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Abstract. The topic of this work is the supercritical geometric reproduction of particles in the model of a Markov branch-
ing process. The solution to the Kolmogorov equation is expressed by the Wright function. The series expansion of this
representation is obtained by the Lagrange inversion method. The asymptotic behavior is described by using two differ-
ent equivalent forms for the Laplace transform. They include the computation of the limit distribution and its moments.
The exact formula for the asymptotic density is written in terms of the reduced Wright function. In particular, when the
ultimate extinction probability q = 1/2, the density of the limit random variable is given by the incomplete gamma
function.
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1 Introduction

The special functions provide a family of power series probability distributions [2, 9], especially in the rep-
resentation of stable distributions [22]. Many particular cases of the Wright function 1Ψ1(α, a;β, b; z) arising
in probability theory are considered in [17]. In the model of the Markov branching process (MBP) with geo-
metric reproduction of particles, the Lambert-W and Wright functions are part of solutions to the Kolmogorov
equations [20]. Another special function, the Fox-H function defines the limiting behavior of MBP with re-
production given by the Siguya distribution [12].

Usually, the general special functions take part in fractional calculus [11]. Initially, Wright [24] defined the
function φ(β, b; z) only for β > 0 and then extended its definition for β > −1 in [25]. The Wright function
is classified into the first and second kinds when β > 0 and β > −1, respectively. The Wright function of the
second kind is considered in the survey paper [14]. It is noted there that the first-kind Wright function is of
exponential order, but that of the second kind is not, and, naturally, they have different asymptotic behaviors.
The analytical properties and applications of the Wright function are developed in [5].
∗ This research has been partially supported by the Bulgarian National Science Fund, grant No. KP-06-H22/3.
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Branching processes describe the systems of particles with the phenomena of extinction and multiplication
[1, 6, 18]. Let X(t), t > 0, be a time-homogeneous MBP starting with one particle as the initial condition.
The possessed Markov property is due to the assumption of the exponentially distributed lifetime of particles
with constant parameter K > 0. Thus, for a unit number of particles, X(0) = 1, the time interval to the
next splitting time moment is exponentially distributed with density Ke−Kt. Then, at any time t > 0 when
the number of particles in the system is X(t) = n, n = 2, 3, . . . , the time interval to the next splitting time
moment is exponentially distributed with density nKe−nKt as the minimum of n independent exponentially
distributed random variables.

Another important part in addition to the time inflation of the MBP is the reproduction law. To create
a generalized model, any known probabilistic distribution can be assumed as a reproduction model. In this
text the offspring number is defined by a geometrically distributed integer-valued random variable η. The main
parameter of the MBP is the mean m = E[η]. In this parameterization the probability mass function of the
reproduction is given by

P(η = k) =
mk

(1 +m)k+1
, k = 0, 1, . . . , m > 0. (1.1)

A possible practical candidate for implementation is statistical physics, where under appropriate conditions,
the geometric distribution is also associated with the Bose–Einstein distribution [7, 19].

The model of the time-homogeneous Markov branching process with geometric reproduction of particles
was introduced in [20]. The obtained solutions were for the probability generating function (p.g.f.) F (t, s) :=
E[sX(t)] in critical and subcritical processes. In both cases the results consist of special functions. In the
critical case the p.g.f. F (t, s) is defined by the composition of Lambert-W and linear-fractional functions. The
probability mass function (p.m.f.) of X(t), t > 0, is expressed by the values of the Lambert-W function at the
point x = eKt+1. The continuity of the p.g.f. F (t, s) in the neighborhood of the point s = 1 is studied in [21].

The p.g.f. F (t, s) in the subcritical case is expressed as a composition of Gauss hypergeometric
2F1(a, b; c; z) [9] and Wright 1Ψ1(α, a;β, b; z) functions [16, 17]. The conditional limit distribution is de-
fined in explicit form. It is a new unimodal integer-valued distribution supported by {1, 2, . . . }. Its index of
dispersion depends on the solution of a transcendental equation.

The supercritical MBP has the remarkable behavior: the mathematical expectation E[X(t)] increases ex-
ponentially to infinity, but the ultimate extinction probability is still positive and less than one,

q := lim
t→∞P

(
X(t) = 0

)
=

1

m
, 0 < q < 1, m > 1. (1.2)

The normalized number of particles Z(t) = X(t)/E[X(t)], being a martingale, converges to a random
variable W � 0 [1, 6, 18]. In this work, we obtain an explicit form of its Laplace transform ϕ(λ) and of the
absolutely continuous part w(x) of its probability distribution.

Section 2 is devoted to the solution to the backward Kolmogorov equation. The probability mass function
P(X(t) = n), n = 0, 1, . . . , is defined precisely by the Fáa Di Bruno formula [10] applied to the implicit
solution. The explicit solution is defined by applying the Lagrange inversion method in Section 3. Then in
Section 4, we deliver the Laplace transform of the limiting random variable (r.v.) W � 0. It is expressed
by the Wright function showing clearly that P(W = 0) = q. The absolutely continuous part w(x) of its
probability distribution is given by the reduced Wright function φ(β, b; z) of the second kind [5, 14]. Finally,
in Section 5, we apply the second method to define the Laplace transform ϕ(λ) in the form of power series
over the λn. The coefficients in front of λn give exactly the moments of the limiting random variable W � 0.
Section 6 is devoted to the applications and explicit solutions for the particular cases q = 1/3, 1/2, 2/3. When
q = 1/2, the density function w(x) can be computed applying the incomplete gamma function or, equivalently,
by the error function erfc(x).

