Table of Contents

INVITED PAPERS

A. Eskenazi (Bulgaria) . " .. 6
The Problem of ()bjet.l.lv"lty in ‘)ollware Qudllt_y Fvaludtmn

R. Stamper (the Netherlands) .. S it 15
Social Norms in System Qprmﬁmlmn — an Outhne nf ME A‘%lllt

P. Barnev (Bulgaria) . LS i it e R T .

Computer Science in Bulgana
SHORT PAPERS
M. AN (TLAly) e 54
Modelling a Distributed Application wﬂ.h Precedence and Synchron-
ization Relations
L. Bendix (Denmark) 63
General Object-Based Environments: A Basis for Cooperative
Software Development
Z. Botek, V. Sedlacek (Czech Republic) ... 71

Training of the Secondary School Teachers in Computer Science in
the Czech Republic

S. Brainov (Bulgaria) R . | |
Reciprocal (‘ommﬂ.ments in Multlagent Plans

M. Damiani (Italy) ... e Tl . |
An Intelligent Informatmn %yalem fur Data Explnratmn

Y. Dumond, C. Roche, S. Stinckwich (France) .. o 95
From Object to Agent: The K/1 Agent Oriented Langmge

S. Hand, A. Patel (Ireland) 103
A Flexible Messaging System

J. Ma (Hong KONg) ... 120

Systematic Approach to the Demgn of End-User System Develop-
ment

A. Marcos, C. Hornung (Germany) A S 125
Some Issues on Supporting Cooperative Software Development

K. Markov, K. Ivanova, I. Mitov, V. Vassilev (Bulgaria) .. . sier 134
General Structure of Subject Information Space

A. 'Mendes; J. Orvalho (Portugal)cooccssssssims s wm 139

Developing Educational Software with the AIDA Authoring Environ-
ment
Vo Prokhefav (RUBSIA): oo e s s s s S s e s 147

PYTHAGORAS and piLOGO: Software on the Graph Approach and the
pi-Technology Basis

19TH INTERNATIONAL CONFERENCE WITH SUMMER SCHOOI
INFORMATION TECHNOLOGIES awo PROGRAMMING
Solia, Bulgaria, Juna 26 — July 2, 1994

The Problem of Objectivity in Software Quality Evaluation

Avram Eskenazi, Institute of Mathematics, Sofia
E-mail. ESKENAZI@BGEARN BITNET

1. Introduction

Boehm [1.2] was the first at the beginning of 70-ies to pose and systematically consider the
problem of software quality During the next several years a few models have been created based
on the same principles The software (SW) quality is represented as an hierarchical structure of
characteristics. As far as the quality is most often defined as the degree of satisfaction of users'
needs and requirements, in each model it directly depends on users' views about its particular
characteristics (usually called factors) The latter depend on a set of program characleristics,
called criteria Further in this hierarchy the various models propose either one, or two levels. But in
all cases there are at the lowest level some kind of elementary characteristics. Sometimes there is
an intermediate level called the metrics level The word "metric” in this case only means a protocol
of the results of the measurement or the evaluation of several close (by content) to each other
elements The SW quality evaluation procedure of such a model [3.4] is approximately the
following Experls evaluate (or in rare cases measure) all rating el ts (el Wary
charactenistics) By using weighed sums the values of the criteria are calculated. (Certainly, if the
level of metrics exists, this level is calculated similarly) Then by using again weights predefined by
the experis the values of the factors are calculated. Finally, a single value - the weighed sum of all
factors - is gol and this is the measure of the SW quality itself Usually, values and weights are
normalized, so the intermediate and final results are in a predefined interval, e g [0-1]

Obwiously, such a procedure has its drawbacks - eg it is cumbersome. the number of
elements in [3] is more than 300, and in [4] - 257 But probably the most dangerous disadvantage
of this type of models is their subjectivity. The aim of our further analysis is to check whether this
subjectivity can be reduced on behalf of the inclusion of some objective procedures in given steps

of the respective methods

2. The M-model

As already mentioned, the hierarchical methods principally resemble each other As [4] is
relatively new. balanced, well developed and rather well documented, we will further on rely on it for
our considerations For brevity, we will call this model the M-model The end conclusions we will
finally reach will be valid for the other hierarchical models, too

