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ABSTRACT ARTICLE HISTORY

The COVID-19 pandemic has had a very serious impact on societies Received 14 December 2020
and caused large-scale economic changes and death toll worldwide. ~ Accepted 2 February 2023
The first cases were detected in China, but soon the virus spread KEYWORDS

quickly worldwide and the intensity of newly reported infections  (oyip-19; finear birth-death
grew high during this initial period almost everywhere. Later, despite processes; change point

all imposed measures, the intensity shifted abruptly multiple times analysis; statistical inference
during the two-year period between 2020 and 2022 causing waves for branching processes

of too high infection rates in almost every part of the world. To target
this problem, we assume the data heterogeneity as multiple consec-
utive regime changes. The research study includes the development
of a model based on automatic regime change detection and their
combination with the linear birth-death process for long-run data
fits. The results are empirically verified on data for 38 countries and
US states for the period from February 2020 to April 2022. Finally,
the initial phase (conditions) properties of infection development are
studied.

MATHS
60M20; 60J85; 62-07

1. Introduction

The initial information about COVID-19 was scarce and intimidating in the beginning of
2020. Not surprisingly, the public interest was focused on almost real-time infection spread
trackers and prediction tools. Most of them were based on already existing epidemic mod-
elling theories, incorporating separately or in combinations specific parameters, such as
spatial details or realistic population mixing structures, individual-based network models,
and simple SIR-type models that incorporate the effects of reactive behaviour changes or
inhomogeneous mixing [11].

There is also along tradition of using stochastic epidemic models to simulate and predict
the transmission dynamics of infectious diseases. They are important when the number of
infectious individuals is small or the transmission and recovery rates vary with time due
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to various reasons. Very popular stochastic models in epidemiology are continuous time
Markov chains (CTMCs), stochastic differential equations (SDEs) and branching process
approximations. Detailed review on stochastic epidemic modelling is available in [2,14].

In aim to implement a real-data stochastic application, we we use the theory of branch-
ing processes for modelling COVID-19 outbreak [5,16,30]. Estimates for the probability
of extinction based on them have been applied frequently to populations, genetics, cellu-
lar processes, and to epidemics on networks. Some methods for the calculation of disease
extinction thresholds in deterministic and stochastic models are summarised in [3]. They
estimate the probability of a major outbreak for the susceptible - infectious - recovered
(SIR) model when the population size is large and a small number of infectious individuals
are considered.

Important assumptions when using branching processes are that each infected indi-
vidual (usually noted as a particle in branching theory) spreads disease (gives birth)
independently to others and everyone has an equal probability of getting infected. For
a small number of infectious individuals and a large population size, these assumptions
are realistic and similar approximations are very good in many cases. Another impor-
tant advantage of selecting a stochastic solution is the lack of knowledge about population
immunity similar to early assumptions [28].

Another possible approach is based on the multi-type branching processes with inho-
mogeneous Poisson immigration [26]. The advantage of this model is that the random
arrival of infected persons makes a serious contribution to infection spread. However, the
branching process is reduced to a single type with immigration when modelling COVID-
19 outbreaks during the initial period outside Wuhan. The branching reproduction starts
after multiple independent arrivals of infected patients zero. Then, local clusters emerge
from them after a time delay dependent on the incubation period, estimated within the
range of two to nine days with 95% confidence [22].

This dominance of immigration continues until the infection gains local dynamics and
surpasses the imported cases. In order to describe this inhomogeneous dynamic, caused
by different social factors, the data is split in consecutive intervals. The initial condi-
tions for every interval can be considered altogether with the immigration. They cannot
change the critical parameter of the branching reproduction, but impact the extinction
probabilities [24,32].

Finally, the public reactions and measures against spread of contagious diseases are an
important part of the response to them. The different actions may include quarantine at a
local and national level, border closing, physical distances, etc. According to data models,
all actions for prevention are assumed as constraints on free infection spread. The estimate
of intervention effect could be obtained by stochastic SIR network epidemic model with
preventive dropping of edges [7].