The main convenience of the obtained results based on special functions is the computation simplicity
using numerical evaluation [13] and mathematical software tools. The Lagrange inversion method makes the
usage of enumerative combinatorics methods indispensable in this study. The survey of the Lagrange inversion
formula with applications to combinatorial and formal power series identities is given in [4] and [15].
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2 Supercritical geometric branching

The probability generating function of the reproduction law (1.1) is a linear-fractional function,

h(s) =
1

1 +m−ms
, h′(s) =

m

(1 +m−ms)2
, h′′(s) =

2m2

(1 +m−ms)3
.

The equation h(s) = s has two solutions, s1 = 1/m and s2 = 1, where m = h′(1). The value s1 = 1/m
is a fixed point for the p.g.f. h(s) and its first derivative h′(s). The branching mechanism is classified as
subcritical if 0 < m < 1, critical if m = 1, and supercritical if m > 1.

This classification is in accordance with the notion of extinction probability. The subcritical and critical
MBPs extinct certainly. In the supercritical case the ultimate extinction probability is 0 < q < 1 (1.2). In this
case the p.g.f. h(s) with q = 1/m can be rewritten as

h(s) =
q

1 + q − s
, P(η = k) =

q

(1 + q)k+1
, k = 0, 1, . . . .

The infinitesimal generating function present in the Kolmogorov equations

f(s) = K(h(s)− s) =
K(1− s)(q − s)

1 + q − s

has the following derivatives:

f ′(s) =
K(−s2 + 2s(1 + q) + q − (1 + q)2)

(1 + q − s)2
, f (n)(s) =

Kqn!

(1 + q − s)n+1
, s �= 1 + q, n = 2, 3, . . . .

In particular, for the first derivative, we have the following inequalities:

f ′(0) =
−K(1 + q + q2)

(1 + q)2
< 0, f ′(q) = −K(1− q) < 0, f ′(1) =

K(1− q)

q
> 0. (2.1)

The p.g.f. of the branching process X(t), t > 0, defined by

F (t, s) :=

∞∑

k=0

skP
(
X(t) = k

∣
∣ X(0) = 1

)
(2.2)

yields the nonlinear backward Kolmogorov equation with initial condition

∂

∂t

(
F (t, s)

)
= f

(
F (t, s)

)
, F (0, s) = s. (2.3)

This equation is solved by the method of separate variables in the form

d(F (t, s))

f(F (t, s))
= dt, F (0, s) = s. (2.4)

We remark the following decomposition using (2.1):

f ′(q)
f(s)

=
q

1− s
+

1

s− q
, f ′(q) = −K(1− q) < 0, s �= q, s �= 1.
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Then the implicit solution to Eqs. (2.4) and (2.3) is given by

F (t, s)− q

(1− F (t, s))q
=

e−K(1−q)t(s− q)

(1− s)q
.

The explicit solution is written using the function

D(s) =
s− q

(1− s)q
, s < 1, D(q) = 0, D(0) = −q, 0 < q < 1, (2.5)

and its composite inverse function D−1(x). To define the inverse function, the most convenient monotony
interval must be selected. The first derivative is calculated as

D′(s) =
(1− q)(1 + q − s)

(1− s)q+1
> 0, D′(q) =

1

(1− q)q
> 0, D′(0) = (1− q)(1 + q) > 0.

Moreover,

D′(s)
D(s)

=
f ′(q)
f(s)

, f ′(q) = −K(1− q).

The second derivative is given by

D′′(s) =
q(1− q)(2 + q − s)

(1− s)q+2
> 0.

The function D(s) is increasing and convex in the domain s < 1. The function D−1(x) is increasing and
concave in −∞ < x < ∞. We obtain the explicit solution for (2.2) as

D
(
F (t, s)

)
= ef

′(q)tD(s), F (t, s) = D−1
(
ef

′(q)tD(s)
)
, f ′(q) = −K(1− q) < 0. (2.6)

The point s = q, 0 < q < 1, is fixed for the p.g.f. F (t, s), |s| < 1, because

F (t, q) = D−1
(
ef

′(q)tD(q)
)
= D−1(0) = q.

The extinction probability at time t > 0 is denoted by P(X(t) = 0) = Q(t). It is derived directly from (2.6)
in terms of the inverse function:

Q(t) = F (t, 0) = D−1
(−qef

′(q)t) = D−1
(−qe−K(1−q)t

)
, D(0) = −q. (2.7)

The graph representation in Fig. 1(a) shows the quick convergence of Q(t) to 0 < q < 1 as t → ∞.
The probability mass function is given by the derivatives of the p.g.f. at zero:

P
(
X(t) = k

)
=

1

k!

