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ABSTRACT
In this work, we study a linear birth–death process starting from ran-
dom initial conditions. First, we consider these initial conditions as
a random number of particles following different standard proba-
bilistic distributions – Negative-Binomial and its closest Geometric,
Poisson or Pólya–Aeppli distributions. It is proved analytically and
numerically that in these cases the random number of particles alive
at any positive time follows the same probability law like the ini-
tial condition, but with different parameters depending on time. The
random initial conditions cannot change the critical parameter of
branching mechanism, but they impact the extinction probability.
Finally, the numerical model is extended to an application for study-
ing branching processes withmore complex initial conditions. This is
demonstratedwith a linear birth–death process initialisedwith Pólya
urn sampling scheme. The obtained preliminary results for particle
distribution show close relation to Pólya–Aeppli distribution.
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1. Introduction

When G. U. Yule tried to give quantitative measure for evolution theory’s connection
between the size of the population and the area which is occupied, he introduced the basic
discrete birth process with constant rate [30]. Soon, Furry modelled nuclear chain reac-
tions as an extension of the classical Yule process, assuming that the particles could double
with time-dependent rate in any specific medium. Then, the theory has been expanded
with many different modified implementations of the classical Yule–Furry processes. They
have been developed with the aim to model processes in different fields – from demogra-
phy and population biology to server queueing modelling [10]. Recently, a very interesting
relation betweenYule and Poisson processes appeared in [9].Many of them follow themost
prominent works in the field of branching processes, mainly summarized in Feller’s contri-
butions tomathematical biology [5] and in the review of the history of branching processes
by David G. Kendal in [14].

The physics is a very promising field for the implementation of branching processes,
especially for modelling of nuclear chain reactions and electromagnetic cascades. This had
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been noticed very early and resulted in the first detailed mathematical description of these
branching processes in the famous Theodore Harris’ book [12]. However, the straightfor-
ward computation and implementation of available analytical results are not possible due
to the complicated nature of the studied processes,most clearly demonstrated in the cosmic
ray physics. As a result, the computational modelling remained as the only possible solu-
tion for studying similar complex branching processes since their early ages [16]. Soon,
with the rapid growth of computational power, the number of different Monte Carlo appli-
cations grew and now they cover a very wide range of different topics. For instance, the
most important contemporary tools with a strictly specific focus on particle detectors and
fundamental particle physics are GEANT4 [1], FLUKA [6] and CORSIKA [13].

Usually, the well-developed numerical applications are mainly used to model a par-
ticular topic or process following predefined assumptions. Many of them rely on model-
dependent initial conditions that vary model input parameters to adjust the observable
outcome. This narrows the results to the studied topic without options to be used in differ-
ent fields. A possible solution to obtain more generalized results for branching processes
is to estimate the probability density functions with repeated numerical experiments. The
best way to implement similar step tracking iterative methods is the implementation of
Monte Carlo Markov chains (MCMC), similar to [23,25]. Initially, these tools must be
implemented and verified on a special class ofmodels. Then, the working numerical exper-
iment can be modified with changes in the initial conditions or parameters of branching.
Finally, the methods of statistical inference could be used for the estimation of probabil-
ity distribution [see 24]. Using this solution model, in this work, we created a numerical
method for studying the development of branching birth–death process initiated by a
random number of particles from different initial conditions.

To describe the initial conditions we consider the most important discrete distribu-
tions –Negative-Binomial and its closestGeometric, Poisson or Pólya–Aeppli distributions
[17,18]. The selection of these distributions is due to their importance not only in probabil-
ity theory but also in a wide range of available applications, such as [2,21,25]. The obtained
results are independently confirmed with analytical and numerical solutions only for the
case of a critical branching process. Finally, in the last chapter, the experiment is modified
with the selection of Pólya urn sampling scheme as a generator of the initial condition.
The estimates of resulting distributions are determined numerically as a demonstration of
possibilities of numerical experiments.