In accordance with all these assumptions, we designed and implemented a computa-
tional model for automatic fit and short time prediction of COVID-19 infection incor-
porating all significant changes in ambient conditions and natural trends. It is based on
the linear birth-death processes X (), t > 0, starting from one particle X(0) = 1, [32]. Itis
combined with change-point theory to implement the dynamic detection of the changes
in infection spread rates. The model is calibrated and verified on data from 38 countries.
Finally, the empirical explanations for detected changes in initial conditions and infection
dynamics is looked for.
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2. Data modelling

In general, the branching process Z(t),t > 0, Z(0) = Zy, with probability generating func-
tion (p.g.f.) F(t,s) = E[s?D|Z(0) = Zy],|s| < 1,F(t, 1) = 1, is defined by the initial con-
dition, the lifetime of particles and the offspring number with p.g.f. h(s), |s| < 1. Suppose,
the p.g.f. Up(s) describes the number of particles Zy = Z(0) at the initial moment, (say
today). The branching intensity depends on the lifetime of particles. Knowing the inde-
pendence of particle evolution, the assumption that the lifetime is a random exponentially
distributed variable with parameter K guarantees the Markov property of this branching
process Z(t). It means that the entire past information of the process until the time moment
t > 0 is presented in its current state Z(t). Thus, the probabilities of future events are com-
pletely determined by the present state of the process - if its current state is known, its past
behaviour provides no additional information in determining the probabilities of future
events.

The linear birth-death process X(#),t > 0,X(0) = 1, can provide locally the best expla-
nation of the branching evolution starting with a single particle. The probability of a birth
(successful transmission) of an infectious individual is denoted by p, where 0 < p < 1,
describes the outcome of either two daughter particles’ birth or parent demise. The off-
spring number is defined by a random variable n with p.g.f. h(s) = E[s"] = ps* + 1 —
p. Elnl :== K (1) = 2p.

The ultimate extinction probability, traditionally denoted by g := lim;—, o P(X(t) =
0) is the smallest nonnegative solution of the equation h(s) = s. The infinitesimal p.g.f.
is f(s) .= K(h(s) —s) =K (ps2 — s+ 1 — p) and the mean of the infinitesimal offspring
number is denoted by m = f'(1) = K(2p — 1). Then the mathematical expectation is
E[X(t)] = €™. A branching process X(¢) is classified as supercritical if m > 0, % <p<l,
critical when m = 0,p = 1/2, or subcritical for m < 0,0 < p < % The extinction proba-
bility of the linear birth-death process to the finite time 0 < t < 00 is given by the value
P(X(t) = 0) in its explicit form [32].

Due to the Markov property, the information on the first time interval of approxima-
tion t € [0, 1) is provided by (Uy, hg, Ko). Thus, for inhomogeneous branching process
Z(t),t > 0,Z(0) > 1, the information on the first time interval depends on the epi-
demics evolution, i.e. the probability of a successful transmission p = py is in the time
interval 0 < t < f; and K = Kp. Then the medical research specialist can recalculate the
new parameters (Uj, b, K1) and the new transmission probability for the next interval
of approximation, where U (s) = E[s%t)] describes the real data at the time moment
t1 > 0. The p.g.f. Ui(s) and the random variable Z(#;) defines the initial conditions for
the next interval of approximation, t € [t1,1;). Also, the intensity of reproduction and
the offspring’s number can be different from one interval of approximation to another,
respectively (h1, K1) on the interval t; < t < f, and so on.

An important part of any pandemic onset is its development during the first days of
contagion. In the case of pure imported infection, the local branching process begins only
with immigration from outside and it is dependent on the incubation period. During the
first days, the pandemic evolution is dominated by arrival intensity and define the initial
conditions of the newborn branching process. Thus, this initial situation must be consid-
ered because the first COVID-19 virus variant has a quite long incubation period and all
initial cases around the world except China are imported.
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Appropriate probability distributions for modelling the initial conditions are Negative-
Binomial (N-B) and Poisson (Po) distributions. Conveniently, the following development
in the case of the linear birth-death process is defined in [24,32]. The N-B distribution may
explain better the stochastic fluctuations. mainly due to the dominance of super-speeding
contagion [23]. However, because the initial immigration of infected from China was lim-
ited event compared to overall population and passenger traffic until the end of February
2020, the Poisson distribution is selected as default.

