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Abstract 

The spatial distribution of 665 soil sampling sites in the arsenic contaminated floodplain of the 

Ogosta River in the Northwest of Bulgaria is analysed against geomorphological parameters 

computed from a precise digital terrain model. The study aims at partitioning and 

classifications of hidden patterns of the morphographic features of the river floodplain, which 

to be used for the explanation of the arsenic dispersal in the polluted soils at a further stage. 

The field sites are split into 4 clusters using K-means algorithm with the following variables: 

elevation, distance to the river, vertical distance to channel network, multiresolution index of 

valley bottom flatness and a modified topographic SAGA wetness index. It is found that each 

cluster is related to a distinct area in the valley and is in good agreement with the distribution 

of the previously determined geomorphological units, as well as with the extent of a simulated 

historic flood. 

 

Keywords: Spatial clustering, K-means clustering, River pollution, Digital Terrain Model 

(DTM), Floodplain, Ogosta River 

1. INTRODUCTION  

The spatial distribution of trace metals in contaminated soil of river valleys is often determined 

by pollutant transport with suspended river sediment during flood events. This is the usual case 

when rivers are affected by mining activities due to continuous or accidental release of mine 

waste (Bird et al., 2010). Once released, the metal contaminants are mainly transported in a 

particulate-associate form (Martin and Meybeck, 1979). Their dispersal, storage and 

remobilization in the fluvial system can be directly related to sediment transport processes, 

styles of the river channel and floodplain sedimentation, and flooding regime (Macklin et al., 

2006). The relationship between the distribution of heavy metals in the soils and the fluvial 

forms of relief in polluted floodplains is presented in numerous researches (Taylor and Hudson-

mailto:atchorbadjieff@math.bas.bg
mailto:tsvetankotsev@mail.bg
mailto:stoyanovavelimira@gmail.com


Tchorbadjieff, A. et al / European Journal of Geography 10 2 27-41 (2019) 

European Journal of Geography - ISSN 1792-1341 © All rights reserved  28 

Edwards, 2007; Clement et. al., 2017). This relationship is the basis of the geomorphological-

geochemical approach for exploring the distribution of heavy metals in river valleys, developed 

by Macklin et al. (2006). It takes into consideration parameters related to sediment transport 

and accumulation such as height above the river channel, distance from the river bank, 

frequency of flooding, sediment age and sedimentation conditions. Some studies on metal 

contamination of river systems link pollutant dispersal with topographic features of the river 

floodplain (Dennis et al., 2003; Ciszewski et al., 2012), while other researches consider mostly 

the extent of floods (Brewer et al., 2005). 

Usually, similar researches in geomorphology and Earth surface dynamics rely on 

advanced computational methods for analysis of different types of geomorphological and 

geomorphographic units, alone or in combination with other geomorphometric parameters. For 

instance, a Multiresolution Index of Valley Bottom Flatness (MRVBF) is used to delineate 

geomorphologic and hydrologic units, and for mapping depositional areas (Gallant and 

Dowling, 2003). A simple slope-discharge model using Support Vector Machine (SVM) is 

introduced for mapping and modelling of the channel patterns of the Columbia River basin, 

USA (Beechie and Imaki, 2014). A nested hierarchical scheme is used for characterization 

several coastal river systems in New South Wales (Brierley and Fryirs, 2000). The models 

show river interpretation of character and behaviour with inter-related scales based on 

catchments, landscape units, river styles and geomorphic units. Similarly, a hierarchical 

scheme is used for estimation of habitat dependence on river geomorphology (Thomson et al., 

2001). Other interesting results are obtained after comparison of K-means clustering with 

hierarchical one for 3D data from Terrestrial Laser Scanning of Landslide in Dunning et al. 

(2009). 