∂k(F (t, 0)

∂sk
, k = 1, 2, 3, . . . .

It can be obtained from (2.5) and (2.6) by the consecutive derivatives of the composite function D(F (t, s)).
Some results are shown in Fig. 1(b).
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(a) Extinction probabilities (b) Probabilities for P(X(t) = 1)

Figure 1. Plots of the p.m.f. of the supercritical geometric branching process for q = 1/3, 1/2, 2/3.

For further use, we introduce the falling and rising factorials:

[x]n↓ = x(x− 1) . . . (x− n+ 1) =
Γ(x+ 1)

Γ(x+ 1− n)
, (2.8)

[x]n↑ = x(x+ 1) . . . (x+ n− 1) =
Γ(x+ n)

Γ(x)
, (2.9)

Now, using (2.9), we can write the derivatives of the function D(s) (2.5) in the following form:

D(k)(s) =
(q + k − s)(1− q)[q](k−1)↑

(1− s)q+k
,

D(k)(s)

D′(s)
=

(q + k − s)[q](k−1)↑
(q + 1− s)(1− s)k−1

, s < 1. (2.10)

The precise values at the points s = 0 and s = q are

D(k)(0) = (1− q)[q](k−1)↑(q + k), D(k)(q) =
k[q](k−1)↑

(1− q)q+k−1
.

Further, using the Fáa di Bruno formulas [10] and partial Bell polynomials Bk,j [23] allows us to express
the kth derivative of the composite function as follows:

∂k

∂sk
D
(
F (t, s)

)
=

k∑

j=1

D(j)
(
F (t, s)

)
Bk,j(F•), Bk,1(F•) = Fk, Bk,k(F•) = (F1)

k,

where the sequence F• = (F1, F2, . . . ) is given by the derivatives Fk = ∂kF (t, s)/∂sk . This way, we obtain
the following recurrent relation for derivatives of the p.g.f. at zero and respectively for the p.m.f.:

F (k)
s (t, 0) =

e−K(1−q)t(q + k)(1−Q(t))q+1[q](k−1)↑
1 + q −Q(t)

−
k∑

j=2

Bk,j(F•)(q + j −Q(t))[q](j−1)↑
(q + 1−Q(t))(1 −Q(t))j−1

. (2.11)

Lith. Math. J., Online First, 2023
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For example, replacing k = 1 and k = 2 in the previous relation (2.11), we calculate

F ′
s(t, 0) =

e−K(1−q)t(q + 1)(1−Q(t))q+1

1 + q −Q(t)
, (2.12)

F ′′
s (t, 0) =

e−K(1−q)tq(q + 2)(1 −Q(t))q+1

1 + q −Q(t)
− (F ′

s(t, 0))
2(q + 2−Q(t))q

(q + 1−Q(t))(1−Q(t))
,

and so on for k = 3, 4, . . . .

3 Lagrange inversion method

The function D(s) in (2.5) is an analytic function in the interval s < 1. All its derivatives (2.10) are strictly
positive there. The inverse function D−1(x) defines the solution to the backward Kolmogorov equation and all
characteristics of X(t), t > 0, especially the asymptotic behavior. It is derived as a solution to the following
equation:

D(s) = x, s < 1, D−1(x) = s, −∞ < x < ∞. (3.1)

The Taylor series expansion of this inverse function is given by the Lagrange inversion method [4, 15]. The
theorem of Lagrange states that the series expansion has a nonzero radius of convergence, that is, D−1(x)
represents an analytic function of x in a neighborhood of the point x = D(s). For computational convenience,
we introduce the new variable z = s− q and consider the function D0(z) = D(s). Since

D(s) =
s− q

(1− s)q
= (s− q)

∞∑

n=0

sn[q]n↑
n!

,

taking s = q + z, we obtain

D0(z) =
z

(1− q)q(1− z
1−q )

q
=

z

(1− q)q

∞∑

n=0

[q]n↑
n!

(
z

1− q

)n

=

∞∑

k=1

k[q](k−1)↑
(1− q)q+k−1

(
zk

k!

)
.

Obviously, D0 is a particular case of the Gauss hypergeometric function [2,9]. All derivatives of the functions
D(s) and D0(z) are related to each other as follows:

D(s) = D0(s− q), D(k)(s) = D
(k)
0 (s− q), D(k)(q + z) = D

(k)
0 (z).

Finally, the solution of D−1
0 (x) as a series expansion is found and proved in the following theorem using the

Lagrange inversion method.

Theorem 1. Let the solution to the backward Kolmogorov equation for a supercritical branching process X(t)
induced by geometric probability following (2.6) be given by the function

D(s) =
s− q

(1− s)q
, s < 1.

