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Abstract. We developed a set of software functionalities in R for simulation
of branching processes. Originally it was designed for simulating the branch-
ing mechanism of a cosmic ray atmosphere cascade, beginning with electron-
photon cascade. Further this simulator was adapted for applications epidemiology
with extended set of probability distributions such as Poisson, Negative Binomial,
shifted Geometric and Polya-Aepply used either for modeling the initial condi-
tions for linear birth-death processes or branching process mechanism following
predefined probabilistic distribution. The simulator is applied mostly when analyt-
ical solutions give convergent infinite series. [t uses the capability of R for parallel
computation and applies the Object-Oriented Programming paradigm (a secure
type encapsulation).

Keywords: Branching processes - R - parallel computing - epidemiology -
physics

1 The simulator

1.1 Purpose

The cosmic rays are the biggest natural permanently occurring branching process. Par-
tially, the electron-photon pair production induced cascades naturally imply connection
to Yule-Furry process and age-dependent Markov branching processes. This is the rea-
son that it is the first mathematically modelled particle showers during the down of
nuclear era [1, 2]. However, the explicit solution of the backward Kolmogorov equation
for more complicated and larger multi-type branching processes is extremely difficult,
even analytically insolvable. This makes the need of numerical solutions and computer
simulation important and indispensable part in research.

As a part of this effort a new simulator' is developed as a modeling tool for cosmic ray
air shower using branching processes [3]. It works as a generator of multiple independent

L https://gitlab.com/Tchorbadjieff/covid-19.
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trials, with their aggregated results serving as a good approximation to the real result.
Not surprisingly, soon the tool began to evolve in different directions, not limiting only
to cosmic rays. One of the initially developed functionalities is the implementation of
linear birth-death process induced from different random initial conditions [4]. Later,
the available functionalities have been extending with inclusion the option of different
branching mechanism, basically following well-known probabilistic distributions.

The mathematical formalism from the very beginning is based on assumption of exis-
tence some probabilities p, # < p < I, that either photon splits on electron and positron,
or a new photon production due to charged particles deacceleration by breaking radia-
tion. The simulator is developed in R and uses Object Oriented Programming paradigm.
These processes are naturally simulated better with multiple parallel threads and the
simulator is written for this purpose. We run it on the Avitohol supercomputer, belong-
ing to Bulgarian Academy of Sciences (IICT-BAS?). Since the start of the COVID-19
pandemic, this simulator has been easily adapted also for modeling the disease spread
in conjunction with changepoint analysis [5].

1.2 Structure and Functionality

Structure. The epidemiology version of simulator actually implements linear birth-
death process with initial conditions following either Negative Binomial or Pois-
son distribution. It consists of two files with core functionalities — Cascade.R and
Run_Cascade.R and two specialized files for epidemiology — Branching MPR and

CPoints_Init3.R.
The Cascade.R defines the class, which contains the information about given particle

(reinterpreted later as infected person) which has some properties relevant only to the
electron-photon cascade and other sub-atomic processes that can be used in different
context. The specific properties are rype, energy, angle of scattering, while age, fime,
number and depth are more general. The angle of scattering and the energy are main
properties of any natural particle cascades. However, despite of that in the current version
they are not completely implemented vet, they provide preserved definition for further
teinterpretation beyond particle physics constraints, to address conditions of infection
in epidemiology modeling — like environmental and social factors. The last one, depth,
gives the position of the particle on the cascade chain or the depth of the branching tree.
We give here the class definition without the constructor and the validity check.

We apply S4 as a formal approach to OOP, which has specialized methods for creating
classes, such as setClass() [6]. It provides multiple inheritance which we do not use in
our simulator due to the issues with extensibility and maintainability it introduces [7]. S4
defines slots, named components of the object accessed with the subsetting operator @
(at). These are the class members. There is a setMethod() function that defines accessor
functions for the members of class and assigns them. This is analogous to the properties
in C# classes, a way to get and set the values without separating these two logically
independent functionalities. In our code we donotuse inheritance, but with the extension
of the functionality we may have to — and if we do, S4 supplies us with the necessary
functionality. The setClass() method can use the argument “contains” to specify the base

2 Witps:/fwww.iict.bas bg/avitohol/,
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class. Employing the idea of Alan Kay “Until real software engineering is developed, the
next best practice is to develop with a dynamic system that has extreme late binding in all
aspects.” [8] In R the class definition and the object construction both occur at run time.
This makes impossible to create invalid object, by redefining the class after an object
has been constructed. Every class definition in R should have a prototype, for default
values (analogous to the role of parameter less constructor in C#). Validation can be
done with function SetValidity() or as in our case with user supplied function for simple
objects. The SetValidity() however, in the general context is more appropriate, because
we want to have meaningful and informative error messaging to improve maintainability
and prevent dangerous errors [9].