The mainly used empirical estimator of epidemics dynamics is the basic reproduction
number, Ry, known also as a threshold in deterministic epidemic theory. It is equivalent
to the expected value of the newborn particles in branching processes. This parame-
ter predicts a disease outbreak if Ry > 1. Epidemiologists calculate Ry tracing data for
individual-level contacts at the onset of the epidemic. It is computed by averaging over
the number of confirmed by tests secondary cases of many diagnosed individuals. But not
surprisingly, this deterministic approach requires a complete history and it is not a reli-
able real-time measure for the development of the outbreak due to inevitable sampling
bias. It could occur due to different factors, such as the pattern of contact underestimation,
regional and local factors, methods and errors in testing, etc. A possible solution could be
found in the search and implementation of more innovative and complex modelling like
in [25,31].

In addition, we remark that the basic reproduction factor, Ry, is a deterministic con-
stant and it does not reflect to changes in behaviour and social restrictions. For this reason,
it is more appropriate to use the effective reproduction factor R; at any moment ¢ > 0 to
model inhomogeneous development. However, the population growth rate r; per unit in
time is selected as a more convenient empirical measure. It is widely used in demographics
and it is already known in the theory of branching processes [16]. The relation to produc-
tivity knowing the infection occurred in the first interval of approximation of the linear
birth-death process with mean offspring number m is Ry = e™ = 1 + r;. Empirically, ; is
obtained from time series data by B1.

With a prolonged pandemic, the daily growth rate series (r1,72,...) aggregates the
typical for time series analysis trend and seasonality. A possible local fit of similar inho-
mogeneous birth-death process with linear time-dependent birth and death rates can be
obtained by application with a generalised Gompertz growth model [4]. Another possible
approach is to use Autoregressive Integrated Moving Average (ARIMA), similar to [1,13].
However, for inhomogeneous data, regime changes occurred by time cause temporal
changes of ARIMA model parameters, such as in [33].

In aim to construct an automatic computational tool, the occurred regime changes
in growth rate series have to be detected at the first step. They are identified by apply-
ing change point analysis. Initially, the cumulative sum control chart (CUSUM) method
has been used at the early stage of the process. It is very efficient non-parametric test
to detect small shifts in the mean of a process, introduced by E. S. Page in 1953-1955
[27]. Due to its simplicity, it is widely used in many different change point applications.
In epidemics it is successfully used in early stages of infections [36]. It works as estab-
lished continuous inspection scheme to detect unknown location parameter k where
the mean value p of i.i.d. x;,i = 1,. .., n changes significantly. In statistical terminology,
this means to test the null hypothesis Hy against the alternative Hy if exists 1 <k <n
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such that

Ho:pk=mn
Hp:tpy = o = = Wk # g1 = = Un.

The standard methods are based on properly standardised cumulative sums (CUSUM)s
Z;‘Zl(xi — Xn),k =1,...,n, where X, = (1/n) ) _;_;~, xi. The null hypothesis is denied
if some derivative statistics W,, from the cumulative sum is too large.

There are different computational method modifications for estimation of W, gener-
ally following the original definition.The software,selected in this work, relies on the use
the likelihood style ratio of the CUSUM functionals instead of the differences for estima-
tion of magnitude for the computation of W,,. It is proposed and the required important
limit theorems are proved in [12]. The computational implementation relies on library
changepoint in R statistics environment [20].

The CUSUM method was applied on the stationary time series of daily growth rate
changes, r; — ri_1,i = 1,...,k,...n, without any distributional assumptions [20]. It works
well at the very beginning of the outbreak when data is very variate, small in size and hence
with clear non-normal behaviour. However, in the later stages of process development,
when the number of segments grew, the CUSUM began to fail. In this case, the CUSUM
method produced bias towards the early stage of the outbreak, neglecting the later develop-
ment. The empirical attempts of any other change point test for mean value did not produce
any improvements.

For this reason, the conceptual hypothesis is changed - the regime changes are
assumed as simultaneous differences of mean and variances of independent normally dis-
tributed changes. The dedicated computation again relies on likelihood-ratio procedure
penalised by information criteria [10]. The software implementation is based on function
cpt.meanvar from the changepoint package in R [20]. The advantage of this computational
library is the implementation of several methods for optimisation of multiple segmenta-
tion process for large data. The available methods are Pruned Exact Linear Time (PELT),
Binary Segmentation and Segment Neighbourhood [6,18,21,29]. The At Most One Change
(AMOC) methods is also implemented, but it is mainly associated with CUSUM. However,
the previous three ones provide a useful tool to deal with large data sets with many change
points.