2. Model selection

The branching processes describe systems of ‘particles’ with the phenomena of multi-
plication. The principal assumption is the independence of particle evolution without
interaction. This model is completely characterised by the offspring number of particles
and their lifetime. Both, the Yule and linear birth–death processes, are special cases of
Markov branching processes. Following the classical theory, the branching mechanism of
reproduction for the linear birth–death (B–D) process is defined by the quadratic function
h(s) = ps2 + 1 − p, 0 < p ≤ 1, |s| ≤ 1, and exponentially distributed lifetime of particles
with parameter K>0 [see 4,20]. The infinitesimal generating function is given by

f (s) := K(h(s) − s) = K(ps2 − s + 1 − p), 0 < p ≤ 1, |s| ≤ 1. (1)
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The exponential lifetime of particles gives the Markov property of the process X(t), t ≥
0,X(0) = 1, describing the number of particles alive at the time t > 0. The probability
generating function (p.g.f.) of X(t) is defined by

F(t, s) =
∞∑
k=0

skP(X(t) = k |X(0) = 1) (2)

and satisfies respectively the non-linear backward and linear forward Chapman–
Kolmogorov equations:

∂

∂t
(F(t, s)) = f (F(t, s)) , (3)

∂

∂t
(F(t, s)) = f (s)

∂

∂s
((F(t, s)) , (4)

with the initial condition F(0, s) = s.
In accordance with Equations (1) and (2), the mean of the infinitesimal offsprings num-

ber is denoted with m = (df /ds)(1) = K(2p − 1), and expected value of the number of
particles alive at time t>0 is equal toE[(X(t)] = emt , t > 0. This exponential rate is exactly
the distinctive trait (feature) of branching processes.

Every branching process X(t) is classified as either supercritical, critical or subcritical
by the inequalities for mean, i.e. respectivelym>0,m = 0,m<0. This classification is in
accordance with the notion of the ultimate extinction probability, denoted by

q = lim
t→∞ P(X(t) = 0) = lim

t→∞ F(t, 0) ≥ 0,

and given by the smallest solution of the equation h(s) = s in the interval [0, 1]. For the
extinction probability is valid that q = 1 if and only if m ≤ 0 [see 20]. Respectively, for
supercritical process m>0 and 0 ≤ q < 1. The differences are demonstrated graphically
in Figure 1.

In this work, the critical case is only considered. Thus the studied process is defined by
its p.g.f. F(t, s) representing the solution of the Equations (3) and (4), as follows:

F(t, s) = 1 − 2(1 − s)
2 + Kt(1 − s)

, m = 0, p = 1/2, q = 1. (5)

Let us denote the extinction probability by the time t>0 with A(t) = F(t, 0). Then the
p.g.f. (5) of the critical linear B–D process X(t) can be presented as

F(t, s) = A(t) + [1 − A(t)]
(
[1 − α(t)]s
1 − α(t)s

)
, A(t) = α(t) = Kt

2 + Kt
. (6)

This representation signifies by itself that for any fixed t>0 the random variable X(t) fol-
lows the zero-modified geometric distribution, with parameters A = A(t) and α = α(t),
where

P(X(t) = 0) = A, P(X(t) = k) = (1 − A)(1 − α)αk−1, k = 1, 2, . . . .

The obtained expressions for A(t) and α(t) for subcritical, critical and supercritical
processes, i.e.m < 0,m = 0,m > 0, are summarized in Table 1.



JOURNAL OF APPLIED STATISTICS 2865

Figure 1. The graphic shows exponential increasing (line with filled square), decreasing (line with filled
circle) and population stability (line) for the process X(t). The results are for p = 2/3 for supercritical,
p = 1/2 for critical and p = 1/3 for subcritical processes. They are averaged from simulations of 10,000
repetitions for 10 steps (t = 10).

Table 1. Summarized values of extinction probabilities for all cases of extinction behaviour.

σ(s) A = F(t, 0) 1−A α 1 − α

p = 1 0 1 1 − e−Kt e−Kt

1/2 < p < 1 q(1−e−mt)

1−qe−mt
1−q

1−qe−mt
1−e−mt

1−qe−mt
(1−q)e−mt

1−qe−mt

p = 1/2 Kt
2+Kt

2
2+Kt

Kt
2+Kt

2
2+Kt

0 < p < 1/2 (1−p)(1−emt)
(1−p)−pemt

(1−2p)emt

(1−p)−pemt
p(1−emt)

(1−p)−pemt
(1−2p)

(1−p)−pemt

3. Critical birth–death process with random initial conditions

The independence of particle evolution allows us to study the influence of a random
initial condition X0 on the behaviour of the extinction probability. Suppose that the
random variable X0 does not depend on the branching mechanism. Thus a sequence
of Xi(t), i = 1, 2, . . ., independent identically distributed linear B–D processes start-
ing with one particle, is considered as the evolution of every one particle entered
in the domain of branching at the initial time t = 0. The aggregation of indepen-
dent Xi(t) particles defines a new process Y(t) starting with X0 random number of
particles,