The selected methods for data analysis are case dependent mainly due to the specificity 

of data and uniqueness of observed river beds and riparian terrain. Moreover, the usage of more 

sophisticated methods has become a very common part of similar research due to the rapid 

development of Machine Learning (ML) methods and growing data volumes. Particularly, in 

geomorphology, three different approaches are mainly used for systematic analysis of available 

data complexity - classification and cataloguing; cluster analysis; and regression and 

interpolation (Valentine and Kalnins, 2016). The classification is usually selected for searching 

any predefined patterns, as demonstrated by the channel modelling for the Columbia River 

basin, USA (Beechie and Imaki, 2014). Conversely, clustering is considered when the process 

is without knowledge of clusters and their number, i.e. it is unsupervised. The output is data 

partition in two or more parts with similar patterns, but with dimensions reduction. Finally, 

regression and interpolation methods are used to estimate relations between physical 

parameters and to produce predictions.  

In more complex cases, regression could be applied using the outcome of data 

classification or clustering. This is the case for the pollutant data from the mining-affected 

valley of the Ogosta River in the north-western part of Bulgaria, obtained in several campaigns 

in one decade. The collected data increased its volume over time and spread over a large non-

homogeneous region. In this regard, the present study aims at dividing the valley floor into 

more homogeneous sections regarding the conditions for metal-contaminant dispersal. For this 

purpose, the K-means clustering algorithm is selected for unsupervised grouping of the 

available observed sites as a required step before implementation of regression to reveal the 

spatial distribution of heavy metals in soil. 

2. MATERIALS AND METHODS 

2.1. Study area 
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The investigated area is located in the upper stretch of the Ogosta River valley between the 

village of Martinovo and the Ogosta dam lake (Figure 1). It covers an area of the valley floor 

of around 14.5 sq. km with a mean elevation of 491 m and an average inclination of slopes 

about 3˚. 

Figure 1. Designation of the mines and the soil sampling sites within the investigated section of the Ogosta Valley  

The valley extends over а part of the Western Balkan mountain range and Western Fore-

Balkan. It includes territories of three municipalities: Chiprovtsi, Georgi Damyanovo and 

Montana. Extraction and dressing of iron-ore and lead-silver-ore took place near the town of 

Chiprovtsi in the upper reach of the Ogosta River from 1951 to 1999. Due to a tailings dam 

failure in 1964 and to the mine waste discharge into the Ogosta River in the period 1964-1979, 

the floodplain soil in the Ogosta Valley received significant amounts of arsenic and heavy 

metals (Jordanova et al., 2013). 

2.2. Soil sampling network  

This study uses the data from two investigations on soil contamination in the Ogosta Valley, 

conducted in 1994 (Spectroteh, 1994) and 2010-2017 (Mandaliev et al., 2014; Simmler et al., 

2016). They are considered compatible due to the same area of investigation, and the 

comparable concentrations of trace elements found at adjacent soil sampling points of the two 

studies. The first research applies a regular soil sampling grid with cell size 200 x 200 m. It 

well characterizes the distribution of arsenic in the less polluted sections of the valley which 

are more distant from the Ogosta River. However, the sampling grid is not enough detailed to 

reveal the diverse spatial pattern of the intensive contamination in the lower floodplain next to 

the river. The sampling concept of the later investigation complements the field site network 
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of the earlier study, focusing on the more contaminated areas. It takes into account primarily 

the floodplain morphography and does not follow a regular grid. The combined soil sampling 

network from the two studies has a higher density in the low river floodplain and is less detailed 

in the periphery of the bottom of the valley. Its irregular pattern reflects in a better way the 

controls of the contaminant dispersal in the valley, compared to the sampling nets of each of 

the two studies alone. After application of some data quality procedures, the final number of 

sampling locations is reduced from 699 to 665, with 254 observed sited during the campaign 

in 1994 and 411 points from this in 2012-2017. 

2.3. Acquired data 

A set of five geomorphometric variables are used to identify the sites from the combined soil 

sampling network (Table 1). The parameters were computed from a Digital Terrain Model 

(DTM) with pixel size 1x1 m, generated from Airborne Laser Scanning Data obtained in 2013. 

Some of them give information on the lateral and vertical distance from the Ogosta River as 

the primary source of soil contamination. Due to this, the model is centred geospatially around 

the river, and every site is described uniquely in all three coordinate directions. Other 

parameters characterize the potential of deposition of sediment and particulate matter within 

different fluvial landforms during inundation. Two additional parameters are applied to control 

the results of the clustering - delineated morphographic units of the valley floor and numerical 

estimates of the flooding in 1964. 