After all regime changes are detected, the data in segments between two consecutive
change points are fitted with the new process parameters. Because the length of seg-
ments varies randomly, starting from a few elements, the precise real-time application of
ARIMA is not feasible. However, the Markov property of the linear birth-death process
Z(t),t > 0,Z(0) > 1, enables a quick regime switch, allowing real-time implementation
in the segment time window T = Tj,i = 1 : n. The linear birth-death process in selected
segment is determined by the average probability estimate (pr). It is obtained directly from
the local mean rate parameter (rr) in studied interval T:

(pr) = 1/(1 + ¢~ rlLy, (1)

The formula is derived from ultimate extinction probability g in the critical and supercrit-
ical process. In the later case, the probability is centred at 1 4 r, = 2, requiring L = 2 to
obtain e~ "'t = g in Equation (1). Finally, an additional correction of L is introduced to
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adjust probability estimate to an optimal value. It is a country dependent small constant ¢
that is computed by iterative optimisations based on minimisation of mean square error
(MSE), B2. Another possible option for data adjustment is correction of intensity branching
parameter K = Ky, t = t;, after every regime change. Both corrections are simple and com-
putationally cheap substitute for adopted in demographics method of blending - passing
from one curve to other [8].

When the initial condition is either Poisson or Negative Binomial, the solutions for the
linear birth-death process can be obtained analytically, as it is shown in [32]. However, the
results obtained from the available numerical experiment are preferred for automated com-
putations when the explicit determination of intermediate initial conditions is not critical.
The simulator generates trajectories after 10,000 independent realisations as it is explained
in the provided Supplement material, extending the realisation in [32]. The integrated
results over all paths are obtained from averaged values. The computational procedure can
be easily adjusted linearly by changing together or separately the scalars K; and L.

3. Results

The performance of the combination between the linear birth—death process and change
point analysis is tested on real data from a cumulative number of COVID infected patients
by regional separation. Those included in this research data consist of reported daily new
cases in 38 different entities. They were selected intentionally to represent geographical,
political and cultural diversity. The main focus is set on data from countries assumed as
open and relatively effective in COVID-19 response. The other criteria were variety in pol-
icy measures like the very different approaches such as Sweden and Kuwait, population
density — North Dakota in comparison to Singapore and New York or total population
over large territory coverage in countries like the USA, Canada, Australia, Russia, and India
against cities like Hong Kong, Singapore and New York or densely populated countries like
Japan and Netherlands. The expectations for common policy of the European Union are
also considered. In general, the geographical distribution is as follows:

e The European Union (EU): Germany, France, Italy, Spain, Netherlands, Denmark,
Sweden, Austria, Greece, Czechia, Croatia and Bulgaria.

e Outside of EU common policy: UK, Norway and Russia (incl. parts of Caucasus and
Siberia)

e North America: Canada, USA plus Texas, Florida, California, South Dakota and New

York.

South America: Argentina, Brazil and Chile

Far East Asia: Hong Kong, Japan, South Korea, Singapore and South Korea

South Pacific and India: Australia, New Zealand and India.

Rest of the World: South Africa, United Arab Emirates (UAE), Kenya, Kuwait, Israel and

Turkey.

The major data source is the dedicated public John Hopkins’ database and maps [14].
The data are preprocessed for irregularities and growth rate values are computed. The
detailed explanations are available in provided Supplemental material.



JOURNAL OF APPLIED STATISTICS . 2349

The COVID-19 outbreak at every country began as independent arrivals of newly
infected persons. Their number and intensity varied due to multiple reasons. But, the
probabilistic distribution of daily infections is expected to follow either Negative Bino-
mial or Poisson ones. If the process remains completely exhaustive, i.e. the infection dies
without transition and the transmission probabilities remain infinitesimally small, but not
in deterministic zeroes. Thus, having permanently single count infected persons the new
super-spreader cluster could emerge, triggering a new branching process. Another possible
source of renewed infection could be immigration.

By assumption, we have to distinguish the secondary pandemic outbursts from the ini-
tial conditions at the first infected person arrival. However, in the terms of modelling, every
new wave of infection outburst is separated from the previous and following calm periods
by clear regime changes. For data fit software, the moment t; when change point occurs
is considered as the end of the previous time window and the initial condition for linear
birth—death process with new parameters.