Y(t) =
X0∑
i=1

Xi(t), t > 0, Y(0) = X0.
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Let the p.g.f. of initial condition be denoted by U0(s) = E[sX0 ],U0(1) = 1, |s| ≤ 1. Then,
due to the independence, the p.g.f. of Y(t) is defined by

U(t, s) := E[sY(t) |Y(0) = X0] = U0(F(t, s)), |s| ≤ 1,

and satisfies only the following forward Chapman–Kolmogorov equation:

∂

∂t
(U(t, s)) = K

2
(s − 1)2

∂

∂s
(U(t, s)) ,

with an initial condition ofU(0, s) = U0(s). The ultimate extinction probability of the new
process Y(t) is always equal to 1 because the p.g.f. U0(s) is continuous at the point s = 1,
namely,

lim
t→∞ P(Y(t) = 0) = U0

(
lim
t→∞ F(t, 0)

)
= U0(1) = 1.

For the same reason, the resulting expectation of available particles for any finite time
moment t>0 is equal to the mean of the initial condition, E[Y(t)] = E[X0].

To describe the flux of particles arriving in the domain of branching, a radius R is intro-
duced as a space parameter. In this way, two different options for the location of the initial
particles are enabled – either located in one ‘point’ or dispersed over the radius. The disper-
sion is described by either simple or marked point processes. There are numerous physical
phenomena that can be modelled as a response to the points of a marked point process
[see 22, Chapter 4, page 175]. The simple point process is defined by homogeneous Poisson
distribution. The marked point process is defined by the compound Poisson distributions
such as Negative-Binomial and Pólya–Aeppli ones.

The initial condition strongly influences the ultimate extinction probability q in the
supercritical case [see 19]. In the critical case, the ultimate extinction probability is equal
to 1 independently of the initial condition. But, there is a relation between the initial con-
dition and the rate of convergence to extinction in a critical branching process. The study
of this influence takes a large part of the following sections.

3.1. Geometric distributed initial condition

The first option to construct a random initial sampleX0 is defined by the shifted geometric
distribution with probability mass function

P(X0 = k) = (1 − �)�k−1, k = 1, 2, . . . , 0 < � < 1. (7)

It follows directly from the definition that the p.g.f. of this initial condition is

U0(s) = E[sX0 ] = (1 − �)s
1 − �s

, E[X0] = E[Y(t)] = 1
1 − �

.

To find the p.g.f. of process Y(t), the following useful expression is easily yielded directly
from Equations (5) and (6):

1 − �F(t, s) = s[Kt(1 − �) + 2�] − [2 + Kt(1 − �)]
sKt − (Kt + 2)

. (8)
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Then, using it in expression U(t, s) = (1 − �)F(t, s)/(1 − �F(t, s)) allows the explicit
presentation of p.g.f to be obtained, i.e.

U(t, s) = (1 − �)[s(Kt − 2) − Kt]
s[Kt(1 − �) + 2�] − [2 + Kt(1 − �)]

. (9)

This p.g.f. U(t, s) can also be presented in the form showing the geometric distribution of
Y(t) at the fixed time t>0, namely,

U(t, s) = B(t) + (1 − B(t))
(1 − β(t))s
1 − β(t)s

, (10)

where

B(t) = (1 − �)Kt
2 + Kt(1 − �)

= U(t, 0), β(t) = 2� + Kt(1 − �)

2 + Kt(1 − �)
. (11)

Using the last two results, Equations (9) and (10), gives the probability of extinction of
process Y(t) by the time t < ∞

U(t, 0) = B(t) = Kt
2

1−�
+ Kt

<
Kt

2 + Kt
= A(t) = F(t, 0) < 1.

Obviously, the extinction probability decreases by the time t > 0 when P(X0 = 0) = 0 in
a random initial condition.

When the initial condition X0 is defined by non-shifted geometric distribution Ge(�),
its p.g.f. is U0(s) = (1 − �)/(1 − �s), 0 < � < 1. Hence, the random number of particles
Y(t) = ∑X0

i=1 Xi(t) for any fixed time t>0 has a zero-modified geometric distributionwith
p.g.f. U(t, s), represented as follows:

U(t, s) = C(t) + (1 − C(t))
(1 − β(t))s
1 − β(t)s

, U(t, 0) = C(t) = B(t)
A(t)

> B(t), t > 0, (12)

where the parameters A(t), B(t) and β(t) are defined by Equations (6) and (11). The
parameter β = β(t) remains the same as for the case of shifted geometric distribution.