Then the series expansion of the inverse function is

D−1(x) = q +

∞∑

k=1

bkx
k

k!
, |x| < mq, m > 1,
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where

bk = (1− q)qk
( −1

1− q

)k−1

[qk](k−1)↓. (3.2)

Proof. Following definition (3.1) and applying the substitution s = q + z lead to

x = D(s) = D0(s− q), D−1
0 (x) = s− q = D−1(x)− q,

and therefore we have the following expression:

D−1(x) = q +D−1
0 (x). (3.3)

Thus it is confirmed that

D−1(D(s)) = q +D−1
0

(
D(s)

)
= q +D−1

0

(
D0(s − q)

)
= q + s− q = s.

The function D0(z) is an exponential generating function with coefficients ak = D
(k)
0 (0) = D(k)(q) given as

D0(z) =

∞∑

k=1

ak
k!

zk, ak =
k[q](k−1)↑

(1− q)k+q−1
.

Let the Taylor series expansion of the inverse function in a neighborhood of x = 0 be

D−1
0 (x) =

∞∑

k=1

bkx
k

k!
.

Next, we apply the Lagrange inversion method in the following form (see [2, 9]):

D0(z) =
z

g(z)
, g(z) = (1− q)q

(
1− z

1− q

)q

, g(0) = (1− q)q > 0.

The coefficients bk are given by the derivatives of the function (g(z))k at the point z = 0 as follows:

bk =
dk−1

dzk−1

[(
g(z)

)k ]
z=0

.

Now the Taylor series expansion of the function (g(z))k can be given by binomial coefficients as

(
g(z)

)k
= (1− q)qk

∞∑

j=0

(
z

1− q

)j (−1)j [qk]j↓
j!

.

The jth derivative of this function at the point z = 0 is

dj

dzj
[(
g(z)

)k ]
z=0

= (1− q)qk
( −1

1− q

)j

[qk]j↓.

To obtain the coefficient bk in (3.2), it suffices to take j = k − 1. Then

D−1
0 (x) =

∞∑

k=1

(1− q)qk
( −1

1− q

)k−1

[qk](k−1)↓

(
xk

k!

)
, b1 = (1− q)q < 1.
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Applying the definition of decreasing factorials by gamma function (2.8),

[qk](k−1)↓ =
Γ(qk + 1)

Γ(qk + 1− k + 1)
=

qkΓ(qk)

Γ((q − 1)k + 2)
=

qkΓ(q(k − 1) + q)

Γ((q − 1)(k − 1) + q + 1)
, (3.4)

leads to

D−1
0 (x) = q(1− q)qx

∞∑

k=1

(
1

(1− q)1−q

)k−1 Γ(q(k − 1) + q)

Γ((q − 1)(k − 1) + q + 1)

(−x)k−1

(k − 1)!
. (3.5)

Note that the coefficients in (3.2) are either positive, zero, or negative due to the decreasing factorials. It is
confirmed by applying the reflection formulas for the gamma function,

Γ(z)Γ(−z) =
−π

z sin(πz)
, Γ(z)Γ(1 − z) =

π

sin(πz)
, z �= 0,±1,±2, . . . ,

to representation (3.4) with the notation z = (1− q)k > 0:

[qk](k−1)↓ =
Γ(qk + 1)

Γ(1 + (1− (1− q)k))
=

Γ(qk + 1)Γ((1 − q)k) sin(π(1− q)k)

π(1− (1− q)k)
. (3.6)

The radius of convergence of the series expansion to D−1(x) is calculated with a root test based on

lim sup
k→∞

k

√
|bk|
k!

=

(
1

(1− q)1−q

)
lim sup
k→∞

k

√

(1− q)
|[qk](k−1)↓|

k!

and Stirling’s formula for the gamma function given as follows:

Γ(z) ∼
√

2π

z

(
z

e

)z

, Γ(z + 1) ∼
√
2πz

(
z

e

)z

, z → ∞.

As k → ∞, for the factors in (3.6), we have the following equivalence:

Γ(qk + 1) ∼
√

2πqk

(
qk

e

)qk

, Γ((1− q)k) ∼
√

2π(1 − q)k

(1− q)k

(
(1− q)k

e

)(1−q)k

.

Then from the equivalence for (3.6) and for Γ(k+1) = k! in the denominator, we derive the following multiple:

{(
qk

e

)q((1− q)k

e

)(1−q) e

k

}k

=
{
qq(1− q)1−q

}k
.

The last multiple of (3.6) converges to 1, that is,

lim sup
k→∞

2k

√
2π(1− q)q

k
= 1, lim sup

k→∞
k

√∣
∣ sin

(
π(1− q)k

)∣∣ = 1.

As a result,

lim sup
k→∞

k

√
|bk|
k!

=

(
1

(1− q)1−q

)
{
qq(1− q)1−q

}
= qq.
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Finally, the radius of convergence of the inverse function D−1(x) series expansion is obtained in dependence
on the parameter q as follows:

R
(
D−1

)
(q) =

1

qq
= mq > 1, 0 < q < 1. �	 (3.7)

It is worth noting that the inverse function D−1(x) can be expressed by the Wright function, defined as
(see [17])

1Ψ1(α, a;β, b; z) :=

∞∑

n=0

Γ(αn+ a)

Γ(βn+ b)

zn

n!
.