ParticleInfo = setClass/{
"ParticleInfo",

slots = cf
type= "numeric" , #"gamma==1, "e-"==2, "e+"==3
#tvpe = "character", % "gamma", "=-", "e+"
E = "numeric", # Energy, in MeV
t = "numeric", # Time
theta = "numeric", # Total scattering angle
age = "numeric", % Age

number="numeric",
depth="numeric"
) F
prototype = list{type = 2, E = 1000, t = 0, theta = 0,
age = 0, depth=0),

# Check for wvalidity after construction
validity = function{ocbject) {
return (! { (chjectltype < 1 | obijectltype > 3) | ob-
jectlBE <= 0 | objectlt<=0 | (objectltheta < -180 | ocb-
Jjectl@theta > 180) | objectlage < 0 | cbjectl@number < 0 |
cbjectldepth < 0))
}

The ParticleInfo class is being used as part of array, in which each element holds
the number of patticles at a given discrete step of time t. For each given element of
the structure, a random number is being generated (for instance with random binomial
outcome as it is shown in example) [10].

trial=function{i,strct, p)

{

return (rbinom(l,strct[[i]]E@number, p))

1
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Main Method for Cascade. The branching cascade is calculated iteratively. At each
state the survival of the previous step is doubled, the depth of the tree increases with
one, and the discrete time step also increases with one. The age of particles here is fixed
every time. The current version of the simulator works with the symmetric process with
equal lifespans for all particles and the survived particles from previous step are doubled
(each particle is replaced by two new particles), so the half of them is “reincarnated™,
exactly in line with the famous myth of Hydra — “cut one head and two new shall arise).
Every particle has a certain probability of dying, so survived particles at a given time
step are a subset of the generated particles at the previous subset, combined with the
newly generated particles at this step t. This process is inside the for loop in the code,

shown below.
The most important part in this process is the definition of probabilities. The soft-

ware relies on values in the classical probabilistic range between 0 and 1. However,
usually these values rely on conversion from other measurement units. In high energy
particle physics this measure is cross section. For the case of Covid-19 simulation, the
probabilities are obtained from the rate of daily infection changes.

spawnYule basic=function{part.atDepth, depth, p.dead)
{

photons.which = getIndexByType (part.atDepth,l)

photons= unlist {sapply(photons.which , FUN=iter,
strct=part.atDepth})

p=1/{p.dead+1)

n.dead = unlist{sapply(l:length (photons), FUN=trial,
strct=photens, p=l-p))

surv=unlist{sapply{l:length {photons), FUN=function({i,
strct) { return {(max(0,strct[[i]]@number-n.dead[i]))},
strct=photeons))

for (i in l:length(photons))
{

photons [[i]]@number = 2*surv[i]
photons[[i]]@depth = photons[[1]]@depth +1
photons[[i]]lage = 1

photons[[i1]]6@t = pheotons[[i]]G@ELt +1

ret= c{photons)

return {ret)

3 Witps:/fwww.rand.otg/content/dam/rand/pubsireports/2009/R381 pdf.
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Cascade Shower. It is in the same file Cascade.R, with default probability of dying set
to %2 and with asymmetric process set to false. Asymmetric processes with different lifes-
pans for particles are to be implemented in the future with asynchronous programming
model.

shower .Extention = function(part, depth, p.dead=1/2,
isAssym=FALSE)
{

idx=getIndexByDepth (part, depth)

pocl=part [idx]

ph.index=getIndexByType (pool, 1)

result=NULL
if(!lis.null{ph.index))
{
tmp = spawnYule basic{pool[ph.index],depth, p.dead )
if (length {tmp) >0}
result= tmp

}

return {(result)

Running the Cascade

Important properties of any branching process are initial conditions and the phenomenol-
ogy of the process development. For the formal, the importance of initial conditions for
linear birth-death process is considered in [2-4]. Later, this assumption is empirically
observed as a pure migration of infected population due to first days of Covid-19 pan-
demic in [5]. Tn the current available software implementation as options for initial
conditions are considered Poisson, Binomial, Negative Binomial and related Geometric
distribution, Polia Aeply distributions and Polia urn generator.