It is important to note that the branching process does not start with positive probabil-
ity P(X0 = 0) = 1 − � > 0 when the initial flux is distributed with non-shifted geometric
distribution. This situation implies the inequality C(t) > B(t). Moreover, it is possible to
happen either C(t) > A(t) or C(t) < A(t) due to the values of the parameters � and t.
Namely, if � ≤ 1/2, i.e. for P(X0 = 0) > 1/2, the inequality

C(t) = (1 − �)(2 + Kt)
2 + (1 − �)Kt

> A(t) = Kt
2 + Kt

is valid for all t>0. This is equivalent to the following inequality 4(1 − �) > 2Kt(2� − 1).

3.2. Initial condition over the radius of the flux of particles

The usage of geometric distribution enables the construction of random initial samples
from binary trials in simulations. To extend this functionality, we consider the dispersion
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Table 2. Extinction probabilities in dependence of radius.

Initial distribution

NBa Po PA

P(X0 = 0) (1 − �)R = e(log(1−�))R e−θR e−θR

P(Yt = 0)
(

(1−�)(2+Kt)
2+(1−�)Kt

)R
exp

{
−2θR
2+Kt

}
exp

{
− 2θR

2+Kt(1−�)

}
aNote that θ = − log(1 − �).

over a radius of the initial flux entering into the domain of branching. The p.g.f. of the
initial condition and the total number of particles alive at the time t>0 are denoted as
follows:

V0(R, s) = E[sX0 ], V(R, t, s) = E[sZ(t)], Z(t) =
X0∑
k=1

Xk(t).

The extinction probability is studied by the value of the p.g.f. V(R, t, s) at the point s = 0,
namely, V(R, t, 0) = P(Z(t) = 0), t > 0. For different initial conditions, the correspond-
ing extinction probabilities are summarised in Table 2, giving the opportunity to compare
them. The first selected distribution for X0 is the homogeneous Poisson distribution
Po(R, θ) with intensity parameter θ . Another used one is the Negative-Binomial NB(R, �)

distribution. In this case, the jumps altitude is defined by the logarithmic series distri-
bution with parameter � and p.g.f. log(1 − �s)/ log(1 − �). The intensity parameter is
θ = − log(1 − �) > 0. Obviously, the NB(R, �) distribution is reduced to the non-shifted
geometric distribution Ge(�) when R = 1. The Pólya-Aeppli probability distribution
PA(R, θ , �) is another alternative for X0. It is a compound Poisson distribution with inten-
sity θ and jumps altitude defined by the shifted geometric distribution in Equation (7). The
Pólya-Aeppli probability reduces to the homogeneous Poisson when � = 0.

The linear birth–death processes initiated from selected initial conditions yield the
following results for p.g.f. V(R, t, s):

(1) Let X0 be defined by the p.g.f. V0(R, s) = exp{−θR(1 − s)} of homogeneous Poisson
distribution. Using Equation (5) it is easy to prove that the p.g.f. V(R, t, s) = E[sZ(t)]
is equal to

V(R, t, s) = exp{−θR(1 − F(t, s))} = exp
{
−�R

(
1 − s
1 − ϒs

)}
, (13)

where the parameters depend on time t>0 as follows:

� = �(t) = 2θ
2 + Kt

, ϒ = ϒ(t) = Kt
2 + Kt

. (14)

The obtained result in Equation (13) is exactly the p.g.f. of the Pólya–Aeppli probabil-
ity distribution for fixed time t > 0.
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(2) Let X0 be defined by the probability mass function of NB(R, �) distribution:

P(X0 = k) = �k(1 − �)R

k!
(k + R − 1)!

(R − 1)!
, k = 0, 1, . . . , 0 < � < 1.

Then the p.g.f. of initial condition is given by

V0(R, s) =
(
1 − �

1 − �s

)R
= exp

{
−θR

(
1 − − log(1 − �s)

θ

)}
, θ = − log(1 − �).

The expression for p.g.f. V(R, t, s) = (U(t, s))R follows directly from Equation (12)
and it is equal to

V(R, t, s) =
(

(1 − �)(2 + Kt)
2 + (1 − �)Kt

+ 2�
2 + (1 − �)Kt

(1 − β)s
1 − βs

)R
, (15)

where β = β(t) = (2� + Kt(1 − �))/(2 + Kt(1 − �)). The value V(R, t, 0) is shown
in Table 2.

(3) Let X0 be defined by the probability mass function of the Pólya-Aeppli distribution,
where P(X0 = 0) = e−θR and

P(X0 = k) = e−θR
k∑

j=1

(
k−1
j−1

)
�k−j (θR)j(1 − �)j

j!
, k = 1, 2, . . . .