This can be proved after changing the variable k− 1 = j in (3.5), which leads to the following representation:

D−1
0 (x) = 1Ψ1

(
q, q; q − 1, q + 1;− x

(1− q)1−q

)
q(1− q)qx. (3.8)

4 Asymptotic behavior

The family of random variables Z(t), t > 0, defined by

Z(t) :=
X(t)

E[X(t)]
, E

[
X(t)

]
= ef

′(1)t, f ′(1) = K(m− 1) > 0, (4.1)

is a nonnegative martingale with respect to the natural filtration [1,6,18], and hence the following limit exists:

lim
t→∞Z(t) = W, E[W ] = 1, P(W > 0) = 1− q, P(W = 0) = q. (4.2)

There are two methods to define the Laplace transform of the random variable W � 0 in this model. The first
one is given by the limiting behavior of the process Z(t), t > 0, as t → ∞, defined by its p.g.f.

E
[
e−λZ(t)

]
= F (t, s), s = e−λy, y := y(t) = e−f ′(1)t, t > 0.

Consider the Laplace transform of the limiting random variable W :

ϕ(λ) := E
[
e−λW

]
= lim

t→∞F
(
t, e−λy

)
, lim

t→∞ y(t) = 0.

Thereby from (2.5) and (3.3) it follows that

lim
t→∞F

(
t, e−λy

)
= lim

t→∞D−1

(
ef

′(q)t(s− q)

(1− s)q

)
, s = e−λy(t).

Knowing that D−1 is a continuous function and applying the equivalence

1− s = 1− e−λy(t) ∼ λy(t) = λe−f ′(1)t, t → ∞,

in addition to the relation

f ′(q) + qf ′(1) =
−K(m− 1)

m
+

K(m− 1)

m
= 0,

Lith. Math. J., Online First, 2023
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we can derive the following limit:

lim
t→∞

ef
′(q)t(s− q)

(1− s)q
= lim

t→∞
ef

′(q)t(s − q)

(λe−f ′(1)t)q
=

1− q

λq
.

Finally,

ϕ(λ) := E
[
e−λW

]
= D−1

(
1− q

λq

)
= q +

∞∑

k=1

bk
k!

(
1− q

λq

)k

.

We summarize all these reflections (3.3), (3.5), and (3.8) in the following theorems.

Theorem 2. The Laplace transform ϕ(λ) = E[e−λW ] of the limiting random variable W defined in (4.1) and
(4.2) is given by the series expansion:

ϕ(λ) = D−1

(
1− q

λq

)
= q +

(1− q)q+1

λq

∞∑

k=1

(−1)k−1[qk](k−1)↓
k!

(
(1− q)q

λq

)k−1

and expressed by the Wright function as follows:

ϕ(λ) = q + 1Ψ1

(
q, q; q − 1, q + 1;−

(
1− q

λ

)q)q(1− q)q+1

λq
, λ > q(1− q)m. (4.3)

A direct application of this theorem is the computation of probability density function w(x) expressed by
series expansion. The proof and precise definition are summarized in the next theorem.

Theorem 3. The probability distribution of the limiting random variable W has an atom at the point x = 0
with probability P(W = 0) = q and absolutely continuous part with probability density function w(x)
expressed by the series expansion

w(x) =
q(1− q)1+q

x1−q

∞∑

j=0

(−1)j

j!

(x(1− q))qj

Γ((q − 1)j + q + 1)
, x > 0. (4.4)

Proof. The Laplace transform of the random variable W , using (3.4), is given by

ϕ(λ) = q +

∞∑

k=1

(−1)k−1

k!

(
1− q

λq

)k (1− q)qk

(1− q)k−1

Γ(kq + 1)

Γ((q − 1)k + 2)
, 0 < q < 1.

The inversion of the Laplace transform ϕ(λ) is done by inverting term by term [5] the series expansion using
the well-known formula

L
[
xkq−1

]
=

Γ(kq)

λkq
.

The density part of the distribution for the limiting random variable W � 0 is

w(x) =

∞∑

k=1

(−1)k−1

k!

qk(1− q)(1− q)qkxqk−1

Γ((q − 1)k + 2)

=
q(1− q)((1− q)x)q

x

∞∑

k=1

(−1)k−1

(k − 1)!

(x(1− q))q(k−1)

Γ((q − 1)(k − 1) + q + 1)
.
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(a) Probability density w(x) computed using incomplete gamma
function after applying Eq. (4.5)

(b) Laplace transform ϕ1/2(λ) for −1/8 < λ < 2 and
the equivalent solution by B−1(λ) = 1 − B−1

0 (λ) and
D−1(1/2

√
λ).

Figure 2. Process properties for q = 1/2.

The change of the summation variable k − 1 = j leads to

w(x) = 1Ψ1

(
0, 1; q − 1, 1 + q;−(

x(1− q)
)q)

(
q(1− q)1+q

x1−q

)
, x > 0.

Example 1. Let the ultimate extinction probability q = 1/2. It is the most simple case. Then the exact solution
for the Laplace transform, temporarily denoted by ϕ(λ) := ϕ1/2(λ), reads

ϕ1/2(λ) =
1

2
+

1

1 +
√
1 + 8λ

, λ > −1

8
, ϕ1/2

(
−1

8

)
=

3

2
.

