R3}
bg 2,5 3 3 {R1,R2,R3}
tel 0,5 3 3 {R1,R2,R3}
173 0,5 4 3 {R1,R2,R3}
739 2,5 4 0,5 {R1}
741 2,5 4 0,5 {R2}
737 2,5 4 0,5 {R3}

Table 3 displays an illustration of an ETI link for

the indicative relation in Table 1 where q=3,2 and
H=2,5. We presume that a token's min-hash signature
is the token itself if its length is less than q. The tuple
[R2 Sofroniy Vrachanski, Vratsa, BG, 1741] in Table
1 contains the tid R1 in the tid-order of very q-gram,
with the relevant token min-hash signatures being
{[ofr, ron], [vra, ach, han, nsk], [vra, tsa], [bg], [174,
741]}.

4.2. The Processing of Query

 The algorithm for processing fuzzy matches
queries in the study under consideration asks for K
fuzzy equivalents of entry data set values u whose
resemblances (according to FMS) to u are over a
smallest comparison level of c. By employing the
ETI effectively, it is aimed to decrease the searches
made against the reference relation. We started by
outlining the fundamental method, which retrieves
tid-order by checking the ETI for every q-gram in all
tokens in u's min-hash signatures. Then, to
dramatically reduce the amount of ETI lookups,
optimistic short circuiting is used, which takes
advantage of variations in token significance and the
necessity to collect just the K nearest dataset value.

4.2.1. The Basic Algorithm

Following is the fundamental technique for
handling the fuzzy match query based on an input
data set value called u. The IDF weight w(t) for each
token t in tok(u) is computed and demands the t
frequency. These occurrences may be reserved in the
ETI and retrieved using a separate SQL query for
each token. It may be assumed that the token
frequencies are currently accessible from the token-

TEM Journal. Volume 11, Issue 4, pages 1906 ‐1914, ISSN 2217‐8309, DOI: 10.18421/TEM114‐59, November 2022.

1912 TEM Journal – Volume 11 / Number 4 / 2022.

frequency cache. The min-hash mark mh(t) of every
representation t follows that. (If |t|≤ q, then mh(t)=[t]
is defined.) Each q-gram in mh has the weights
w(t)/|mh(t)| given to it (t). Using the ETI, is
determined an applicant group S of reference dataset
values whose parallel with the entry dataset value u
(as determined by fmsapx and fms) is greater than c.
To check if the dataset values' similarities to u (as per
FMS) are indeed higher than c, all dataset values in S
are derived based on the indicative relation. The K
dataset values with the K highest resemblance scores
are remitted from among those that pass the
verification test.

5. Some Experiments

As the reference relation, a clean data set of values
from a primary operational data warehouse is used.
By including mistakes in randomly chosen subsets of
dataset values, the input datasets are created. All
features of actual data like differences in token
extents and token occurrences, are conserved in the
problematic entry dataset values. There are two
primary categories of techniques for injection of
error: Type I method, in which errors contained in
tokens have an identical chance of occurring in any
given column, and Type II method, in which the
weight of errors in tokens is correlated to the
frequency of those errors occurring in a dataset
column. This is a typical scenario because the
likelihood of false versions of something depends on
how frequently it happens. Because mistakes in low
significance, high occurrence tokens do not influence
greatly the FMS similarity, the type II error
technique of introducing errors is prone to FMS.

Table 4. Errors descriptions and type

ej Description of Error
1 Error of spelling: change representation
2 Token substitution
3 Lack of value: u[i] = null
4 Reduction: reduce u[i] by 4 or less characters
5 Token consolidation
6 Transposition of representation

Implemented evaluation metrics include:

The time needed to process a group of entry dataset
values by employing the logic for fuzzy matching,
split up by the required timeline to process an entry
dataset value employing the naive technique is
known as the "normalized elapsed time" (comparing
an input dataset value to each reference tuple). A
fuzzy match algorithm is said to outperform a naive
algorithm if its standardized time is lower than the
total number of input tuples.

 Accuracy: The proportion of the entry dataset
values for which the fuzzy match algorithm correctly

classifies the original dataset value that gave rise to
the incorrect input tuple.

Setting of parameters: In the study's final tests, we
decide on K=1 (which denotes that only the closest
fuzzy match is recovered), q=3 for the size of the q-
gram, c=0.0 for the minimal similarity threshold, and
cins=0.4 for the token insertion factor, which is
necessary for evaluating FMS.

The methods and parameters that will be examined
are indicated in this section using the following
representation. The following symbols are used to
denote the signature calculation approach: A_H,
A∈{Q, Q+T} and H≥ 0. Q+T stands for a
combination of token signatures and q-grams,
whereas Q stands for solely q-grams. H stands for the
quantity of the marked q-grams. For instance, Q+T_2
signifies a mark that contains a token together with
two q-grams, but Q+T_0 denotes a signature that
contains just tokens.