Then, the p.g.f. of the initial condition V0(R, s) = exp{−θR((1 − s)/(1 − �s))}.
Replacing the expressions 1 − F(t, s) and 1 − �F(t, s) from Equations (5) and (8)
yields

V(R, t, s) = exp
{
−θR

1 − F(t, s)
1 − �F(t, s)

}
= exp

{
−�R(1 − s)

1 − ϒs

}
, (16)

where the parameters depend on time t>0 as follows:

� = �(t) = 2θ
2 + Kt(1 − �)

, ϒ = ϒ(t) = 2� + Kt(1 − �)

2 + Kt(1 − �)
. (17)

The comparison between the parameters � and ϒ in the Equations (14) and (17)
shows the importance of the parameter �. The respective expressions for the extinction
probabilities defined by their values V(R, t, 0) are summarised in Table 2.

4. Computational results

The creation of a well-defined and useful stochastic model is not straightforward – there
are many risks and difficulties, partly due to the possible errors in development. To avoid
similar pitfalls, the verification of agreements between numerical experiment and already
known results is crucial. Therefore, themain topics in the following section are the descrip-
tion of the designed numerical experiment for the studied B–D process and its verification
with already obtained analytical results. Finally, underlying the importance of the numer-
ical solutions for complicated branching processes, a well-designed numerical solution
could be easily applied and compared to already obtained analytical results in [19] for the
supercritical case.
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4.1. Computational tools

As a generator of numerical results is considered a computational experiment with branch-
ing simulator developed for the R statistical computing environment [26]. It is based on
independent simulations following the iterative chain of Equation (2), similar to the one
proposed for cosmic rays shower shown in [25]. It works as the transition probabilities
for birth and death between different steps that are dependent only on the random vari-
able’s current state. They are obtained from independent binary trials at every time step.
Therefore, this stochastic experiment produces irreducible and aperiodic transitions after
every iteration and can be classified as aMarkov chain experiment [3]. Hence, its successful
implementation can reproduce numerically chain evolution [see 29].

The selectedMarkov chain (MC) yields a sequence of random variables X(0),X(t1) . . . ,
X(ti) with time parameter ti corresponding to the offspring order. In this case, the simu-
lated results reproduce the desired model with the approximated solution of Equation (5)
equal to

F(t, s) = s + tf (s) + o(t), t → 0,

with f (s) = K(1 − s)2/2. The remainder part o(t) converge to 0 for small t after a long
sequence of steps, i.e. for 
 = ti+1 − ti, i = 1, 2, . . . , we have

lim

→0

F(
, s) − s



= f (s).

Thus these simulated results converge to the real one with the extension of the number of
steps and repetitions. Finally, it is worth to remark that in case of ordering by heirs num-
ber, the daughter particles always arrive in pairs. However, when the process is rearranged
with the inclusion of different random lifetime, the pairing breaks according to process
modification.

The initial fluxes ofGeometricGe(�), Negative-BinomialNB(R, �) andPoissonPo(R, θ)

distributions are generated using the standard functions available in the R statistical envi-
ronment. But the additional library named polyaAeppli is required for generation of a Pó
lya–Aeppli distributed population PA(R, θ , �) [see 7]. The results for every test are reg-
istered after 10,000 number of experiment repetitions. Note that the parameter of the
intensity of branching (killing rate) K is fixed equal to 1. This simplification is intentional
to avoid useless consumption of computational time because K is a scalar constant.

The obtained results from every experiment are structured and therefore they can be
easily aggregated by different parameters over all available data sets. The most valuable
ones for model description are the probability for extinction and the particle number
distribution at every step of experiment t>0. However, their expected distributions usu-
ally may not relate to a well-known probabilistic distribution or to be related to any
tailed, as obtained Pólya–Aeppli distribution PA(R, θ , �) in Equation (13). Due to these
obstacles, themeasure of agreement between distributions is yielded from k-sample Ander-
son–Darling (AD) tests [27]. It is available in R statistical computing environment after
installation of the additional kSamples library [28].



JOURNAL OF APPLIED STATISTICS 2871

Figure 2. Results for linear birth–death processes with shifted geometric (Figure 2(a)) and Negative-
Binomial (Figure 2(b)) distributed initial conditions. Data acquired from experiments are shown with
lines. The analytical results of shifted Ge(1/2) and shifted Ge(1/3) are shown with circles and squares
respectively. The predicted results of Negative Binomial experiments are shown with triangles for
NB(1/2, 1/2), circles forNB(1, 1/2), filled squares forNB(2, 1/2) and squares forNB(2, 1/3). (a) Extinction
probabilities of process with initial shifted geometric distribution. (b) Extinction probabilities of process
with initial Negative-Binomial distribution.