The elementarily properties of the Laplace transform ϕ1/2(λ) and formula (83) in [3, p. 652] give

P(W = 0) =
1

2
, w(x) =

e−x/8

√
8πx

− erfc(
√
x/2

√
2)

8
.

The density w(x) can be represented by the incomplete gamma function γ(α, x) =
∫ x
z=0 z

α−1e−z dz [8]:

w(x) =
e−x/8

√
8πx

+
1

8
√
π
γ

(
1

2
,
x

8

)
− 1

8
. (4.5)

The availability of many different software implementations of the incomplete gamma functions enables easy
computations. The derived probability mass function is shown in Fig. 2(a).

The equivalence of obtained solution for w(x) and ϕ1/2(λ) is shown in Fig. 2(b). The numerical evaluation
of the density w(x) for any 0 < q < 1 can be calculated directly by the series expansion (4.4).

Remark 1. Traditionally, the reduced Wright function [14] is denoted as follows:

φ(β, b; z) = 1Ψ1(0, 1;β, b; z).

Lith. Math. J., Online First, 2023



12 A. Tchorbadjieff and P. Mayster

When −1 < β < 0, the reduced Wright function is known as that of the second kind. The recurrence relation
for the reduced Wright function φ(β, b; z) reads

βzφ(β, β + b; z) = φ(β, b− 1; z) + (1− b)φ(β, b; z),
d

dz
φ(β, b; z) = φ(β, β + b; z).

It means that when β = q − 1, b = 2, β + b = q − 1 + 2 = q + 1, and z = −((1− q)x)q < 0. The p.m.f.

w(x) =
q

x
(q − 1)zφ(q − 1, q − 1 + 2; z), z = −((1− q)x)q < 0,

is given by the difference of two entire functions divided by x > 0:

w(x) =
q

x

{
φ
(
q − 1, 1;−(

(1− q)x
)q)− φ

(
q − 1, 2,−(

(1− q)x
)q)}

.

The reduced Wright function with −1 < β < 0 is an entire function of order p greater than one and type σ, as
it is specified in [5]:

p =
1

β + 1
=

1

q
, σ =

1 + β

|β|β/(β+1)
= q(1− q)(1−q)/q , 0 < q < 1.

5 Laplace transform

The second method to define the Laplace transform ϕ(λ) (see [1, 6, 18]) is based on the differential equation

ϕ′(λ) =
f(ϕ(λ))

λf ′(1)
, ϕ(0) = 1.

The solution of this equation is given by the function B(x) defined as follows:

ϕ(λ) = x, B(x) := ϕ−1(x) = λ, ϕ(λ) = B−1(λ).

It is given by the integral

B(x) = (1− x) exp

{ x∫

1

(
h′(1) − 1

h(s)− s
+

1

1− s

)
ds

}

, q < x < 1.

We have by definition of the geometric reproduction (1.1) and (1.2) the following representation:

h(s)− s =
(s− q)(s− 1)

1 + q − s
, h′(1) − 1 =

1

q
− 1 =

1− q

q
.

Thus the integral can be calculated as

x∫

1

(
(1− q)(1 + q − s)

q(s− q)(s− 1)
+

1

1− s

)
ds =

−1

q

x∫

1

ds

s− q
.

Applying it to the function B(x) gives the following result:

B(x) = (1− x) exp

{−1

q
log

x− q

1− q

}
= (1− x)

(
1− q

x− q

)1/q

, q < x.



Wright function and supercritical geometric Markov branching process 13

Figure 3. Plot of Bq(x) for q = 1/3, 1/2, 2/3 by resolution of 0.001 for x. The vertical lines show the asymptotic values.

It is convenient to use the parameter m = 1/q > 1 and to rewrite our solution as follows:

B(x) =
(1− x)(m− 1)m

(mx− 1)m
, B′(x) = −(m− 1)m+1(m+ 1−mx)

(mx− 1)m+1
.

To define the inverse function B−1(x), we must choose the most convenient monotony interval again. The
first derivative

B′(x) = −
(
1− q

x− q

)1+m (q + 1− x)

q
, m =

1

q
, B′(1) = −1,

is negative in the interval q < x < q + 1 and positive for x > q + 1. It means that the function B(x), having
a vertical asymptote at the point x = q, is decreasing in the interval q < x < 1 + q and has a minimum at the
point x = q + 1. Only the interval q < x < q + 1 is convenient to define the inverse function. The minimal
value being negative,

λ∗ := B(1 + q) = −q(1− q)m < 0 (5.1)

will be considered as the Laplace abscise for the inverse function,

ϕ(λ) = B−1(λ), −q(1− q)m < λ < ∞, ϕ(λ∗) = q + 1, ϕ(0) = 1, B(1) = 0.

The vertical asymptote of B(x) is symmetric to the horizontal asymptote for ϕ(λ). We remark that ϕ(λ) is
decreasing in the interval λ∗ < λ < ∞ and has the horizontal asymptote q, ϕ(λ) > q; see Fig. 3.