First, the quality of the FMS and ed is assessed in
order to gauge accuracy, and then the fuzzy match
algorithm's performance is gauged.

5.1. Evaluation of ED and FMS

When comparing two datasets—one with Type I
error insertion methods and a second one with Type
II inaccuracy insertion methods—the resulted grade
of FMS is superior to ed. These two datasets each
include about 1000 dataset values. As a result, the
likelihood of error in each column is 0.91, 0.49, 0.49,
and 0.61.

Instead of comparing the effectiveness of
algorithms that discover fuzzy matches, the goal of
this experiment is to determine the quality of
similarity functions. To find the optimal fuzzy match
for each entry value set, the naive approach is used
for this purpose

The reference table shows the accuracy differences
between FMS and ed for each dataset. FMS
outperforms ed, especially for datasets formed with
Type II errors as opposed to Type I errors. Only
datasets using the Type I error technique were
highlighted in the comparison in order to eliminate
the bias in favour of the FMS.

Table 5. Accuracy of FMS and ED

 FMS ED
Accuracy on Type I 67% 61%
Accuracy on Type II 94% 68%

Table 6. Probabilities of errors for data set initiation

Dataset
Error Probabilities: [Name, City, Country,

Post. Code]
D1 [0.92, 0.92, 0.92, 0.92]
D2 [0.81, 0.6, 0.6, 0.7]
D3 [0.71, 0.6, 0.6, 0.28]

TEM Journal. Volume 11, Issue 4, pages 1906 ‐1914, ISSN 2217‐8309, DOI: 10.18421/TEM114‐59, November 2022.

TEM Journal – Volume 11 / Number 4 / 2022. 1913

5.2. Algorithms Precision

 Based on datasets D1, D2, and D3, which were
produced by employing the type I error approach for
insertion, several methods' accuracy is evaluated.
Table 6 shows the error probabilities for each column
for these three datasets. For the purposes of this
experiment, D3 is more pristine than D2, which is
more spotless than D1. D1, D2, and D3 each contain
1541 tuples. There are around 100,000 tuples in the
customer relation that is used as the foundation for
the reference relation in all tests. Figure 2 displays
the outcomes of which we infer the following.

Figure 2. Accuracy

(i) Min-hash signatures meaningfully enhances
precision: Q_H is more accurate (for H>0) (6%
to 27%) than Q+T_0 (with representations
only).

(ii) Based on the observation that H > 0, Q+T_H is
equally precise as Q_H, the addition of tokens
to the signature has no effect on the accuracy.

(iii) Even little signatures boost accuracy more than
larger ones: Although Q_2 is more precise than
Q_1, there is little to no difference between Q_2
and Q_3.

5.3. Efficiency

 This experiment measures the standardized
required time for completing the execution of the
procedure for fuzzy matching, the number of
potential indicative dataset values retrieved for every
entry dataset value, and the tids handled for the entry
dataset values in order to demonstrate the
productivity of the implemented algorithms. The
normalized elapsed durations are validated by Figure
3, from which the following may be deduced:

(i) The fuzzy match algorithms used in this
research process all 1541 input tuples in less
than 2.5 seconds on average, making them 2 to
3 times faster than the naïve technique.

(ii) As the size of the signature increases, the
query's processing time decreases. The
existence of more q-grams supports improved
identification of variances among the similarity
scores of tids, even though the ETI must be
looked up for more q-grams. Accordingly,
signature size decreases the approximate sum of
indicative value sets, retrieved for every entry
value set.

Figure 3. Normalized Elapsed Times

6. Conclusion

This study advances a precise FMS function for

matching compromised entry dataset values with
flawless value sets from an indicative relation by
including the ED similarity into the idea of tokens and
their importance. Following that, the ETI and a
powerful algorithm are used to categorize the closest
fuzzy matching reference tuples with a high degree of
probability. By employing genuine datasets is
confirmed the efficiency of the implemented
similarity function and the precision of the respective
algorithms in the context of optimizing the recall
while meeting the required precision target.

Acknowledgements

This work is funded in part by CLaDA-BG, the
Bulgarian National Interdisciplinary Research e-
Infrastructure for Resources and Technologies in favor of
the Bulgarian Language and Cultural Heritage, part of the
EU infrastructures CLARIN and DARIAH, Grant number
DO01-301/17.12.2021.

References

[1]. Manghi, P., & Mikulicic, M. (2011, October). PACE:

A general-purpose tool for authority control.
In Research Conference on Metadata and Semantic
Research (pp. 80-92). Springer, Berlin, Heidelberg.

[2]. Ziad, Z. (2022). How Best In Class Fuzzy Matching
Solutions Work: In Combining Established and
Proprietary Algorithms. Suffield. Retrieved from:
https://dataladder.com/fuzzy-matching-software/
[accessed: 10 June 2022].

[3]. Martelli, A., Ravenscroft, A., & Holden, S. (2017).
Python in a Nutshell. (3rd, Ed.) O'Reilly Media, Inc.

