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Change Point Analysis as a Tool to Detect
Abrupt Cosmic Ray Muons Variations

Assen Tchorbadjieff and Ivo Angelov

Abstract Recently, there have been an increasing number of studies using Big Data. AQ11

They rely on large data sets of time series to detect artificial or natural patterns in AQ22

processes of natural sciences and economy. Themost possible outcome due to lack of3

rigid data processing is data contamination with abrupt drifts and regime shifts. They4

yield either inclusion of undetected errors or missed detection of important obser-5

vations and events. Possible automatic tools for detection of regime shifts could be6

delivered from change point statistical methods. However, a major drawback for the7

most of the currently available change point (CP)methods is the challenge of complex8

temporal variations in non-stationary natural processes like cosmic rays observed at9

Earth. This kind of data analysis is applied to experimentally acquired time series10

from cosmic ray measurements. The observed parameters are muons produced in11

cosmic ray cascades in atmosphere and acquired in parallel with atmospheric and12

other meta-data. In this study, we test different approaches for change point detection13

in compound particle counting process.14

1 Introduction15

Identifying, quantifying, and understanding the nature of cosmic rays intensity vari-16

ations at space and Earth atmosphere has been topic for many years in enormous17

number of different researches. Moreover, the possible consequent impact on cli-18

mate and natural Earth radioactivity has been the focus of numerous recent research19
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2 A. Tchorbadjieff and I. Angelov

of cosmic rays, for more detailed example see the text of Dorman [1]. In most cases,20

the importance is derived from variations of Galactic Cosmic Rays (GCR) due to21

Solar perturbations and resulting of Space Weather variability in Space [2]. One of22

the observed effect on GCR flux are events known as Forbush decreases (FD). They23

are non-regular in time sudden decrease of particle fluxes which lasts from 3 to 524

days and differ in frequency and intensity [3].25

Usually, the in-situ observations of CR are performed on decades-long time series26

data acquired by neutron and muon detectors, combined with relative atmosphere27

data. For their detection in large scale an automatic procedures are required for anal-28

ysis of regime changes in CR variations. For this purpose, different implementations29

of a change point analysis were tested on available data. It is a statistical hypothesis30

testing for natural or artificial stochastic shifts in time series. It is mainly popular31

in financial mathematics, but it also gained a popularity in climatology and envi-32

ronmental science, or specially in detection abrupt changes in time series trend of33

observations in atmosphere science (see [4, 5]).34

For the purpose of our research, variety different models are used for testing35

and detection of change points in time series with registered FD events. The used36

data records are acquired from the located at BEO Moussala (2925 m.a.s.l.) muon37

telescope [6]. The observed time series are intentionally chosen to include data that38

contain already detected and reported in the past FD events. This enables comparative39

analysis between independently acquired test results and actual situation. In addition,40

the data analysis must include related meteorological parameters, such as pressure,41

following the theoretical connection between intensity of secondary CR particle flux42

and atmosphere density [7]. Assuming the importance of this natural connection, two43

main different approaches for implementation are applied for change point analysis.44

Thefirst one is direct change point analysis onmodifiedunivariatemuonflux acquired45

after correction with ambient atmosphere pressure. The second approach is based on46

detection of regime changes in regression coefficients between muons and pressure.47

The explanation how theory of change point analysis is applied for both cases is48

shown in the next paragraph.49

2 Change Point Analysis50

Thefirstmethod for regime change detection has been initially introduced asCumula-51

tive Sum (CUSUM) sequential analysis technique by Page in 1954 [8]. Themethod is52

control chart scheme for identification of the subsamples and detection of the changes53

in the parameter value of sequential observations xi with steps i = 1, 2, . . . , n. The54

method computes upper C+
i and lower C−

i cumulative statistics with initial values55

equal to 0 such as:56

C+
0 = C−

0 = 057

C+
i = max(0,C+

i−1 + xi − k)58

C−
i = min(0,C−

i−1 + xi − k). (1)59

462814_1_En_33_Chapter � TYPESET DISK LE � CP Disp.:2/8/2018 Pages: 13 Layout: T1-Standard

A
u

th
o

r 
P

ro
o

f



U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

Change Point Analysis as a Tool to Detect … 3

where k represents reference value. For example, when the shift of mean δ is known60

for i.i.d. and normally distributed xi , k is equal to δ/2. However, the model performs61

poorly for unknown δ with values significantly different than expected ones. An62

regime change is detected when Ci values reaches control limit h. It is a predefined63

value according average run length (ARL) and usually is proportional to the standard64

deviation.65

2.1 Tests66

However, despite the fact that the CUSUM sequence techniques is simple and easy to67

implement, usually more general statistical tool is required for multiple change point68

detection. Let x1, x2, . . . , xn be a sequence of independent randomvectors (variables)69

with any probability distribution functions F1, F2, . . . , Fn . For detection of multi-70

ple change points the statistical test is run for the following alternative hypotheses71