Initially, the process of branching is assumed only as binary outcome — death or
multiple births. However, with functionalities extension of the code the realization of
trial function is extending by inclusion of another probability branching mechanisms —
Negative Binomial and Poisson distributions.

The effectiveness and precision of the results from the simulator depend on the num-
ber of computed trajectories. This is a directresult of the stochastic nature of every trajec-
tory due to random trials. This implies the requirement of very high number of repeated
computations and their statistical aggregation. These receptions are implemented through
multiple independent instances of cascade trajectories. They are executed by function
main_iter() that runs the cascade iteratively, calling the shower Extention() from Cas-
cade.R in a for loop with extending the depth at each step and with a probability of
dying, calculated at every step.
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Main_iter()is called in mainf ) function iteratively, bringing the complexity to O(nz) !
This is the place where trajectoryrepetitions are executed. To extend computational effec-
tiveness of contemporary computer multi-processing hardware, the independent calcu-
lations of different trajectories are implemented on parallel computation with doParallel
library in R [11]. In the following code block we show how in R we can combine
resources for shared memory between nodes and processes, by loading packages and
sources and calling linear_predict() with lapply() for linux systems. Separate applications
of a function to members of list are prerequisite for parallel processing.

ne cores <- detecEBoras () — L
cl <- makeCluster {no cores)
registerDoParallel (cl)
system.time(foreach(i = 1:n sel, .combine = list, .ex-
port= c{'distr.pecis', 'data.by.country"'), .pack-
ages=c('readxl', 'xts', 'changepcint', 'MASS', 'grDevic-
es')) %dopari{

source ("Run Cascade.R")

library {kSamples)

library {"dgof")

set.seed (1)

output=linearPredict (i, bridge[il])

lapply{l:1length (cutput), function{j} {is.append=TRUE;
if(j==1){is.ap-
pend=FALSE; } ;write.table (output[[]]],file=paste("Results/
/predicted ",selection[i],".csv", sep=""), append =
is.append,col.names = !is.append, row.names = FALSE,
sep=",")1)1})

Verification.

The simulator is designated to implement stochastic process, resulting to stochastic
outcome. This lack of deterministic results implies the requirement for different software
verification process. At first, the outcome is designed to consist of large number repeated
runs generated by random generator, creating multiple trajectories, as much as possible.
The expected results are obtained from averaging over all generated directories. The
variability is also represented by results variation in generated directories.
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Having different outcome in every rum, the classical debugging procedure becomes
non-effective and obsolete. Thus, the process of software verification and debug fix-
ing is designed as a statistical learning process, starting from the comparison between
already available analytical results and their computer modelling by software. This pro-
cess is permanently repeated after every new development. For instance, the influence
of initial conditions on linear birth-death process was tested by comparison between
analytical results and model outcome in [4]. The same comparison is done for geometric
distribution, using the analytical results in [12].

The trial mechanism is verified separately during development by directly analytical
computing branching processes. For instance, let us consider the following branching
cascade of 3 particles with its generating function:

hl(s1,52,53) = (1 — 2p) + ps1 +ps1s2
h2(s1,52,53) = (1 — 2p) + ps2 + ps152 (L
h3(s1,52,53) = (1 — 2p) + ps2 + 2ps1 53

The probability of reproduction is 0 < p < 1/2, having that the process is with-
out particle deaths when p = 1/2. The matrixes of expectations Mj; and characteristic
determinant A are computed as follows:

rppr
Mij=|p2p 0 2

p0Zp

p—A p p
A=| p 2p—%» O 3)
P 0 2p—4a

As straightforward computations show, the process is critical when p = 1/3 < 1/2.
The process is suberitical and supercritical, respectively, when pis less or above 1/3. The
simulated results are in complete agreement with the predicted results after only 10000
runs {Fig. 1). Note, that critical process acquires quickly stable asymmetry proportion
between electrons and positrons.
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Fig. 1. Software verification with 1000 runs of the electron-photon branching cascade

2 Applications

Application to Covid — When the Covid-19 outburst occurred the need for large number
re-computations and predictions of newly infected persons grew. To keep track with it,
we automated completely the process® by development of the dedicated method lin-
ear_predict(). The process, which is fully described in our paper [5], combines linear
birth-death process with Poisson and negative Binomial initial conditions with change-
point analysis to detect any regime changes of daily infection rates and to recalculate
due probability distributions. This works due to the Markov property of the branching
process of linear birth-death. The changepoint operations are implemented in CPoins
Init3.R7, separately from the core functionality in order for it to remain reusable and
extendable. Tt allows continuous adaptive and relatively precise short-term prediction of
daily cases for an ongoing pandemic with rapid viral evolution, multiple variants and
wide spectrum of measures and adaptive reactions from the public to the pandemic. It
can be relatively easily adapted to predict cases by age group, bed occupancy in hospi-
tals, and deaths for the initial waves of pandemics (there is recurrent relation between
lethality in a given wave and in previous waves). We show some results of the work of
Branching MPR on Fig. 2 and Fig. 3