4.2. Experimental results

Initially, the experiments are run separately for the B–D process with Ge(�), NB(R, �),
Po(R, θ) and PA(R, θ , �) distributed initial particle flux. By definitions, the selected four
distributions are inter-related. Using this property, the parameters are specially considered
to be inter-compatible between different experiments. At first, for example, the relations
between processes with Ge(�) and NB(R, �) distributed initial conditions are tested for
equivalence between NB(R, �) distribution with R = 1 and non-shifted Ge(�) when the
parameter � is the same. Later, the equivalence by radius parameter R of extinction
probabilities of B–D processes with NB(R, �) and Ge(�) distributed initial conditions is
confirmed after directly applying Equation (15). As expected, the results from k-sample
AD tests between simulated samples clearly confirm equivalences for all of them with p-
values above 0.99. The last option to have compatible results is to select equal evolution
parameters in the interval of t ∈ (0, 30] for all tests.

Thus the values of � of the shifted Ge(�) andNB(R, �) distributions are selected respec-
tively {1/3, 1/2}. The additional radius parameter [0,R) for NB(R, �) distributed initial
conditions is selected to take four options equal to {1/2; 1; 2; 5}. To keep inter-compatibility
clear, there is a complete set of experiments with all possible values of B(t) = U(t, 0) but
all with � = 1/2. A similar work-flow is selected for testing Poisson distributed initial
flux. The selected test values of the radius R for NB(R, �) are combined with the newly
introduced values of θ = {1; 2}. The analytically computed extinction values are directly
obtained from formulas shown in Table 2 for all simulated t>0. The agreement between
them and the experiment is shown graphically in Figures 2 and 3. The computed p-values
from the k-sample AD tests are shown in Table 3.

The results show a good agreement between the analytical estimates and the simulated
extinction probability values. In addition, the increases of p-values with a growing num-
ber of steps ti > 0 are observed for most of the tests. For instance, the p-value measure
of goodness-of-fit for B–D process initiated from NB(2, 1/2) distributed initial flux grows
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Figure 3. Results for linear birth–death process with Poisson initial conditions. The distributions of the
selected initial conditions are shown in Figure 3(a). The extinction probabilities for analytical and exper-
imental solutions are shown in Figure 3(b). The different experiments and their initial conditions are
shownwithdifferent figures:Po(1/2, 1)with circles,Po(1, 1)with squares,Po(2, 1)with triangle point-up
and Po(2, 2)with filled circles. (a) The initial conditions. (b) Extinction probabilities.

Table 3. Comparison between V(R, t, 0) obtained fromexperiments and analytical predictions for linear
B–D processes with initial conditions distributed with shifted Ge(ρ), NB(R, ρ) and Po(R, θ).

p-values p-values

Distribution θ R � t = 10 t = 20 t = 30 Distribution θ R � t = 10 t = 20 t = 30

shifted Ge – – 1/2 0.866 0.933 0.975 NB – 2 1/3 0.866 0.933 0.975
shifted Ge – – 1/3 0.914 0.961 0.999 Po 1 1/2 – 0.988 0.949 0.999
NB – 1/2 1/2 0.729 0.601 0.754 Po 1 1 – 0.82 0.984 0.999
NB – 1 1/2 0.776 0.696 0.822 Po 1 2 – 0.82 0.923 0.971
NB – 2 1/2 0.866 0.99 0.999 Po 1 5 – 0.866 0.933 0.975
NB – 5 1/2 0.82 0.923 0.971 Po 2 2 – 0.914 0.942 0.978

from 0.866 to 0.999. Actually, the results show that experiments of only 10 steps are enough
to produce close to expected results. Moreover, the p-values of fit for most of the cases eas-
ily grows above 95% for t>25. This implies a complete convergence between the theory
and experiment with t → ∞.

However, there are a number of tests that show weak divergence in an agreement
between experiment and theory at steps between 10 and 30. For them, the k-sample AD
test’s p-values are worse in comparison to the earlier stages but still high enough to con-
firm the agreement after about 15–20 steps. An example is the experiment of NB(1, 1/2).
The explanation is related to the importance of the initial condition in the process of selec-
tion. For the critical case, it is known that the average number of particles at every t>0
varies over the initial number. However, the number of died families (with all heirs death)
is growing during the process development. This means that the average number at every
step t>0 is compensated by an explosion of the survived families’ heirs, i.e. thewinner takes
all. It is demonstrated very clearly in population distribution after 30 step B–Dprocess with
Poisson distributed initial conditions, shown in Figure 4.