H0 vs HA:72

H0 : F1 = F2 = · · · = Fn (2)73

HA : F1 = · · · = Fk1 �= Fk1+1 = · · · = Fk2 �= Fk2+1 = · · · = Fkq+1 = · · · = Fn (3)74

where 1 < k1 < k2 < · · · < kq < n represents unknown number of changing points75

q with respective unknown positions k1, . . . , kq . When F1, F2, . . . , Fn belongs to76

common parametric family F(θ), the null hypothesis is test about population param-77

eters θi , i = 1, . . . , n and θ ∈ Rn . Then the test is transformed to [9]:78

H0 : θ1 = θ2 = · · · = θn = θ (unknown) (4)79

HA : θ1 = · · · = θk1 �= θk1+1 = · · · = θk2 �= θk2+1 = · · · = θkq+1 = · · · = θn (5)80

The computational approach to identifymultiple change points is to compute [10]:81

min

[
q+1∑
i=1

[
C(xk1,...,kq )

] + β f (k)

]
(6)82

where C(xk1 , xk2 , . . . , xkq ) is a cost function, usually twice negative log-likelihood.83

The additional part of f (k) is a penalty for avoiding of over-fitting due to data84

size, number of change points or autocorrelation. There are many different types of85

proposed penalties. The most easy for implementation cost functions is Minimum86

AICEstimate (MAICE)with penalty only onnumber of breakingpoints.But, because87

the penalty for data size is not considered, AIC based models show tendency to over-88

fit. The criteria with implemented both of penalties on size and number of change89

points is Schwartz Information Criteria (BIC). Their formulation as selection among90

K models can be generalized by:91
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4 A. Tchorbadjieff and I. Angelov

AIC(k) = −2log(L(θk)) + 2k, k = 1, 2, . . . , K (7)92

SIC(k) = −2log(L(θk)) + klog(n), k = 1, 2, . . . , K (8)93

For the computational work in this paper, the specially dedicated implementation94

is selected. It is the changepoint package [10] available for statistical computation95

with R [11]. The library delivers many features, which could be used directly for96

our research. Firstly, the implemented penalties are not constrained only to AIC and97

BIC, but there is an option for usage of user manually defined penalties. Secondly,the98

Gamma and Poisson distributions are implemented in addition to CUSUM and Nor-99

mal. Another positive feature is the available variety of computational optimizations100

with implementations of splitting algorithms such as binary segmentation [12]; the101

Segment Neighbourhood [13]; and the PELT [14].102

2.2 Using CP in Regression Models103

In case of multivariate data, with vector of values y, the change point analysis104

is over regression model with a non-stochastic (p+1)-vector of predictors xi =105

(1, x1i , . . . , xpi ) is:106

yi = Xβ + εi , i = 1, . . . , n, (9)107

where β
′
- is a p + 1 vector of unknown regression parameters and εi are random108

normally distributed errors with N (0, σ 2). The change point analysis is observation109

about change of regression coefficients due to detected disconnection between the110

data before and after the point k. Then the statistical test is about the comparison111

between Null hypothesis of lack of differences in regression coefficients against the112

alternative of two different models with split point at k [9]:113

H0 : μyi = x
′
iβ , i = 1, . . . , n (10)114

HA :
{

μyi = x
′
iβ1, i = 1, . . . , k

μyi = x
′
iβ2, i = k + 1, . . . , n

(11)115

where k = p + 1, . . . , n − p − 1 is the location of CP, where β, β1, β2 are unknown.116

For computational work with regression models a specially dedicated package117

strucchange in R [15] is used. The estimated regression coefficients β̂ are yielded118

from Ordinary least squares (OLS). The package provides computations at position119

k of residuals ûi and their recursive values ũi with zero mean and σ 2 under H0:120

ûi = yi − x
′
i β̂

n (12)121

ũi = yi − x
′
i β̂

(i−1)

1 + xTi (X (i−1)′ X (i−1))−1xi
(13)122
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Change Point Analysis as a Tool to Detect … 5

The decision for availability of CP is based on different implementations of123

CUSUM process of residuals. Then, the cumulative sum of standardized residuals124