The M-model has been developed by experts from the former European COMMECON
countries Its basic idea provides the evaluation of not only the final SW product, but also of its
intermediate states The factors are flexibility (F), correctness (C). reliability (R), maintainability (M),
ease of use (U). efficiency (E) (The original acronyms respectively are I', K, H, C. ¥, E) There is an

exact definition of the hierarchy, including criteria, metrics and rating elements (RE) A notation is

6

used of the form Frmmii, where F is the code of the factor, mm - the number of the metric inside
this factor and ii - the number of the RE For each factor and each phase of the SW life cycle an
hierarchy diagram is given down to the level of metrics, incl the numbers of the metrics A
classification of the methods to determine the RE-s' values is developed It 1s important to note that
only 18 RE-s have to be determined by means of calculations, other 20 - either by calculations or
by means of experls' estimations and 3 - by means of experts’ estimations or through
measurements. The remaining 216 RE-s are determinable only by means of experts’ estimation.
This is about 84% and unambiguously confirms the high subjectivity of the model and its respective
method.

3. Metrics

In the Software Engineering literature the term “metric”, has been used for the last twenty
years in one more sense. According to [5]. a ‘measure” is said to be a quantitative measure of one
ore more quality characteristics A metric in the Software Engineering is usually understood as a
method for finding out the corresponding measure. It is clear that we should make a difference
between this metric and the metric (protocol) defined in the M-model or other hierarchical SW
quality models (see 1. above) Thal's why from now on till the end of this paper we will call a metric
the notion just defined (sometimes for clanity we will precede it by "classical’) The metric in the
sense of the M-model will be denoted as a "M-metric"

If we ignore a very small number of classical metrics concerning the characterization of
natural language texts (e.g [6] - 1948 and [7] - 1962) and later on used to measure the clanty and
understandability of SW documentation, the basic metrics appeared in the mid 70-ies, proposed by
Halstead [8], McCabe[9]. McCall[10] Further on several tenths of metrics appeared For example,
in [11] on the base of 124 references 75 different metrics were classified. In [12] 50 metrics were
very systematically described. We should note that the intersection of the first 75 and the other 50
is not very large. Besides these, other metrics are well developed and known - e.g. [13] We are not
in a position to include in our study new metrics, particularly concerning the object oriented
programming as for example "Depth of inhertance tree”, "Response of a class”, etc [32] because
of the lack of sufficient information.

4. Setting the problem for increasing the evaluation objectivity.

The question about how to reach a greater objectivity can be formulated as follows s it
possible to find out a link between the great number of existing metrics and the elements of the M-
model ? More precisely is il possible for a part of the RE (and particularly these 216 of them

whose values are determined through expert estmation) to getl their values from one or more
metncs ? In other words, if My,M3 ..., My are metnics (of Halstead, McCabe, McCall, etc)and Vp is

the result (obviously a number) of M, (p=1.2, k) for a given program, we would like to get the

value of a given RE Fmmii for the same program as

"

Fmmii=F(Vy Va .., Vg).

In particular cases it is also possible to have

Fmmii = F(Vg),
1e the value of RE could be obtained as a function of a single metric M,

Let's consider an example In [14] the metric of DeYoung-Kampen (DYK) is described
According to it the readability R of a program is determined as follows

R=0.295 VAR - 0.499 NSL + 0.13 CYCLO

where VAR is the average normalized length of vanables

NSL is the number of lines containing statements
CYCLO is the total number of branches + 1 (McCabe's cyclomatic number)

If we analyze the M-model we will come to the maintainability factor (M), then, following the
tree - to the criterion "simplicity”, then, on the next level to the metric M10 - coding simplicity, and
finally, on the last level we will discover three RE-s

M1001 - whether a high level programming language is used

M1002 - total number of branches (A)

M1003 - lotal number of executable stalements (B)