Table 1. Computed geomorphological parameters and units.  

Type Parameter Additional description 

Variables used for clustering 

Numerical Digital Terrain Model (DTM) (1x1 m) Altitude above the sea level, in meters 

Numerical Distance to the river The distance between a sampling site and the 

Ogosta River in the Cartesian coordinate system, 

in meters. 
Numerical Vertical distance to channel network 

(VDCN) * 
Altitude above the channel network level, in 

meters.  

Numerical 

index 

Multiresolution index of valley bottom 

flatness (MRVBF) * 

The index was computed from DTM (1x1 m) is 

used for mapping depositional areas (Gallant and 

Dowling, 2003). 

Numerical 

index 

Modified Topographic SAGA Wetness 

Index  (mTWI)* 

The index gives information about the potential 

soil moisture (Conrad et al., 2015).  

Variables used for validation of the results of the clustering 

Numerical Inundation depth Simulated inundation depth during the flood in 

April 1964. 

Category Geomorphographic units (GMU)* Identified floodplain units using cross-

classification and tabulation of terrain 

classification index of lowlands (TCIlow) (Bock 

et al., 2007) and Vertical distance to channel 

network (in m) (Tcherkezova, 2015) using 

SAGA GIS (Conrad et al., 2015).  

  * Computed with SAGA GIS software (Conrad et al., 2015, www.saga-gis.org/) 

 

Simulations of major historical flood events during the mining period are performed to 

outline the areas where the arsenic-contaminated river sediments are likely to have been 

accumulated. The inundation in April 1964 had the highest impact due to the entering in the 

river of 100 000 m3 slurry with a high concentration of arsenic. Its span and water depth are 

used to characterize the spatial distribution of the contaminant in the floodplain soil. The 

http://www.saga-gis.org/
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hydrological modelling of the high flow event is performed with the software AGWA 

(Automated Geospatial Watershed Assessment) and its constituent model SWAT (Soil and 

Water Assessment Tool) (Arnold et al., 2012). The calibration of the model is conducted with 

daily precipitation data and river discharge records for several storm events in the Ogosta 

Valley in the period 2002 – 2005. The software HEC-RAS version 4.1.0 is applied for the 

hydraulic modelling of the historical flood events (Brunner, 2010). The model is calibrated 

with data on the extent of the river inundation on April 19, 2014.  

Due to requirements of the K-means clustering algorithm, the selected model parameters 

for computations are constrained to combinations of only four numeric geomorphological 

variables and the distance to the river (see Table 1). The remaining two parameters, flooding 

estimates and the geomorphic units (GMU), are preserved for verification of differences 

between clusters. Because the GMUs are categorical data, they are excluded from direct 

computations (see Table 2). However, the GMUs represent very well the geomorphographic 

landform patterns and therefore their distribution in obtained clusters is used for validation. In 

addition, the selected data is restricted only to these sites which GMU units do not exceed the 

relative height above the channel network level up to 6,5–7 m. The estimates from flooding 

simulations are another useful control parameter. The dynamics of flooding is dependent on a 

number of parameters such as rainfall intensity, floodplain and channel morphology and 

deposits, river bank characteristics, geometry and dynamics of stream channels, and others. 

Thus, it is expected that geomorphologic units in cluster distribution are in good agreement 

with flooding predictions. However, because the amplitude of flooding is also dependent on 

the available water amount, the expectations of complete overlapping could be misleading. 

Table 2. Description of GMU categorical values 

GMU 

index 

Description 

100 Bankfull channel zone: stream bed, backwater areas, abandoned channels and valleys, 0 - 0,5 m 

101 Bankfull channel zone, active floodplain (T0-l) fragments with backwater areas, abandoned channels, 

anthropogenic areas near Ogosta reservoir, 0,5 – 1 m 

102 Active floodplain (T0-l) fragments with small locale depressions, abandoned channels, river banks of 

recent and abandoned channels, embankments (natural and anthropogenic), sand bars, levees, 

anthropogenic areas near Ogosta reservoir, 1–1,5 m 

103 Active floodplain (T0-l) fragments with small locale depressions, more or less coarse structure with 

convex micro-forms, sand bars, levees, low embankments (natural and anthropogenic), anthropogenic 

areas, 1,5–2 m 

104  Active floodplain (T0-l) fragments, more or less coarse structure with convex micro-forms, sand bars, 

leaves, low escarpments, embankments (natural and anthropogenic), bank of roads, anthropogenic 

areas, 2–2,5m 

105 

 