The higher-order derivatives of the function B(x), q < x < 1 + q, are

B(k)(x) =
(−1)k(m− 1)m+1mk−1[m](k−1)↑(m+ k −mx)

(mx− 1)m+k
, x >

1

m
.

where at the point x = 1, we have

B(k)(1) = (−1)k
k[m](k−1)↑
(1− q)k−1

= (−1)k
kΓ(m+ k − 1)

(1− q)k−1Γ(m)
, m > 1.

Lith. Math. J., Online First, 2023



14 A. Tchorbadjieff and P. Mayster

The Taylor series expansion of B(x) in a neighborhood of the point x = 1 reads

B(x) =

∞∑

n=1

(−1)ncn(x− 1)n

n!
, cn =

n[m](n−1)↑
(1− q)n−1

=
nΓ(m+ n− 1)

(1− q)n−1Γ(m)
> 0, m > 1. (5.2)

Respectively, we define the Taylor series expansion of ϕ(λ) in a neighborhood of the point λ = 0 as follows:

ϕ(λ) = 1 +

∞∑

n=1

ϕ(n)(0)λn

n!
.

To define the series expansion of the Laplace transform ϕ(λ), we apply the Lagrange inversion method again.
First of all, we define the function B0(z) = B(1− x) for z < 1− q as

B0(z) =
z

(1− z
1−q )

m
, B(x) = B0(1− x), z = 1− x, B0

(
1

2

)
= B

(
1

2

)
. (5.3)

Then using the composite inverse of (5.3), we obtain the inverse function B−1 defining the Laplace transform
in the form of power series over λn:

B−1(x) = 1−B−1
0 (x), ϕ(λ) = B−1(λ), ϕ(λ) = 1 +

∞∑

k=1

(−1)k[mk](k−1)↓
(1− q)k−1

λk

k!
. (5.4)

We remark that all derivatives

dk := ϕ(k)(0) = (−1)k
[mk](k−1)↓
(1− q)k−1

are alternating because [mk](k−1)↓ > 0 for m > 1. The radius of convergence in a neighborhood of zero is
calculated by the root test as previously for (3.7), but we do not need to apply the reflection formula in the
denominator. It is in agreement with the Laplace abscise,

λ > −q(1− q)m, |λ| < q(1− q)m.

The agreement between the coefficients cn (5.2) and dn (5.4) can be confirmed (verified) by the Fáa di Bruno
formula [10] applied to the composition relation ϕ(B(x)) = x. The computational results are listed in Table 1.
Based on the result of the Lagrange inversion method (5.4), we formulate the following theorem.

Table 1. Derivatives B(k)(1) and ϕ(k)(0)

Derivatives B(k)(1) Derivatives ϕ(k)(0)

B(1)(1) = −1 ϕ(1)(0) = −1

B(2)(1) = 2m
1−q

ϕ(2)(0) = 2m
1−q

B(3)(1) = −3m(m+1)

(1−q)2
ϕ(3)(0) = −3m(3m−1)

(1−q)2

B(4)(1) = 4m(m+1)(m+2)

(1−q)3
ϕ(4)(0) = 4m(4m−1)(4m−2)

(1−q)3

B(k)(1) =
(−1)kk[m](k−1)↑

(1−q)k−1 ϕ(k)(0) = (−1)k
[mk](k−1)↓
(1−q)k−1
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Theorem 4. Let the limiting random variable W be defined by (4.1) and (4.2). Then its Laplace transform
ϕ(λ) := E[e−λW ] is given by the power series on λn as follows:

ϕ(λ) = 1− λ

∞∑

k=1

( −λ

1− q

)k−1 [mk](k−1)↓
k!

, |λ| < q(1− q)m,

and its presentation expressed by the Wright function is

ϕ(λ) = 1− 1Ψ1

(
m,m;m− 1, m+ 1;− λ

1− q

)
mλ.

Remark 2. The correspondence between two representations (4.3) and (5.4) is based on their definition and the
following relations: B(x) = λ,

(
1− q

x− q

)m

=
λ

1− x
, (1− x)q

(
1− q

x− q

)qm

= λq, B(x) =

(
1− q

D(x)

)m

, D(x) =
1− q

(B(x))q
.

6 Applications

A direct application of the previous theorem is the computation of moments and statistical inferences. The
important mth moments are computed for m > 1. They can be yielded using already known ϕ(k)(0), available
in Table 1. We compute E[W ] = 1 and

E
[
W 2

]
=

2m

1− q
=

2m2

m− 1
, E

[
W 3

]
=

3m(3m− 1)

(1− q)2
, E

[
W 4

]
=

4m(4m− 1)(4m − 2)

(1− q)3
.

Then, for the central moments, we obtain

E
[
(W − 1)2

]
=

2m2 −m+ 1

m− 1
= 2m+

m+ 1

m− 1
, E

[
(W − 1)3

]
=

9m2 − 9m+ 6

(1− q)2
+ 2 > 2.