Wn(t), is defined as [15]:125

Wn(t) = 1

σ̃
√

η

k+|tη|∑
i=k+1

ũi (14)126

Thus, under H0 Wn −→ W as n → ∞, which is standard Brownian Motion [15].127

Similarly, the modified OLS-CUSUM process is equal to [15]128

W 0
n (t) = 1

σ̂
√
n

nt∑
i=1

ûi (15)129

Then under H0 : W 0(t) = W (t) − tW (1), or the Brownian Motion starts at 0 and130

must finish there [15]. The MOSUM method is also implemented in the library,131

which is a moving sums of residuals.132

3 Data133

The used data for this research consist with datasets related to already reported and134

confirmed FD events. They include two periods - the first one is in the middle of135

February 2011, the second begins in March 1st 2012 and lasts until the end of May.136

We would refer to them as Period 1 for year 2011 and Period 2 in the following137

text. The time periods with their first and last dates are selected, as it is reported138

in [16, 17]. The two time series differ in size and number of FD evens which are139

included. The period of 2011 contains only single short FD event. Conversely, there140

are registered a chain of overleaped in time FD events and in addition to two other141

FD events during thePeriod 2 (Table1). Finally, an abrupt shift due to undocumented142

changes in the measurement procedures is available in data during the Period 2. This143

regime change is produced from higher values in the middle of May 2012. It was144

removed from the original report [17], but they are included in this work for more145

precise research. Finally, because the first detected FD during Period 2 is on March146

8th which is in only 7 rows after the first data on March 1st, the additional extended147

control dataset for daily data starting from Feb. 25th is assumed for verification that148

the short period before the event does not interfere the results.149

The raw data consists of measured in 15s vertical muon counts from 4 channels150

and pressure records in 10min intervals. After both datasets are preprocessed for151

significant measurement errors they are synchronised in time and merged. For com-152

petitive data analysis three different datasets are assumed - two versions with hourly153

time resolution for periods 1 and 2 and one with a daily averages for events in 2012.154

The data for every test case are properly aggregated for the two different test scenar-155
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6 A. Tchorbadjieff and I. Angelov

Table 1 Reported FD events

Start date Until Intensity (%) Number of events Reporting paper

2011–02–18 2011–02–20 4.5 1 [16]a

2012–03–08 2012–03–17 6 3 [17]

2012–04–05 2012–04–07 2.5 1 [17]

2012–04–24 2012–04–27 3.5 1 [17]
aNote that the results are compared to more sensitive neutron flux, not muons

ios. This difference is required mainly because the very important physical negative156

dependence of CR particle flux on atmosphere density. For that reason two different157

type change point tests are assumed for every time period - CP regression models158

with implicitly included pressure as a predictor and modified muon time series with159

corrected pressure.160

However, corrected data require some additional preparation. For correction are161

used βP coefficients from regression models, OLS and Generalized Linear Models162

(GLM). Then the corrected values for time dependent flux I (t) with averages of I0163

are equal to:164

Icorr = I − I0
I0

= βP(P(t) − P0) (16)165

where P(t) are time relative pressure and P0 is its average. Usually, the coefficients166

are computed from previously measured annual data without any significant regime167

shifts. However, for the current work are used coefficients computed from smaller168

time intervals occurred exactly before every observed period. The differences in βP169

are negligible for the final outcome.170

There are two important remarks that should bemade for the observed data. Firstly,171

the overall distribution departure from the normality. The main reason are detected172

FD events, which skew density function of atmosphere corrected intensity with their173

lower values (Fig. 1). In general, the overall distribution of data with included FD174

events usually could not be generalized as Normal, Gamma or exponential for dif-175

Fig. 1 A combined density
plot of corrected with
pressure muon data with 1
hour resolution. The selected
period is the middle of
February 2011, as it is shown
in [16]. The density kernel of
all data is with red line. The
colour of data without
reported FD decrease is blue
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Change Point Analysis as a Tool to Detect … 7
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Fig. 2 Autocorrelation function for 1-h muon data (left) and for corrected with pressure values
from the same data. The demonstrated period is mid-February 2011, as it shown in [16]

ferent cases. This is confirmed with the results for maximum-likelihood fittings with176

R function ‘ f i tdistr ’.177

Another important characteristic is the non-stationariness of aggregated data, a178

state common with many other natural processes [4]. The very possible explana-179

tion are complicated seasonality and trend with overlapped periods. In cosmic rays180

intensity, the seasonal periods are connected to rotations of Earth and Sun and daily,181

