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Abstract

The supercritical Markov branching processX(t) starting with one particle
as initial condition has an extinction probability 0 ≤ q < 1. We study the influ-
ence of the random initial number of particles X0 on the extinction probability,
the survival probability by the time t > 0 and on the general behaviour of the

number of particles Y (t) =

X0
∑

i=1

Xi(t), where Xi(t), i = 1, 2, . . . are independent

copies of X(t). We consider the cases when the nonnegative integer-valued ran-
dom variable X0 is geometrically shifted (or non-shifted), Negative-Binomial or
Pólya-Aeppli distributed. The branching mechanism in consideration is defined
by a quadratic function. We prove that in these cases the random number of
particles Y (t) alive at time t > 0 follows the same probability law as the initial
condition, with different parameters depending on time t.
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Negative-Binomial distribution, Pólya-Aeppli distribution, extinction probabil-
ity

2010 Mathematics Subject Classification: 60J80, 60K05

1. Introduction. Branching processes and especially birth-death ones are
the fundamental models describing the cosmic rays cascades and nuclear fission
chain as they were introduced by Harris [3]. Later on, the branching processes
have been used to derive various distributions of the population with multipli-
cation and the case of particle injection by an external source (immigration of
entities), especially in neutron cascades by Dorogov and Chistyakov [2], and
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Pazsit and Pal [6]. The topic was reintroduced recently by Tchorbadjieff [10]
with simulations of cosmic rays cascades. Two different continuous time models
were demonstrated: Markov chain and age dependent branching process with
several types of particles.

We introduce here the model of Branching Particle System with an addi-
tional randomness, represented by the initial condition. Our main interest is the
invariance property of the initial distribution by the reproduction law of particles.
If the initial number of particles given by the nonnegative integer-valued random
variable X0 is infinitely divisible on the “spatial” parameter R, considered as the
radius of the particles flux, then for each branching process, the number of par-
ticles alive at the time t > 0 will be also infinitely divisible on this parameter. It
is due to the property of independence of evolution of particles. It is well known
that the nonnegative integer-valued and infinitely divisible distributions are com-
pound Poisson with P (X0 = 0) > 0, see [9]. It means that the branching reaction
will not start with positive probability and the initial condition will strongly in-
fluence the extinction probability. But, there are many interesting distributions
with P (X0 ≥ 1) = 1, such as shifted geometric distribution. In order to find these
distributions in an explicit form, we chose the probability generating functions
(p.g.f.) of the initial condition and branching mechanism to be expressed by the
linear-fractional function.

We consider the cases when the random variable X0 is geometrically shifted
(or non-shifted), Negative-Binomial or Pólya-Aeppli distributed. The branch-
ing mechanism in consideration is defined by a quadratic function. We prove
that in these cases the random number of particles Y (t) alive at time t > 0
follows the same probability law as the integer-valued random variable X0, with
different parameters depending on time t. The selected distributions are intercon-
nected because the sum of random number of geometrically distributed random
variables takes part in the compound Poisson processes and subordinated Lévy
processes. The Pólya-Aeppli process can be constructed by subordination (ran-
dom time change) of the Negative-Binomial process to the Poisson process, see
Mayster [4, 5].

2. Preliminaries. Let X(t) be a Markov branching process with branching
mechanism of reproduction defined by the quadratic function h(s) = ps2 + 1 −
p, 0 < p ≤ 1, starting with one particle as initial condition. If a given particle is
alive at a certain time, its additional life length is a random variable exponen-
tially distributed with parameter K > 0, see [1]. Then the infinitesimal p.g.f.
f(s) = K(ps2 − s + 1 − p). It is known, that the p.g.f. of branching process

X(t) defined by F (t, s) =
∞
∑

k=0

skP (X(t) = k|X(0) = 1) satisfies the backward

Kolmogorov equation:
∂

∂t
(F (t, s)) = f (F (t, s)) and forward Kolmogorov equa-
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tion:
∂

∂t
(F (t, s)) = f(s)

∂

∂s
(F (t, s)) , with the initial condition: F (0, s) = s. We

denote by m = K(2p − 1) the mean of the infinitesimal offspring number, i.e.
df

ds
(1) = m. Then the mathematical expectation is E[(X(t)] = emt. A branching

process X(t) is classified as supercritical, critical or subcritical following respec-
tively the inequalities: m > 0,m = 0,m < 0. In this short communication we
consider only the supercritical case, m > 0.

The extinction probability, traditionally denoted by q, is the smallest nonneg-
ative solution of the equation h(s) = s. For the given reproduction function h(s)

the extinction probability is given by q =
1− p

p
. The process X(t) is supercritical

for
1

2
< p ≤ 1. It is convenient in this case to represent the infinitesimal p.g.f.

f(s) in the form: f(s) = Kp(s− 1)(s− q). When p = 1 we have the Yule process
with extinction probability q = 0. These non-linear Kolmogorov equations have
an explicit solution of the form:

(1) F (t, s) =
s(q − e−mt)− q + qe−mt

s(1− e−mt)− 1 + qe−mt
, q =

1

p
− 1, m = K(2p − 1) > 0.