It is clear that M1002 prachically matches CYCLO and M1003 - NSL M1001 has to do with
DYK as far as DYK has been created for high level programming languages. But, at this place in
the M-model the vanables’ length is not considered Due to typographical impreciseness in [4] one
cannol say to which RE exactly refers the formula (1-A/B), but anyway it is clear that when
increasing the number of branches the simplicity of the program is decreased The same applies to
DYK. where the readability of the program decreases when the number of branches increases
Consequently, it 1s possible in the M-model to obtain M10 by using DYK, whose reliability and
objectivity may be considered as higher than that of the respective procedure in the M-model
concerning M10. However, we should not ignore that two of the RE-s (M1002 and M1003) are
calculable Nevertheless, obtaining R of DYK is more objective, because the coefficients in the
formula are the result of a regression analysis, whilst nothing is said about the weights of M10ii in
the M-model

What else implies this example 7 First of all, one can notice, that an M-metric - "coding
simplicity” - exists also in the sublree of the flexibility factor (F). “modifiability” criterion F10 F10
depends on a large number (7) RE-s, all they are experts estimaled, even those which evaluale the
conditional and unconditional branches. Probably, one could try to evaluate M10 by using DYK, but
here this would be far more difficult because of the big number of RE-s, not participating in the DYK
formula On the other hand the effect would be more substantial, because an entirely subjective
estimate would be replaced by an objective one In this sequence of thoughts it is quite natural to
ask whether it 1s really necessary to look for several metrics (as proposed above) in order to
replace a single RE We should not forget that the main aim of the M-model is to find a final value
for the quality at level 0 and that the intermediate values on the other levels have only an

8

intermediate character Hence, it would be quite acceptable f F{V1,V2,...,Vk) gave a value for the
M-model not on level 4 (RE) but on level 3 and why not even on a higher level Thus, by the way,
we justify the approximate correspondence between M10 and DYK that we have already
established

From a general point of view such a strategy seems to be more promising, as far as level 4
(RE) is the level of the elementary (atomic) charactenslics, whilst the classical metncs usually
combine several parameters corresponding to such atomic characlernstics

5. Establishing the correspondence.

After the last conclusion we think that the most reasonable strategy is to consider in parallel
the entire hierarchy of the M-model together with a representative set of melncs, eg as
systematized in [12] First of all we will take those calculable RE or M-metrics which are calculable
and we will try to find corresponding classical metrics

One of them is relaled to the efficiency factor (E) The criterion i1s “exactness of the
calculations" and it is determined by a single M-metric - E02 with the same name. There is also a
single RE determining this M-metric - E0201, "number of digits after the decimal point in the result”
This RE is either calculable, or experts estimated One can find a distant relation with the metric
described in [10] In the latter more characteristics are taken into account, but the majonty of them
are estimaled quite subjectively.

The largest group of calculable RE-s belong to the reliability factor (R) subtree Let's take
RO5 - “tesling completeness” as the sole M-metnic determining the criterion "working capacity”, as
well as RO7 "tools for error detection” as one of the M-metrics determining the cnterion noise-
resistance”

Several metrics measuring the lestability are known, e g those described in [20,21,22,23,
24]. In all cases the complexity of the program is described (from the point of view of the branches
and the possible paths in the program, as well as in [24] - on a macro-level, 1e considenng the
modules and the links between them) On this basis the efforts (actually the number of operations)
to perform the testing are estimated, as well as the expected efficiency, 1 e how exhaustively the
program will be tested

Unfortunately, it is nol possible here to make a companson with the criterion “testability” of
the factor "correctness” (C) The reason is that the M-metrics C10, C11, C12, C13, which determine
this criterion are not described at the lowest level (that means that no RE-s are gwen for them)
Hence, they remain if not undefined, then at least - unclear

Consequently we can only deal with RO5 The two calculable RE-s - R0503 and R0504 are
quite specific and have nothing to do with the already mentioned classical testability metrics. They
try to measure the degree of testing of logical blocks and modules performed (and not the expected
effort) as the ratio of the lested number of blocks (or modules) against the respective total number