The index of dispersion, being equal to the variance, increases linearly with respect to the mean of reproduc-
tion. The measure of the asymmetry is positive for all m > 1. The skewness

Skew[W ] :=
E[(W − 1)3]

(E[(W − 1)2])3/2
=

9m4 − 9m3 + 8m2 − 4m+ 2

(2m2 −m+ 1)
√

(2m2 −m+ 1)(m− 1)
∼ √

m, m → ∞.

The graph of the density w(x) approaches the vertical axis (but it is integrable), and E[W ] = 1 always.
Another interesting result is the process evolution through the time. The development in time of the branch-

ing process X(t), t > 0, is described by the probabilities of the events concerning the number of particles alive
at time t > 0, that is, P(X(t) = n), n = 0, 1, 2, . . . , according (2.11).

It is well known that when the parameter 0 < q < 1 is a rational number, the inverse function D−1 (as
given by the Wright function) is a solution to the algebraic equation; see [16]. Let us study several distinct
cases where q = 1/3, 1/2, 2/3, respectively, m = 3, m = 2, m = 3/2. For the graph design, we indicate (as
an index) only the parameter q in both representations of the Laplace transform:

ϕ(λ) := ϕq(λ) = D−1

(
1− q

λq

)
= B−1

q (λ), Bq(x) =
(1− x)(m− 1)m

(mx− 1)m
= (1− x)

(
1− q

x− q

)1/q

.
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(a) Laplace transform ϕ1/3(λ) for −8/81 < λ < 2. The three real
solutions are enclosed between the dashed vertical lines from
−8/81<λ<0. Only two of them are visible: y1(λ) and y3(λ). The
solution of y2(λ) is in the negative range, outside of the figure scope.

(b) Laplace transform ϕ2/3(λ) for −1 < λ < 2. The three real
solutions are enclosed between the dashed vertical lines from |λ| <
2/(9

√
3). Only two of them are visible: y1(λ) and y3(λ). The solu-

tion of y2(λ) is in the negative range, outside of the figure scope.

Figure 4. ϕq(λ) for q = 1/3 (a) and q = 2/3 (b).

1. The graph representations of the extinction probability Q(t) to the time t > 0 (2.7) and the values of the
probabilities P(X(t) = 1), t > 0 (2.12), are based on the corresponding explicit form of D−1 presented in
Figs. 1(a) and 1(b).

2. The graph representation of the functions B(x) := Bq(x) is based on the following explicit forms:

B1/3(x) = (1− x)

(
2

3x− 1

)3

, B1/2(x) = (1− x)

(
1

2x− 1

)2

, B2/3(x) =
1− x

(3x− 2)
√
3x− 2

,

The results are plotted in Fig. 3. The numerical evaluation of Bq(x) is not difficult and useful to confirm the
symmetric values ϕq(λ) = B−1

q (λ) of the Laplace transform. The very strong decreasing behavior of Bq(x)
corresponds to the slow branch of ϕq(λ) on the corresponding intervals.

3. The Laplace transform obtained by both methods yields equal results. It is especially demonstrated in
the case of q = 1/2; see Fig. 2(b). For the other two cases of q = 1/3 and q = 2/3, the solutions are derived
from cubic polynomials. In the interval λ > 0 for ϕ1/3(λ) and in the interval λ > 2/(9

√
3) for ϕ2/3(λ), the

corresponding unique real solutions are

ϕ1/3(λ) =
1

3
+

2

1 + 3

√
1 + 81λ

4 + 9
4

√
λ(8 + 81λ) + 3

√
1 + 81λ

4 − 9
4

√
λ(8 + 81λ)

, λ > 0,

and

ϕ2/3(λ) =
2

3
+

1

2 + 3

√

−1 + 3
2 (9λ)

2 + 27λ
2

√
(9λ)2 − 4

3 +
3

√

−1 + 3
2(9λ)

2 − 27λ
2

√
(9λ)2 − 4

3

, λ >
2

9
√
3
.

There are one real and two complex solutions, respectively, for ϕ1/3(λ) and ϕ2/3(λ) when discriminants are
positive. However, in the neighborhood of λ = 0, where λ is greater than the negative Laplace abscise (5.1),
that is, λ > λ∗ = −q(1− q)m < 0, the corresponding discriminants are negative, and thus the cubic equations
have three real roots. The real solutions are obtained by using periodic functions y(λ) with 2π/3 shift. The
results for q = 1/3 and q = 2/3 are demonstrated in Fig. 4. Obviously, the Laplace transform is designed by
the corresponding decreasing branch ensuring the continuity.
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7 Conclusions

The probabilistic aspects of the branching reproduction model are described by the explicit solution to the
Kolmogorov equation. The Laplace transform and the probability density function of the asymptotic behavior
are expressed by the Wright function. The numerical evaluation is given by the graph representation.

It is worth noting that a strictly supercritical MBP occurs when q = 0, called also immortal. Conditioned
on nonextinction, any supercritical MBP becomes immortal. However, in this case, another parameterization
has to be applied. The main topics are the properties of compound geometric distribution for X(t), t > 0, and
compound exponential distribution for the limiting random variable W > 0. There are quite many problems
for further study.
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