Extinction probability q = lim
t7→∞

F (t, 0) is a fixed point for F (t, s): F (t, q) = q,

see the classical books [1, 3, 8]. The extinction probability of X(t) by time t > 0
denoted by A := A(t) is given by:

(2) A := F (t, 0) =
q(1− e−mt)

1− qe−mt
.

The p.g.f. F (t, s) can be presented in the form:

(3) F (t, s) = A+ (1−A)
(1 − α)s

1− αs
, α =

1− e−mt

1− qe−mt
.

The representation (3) signifies by itself that for any fixed t > 0 the random
variable X(t) follows a zero-modified geometric distribution as follows:

P (X(t) = 0) = A, P (X(t) = 1) = (1−A)(1 − α),

P (X(t) = k) = (1−A)(1− α)αk−1, k = 2, 3, . . . .

We have

1−A =
1− q

1− qe−mt
, 1− α =

(1− q)e−mt

1− qe−mt
.

Naturally, in this geometric sequence the probability of ”success” (1− α) is pro-
portional to the probability of non-extinction by the time t > 0:

(1− α)E[X(t)] = 1−A.
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We see that the individual probability of surviving (1 − α) in the supercritical
process tends to zero, but the population survives with positive probability (1−q).
In the subcritical case the situation is just the opposite.

As shown in Sagitov [7], the linear-fractional p.g.f. plays an important role
in the theory of branching processes and description of their properties.

3. Markov branching process starting with random number of par-

ticles X0 located at one point. Let Xi(t), i = 1, 2, . . . be independent copies
of the branching process X(t) starting with one particle. Denote by Y (t) the
process starting with a random number of particles X0 , i.e.

(4) Y (t) =

X0
∑

i=1

Xi(t).

Suppose the p.g.f. of the initial number of particles X0 is denoted by U0(s) =
E[sX0 ]. Then the conditional p.g.f. E[sX(t)|X(0) = X0] = U0(F (t, s)). The p.g.f.
of the process Y (t), defined by

U(t, s) := E[sY (t)] = U0(F (t, s))

satisfies only the following forward Kolmogorov equation:
∂

∂t
(U(t, s)) = Kp(s−

1)(s − q)
∂

∂s
(U(t, s)) with the initial condition: U(0, s) = U0(s). The extinction

probability of the process Y (t) is defined by

Q := lim
t→∞

P (Y (t) = 0) = U0(q).

The mathematical expectation is E[Y (t)] = E[X0]E[X(t)].
Theorem 3.1. Let the random variable X0 have a shifted geometric distri-

bution of the form:

P (X0 = k) = (1− ̺)̺k−1, 0 < ̺ < 1, k = 1, 2, . . . .

Then the p.g.f. U(t, s) = E[sY (t)] of (4) can be presented in the form:

U(t, s) = B + (1−B)
(1− β)s

1− βs
,

where

B =
Q(1− e−mt)

1−Qe−mt
, β =

q −Qe−mt

q(1−Qe−mt)
, Q =

(1− ̺)q

1− ̺q
.

Proof. The p.g.f. U0(s) =
(1− ̺)s

1− ̺s
and E[Y (t)] =

emt

1− ̺
. Using (1) one

obtains the following expression:

(5) 1− ̺F (t, s) =
e−mt(q − s)(1− ̺) + (s − 1)(1 − ̺q)

e−mt(q − s) + s− 1
.
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The explicit presentation for U(t, s) =
(1− ̺)F (t, s)

1− ̺F (t, s)
is given by:

(6) U(t, s) =
(1− ̺)[s(q − e−mt)− q(1− e−mt)]

s[1− ̺q − (1 − ̺)e−mt]− (1− ̺q) + q(1− ̺)e−mt
.

The probability of extinction by the time t < ∞ for the process Y (t):

B := U(t, 0) =
q(1− ̺)(1 − e−mt)

1− ̺q − q(1− ̺)e−mt
.

Theorem 3.2. Suppose the random variable X0 follows the non-shifted

geometric distribution with p.g.f. U0(s) =
(1− ̺)

1− ̺s
. Then for any fixed t > 0 the

random variable

Z(t) =

X0
∑

i=1

Xi(t)

has a zero-modified geometric distribution with p.g.f. U(t, s) = E[sZ(t)] repre-
sented as follows:

U(t, s) = C + (1− C)
(1− β)s

1− βs
, β =

1− ̺q − (1− ̺)e−mt

1− ̺q − q(1− ̺)e−mt
,

where

C =
Q(1− qe−mt)

1−Qqe−mt
, Q =

1− ̺

1− ̺q
.