Active floodplain (T0-l) with small convex micro-forms, low escarpments, river banks, embankments 

(natural and anthropogenic), anthropogenic areas, 2,5–3 m 

200 Floodplain (T0-l) (fragments) with coarse structure, escarpments, bank of roads, embankments (natural 

and anthropogenic), 3 – 3,5 m 

201 Floodplain T0-h (fragments) with coarse structure, alluvial fan deposits, escarpments, bank of roads, 

embankments (natural and anthropogenic), 3,5–4 m 

202 Floodplain T0-h (fragments) with coarse structure, alluvial fan deposits, escarpments, bank of roads, 

embankments (natural and anthropogenic), 4–4,5 m 

203 Floodplain T0-h (fragments) with coarse structure, alluvial fan deposits, escarpments, a bank of roads, 

embankments (natural and anthropogenic), 4,5–5 m 

204 Floodplain T0-h (fragments) with coarse structure, alluvial fan deposits, escarpments, bank of roads, 

embankments (natural and anthropogenic), 5–5,5 m 
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205 Floodplain T0-h (fragments) with coarse structure, alluvial fan deposits, escarpments, bank of roads, 

embankments (natural and anthropogenic), 5,5–6 m 

206 Floodplain T0-h (fragments) with coarse structure, alluvial fan deposits, escarpments, bank of roads, 

embankments (natural and anthropogenic), 6–6,5 m 

300 Escarpments, alluvial fan deposits, colluvial deposits, slopes, up to 6,5–7 m relative height 

2.4. Methods 

Dealing with similar large parameterized data is not trivial and classification of area stretched 

over large irregular grids is required as a first step in the analysis. Moreover, the data can be 

acquired from different sources, even from unexpected historic ones (Weis and Hronček, 

2017). The expected result is a reduction of data dimensions by grouping of the observed sites 

by selected morphographic parameters. The K-means clustering is selected as the most 

straightforward and convenient solution in this case. An important property is that it converges 

very quickly and it is very effective with big data. This is a serious advantage compared to 

hierarchical clustering methods in cases of large multivariate datasets. Nevertheless, it is a 

method based on grouping data around K-number centres named as centroids. This 

decentralized structure enables concurrency between them and algorithm works by having the 

clusters compete with each other for the right to own the data points. This classifies the model 

as a competitive learning algorithm and any predefined classification is not required (MacKay, 

2003).   

The K-means clustering is an algorithm that split N-number of data points of an I-

dimensional space (number of parameters) to k clusters. Every cluster consists of vectors x and 

any of them has I-number of elements xi. The elements that constitute every cluster are centred 

around the centroid, parameterized with i-sized vector m(k) of mean values. The optimal 

distribution of the group of n points {x(n)}n≤N around the centroids is determined by the minimal 

distance between them and mean values. There are many different metrics for measuring this 

distance, mainly related to inter-data dependency. When observed data is independently 

distributed over irregular terrain, the Euclidean distance metric is good enough for designed 

computations. It is a quadratic distance between two objects i and j:  

𝑑𝑖,𝑗 =
√∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)

2𝐼
𝑘=1

𝐼
 

For initialization of the K-means algorithm, the number of expected mean values m(k) is 

required. The expected mean values could be initialized either by preselected values or in 

random. Then, all points are set to the cluster with minimal distance to its centroid. After the 

points are distributed to clusters, the values of m(k) are recomputed and updated. Then in case 

of need, all points with adjusted minimal distances to the new centroid values are replaced to 

the newly determined clusters. The process proceeds until no assignments are available. It is a 

finite process because the algorithm always converges to a fixed point (MacKay, 2003). 

The outcome of the algorithm depends on the initial conditions and the characteristics of 

the initial data set are very important. The algorithm is not very helpful when expected groups 

have a specific shape, position or their populations are very different in size. In these cases, the 

outcome is very difficult to be estimated and usually is wrong. Other difficulties in 

implementing K-means clustering may arise due to data distribution, especially in case of the 

existence of overlapping area between clusters. In this case, when the number of shared points 

is small, their careful removal could be useful. But, in case of the removal of a large number 

of similar points, the model overfit could be achieved very easily. 