[4]. Rad, R., & Etaati, L. (2021). In The Definitive Guide
to Power Query in Power BI and Excel (pp. 130-147).
RADACAD Systems Limited.

[5]. Pang, C., Gu, L., Hansen, D., & Maeder, A. (2009).
Privacy-preserving fuzzy matching using a public
reference table. In Intelligent Patient
Management (pp. 71-89). Springer, Berlin,
Heidelberg.

[6]. West, R., Zacharias, M., Assaf, W., Aelterman, S.,
Davidson, L., & D'Antoni, J. (2020). SQL Server 2019
Administration Inside Out, (pp. 342-360). Microsoft
Press.

TEM Journal. Volume 11, Issue 4, pages 1906 ‐1914, ISSN 2217‐8309, DOI: 10.18421/TEM114‐59, November 2022.

1914 TEM Journal – Volume 11 / Number 4 / 2022.

[7]. Verborgh, R., & De Wilde, M. (2013). In Using
OpenRefine (pp. 121-127). Packt.

[8]. Yu, M., Li, G., Deng, D., & Feng, J. (2016). String
similarity search and join: a survey. Frontiers of
Computer Science, 10(3), 399-417.

[9]. Bruck, A., & Tilahun, T. (2015). Enhancing amharic
information retrieval system based on statistical co-
occurrence technique. Journal of Computer and
Communications, 3(12), 67.

[10]. Sayers, A., Ben-Shlomo, Y., Blom, A. W., & Steele,
F. (2016). Probabilistic record linkage. International
journal of epidemiology, 45(3), 954-964.

[11]. Jia, L., Li, M., Miao, D., & Xi, J. (2012). ETI: an
efficient index for set similarity queries. Frontiers of
Computer Science, 700-712.

[12]. Navarro, G., Sutinen, E., Tanninen, J., & Tarhio, J.
(2000, June). Indexing text with approximate q-
grams. In Annual Symposium on Combinatorial
Pattern Matching (pp. 350-363). Springer, Berlin,
Heidelberg.

[13]. Christen, D. M. (2012). Concepts and Techniques for
Record Linkage. Entity Resolution, and Duplicate
Detection,© Springer-Verlag Berlin Heidelberg.

[14]. Sun, D., & Wang, X. (2018, June). MLS-Join: An
Efficient MapReduce-Based Algorithm for String
Similarity Self-joins with Edit Distance Constraint.
In International Conference on Cloud Computing and
Security (pp. 662-674). Springer, Cham.

[15]. Li, P., Cheng, X., Chu, X., He, Y., & Chaudhuri, S.
(2021, June). Auto-FuzzyJoin: Auto-Program Fuzzy
Similarity Joins Without Labeled Examples.
In Proceedings of the 2021 International Conference
on Management of Data (pp. 1064-1076).

[16]. Nguyen, T. P. Q., & Kuo, R. J. (2019). Partition-and-
merge based fuzzy genetic clustering algorithm for
categorical data. Applied Soft Computing, 75, 254-
264.

[17]. Dong, X., Halevy, A., & Madhavan, J. (2005, June).
Reference reconciliation in complex information
spaces. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data (pp.
85-96).

[18]. Efthymiou, V., Papadakis, G., Papastefanatos, G.,
Stefanidis, K., & Palpanas, T. (2017). Parallel meta-
blocking for scaling entity resolution over big
heterogeneous data. Information Systems, 65, 137-
157.

[19]. Cohen, W. W. (2000). Data integration using
similarity joins and a word-based information
representation language. ACM Transactions on
Information Systems (TOIS), 18(3), 288-321.

[20]. Sarawagi, S., & Bhamidipaty, A. (2002, July).
Interactive deduplication using active learning.
In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining (pp. 269-278).

[21]. Ananthakrishna, R., Chaudhuri, S., & Ganti, V.
(2002, January). Eliminating fuzzy duplicates in data
warehouses. In VLDB'02: Proceedings of the 28th
International Conference on Very Large
Databases (pp. 586-597). Morgan Kaufmann.

[22]. Herzog, T. N., Scheuren, F. J., & Winkler, W. E.
(2007). Data quality and record linkage
techniques (Vol. 1). New York: Springer.

[23]. Li, Y., Li, J., Suhara, Y., Doan, A., & Tan, W. C.
(2020). Deep entity matching with pre-trained
language models. Proceedings of the VLDB
Endowment, 14(1), 50-60.

[24]. Zhao, C., & He, Y. (2019, May). Auto-em: End-to-
end fuzzy entity-matching using pre-trained deep
models and transfer learning. In The World Wide Web
Conference (pp. 2413-2424).

[25]. Sohrabi, M. K., & Azgomi, H. (2017). Parallel set
similarity join on big data based on locality-sensitive
hashing. Science of computer programming, 145, 1-
12.