Proof. Using (5) and comparing with (6) we present U(t, s) in the form
convenient to take derivatives by the variable s:

U(t, s) =
(1− ̺)[s(1− e−mt) + qe−mt − 1]

s[1− ̺q − (1− ̺)e−mt]− (1− ̺q) + (1− ̺)qe−mt]
.

The value of C = U(t, 0) and 1− C are obvious:

C =
(1 − ̺)(1 − qe−mt)

1− ̺q − (1− ̺)qe−mt
, 1− C =

̺(1− q)

1− ̺q − (1− ̺)qe−mt
.

The geometric sequence created in this theorem has the same probability of “suc-
cess” (1 − β) as in the previous theorem. In this case, the branching reaction
does not start with positive probability P (X0 = 0) = 1 − ̺ > 0. The extinction
probability Q can be greater, equal or less than q following ̺. If p = ̺, then

Q = q, if ̺ < p < 1, then Q > q, if ̺ > p >
1

2
, then Q < q. The following

relations take place always: CA = B, Q = Qq , Q < Q and Q < q, where A is
given by (2).
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4. Branching processes starting with random number of particles

dispersed over the radius R of the flux of particles. Consider an ordered
sequence {x1, x2, . . .}, 0 < x1 < x2 < · · · , on the real half-line (0,∞). Let
the length of intervals (0, x1), . . . , (xi, xi+1), i = 1, 2, . . . , be random independent
identically distributed variables. When they follow exponential distribution with
parameter θ > 0 the number N(R) of points {x1, x2, . . .} located in the interval
(0, R) is described by the Poisson distribution:

P (N(R) = k) = e−θR (θR)k

k!
, k = 0, 1, 2, . . . .

Theorem 4.1. Let the random variable X0 = N(R) with p.g.f. U0(s) =
e−θR(1−s). Let us define the process

Z(t) =

N(R)
∑

i=1

Xi(t).

Then for any fixed time parameter t the random variable Z(t) follows the Pólya-

Aeppli probability distribution with p.g.f. V (R, t, s) = E[sZ(t)] given by:

V (R, t, s) = exp

{

−ΘR

(

1− s

1−Υs

)}

,

where Υ =
1− e−mt

1− qe−mt
and Θ =

θ(1− q)

1− qe−mt
.

Proof. We remember that V (R, t, s) = U0(F (t, s)) and from (1) it follows:

1− F (t, s) =
(1− s)(q − 1)

e−mt(q − s) + s− 1
.

Obviously:

V (R, t, s) = e−θR(1−F (t,s)) = exp

{

−
θR(1− q)

1− qe−mt

(

1− s

1−Υs

)}

.

The Pólya-Aeppli probability distribution is the infinitely divisible distri-

bution with p.g.f. of the form: U0(s) = exp

{

−θR
1− s

1− ̺s

}

which reduces to

homogeneous Poisson distribution when ̺ = 0. Thus the proofs of following two
theorems follow directly from this and the already obtained results.

Theorem 4.2. Let the random variable X0 be defined by the Pólya-Aeppli

probability distribution:

P (X0 = k) = e−θR

k
∑

j=1

(

k−1
j−1

)

̺k−j (θR)j(1− ̺)j

j!
, 0 < ̺ < 1, k = 1, 2, . . . .
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and

P (X0 = 0) = e−θR.

Let us define the process

Z(t) =

X0
∑

i=1

Xi(t).

Then the p.g.f. V (R, t, s) = E[sZ(t)] is given by:

V (R, t, s) = exp

{

−
ΘR(1− s)

1−Υs

}

,

where

Θ =
θ(1− q)

(1− ̺q)− (1− ̺)qe−mt
, Υ =

(1− ̺q)− (1− ̺)e−mt

(1− ̺q)− (1− ̺)qe−mt
.

The Negative-Binomial distribution is the infinitely divisible distribution
with p.g.f.

U0(s) =

(

1− ̺

1− ̺s

)R

,

which for R = 1 is given by the non-shifted geometric distribution.
Theorem 4.3. Let the random variable X0 be defined by the Negative-

Binomial distribution:

P (X0 = k) = (1− ̺)R̺k
(k +R− 1)!

k!(R− 1)!
, 0 < ̺ < 1, k = 0, 1, 2, . . . .

Let us define the process

Z(t) =

X0
∑

i=1

Xi(t).

Then the p.g.f. V (R, t, s) = E[sZ(t)] can be presented in the form:

V (R, t, s) =

(

C + (1− C)
(1− β)s

1− βs

)R

,

where the parameters C and β are the same as for the non-shifted geometric

distribution considered in Theorem 3.2.
5. Conclusions. Modelling and controlling supercritical processes is a very

important task for many natural processes and engineering systems, especially
for nuclear fission. There, the initial conditions are very important. With this
work we considered some particular cases for Markov branching processes with
initial discrete distribution. However, for completeness of proposed results the
model will be extended to critical, subcritical cases and limit theorems.
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