3.1. Model initialisation

The early days after the first infected particles arrival are of high importance for further
pandemic development. Due to the long incubation period and without registered local
infection yet, the new daily counts are assumed as a Poisson counting process. Then, when
the first local branching clusters are available, the rate of newly infected persons accelerates.
At this moment neither branching nor immigration dominates. In case of local transmis-
sion collapse for any reason, the process N(t),t > 0, giving the number of particles alive
remains homogeneous Poisson (HP) with constant parameter A > 0 and mean At, such as

P(N(t) =n) = , n=012,.... (2)

6_)Lt()\,t)n

n!
However, with the prolonged process, two possible scenarios emerge separately or com-
bined. The first is that immigration evolves due to inhomogeneous Poisson process similar
to that reported in [17]. Another possibility is when the branching continues to expand
causing growing domination of locally transmitted infection. The daily numbers N(¢), t >
0 are time dependent. For generalisation of both cases, the considered distribution is
non-homogeneous Poisson (NHP) with mean

t
A(t) =EN(@®) = / A(s) ds.
0

The location and estimation of the state before the first regime change are important tasks
for initial conditions” definition and computation initialisation. Because any detailed spe-
cific rule does not exist, the first change point following either the 10th day after the first
infection or after the first 50 cases are reported is expected to include completely initial
conditions. As the data show, it is a time when exponential growth has just begun in most
of the observed data series.

However, the hypothesis of homogeneous Poisson distribution of daily data before the
first change point is not confirmed by empirical data from all studied 38 areas. The maxi-
mum likelihood estimation (MLE) shows that the mean parameter A of the homogeneous
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Figure 1. A comparison between real IC data and simulated estimates from 300 repetitions for 3o con-
fidence intervals for HP and NHP distributed in UK. The HP trajectories are computed for A equal to 1.37
and shown in (a). The NHP process is generated by Power Law model time function at®, wherea = 7.2
and b = 0.56. The real data are marked with +. (a) HP distributed data and (b) NHP distributed data.

Poisson distribution is a biased estimator. Thus, despite n) yielding a good approximation
for cumulative counts at the end of the period with length n, the predictions for previous
days are wrong. The MLE mean values for homogeneous Poisson distribution are com-
puted by the function fitdistr in the packet MASS in R [35]. The obtained results are shown
in Table Al.

For further analysis, this initial time window is split again on only two parts by the
already adopted change point model, splitting homogeneous and non-homogeneous pro-
cesses. In general, as a thumb rule, the first time ordered sample and the remaining part
are usually HP and NHP distributed. We also note that in cases when there is not signifi-
cant immigration, the second period could be assumed as a linear birth-death process. To
distinguish them more clearly, in the following text we will denote the firstly occurred in
time part, which is HP distributed, as Initial condition. The following part will be notified
as a mixing stage, referring to still serious impact of arriving from abroad infection. The
prediction fits for both intervals are significantly improved using the library poisson in [9].
Results with simulated trajectories for United Kingdom (UK) are shown in Figure 1.

From samples obtained in this way, several additional conclusions on the initial phase of
the pandemic can be made. At first, a conclusion can be drawn of possible undocumented
infections during the first weeks of pandemic due to low data quality. This conclusion is
confirmed by examples like time series from the Netherlands, where subsection of HP dis-
tributed part is missing. Another hypothesis for data inconsistency can be yielded from
the difference between projected trajectory of the HP process with optimal A and the real
data. In the UK, the empirical data are constantly outside the 30 confidence intervals of
the modelled HP process with A directly obtained from MLE, see Figure 1(a). Note that
this is the period exactly before lockdown when chaotic travels from and to the country
occurred.

The next property noticed from the initial condition (IC) data is that the parameter A
for initial condition does not depend on population size, but A weighted on population
density depends on geographical location and the proportion of IC time length in days
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and the number of days when IC is detected after 1st February 2020 process. The conclu-
sions are obtained from the Log-gamma Generalised Linear Model (GLM) with 34 degrees
of freedom [15]. The optimal model is obtained after investigation of different scenarios.
The selection is based on a stepwise procedure by minimising the Akaike Information
Criterion (AIC), 10-fold cross-validation procedure and residuals heteroscedasticity. The
final model is with mean square error (RMSE) of 165.33 and bias of —5.37. The details for
computational process are available in Appendix B.