Another very important input parameter is the initial number k of expected clusters. This 

number could be preselected by prior knowledge, similarly to some previous works (Piloyan 
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and Konečný, 2017). However, this approach is not applicable without a profound knowledge 

of the distribution of observed data. Likewise, such presumption might not yield an optimal 

clustering of the available data, resulting in a lack of global optimum. Finally, it is selected a 

numerical procedure to determine automatically the optimal number of clusters k. For this 

purpose, the algorithm must be run for a range of 1:Kmax possible number of clusters and select 

the optimal value based on numeric criteria.   

The most popular criteria to determine k is the total within-cluster sum of square (wss). The 

optimal number of centroids is located on the bend (knee) of the curve of values of wss in range 

1:Kmax. Because the overall variations always decrease with expanding the number of clusters, 

the decision is based on visual detection the value of k for which the rate of decrease sharply 

shifts. This makes the method ambiguous in many cases. For this reason, the average silhouette 

method is selected as an alternative criterion (Rousseeuw, 1987). It is a ratio scale of how 

similar an object is to its own cluster compared to other clusters. The silhouette ranges from 

−1 to +1, where a high value indicates that the object is well matched to its own cluster and 

poorly matched to neighbouring ones. Thus, the optimal number of clusters k is determined by 

the highest value of average ratios of all points (average silhouette).   

Finally, the clustering algorithm is supposed to be implemented simultaneously on 

multivariate data. But the parameters have different scales with very big differences. This 

imposes domination of the values with higher mean values over these with lower, due to strong 

dependency on initial conditions. To avoid similar variable variations, the input data is 

standardized prior to clustering (Davis, 2002). Moreover, the transformation reduces the impact 

of outliers and allows comparing a sole observation against the mean.  

There are many implementations of K-means clustering for almost all mainly used 

programming languages and scripts. However, it is developed a special script for R ({R Core 

Team}, 2019). It executes consecutive procedures for automated computation of different 

cluster options. The program is an envelope over the available implementations of K-means 

cluster in R. The mainly used function is kmeans from the stat packets of R. For determination 

of the optimal number of clusters are used functionalities of the Factoextra R Package 

(Kassambara and Mundt, 2017). Finally, for computations of geospatial functionalities are 

libraries related to sp package (Bivand et al., 2013). 

3. RESULTS  

The computations of clustering with morphological data of the Ogosta Valley are automatized 

and quick. However, the estimation for validity and agreement to the reality is not so 

straightforward because of the lack of predefined classification, despite some intuitive 

assumptions for the existence of a distinct cluster upstream the village of Beli Mel and the 

separation of theactive river floodplain from this part of the valley bottom which is more distant 

from the river. For this reason, the verification procedure relies mainly on the resilience of 

acquired clusters to changes and their compliance with the geomorphographic units of terrain, 

and the extent and depth of the flood in 1964. 

Multiple numbers of cases with a different combination of input data and parameters are 

observed. The parameters used together or in a different combination, are the distance to the 

river, VDCN, MRVBF, DTM and mTWI. The algorithm in the initial step is run for all 

parameters over the complete dataset. Then, for further development, additional computations 

with different combinations of parameters and subsets of data points are performed. The 

selection of data and parameter combinations is determined by previously acquired results. In 

some cases, a minor number of data points which are not clearly assigned to any centroid are 

additionally removed from the data set. The outcome is improved clustering and clarified 
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cluster properties. Because of the large number of computed case scenarios, they are given 

classification names which are shown in italics letters further in the text. 

3.1. Initial clustering  

The clustering process commenced for the complete data set and with all five parameters. This 

model is referenced as initial clustering. The optimal number of clusters, in this case, is yielded 

to four by the silhouette method (Table 3). The model clearly divides the valley into two parts 

with different geomorphological characteristics, which is one of its main advantages. The 

narrow stretch of the valley upstream the settlement of Beli Mel is occupied by the cluster 1 

(Figure 2).  