27-daily, annual and 11 years cycles exist. As a result, the unit-root tests unsur-182

prisingly deny stationary and autocorrelation decays very slowly for raw flux and183

pressure corrected data (see Fig. 2). To compute the optimal lags m it is used Aug-184

mented Dickey-Fuller test. All produced results are larger than 2 and the values of185

lags in every data set are shown in tables of results (Table2).186

4 Applications187

All change point testing scenarios initially are run for testswith different penalties and188

segmentation algorithms without incorporation of autocorrelation properties. They189

are repeated for all aggregated versions of data. A brief description of implementation190

and most important results are explained in the following subsections.191

4.1 Direct Approach192

The function is ‘efp’ from structchange library is themainmethodused for the change193

point analysis of regression coefficients. The models were build starting from the194

simplest regressive relation between muon counts and pressure. With assumption of195
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8 A. Tchorbadjieff and I. Angelov

periodicity, the regressionmodel is extendedwith predictors of lagged data according196

expected periodicities. However, all test failed to produce correct results. Then, the197

already corrected muon data are run in regression models against their lagged values.198

The tests are run with pooling function ‘breakpoints’, which run all possible CP199

cases and select the optional model for minimal BIC or Residual Sum of Squares200

(RSS). With tests performed on data in 1 hour resolution using OLS-CUSUSM,201

the exact hour for the FD events with amplitude larger than >2.5% are detected.202

However, the numbers of breaking point is very strongly dependent on minimal203

segment size and usually differ from actual size. All other used variants failed to204

produce significant results. Some of the results are shown graphically in Fig. 3.205

The change point analysis of corrected with pressure muon flux values are also206

computed with all possible functions ‘cpt.mean’, ‘cpt.var’ and ‘cpt.meanvar’ from207

changepoint library. Every distinct function is testedwith all different options. Firstly,208

the used distributions were Normal and Gamma. They were run with all possible209

combinations of available segmentation methods and penalty functions. All results210

are either over-fitted or not complete, mainly in cases for complicated data from211

2012. Some of the results are also shown graphically in Fig. 3.212

In general, the proposed tests do not produce successful results. Themain reason is213

the time dependence in measurement data, resulted with large autocorrelation lag for214

data either equal or shorter than 1month [4].Usually, this creates pattern in time series215

which could be easily confused with regime shift and the risk of false interpretation216

Test 1
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Fig. 3 Graphics show 4 tests detection of change points during the Period 2. Test 1 and Test 2 use
regression with cumulative sums of standardized residuals for the first and OLS-CUSUM for the
second test. Both of them are shown in Brownian motions scale. Tests 3 and 4 compute change point
locations over pressure corrected muons reported in [17]. Test 3 and 4 are generated for hypothesis
of Normal distribution with AIC penalty. The difference between those test is that for the last one
is used PELT for computational acceleration
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Change Point Analysis as a Tool to Detect … 9

of ACT tends to increase [18]. However, the FD events represents abrupt shifts with217

purely random time of arrival, amplitude and the persistent time. Then, the solution218

for abrupt changes detection is to expand the penalty with incorporation of time219

dependency in the model.220

4.2 Integrating the Autocorrelation221

The initial steps for integration of autocorrelation are taken following the models222

proposed in similar works on environmental data (see [4, 5]). The daily data is223

computed with different versions of manually pre-computed SIC penalty with m-th224

order autocorrelation using ‘cpt.meanvar’ function from changepoint library. The225

tests confirmed relatively precisely the period with extreme solar activity between226

March 8th and 19. The FD event in April 25 is also detected, but with a day earlier227

in comparison to the reported time in [17]. However the disturbances in beginning228

of April are not detected as separate event, but as a part of larger regime change until229

April 22. The results are shown in Fig. 4.230

However, the tests were not successful in cases of datawith hourly time resolution.231

It is a complex problem because we have data with compound periods incorporated232

and the proposed autocorrelation integration is onprocesswith not fully removed time233

dependence. Moreover, the regime shifts of mean and variation usually correlates.234

Thus, a solution must implement approximation of well known tailed distribution235

with penalty correction representing the assumption of departure from the main236

distribution due to additional autocorrelation and regime shift. For this purpose we237

use a model with fixed penalty that enables the variance V to vary with the mean of238

distribution:239

V (μ) = φμs (17)240

where φ is dispersion parameter. This constant ratio between mean and variation241

imply assumption for Tweedie distribution [19]. This is polymorphic distribution,242

Fig. 4 CP analysis of Period
2. The two largest FD events
are detected. The change
point staring from April 5-th
is detected, but the related
FD is not distinguished