3.2. Data fit performance

The data modelling begins with those obtained from the initial change point split period,
including initial condition and mixing stage periods. If followed technically strictly [32],
the initialising values have to be computed by the estimate of HP distribution for the initial
condition. However, due to data differences, the initial point is set at the first change point.
The starting value for every trajectory is computed of the approximate value of 1A,
where # is the size of the whole period until the first detected regime change. This homo-
geneous Poisson parameter Ay, is used for simplicity despite that it is biased and does
not explain the data trajectories from the initial moment ¢ = 0 to any ¢ < n. However, it
is good enough and easy to compute at the moment n, where all possible trajectories are
aggregated. Computed values are shown in Table Al.

The fits are repeated regularly multiple times with different time series length during the
period 2020-2022. At first, the computational algorithm relies on automatic non-inferred
one step detection of all possible change points. Then, the local average probabilities pr
for every segment are computed from previously precomputed growth rates for all . At the
next step, all 10,000 trajectories are executed consecutively ordered by time. This splits the
cumulative stochastic error of the process between all available trajectories (even zeros,
if it exists). Thus, the expected number of infected people E(X;) and variation V(X;)
are, respectively, the empirical mean and dispersion over all resulting trajectories at the
moment f in the interval t; < t < tjy;.

This approach provides an easy to implement and effective automatic algorithm for
obtaining a good estimate for the expected value at long distant time moment and short
time future predictions. In addition, it is easy to adjust the final result by applying the
correction value of c. The value can be computed by selecting the value with minimal over-
all MSE error. It is executed autonomously and without supervising modelling for all 38
countries. When the change points from this first iterations are obtained by the BinSeg seg-
mentation algorithm, the fit is in good agreement with the overall trend (see Figure 2(a)).
However, at some local time intervals, mainly during non-linear expansion due to two
overlapping waves, this first iteration shows very low flexibility due to the large size of
determined change point segmentation. For these cases, a local re-computations with a
more sensitive segmentation algorithm as PELT improves significantly the goodness-of-fit
of model (see Figure 2(b)). The errors are proved non-autocorrelated by ACF diagnostic
and normally distributed (Kolmogorov-Smirnoft test for standarised values yields p-value
of 0.8467).

Another major empirical observation from regime change detection in studied cases is
that the frequency of detected change points usually is higher at the beginning and at the
end of the period when infection rate is either strongly increasing or in decreasing mode
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Figure 2. Examples of daily COVID-19 outbreak modelling for UK. The fit without correction shows
observed (grey line) and predicted (dark) values for the period until 22nd January 2022. The second
iteration fit shows empirical (grey) and predicted in first iteration (dotted) values for the period between
13 November 2020 and 21 January 2021. The second iteration fit is shown with dark dashed line. (a) UK
first iteration and (b) UK second iteration.
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Figure 3. Detection of regime changes for daily differences in growth rate for Australia. The change
points are shown with vertical lines. The whole process from the last day of IC to the end of November is
shown in (a). The reduced process showing only the summer burst is shown in (b). (a) Complete period
and (b) Reduced period.

(Figure 3). This is in direct relation to the long unsegmented periods during the non-linear
expansion of daily cases. Having knowledge of this trend, the frequent change points can be
used as time location predictors of wave arrival or extinction. Visually it is easily detectable
for Australia data (see Figure 3).

After multiple differences in time repetitions of the model, change point split for the
first days confirmed stable and precise for the countries with strong initial wave. The varia-
tions in detected locations of change points are negligible. However, the location of regime
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Figure 4. The figures when dynamic model recalibration is required. Case when negative cumulative
level is detected in data from France in the middle of April 2020 (dotted line) (a). The periodic data effect
(dotted line) appeared in UK data April 2022 (b). The first iteration results are shown in tick dashed lines.
(a) Data from France with correction and (b) UK data periodicity.

changes in the early days is changing for some countries. The common observation for
these cases is their delayed great shock. Such countries are Germany and Japan. Their infec-
tion rate shifted extremely to 2022 due to a strong reduction of the initial wave in 2020.
Thus, when data from 2022 are included, the change points in early 2020 are changed.