 

Figure 2. Spatial distribution of the clusters computed with all predefined parameters and data 

The other three clusters are mainly located downstream of the village, where the valley 

floor becomes much wider. Cluster 2 consists of sites located further from the river and higher 

above its channel. The data points of cluster 4 tend to be close to the river, while cluster 3 is 

allocated a little further from the river banks. However, the two groups of data points are less 

clearly separated within the valley, compared to clusters 1 and 2. However, four data points 

are distinguished and may be classified as spatial outliers. They are estimated as notably 

different by two different classifications performed in the next steps of the analysis. Three of 

the points are located in the area upstream the settlement Beli Mel. They are classified as 

belonging to clusters 3 and 4, due to their location very close to the river. The distinction 

between the three points is mainly a result of very high MRVBF and differences in VDCN. The 

last spatial outlier is a point belonging to cluster 1 but located in the area downstream the Beli 

Mel. The main reason for inclusion in cluster 1 is the combination of a very high value of the 

VDCN and the short distance to the river. These cases show the sensitivity of the model. 

To verify that the obtained differences between computed clusters are mainly related to 

the geomorphographic characteristics of the valley, а comparative analysis on parametric 

distribution is applied in addition to spatial analysis. The distribution of the data points of each 

cluster between the GMUs display clear differences between the obtained clusters, as it is 

shown in Table 4 and Figure 3. 
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Table 3. The mean values and standard errors (in brackets) of the geomorphological parameters calculated by 

clusters. 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 

MRVBF   1.30 (± 1.00)   2.04 (± 1.26)  3.70 (± 0.89)  1.04 (± 0.82) 

VDCN    5.20 (± 2.25)   6.63 (± 1.90)  3.00 (± 1.12)  2.59 (± 1.20) 

DTM 392.1 (± 63.9) 241.0 (± 30.5) 226.5 (± 31.1) 229.8 (± 33.6) 

  mTWI   3.70 (± 1.20)   4.66 (± 1.12)  5.15 (± 0.66)   3.55 (± 1.1) 

Distance to Ogosta 54.87 (± 38.9) 338.8 (± 143) 165.9 (± 102) 85.36 (± 83.9) 

 

Cluster 1 is distinctly separated in the mountainous part of the valley upstream the Beli 

Mel. This cluster is the one with the highest altitudes. Cluster 2 populates mostly the upper 

floodplain (T0-h) and the periphery of the valley floor downstream the village of Beli Mel. This 

area is dominated by the GMUs 200-300 with an elevation higher than 3 m above the river. 

Clusters 3 and 4 occupy primarily the active floodplain (T0-l) in the same part of the valley 

where GMUs 102-105 are well developed at an elevation lower than 3 m. The difference 

between the two subsets can be seen in the predominance of the sites located in the bankfull 

channel zone (GMUs 100-101) for the cluster 4, and in the upper floodplain for the cluster 3 

(Table 4).  

The obvious conclusions of differences can be easily confirmed with the Chi-square test 

for independence between the cluster groups. The result shows extremely low probabilities of 

any similarities on GMU distribution between clusters (the Chi-square is equal to 332.16 with 

9 degrees of freedom). 

Table 4. Distribution of the data points of each cluster between the geomorphographic units  

Morphographic units Cluster 1  
Numbers 

Cluster 2 
Numbers 

Cluster 3 
Numbers 

Cluster 4 
Numbers 

100-101 4 0 10 23 

102-105 19 3 175 116 

200-206 40 84 80 33 

300 19 58 0 1 

Total 82 145 265 173 

 

 

Figure 3. Bar chart of GMU frequency distribution over all 4 clusters 

Additional computations with selected parameters are performed to estimate their 

particular impact on the clustering model. When the parameters VDCN and MRVBF are only 

used, the data set is clearly split by the position above the river channel. In this case, the optimal 

solution is a clustering of 3 groups of data points which are centred over the river with a 

difference in the height above the river bed. However, all scenarios yield clusters without clear 
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distribution by distance to the river. The inclusion of mTWI only interchanges a small number 

of points between clusters and neither improves the spatial distribution nor clears the separation 

by parameters in clustering. When the distance to the river is added to VDCN and MRVBF, the 

number of clusters is shrunk to 2, but the difference between them shifts mainly to the distance 

to the river.  