Days after March 1st
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10 A. Tchorbadjieff and I. Angelov

which with change of s, takes properties of well known distributions. For example,243

with s = 2 it is Gamma, but when s = 0 is equal to Norma distribution.244

The newly modified model is based on data fitted to Gamma distribution (α, θ),245

where θ is rate ratio (1/μ), which inverse FD data on right-tailed. The CP analysis246

is performed by ‘cpt.meanvar’ function with manually selected fixed penalty on247

variations equal to αVar(x). This, due to properties of Gamma distribution, is equal248

to α2θ2 = μ2, or just Tweedie fixed variation for Gamma distribution. Thus, any249

departure fromGammamay be penalized with αVar(x)k , where the power k enables250

correction on autocorrelation.The coefficient k is computed as 1 − 1/r , where r is251

equal to:252

r = log(n/m − 1)log(n − m − 2)
1 − ρ

1 + ρ
, (18)253

and n is a number of observed values, m is autocorrelation lag and ρ < 1. When the254

data is stationary, the value of k is equal to 1. When, the lag of autocorrelation is very255

large, 0 < s < 1,the range where Tweedie distribution is not defined, thus k must be256

limited for values above 0.5. The value of n − m − 2 is yielded from reordering of257

the CP model following the assumption that number of CP must be less than n-m-258

2. The last part represents effective size correction as it is described in [5] with ρ259

equal to autocorrelation coefficient. Due to very large size n, the current formula is260

corrected in cases of hourly data as the first part is changed from log(n/m − 1) to261

log(n/m2).262

The results are obtained from computations performed over the very same datasets263

for Normally and Gamma distributed statistics with proposed fixed manual penalty.264

The tests for daily data in 2012, show that proposed model in [4] over-perform any265

testswithGammawith fixed penalty. Themain disadvantage inGammabasedmodels266

are their lesser sensitivity which leads to cut-off last 3 days of the biggest event in267

March 2012. However, both test with daily data missed the end of FD at April 5th268

2012. The summarized results are shown in Table2.AQ3269

However, according the tests with hour long time resolution, the models with270

proposed Gamma statistics with autoregression corrected penalty equal to r in Eq.18271

perform better than all other tests. It is important to be noticed that for events in 2012,272

the big disturbance in March is split on 2 parts, which exactly corresponds to report273

Table 2 .

Dataset n m k Comparison with model of AR(q)
correction in [4]

Hourly
2011a

382 7 0.63287 Better. Removes non-related CP a
day before

Hourly 2012 2137 12 0.4953 Better. The large disturbance in
March is slitted

Daily 2012 91 4 0.82696 Worse with March events shorter
with 3 days

aNote that the data is about more sensitive neutron flux, not muons
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Change Point Analysis as a Tool to Detect … 11

Fig. 5 Detected CP for data
with 1h resolution for both
periods. The FD event in
February 2012 is shown in
figure above. The graphics
below shows all events for
observed period of 2012. The
periods are hours after first
hour
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[17]. Secondly, the test also detected erroneous regime change in measurements274

after May 17th, which is shown as a increase of intensity. Thirdly, the begin times275

the FD events are also correctly detected. However, the sensitivity issue for the end276

of disturbances on April 5th 2012 remained (Fig. 5). AQ4277

5 Conclusions278

This paper presents first ever work on implementation of change point analysis of279

automatic detection of Forbush decrease with secondary CR muon flux. The work280

is tested on two independent in time events with two different approaches to the281

data. The used CP models, mainly split on dependence of relation between muons282

and pressure, performed with different success in comparison to already published283

reports.Most of testedmodels showweakness, that is partly solvedwith proposed test284

modification with incorporation of autoregression. However, some issues remained285

open without answer or for improvements.286

Firstly, the sensitivity remained as issue on particular event on April 5th 2012. But287

the conclusion on effectiveness of CP analysis on CR muon data may not be drawn288

firmly. It is important to remember that the Solar disturbances and their impact on289

CR flux are not fully understood and they are still in research. Secondly, a pos-290

sible connection with the theory of long memory processes is not investigated in291

this paper. Any extension to mixture model with implementation of Autoregressive292

fractionally integrated moving-average models (ARFIMA) could be investigated in293

future. Thirdly, the automatic procedure could be improved with incorporation of294

penalty intervals with CROPS option from ‘changepoint’ functionalities. Finally,295

all results and improvements must be done after more extended parallel research of296

Space Weather and CP analysis on cosmic rays data.297
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