There are cases when the model requires enforced recalibration. It is technically easy to
apply dynamic level correction by resetting the process with new values due to the Markov
property. Such case arises in France when data are updated by a reduction of the cumulative
infection numbers in a single day (see Figure 4(a)). Because it is a one step negative correc-
tion, the change point analysis detects only occurrence of the correction, not the amplitude.
Thus, the fit continues to follow the trend of average local probability requiring intensity
resetting. The following recalibration is only a technical operation and its effect on results
is only limited to the magnitude of overall intensity. Another, more complicated correc-
tion of the model is required when the measurement regime is changed to clear weekly
periodicity (see Figure 4(b)).

4, Conclusion

The COVID-19 outbreak was a multiple wave pandemic driven by different viral vari-
ants. The previous sections successfully described the pandemic modelling fitted to the
overall number of infected persons without distinction of data acquisition and report.
However, focussing mainly on modelling, we missed some precise discussion about limi-
tations. Possibly, distributions can be oversimplified, e.g. overdispersion can affect Poisson
and negative binomial in real data scenarios. We also do not comment on different viral
variants and that the instability of reproduction factor can play a role. However, these
additional considerations could be modelled with appropriate data. The simplicity of soft-
ware implementation allows concurrent computation of any sub-variant models. Further
inference conclusions could be derived from a comparison and analysis of aggregated data.
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For this reason, we share the complete software implementation with special supple-
ments part in aim to make possible any further independent implementations. They may
require additional development not considered neither in this work nor in the software.
Another possible extended use is the implementation of geospatial regional modelling to
study local differences and their impact on aggregated global level. This could be eas-
ily implemented, using separate modelling of regional data and following aggregation.
This will improve the precision of predicted overall values by including lagging in time
differences. The simulator source code can be downloaded from here.
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Appendix A. Computed parameters of Poisson distribution for initial
conditions

Both type of distributions, HP and NHP, are used in this work to study of initialisation of COVID-
19 infection spread. Their rates of arrival are studied by MLE. For the HPP, the daily number of
infections during the period of the initial condition gives the rate A of Poisson distribution as it is
shown in Equation (2).

The rates of homogeneous Poisson distribution are computed for two different cases. The first
results are obtained for the whole period from the first detected case in every country until the first
change point after predefined conditions. Despite this estimate being very biased for the time periods
prior last time unit (in our case days ti—,,i = 1, .., n), the quantity »n,—, is quite a good estimate for
the cumulative number of infected at ¢,,.

The homogeneous Poisson rates are also computed for identified sub-period from the interval
until first regime change starting from time zero until the optimal position yielded from change point
tool by At Most One Change (AMOC) criteria. This new period is classified as an initial condition
and notified as Aj¢c

Allvalues are computed by the fitdistr function from the packet MASS and shown in Table A1. The
countries are ordered by a combination of geographical and political factors in initial presumption
of similarities.

The columns are:

A = s.d. shows the values of A with their standard deviation errors for first change point data.
DaysCP; shows how long the first change point data last.

Alc = s.d. shows the values of A with their standard deviation errors for the IC period.

DaysIC shows how long initial condition periods last.

Days.tot shows the number of days for the IC period since 15 January 2020.

Demographics: total population, density

Location index: categorical (factor in R language) variable to separate north (label 1) and south
(label 2) hemisphere.

B. Computing and statistical inference

The first computed parameter is the growth rate r;. The used data are downloaded from the dedicated
Johns Hopkins University repository [34] and it is computed for daily values x; by
Xi — Xi
ri = R 1. (Bl)
Xi—1

Then, the computations can be done after change point segments and their local probabilities
are determined. The important part in accuracy improvements is the automatic calibration of the
branching model. It relies on correction parameter ¢ and the selection of its optimal value relies on
the common measure as mean-squared error (MSE), given in [19] by

1 < -
MSE =~ (i —f(xi))?, (B2)
1

where f(x;) is the prediction that any model f gives for the y; observation. Usually, it is connected
with accuracy parameter Bias

n }-(x) n X
Bias = E A E s
n n

i=1 i=1

by the bias-variance trade-off [19].

The generalised linear model (GLM) regression is used to estimate Ajc dependence on geo-
graphical variables. This model is selected from different scenarios by initially defined predictor
combinations for Log-Gamma, Gamma and Log-Gaussian distributions. The optimal combination



Table A1. Maximum-likelihood fitting of Poisson distribution for the initial condition.