9

The two other RE-S - RE0501 and RE0502 are still farther and a little bit fuzzy - hence they should
be also left ;

Lel's consider RO7 Generally speaking in the M-model the reliability is defined first of all as
an estimate of the fealures created for filtration of non-vahd dala, for proper reactions to hardware
and software failures, for recovery and program restart and for lesting already performed

The classical metrics described in [25.26,27,28.29.30] am at predicting the operation
reliability (e g as the mean time between two failures or as the average number of expected errors
for a given time period). This is done on the basis of some kind of extrapolation (We should note
that [25] refers only to the development process) Having this in mind we establish the following
common characteristics of both approaches

RO701 evaluates the probability for an error-free operation according to the formula

P=1-Q/N |

where @ is the number of registered errors and N - the number of experiments There is a
similanty with [29], where the measure is to some extent the opposite - it is the ratio between the
number of successful trials and their total number Therefore the replacement of RO701 with the
metlric of [29] is useless

RO0702 predicts the tolal number of errors through the formula

B =K, *R/1000

where R is the tolal number of statements in the program, K, is a factor of the number of
errors for 1000 statements, which has to be determined by experts (recommended values in the
interval (D 25 - 10) This approach resembles the metric described in [25], where the analog of R is

obtained in a more complicated way (practically it is proportional to the volume V of the program as
determined by Halstead [8]) and K, is 1/3 for the validation process and 4/3 for the whole life cycle.

Actually for R0702 the value of K is up to the experts They could determine it by using a classical
metric (particularly that of Halstead) We cannot state which approach is the beiter, but anyway, in
the metric of [25] things seem to be more fixed and. hence, less subjective. As far as the time factor
is concerned, there is hardly any difference The M-model does not say anything about the period
of prediction but we can accept that a given period of the life cycle is considered

Here we are obliged to make the following remark During the elaboration of the M-model
we happened to have numerous contacts with some of the acting experts (particularly the Bulgarian
ones) We have at our disposal various working materials, some of them very detailed
Nevertheless we rely exclusively on the official version as described in [4]

RO703 is an indicalor of the program stability against damaging or distorting impacts It is
determined by the formula

P(Y)= 1 - DK |
where D is the number of trials in which the impacts have led to failures and K - the total number of
tnals with damaging impacts This resembles very much the metric described in [28] Still in the

10

latter all possible input data sets N are expected to be encompassed and m to be the number of
input data sets reducing incorrect outputs Consequently, the formula

1-m/N
is the definition of this metric Therefore D and m are identical, but K and N are nol - n ROT03 it s
known in advance that each input data set is a damaging one From a practical point of view R0O703
seems o be more applicable than the metric of [28)

RO704 is the mean recovery time The respective formula contains the ratio of the recovery
time and the number of failures, but without saying what is the interval containing this number. A
similarity can be found with the metric of [31]. The melric there is calculated as T/(T+F), where Tis
the mean time until the failure and F - the mean recovery time It seems that the metric is more
clear and unambiguous, bul nevertheless, after some clarification and transformation the R0704
formula can be brought to the metric

We cannol find any correspondence between a classical metric and the RE-s R0O705 and
R0706. By the way no formula is given for ROT06, but probably it is obtained through transformation
of ROT05 by taking into account the number of trials. (RO705 concerns the duration of the data input
- data output transformation and ROT06 - the mean value for the same transformation)

We still have a few RE-s obtained by experis estimation, for which, more or less, a
correspondence with a classical metric can be established

U0201 is the RE "completeness and understandability of the documentation” in the frame of
the M-metric U02 "documentation to be assimilated” and the criterion "ease of assimilation” Each
of the melrics in [6,7,15,16] could be used for the objective obtaining of a value of U0201,
unfortunately only for the part “understandability”, yet not for the "completeness”. More general is
the metric described in [17] It would have given not only the value of U0201, but also that of U0501
- "evaluation of the style" and of U0504 - “clarity of the logical structure” But we have to be careful
with this classical metric, because in its procedure there are elements of an obvious subjectivity
(there are four parameters which are supposed to be estimated by experts on a five-degree scale -
i e we come back to the usual subjectivity of the M-model)