4 https://giflab.com/Tchorbadjieff/covid-19/-/blob/main/Branching MPR.
g https://gitlab.com/Tchorbadjieft/covid-19/-/blob/main/CPoints_[nit3 . R.
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Fig. 2. Predicted cumulative number of infected individuals in Bulgaria for 20.3.2020-30.4.2022

Applications for Branching Inference: An important application of this simulator is
for study of industrial scale processes driven by branching mechanism following different
distributions and occurring in changing environments when the analytical solutions are
not feasible. An example of analytically solvable process is the one driven by geometric
branching mechanism [12].

However, the difficulty of solution grows enormously when other distributions are
in consideration for branching modelling. For instance, when the branching process
consists of multiple number of reactions r, r > 0 until the experiment stops. In this case,
it follows Negative Binomial distribution NB{t,p) with probability of p; 0 < p < 1..
Then, the multiplicity depends on mean {energy) E(N) and Variations (dissipation)D{IN):

1-—

By = LB* @
P
i

pav) = L-PX )
p2

Another, possible case is when the branching concerns equally distributed molecules
in volume V of a continuous region T, V = /. pd&. The expected mean value of random
variable X in this case is [13], see:

EX) =V~ fT d& ]T dés... fT 6K (£, £2v o )
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Fig. 3. Predicted daily number of infected individuals in Bulgaria for 20.3.2020-30.4.2022

Then, due to the binemial trial for Ty < T and using probability p = V1/V and
densities p = n/V we obtain Poisson distribution (Po(n}):

e PV1(pVi)"

PR=r= =

(7

The variety of possible reasons to use these three distributions, Ge, NB and Po,
could be extended to larger class of branching processes. For their probability generating
function (p.g.f.) in critical case, &(s) = p(0) + p(1)s + p(2)s* + ..., there is a vertical
asymptote for Ge and NB distributions, but not for Poisson (Fig. 4). Moreover, the Po
distribution yields the best fit to the tangent x = y in the neighbourhood of s = 1 (Fig. 5).
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Fig. 5. Probability generating function (p.g.f.) his) in the neighbouthood of s = 1 for critical case
for Po, NB and Ge distributions.

However, the solutions either for sub-critical of super-critical processes with these
three distributions or for any other more complicated distributed processes is not so
straight forward. This is not only due to computational complications, but also because
the correct identification of exact branching nature of the process, mainly in cases of
small data sizes. In this case, the simulator could be used to generate multiple results to
test different hypotheses about fit to the real data. The process can be easily implemented
by redefining the trial() function® with the opted definition and generate enough large

6 https://giflab.com/Tchorbadjieff/branching-simulator.
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number of trajectories. This procedure is also used to calibrate and verify the simulator
work to already available results in [12]. Some random trajectoties are computed and
demonstrated in Fig. 6a—6d.
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Fig. 6. a. Critical branching process with shifted geometric distribution. h. Critical branching
process with negative binomial distribution with r = 2 and p = 1/3. ¢. Critical branching process
with negative binomial distribution with » = 3 and p = 1/4. d. Branching process with Poisson
distribution.
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Critical Branching with NB(3,1/4) trials
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Fig. 6. (continued)

3 Conclusions and Future Work

The presented here branching simulator already produced some unexpected practical
results — simulated very well development of Covid-19 cutbursts, proving that even
the most complex ongeing pandemic could be predicted without certain knowledge
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either of the characteristics of the viral variants, the measures that the governments take
or the ability to predict the evolution of variants. The tool is open source and open
for functionalities upgrade. These upgrades could include not only particle interaction
processes and changing initial conditions, but other methods of statistical learnings
and automatization. Another direction for improvements is the inclusion of abundant
graphical features. These upgrades could be implemented easily, as inclusion change
point tools in Covid-19 application. The list of ideas how this simulator can be extended
and improved, may not be limited only to epidemiology and cosmic rays’ physics, but for
general application in applied mathematical medeling, training machine learning tools
ot educational purposes. A logical development in the medium-term future is to create
a library package and to include it in CRAN.
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