Hence, the selection process stretches particle distribution differently and thus making
the initial state of linear B–D processes very important. When there is a high chance of
zero occurrences in the initial flux, the process Y(t) is less prone to explode and the small
number of survived heirs variate highly. The result is a slower and with a non-constant
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Figure 4. Histogramsof Poissondistributedparticle populationbefore andafter experiment. (a) Poisson
distributed particles in the initial moment. (b) Particles distribution (dark) and expected Pólya–Aeppli
distribution after 30 steps.

Table 4. Results from goodness-of-fit tests for extinctions of Pólya–Aeppli distributed initial fluxes.

Distribution Rθ � k-sample AD test p-value Distribution Rθ � AD test p-value

PA(R, θ , �) 1 1/2 0.504 PA(R, θ , �) 4 1/2 0.985
PA(R, θ , �) 1 1/3 0.5653 PA(R, θ , �) 4 1/3 0.9866

improvement of agreements between experiment and expected values at intermediate
steps, giving lower and varied p-values for long period whenever the initial conditions are
similar to the example of NB(1, 1/2) distribution. Conversely, when the number of zero
events in the initial flux are very low, the B–D processes extinct slowly and without serious
fluctuations in the middle steps.

Finally, the experiments with Pólya–Aeppli distributed initial flux are intentionally con-
sidered to combine properties of the Po(R, θ) and NB(R, �) distributions. For this reason,
the used distribution parameters are a combination of already selected values in previous
experiments. Moreover, it is easy to notice from Table 2 that for � = 0 the extinction prob-
abilities are equal to these of Poisson initiated processes. Thus Rθ is selected to be optional
between {1, 4} in combinations with ρ = {1/3, 1/2}. This enables the introduction ofmore
complex distributions for initial particle flux, such as shown PA(R, θ , �) distributions in
Figure 5(a). For them, the experimental data show that the properties are similar to those
already observed for Poisson and Negative-Binomial, but in combined effect dependent
on � due to differences between parameters � and ϒ in the Equations (14) and (17). The
numerical results of agreement for t = 30 between survived particles in experiment and
analytically computed values from Equation (16) are shown in Table 4 and Figure 5(b).

5. Extending complexity

To create more useful and real-life applications, the designed experiment has to be
expanded to a more complex B–D process. The selection of more complicate initial con-
ditions is one of the options. An interesting choice for this is the implementation of Pólya
urn processes. They are part of developing theory withmany different applications, mainly
in theoretical physics, such as [11].
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Figure 5. Results for linear birth–death process with Pólya–Aeppli initial conditions. The distributions
of the selected initial conditions are shown in Figure 5(a). The extinction probabilities for analytical
and experimental solutions are shown in Figure 5(b). The different experiments and their initial con-
ditions are shown with different figures: PA(1, 1, 1/2) with filled circles, PA(1, 1, 1/3) with diamonds,
PA(2, 2, 1/2) with triangle point-up and PA(2, 2, 1/3) with empty circles. (a) The initial conditions. (b)
Extinction probabilities.

The selected initial state is designed to be generated with a multi-state Pólya urn
processes using Pólya urn experiment. It is self-reinforcing processes that resemble the
situation of the the winner takes all phenomenon and it is close to a beta-binomial distri-
bution, Dirichlet processes and applications in genetics. The process, in general, is assumed
for an urn with A0 number of white and black balls in an initial proportion equal to
σ = (number − white)/(number − black) and a deterministic replacement matrixM. The
process proceeds when the balls are drawn consecutively. If a black one is drawn, a black
and bwhite number of balls are returned to the urn in addition to the already selected black
one. Similarly, in case of a drawn white ball, c black and d+ 1 white number of balls are
returned. The process could be generalized as

M =
[
a b
c d

]
; a, b ∈ N0 ∪ {−1}; b, c ∈ N0 := {0, 1, 2, . . .},

where a + b = c + d ≥ 1. There are many models derived from similar urn process. For
example, a Moran process is assumed in connection with branching processes in genet-
ics [see 2] and two colours Pólya urn process with possible growth (or shrinkage) of the
population, [see 8,15].