The cluster model with DTM, VDCN and mTWI distinguish 4 clusters concerning terrain 

irregularities. The DTM turns to be a very important contributor to the spatial distribution of 

the data points, projecting the serious decrease of the absolute terrain altitudes of the valley 

floor downstream the river course. Thus, with the inclusion of the DTM, the model begins to 

follow not only the relative position to the river determined by the distance to and the height 

above the river channel but also the altitude differences across the whole valley. The addition 

of the distance to the river to the model orientates it to the river floodplain. Finally, the 

inclusion of the mTWIonly improves the precision of the inter-cluster borders, but do not 

change the main differences between clusters. 

3.2. Second clustering  

In order to refine the clusters 2, 3 and 4, the data points upstream the village of Beli Mel are 

removed and the analysis is performed only with the sites located in the wider section of the 

valley, excluding the spatial outliers of clusters 3 and 4. Regarding the spatial outlier of cluster 

1, it does not impact the following computations and it is excluded for simplicity from overall 

statistics. Thus, the dataset is reduced to 581 different sites and the performed clustering with 

this data will be referenced as second clustering in the following text. The new run of K-means 

clustering with all five parameters confirmed the optimal number of clusters equal to 3. A small 

number of points shifted from and to cluster 2. The leading parameter by which points are 

mostly changed in-between clusters is the vertical distance. The sites with a lower altitude are 

replaced by the ones with higher elevation from cluster 3 and cluster 4. For the rest parameters, 

the mean values remained with minor changes. The resulting new GMU distribution of adjusted 

groups is shown in Table 5.   

Table 5. GMU distribution for K-means clustering with 3 clusters. The changes related to every group from the 

previous distribution are shown in brackets. The changes are revisited for removed samples.  

GMU Range 
Cluster 2 
Numbers 

Cluster 3 
Numbers 

Cluster 4 
Numbers 

100-101 0 (-) 10 (-) 22 (-) 

102-105 0 (-3) 171 (-3) 122 (+6) 

200-206 88 (+4) 72 (-8) 37 (+4) 

300 58 (-) 0 (-) 1 (-) 

Total 146(+1) 253 (-11) 182 (+10) 

 

Despite the changes, the profiles of obtained clusters from initial clustering are preserved. 

Even more, the changes clarified distributions sending some of the points to more appropriate 

groups. For instance, all the three sites available in cluster 2 and located in the active floodplain 

(GMU 102-105) are substituted with other ones from the upper floodplain (GMU 200-206). 

This distribution is confirmed with the results from the simulated flood event in 1964. Because 

cluster 2 mainly consists of sites which are remote and high above the river, the expected risk 

of flooding is very low. Only one site from this group is found within the flood area with an 

inundation depth of almost zero. Conversely, the clusters 3 and 4 are intensively flooded across 

the valley (Figure 4).  
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Figure 4. Combined histograms of the estimated inundation depth during the flood in 1964 for the cluster 2 

(black), cluster 3 (dark grey) and cluster 4 (light grey). 

3.3. Third clustering  

Тhere are several reasons for additional classification for cluster 3 and cluster 4. Firstly, they 

cannot be spatially separated very clearly because the two groups of data points share a 

common area in the floodplain. Secondly, significant shares of the sites of both clusters are 

inundated in 1964 according to the flood simulation, which is evidence that they populate 

similar areas in the active floodplain. 

The new clustering is run for two centroids which are predefined from the previous two 

models. It is performed on the sub-dataset consisted of the points of clusters 3 and 4 computed 

in the second clustering. The outliers determined for the first model are not considered in the 

analysis. The parameters MRVBF, DTM and mTWI are used in the third scenario. 

The new clustering almost repeats the initial results. Only nine sites changed their 

classification in-between both clusters. They interchanged their groups only to improve 

precision, but without to cause profile changes. As a result, the points are clearly grouped by 

MRVBF, which reflects the terrain irregularities (Figure 5). 