Parameter
Days CP1 Days IC Days.tot Population Density Locat
Country Ats.d. (number of) AcEs.d. (number of) (number of) (in millions) (per m?) (index)
North America
us? 59.4814+1.05 54 0.44740.109 38 44 328 87 1
Florida 6.733+0.67 15 6.733+0.67 15 61 21.5 121 1
California 63.5941.021 61 0.37140.103 35 45 39.5 97.9 1
New York 994.476+6.882 21 48.692+1.935 13 60 8.2 10716 1
South Dakota 4.737+0.499 19 3.778+0.458 18 73 0.9 4.4 1
Texas 8.53840.81 13 7.083+0.768 12 61 29 40.6 1
Canada 86.109+1.16 64 0.611£0.13 36 43 38 39 1
European Union
Germany 3.343+0.309 35 0.533£0.133 30 41 83 232 1
France 125.15141.537 53 0.52940.125 34 42 67 116 1
Italy 6.4584+0.519 24 0.14340.082 21 36 60 201.3 1
Czechia 7.83340.808 12 8.27340.867 1 56 10.7 134 1
Sweden 21.976+0.723 42 0.04+0.04 25 41 10.4 25 1
Netherlands 16+1.414 8 11.714£1.294 7 49 17.4 521 1
Spain 124.571£1.722 42 0.08340.059 24 40 47.4 94 1
Croatia 7.92340.552 26 0.93340.249 15 55 4.1 73 1
Bulgaria 11.643+0.912 14 9.769+0.867 13 65 7 63 1
Greece 17.4214+0.958 19 1.1254+0.375 8 49 10.7 82 1
Austria 222.871+2.681 31 9.3574+0.818 14 54 8.9 106 1
Denmark 20.15441.245 13 7.5£0.791 12 54 5.8 137.6 1
Rest of Europe
United Kingdom 31.65940.879 41 1.374+0.225 27 42 67.9 270.7 1
Russia 1.4+0.176 45 0.11440.057 35 50 146.7 8.4 1
Turkey 103+2.93 12 60.90942.353 1 66 83.1 105 1
Norway 58.588+41.856 17 15.769+1.101 13 54 54 14 1
Far East and Pacific
Korea,South 13.531+0.65 32 1.069+0.192 29 35 51.7 507 1
Singapore 90.045+1.006 89 4.540.289 54 61 5.7 7804 2
Japan 4.281+0.366 32 1.273+£0.241 22 28 126 334 1
Hong Kong 2.87+0.231 54 2.73640.227 53 60 75 6777 2
India 70.265+1.017 68 0.0944-0.054 32 46 1352 408.4 2
South America
(continued)
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Table A1. Continued.

Parameter

Days CP1 Days IC Days.tot Population Density Locat
Country Azs.d. (number of) Acts.d. (number of) (number of) (in millions) (per m?) (index)
Brazil 8.882+0.723 17 3.25+0.451 16 57 210 25 2
Chile 21.143+0.869 28 1.842+0.311 19 57 17.6 24 2
Argentina 36.345+1.119 29 4.9384+0.556 16 63 449 14.4 2
Australia and New Zealand
Australia 29+0.707 58 0.441+0.114 34 44 25.7 33 2
New Zealand 7.593+0.53 27 0.44440.157 18 61 5 19 2
Africa
South Africa 8.28610.769 14 4.769+0.606 13 62 59.6 42.4 2
Kenya 5.478+0.488 23 0.77840.294 9 66 54.9 78 2
Middle East
UAE 10.54+0.409 63 0.76340.142 38 51 9.9 99 2
Kuwait 4.2354+0.499 17 4.312+0.519 16 55 44 200.2 2
Israel 85.371+£1.562 35 3.3331+0.43 18 54 9.5 432 2

Including all states.
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of predictors in any model for every scenario is obtained from a step-wise procedure by AIC statistics,
defined as follows:

AIC := nln(RSS/n) + 2k.
The preselected explanatory variables are the following columns Ajc, Datajc, Days.tot, Population,
Density, Locat from Table Al.

The selection between different scenarios is based on observation for residuals’ heteroscedas-
ticity and finding optimal MSE-Bias proportion by 10-fold crossvalidation. Thus, the GLM final
model relies on Log-Gamma identity link log(E(Y)) = X8 with weights of squared population den-
sity. The final combination of predictors are the location categorical parameter and the fraction
Days.tot/DaysIC. The are confirmed with quite high Z-value probabilities.
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