However, in this section, only a simplified Pólya urn experiment proposed in [11] is con-
sidered as a generator for random initial conditions. In every step, a single ball is drawnwith
a binary trial. When the colour is known, δ-number additional balls in the same colours
are returned to its place in the urn. When the drawn ball is black, δ = a, or conversely to
δ = d in case of a white ball. The other values of matrixM are zeroes, i.e. b = c = 0. The
random initial condition of our process Y(t) is obtained after numbers of random con-
secutive urn draws. The reinforcement parameter is introduced with γ := δ/A0 and N is
the number of samples drawn from the urn. Then, when γ = δ/A0 → 0 for N → ∞, the
process behaves similarly to binomial, in spite of the large values of δ [11]. For reproducing
different reinforcements, the population is generated after a small number ofN = 10 trials.
The number of fractions of γ is produced from combinations of different initial particle
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Figure 6. Distribution of Pólya urn after N = 10 trials of equally distributed (σ = 1) balls after 10000
repetitions. The differences are due to values of delta and A0. (a) ‘Almost’ binomial trials with δ = 1 and
A0 = 10. (b) The winner takes all situation with δ = 10 and A0 = 2.

Figure 7. Distribution of Pólya urn after N = 10 trials with asymmetric distributed (σ = 2) balls after
10000 repetitions. Thedifferences are due to values ofdelta andA0. (a) ‘Almost’ binomial trialswith δ = 1
and A0 = 10. (b) The winner takes all situation with δ = 10 and A0 = 2.

numbersA0 = {2; 10} and fractions σ = {1; 2}. Some of the generated results are shown in
Figures 6 and 7.

The experimental results are the only available source of information for the process.
There are two main conclusions that could be yielded from experiments. The first one is
that after a very long run,σ parameter of urn experiment does not impact the rate of extinc-
tion, but only the initial distribution. The important parameter of initial condition is δ. The
impact of different δ is clearly demonstrated in Figure 8(a) with resulting clusterization of
simulated extinction probabilities. Secondly, due to the process of selection, the distribu-
tion of daughter particles is stretched similarly to the previous models with Poisson and
Pólya-Aeppli distributed initial flux. Moreover, the resulting distribution is easily proved
as Pólya-Aeppli whenX0 is obtained from awinner takes all experiment. It is a direct result
from the convergence of Binomial distribution to Poisson when the number of trials is suf-
ficiently bigger than the mean number of successes. In our case, the expected parameters
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Figure 8. Graphics show different extinctions of process with initial flux distributed by 10 consecutive
Polya urn draws for t ∈ (1 : 50] (Figure 8(a)). The initial number of particles is A0 = 2. The agreement
with Pólya–Aeppli distributions is demonstrated in Figure 8(b). (a) Different figures are used for processes
initiated with: pluses for σ = 1 and δ = 1; circles for σ = 1 and δ = 10; triangles for σ = 2 and δ = 1;
filled circles forσ = 2 and δ = 10; squares forσ = 1/2 and δ = 10. (b) The outcomeof experimentwith
initial conditions after Polya urn game with σ = 1 and δ = 1 (in dark) and PA(Rθ = 1/3, 19/20) (white
colour).

of distribution Y(t) at any moment t>0 could be computed from the experimental data
with automatic procedure for k-sample AD test. The most simple procedure to do it is to
generate asmuch as possible hypothesises by combinations of a large set of possible param-
eters and eliminate the options with low p-values of k-sample AD test. As an example, a fit
with PA(Rθ = 1/3, 19/20) is confirmed as good for linear B-D experiment after t = 30
steps of branching. The initial flux X0 is generated with Pólya urn game with σ = 1 and
δ = 1 (Figure 8(b)). The hypothesis is tested and confirmed with p-values above 0.9 from
k-Sample AD tests.

6. Conclusion

The demonstrated results contribute mainly to applications of branching processes. First,
they are related to applications with outcome produced from branching processes where
the initial conditions are important. Second, with the obtained results is demonstrated a
possible method for numerical solution when the analytical estimates are infeasible. The
proposed usage of computational experiments is proved and well fitted to the theory. This
makes any partial or full implementation of similar methods possible as a part of any
other large scale Monte Carlo experiments. The expected solutions also may include or
extend any random distributed initial condition in consideration of the available experi-
ment. Finally, the obtained resultsmay be useful as a reference for further statistical analysis
of the output from similar processes.

A similar simulator may be used either as a standalone application in any particular
study or as a part of more complex systems. The complexities could be due to any natural
processes that are even in particularly related to branching models. For example, any fur-
ther consideration of immigrations or censoring could extend applicability tomany natural
processes.Other possible real-life applicationswhere similar approach can be implemented
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are models with non-homogeneous time intervals between birth and death events. More-
over, similar methods for solving very complex natural systems could be implemented
technically easily to larger class of Markov branching processes due to quickly expanding
computational power.
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