 

Figure 5. Distribution of clusters 3 and 4 obtained by scenario for two centroids, and MRVBF, DTM and 

mTWI, presented on the map of valley bottom flatness 
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However, the silhouette method shows that the partition of the selected data sample on 

three parts is more optimal. A new model is elaborated for three centroids and for the same 

parameters MRVBF, DTM and mTWI. We name this model as third clustering. Likewise, 

despite the minimal gained optimizing effect, the reshuffling of points to three clusters make a 

big difference. Most of the sites of cluster 3 (200 of 253) with high MRVBF values remained 

in the newly computed cluster 5-1. Almost all remaining sites in cluster 3 (50 from 53 

remained) are included in the intermediate cluster 5-2. Conversely, the sites of cluster 4 

populate mainly cluster 5-2 (72 of 171) and cluster 5-3 (98 of 171). This new cluster 

configuration, similarly to the previous variant, splits points mainly by the valley bottom 

flatness (Figure 6). However, the new configuration does not produce clear spatial 

differentiation between clusters 5-2 and 5-3 within the floodplain, as well as regarding the 

depth of the simulated inundation. 
 

 
Figure 6. Distribution of clusters 5-1, 5-2 and 5-3 on the map of the valley bottom flatness 

3.4. Stability and overfitting of the clustering models  

All obtained models are tested for overfitting and stability. For this purpose, every clustering 

model is recomputed more than 1000 times with different sample splitting. The samplings are 

produced with a random selection of a ¾ part of data points in every cluster after independent 

trials. The criteria for stability are the reproducibility of the recomputed optimal number of 

centroids and the cluster classification of every data point after every repetition. The results of 

the tests confirm the stability of the obtained model with 4 clusters yielded from the initial 

clustering - the optimal number of clusters of four is yielded in about 85% of tests and the 

number of interchanging points is below 5% for every cluster.  

However, the repeated computations of the third clustering show very strong variability – 

the optimal number of clusters is confirmed in less than 70% of tests and data variability is 

above 40% for every cluster. The main reason for this instability is the decrease in the 

significance of DTM and VDCN on the reduced data set. Thus, the model degrees of freedom 

are reduced and the newly computed models have more parameters that can be justified by 
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data. This classifies the process of multiple repetitions of K-Means clustering as not suitable 

for improvement by reduction of parameters. 

4. CONCLUSIONS 

This paper presents an approach for grouping the data points of a soil sampling network to 

support the spatial analysis of metal contamination of soil in a fluvial environment. K-means 

clustering is used for grouping the available points by five morphographic and morphometric 

variables, e.g. altitude, distance to the river, vertical distance to channel network, 

multiresolution index of valley bottom flatness, and modified topographic SAGA wetness 

index. It results in grouping of the sampling sites in the Ogosta Valley into four parts which 

are attached to distinct areas in the valley floor with specific sedimentary environment. The 

altitude has the most significant impact, dividing the valley floor into two morphologically 

contrasting sections: a narrow mountainous part with well-developed upper floodplain, and a 

wide section downstream of it, with a broad lower (active) floodplain. The soil sampling sites 

in the wider part of the valley are well distinguished between the upper and lower floodplains 

according to their distance to the river channel and the vertical distance to it. The two clusters 

located in the active floodplain differ mostly by the values of the valley bottom flatness but are 

not so clearly separated in the space. The attempts to do some new grouping in-between the 

two clusters make the clustering model unstable.  

The applied algorithm for grouping and classification of big-sized geomorphological data 

with K-means clustering is fast and easy to compute, as it requires up to four computational 

iterations. The outcome is found to be in good agreement to the general properties of the terrain. 

The model is consistent with the previously determined geomorphographic units in the valley, 

and with the extent and inundation depth of a simulated historic flood event. However, the 

effectiveness is strongly dependent on the appropriate selection of the parameters and their 

independent and regular spatial distribution. In case of the existence of dependency in data, 

correction must be applied to the selected distance measure. Repeated usage of K-means 

clustering on already classified groups may be useful for better understanding and discovery 

of hidden patterns and properties. However, the results must be taken very carefully because 

of the risk of overfitting.  

The present algorithm can be applied for producing more homogeneous statistical samples 

of soil sampling sites to find regression models of the spatial distribution of the heavy metal 

concentrations in soil, depending on the topography of the river valleys.  
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