We have already discussed F10. FO8 is "dependence on the basic software” in the frame of
the criterion “mobility” FO08 is determined by three RE-s F0801 - "use of dedicated programming
languages”, F0802 - “dependence of the program on the operating system” and F0B03 -
“dependence on other dedicated software” Here two melrics of McCall might be applied,
particularly thal one concerning the software independence [10] Two of the four parameters of this
metric fully correspond to FOB01 and to F0802, and a third one - to FOB03 to some extent It 1s true
that no automatic tools are available for the determination of these four parameters’ values But as
far as they are the resull of simple counting, they might be considered as fully objective The
conclusion is that FO8 might obtain an objective value by using the McCall software independence

metric

1

We have found one more correspondence for the “flexibility” factor. The M-metric F14
"modules’ independence”, which is part of the "modifiability” criterion, is determined by five RE-s.
We consider [18], where a metric is described, measuring how strongly the change of a variable in
a module affects the other modules The conclusion is that F1401 “transfer of control information by
means of parameters”, F1402 "transfer of input data by means of parameters” and F1403 “transfer
of results between modules” can be far more objectively and formally obtained by using the metric
just mentioned. Although F14 takes into account two other RE-s and [18] - a few other
characteristics, it is possible to get an objective estimate for at least an essential part of F14 trough
[18]. Another solution is to modify F14,

Concerning the flexibility a correspondence with the M-model might be sought even at level
two - with the “mobility” (“portability”) criterion. To this end we consider the Gilb metric described in
[19) The respective formula is very simple - the ease of portability Pg is determined as

Pg = 1(E/E,),
where E, are the resources needed to move the program system to the target environment and E, -
the resources needed to create the program system for the resident environment Unfortunately
there is here some fuzziness - resources are defined too generally - manpower, time, machine
resources and no formal procedure is defined for their evaluation

6. Conclusion

Let us summarize the results obtained As is shown above, for no more than 10 calculable
RE-s a correspondence with one or more classical metrics might be sought For the majority of
these ten RE-s the link is not close even in the case when an attempl is made the classical metric
to be applied at the higher level of the M-model (ie the level of the M-metrics) In two to three
cases the RE estimation could become more objective by using a classical metric. In other two to
three cases this could hardly be achieved We also established that in other about ten cases
experts estimated RE-s might be evaluated trough classical metrics In some cases (e.g for FO8
F14 and even for the “mobility” criterion) this could be achieved at level three, or even two of the M:
model

On the other hand there are lots of classical metrics which cannot be linked to any of the
elements of the M-model because of the very complicated relationship (such as the multiple
program complexity metrics - they have something to do with the "maintainability” factor and the
"structurness” and “simplicity” criteria)

All this proves that the M-model, as well as the other hierarchical software quality models
have already reached the limit of their objectivity, probably due to their nature Hence, if we want to
ncrease the evaluation objectivity (which is by no means necessary). we have to look for
approaches based on different principles We made an attempt in this direction [33)

12

This work has partly been supported by the Ministry of Science and Education under

contract 124

References

1. Boehm B W , Software and its Impact A Quantilative Assessment Datamation, Vol 19,
No 5, May 1973,p 49-59

2 Boehm BW, Software Engineering |EEE Trans on Computers, Vol C-25, No 12,
December 1976, p 1226-1241

3 Bowen TP, GBWigle, JTTsa, Specification of Software Quality Atinbutes
Software Quality Evaluation Guidebook, RADC-TR-85-37, Vol lll, 1985

4 O6wan meToaMKka OLEHKW Ka4ecTBa NPorpamMmHbix cpeacts. MK no cotpyaquuectsy
COUWANMCTUYECKMX CTpad B obnactw BT, Koopomnaumonnein uentp, Bionn. 1(37), M. 1988, (A
general methodics for software quality evaluation. COMMECON Intergovernmental Commission on
Cooperation in Computing Technologies, Bull 1(37), Moscow, 1988, in Russian)

5 European Organization for Quality Control - Glossary of Terms Used in the Management
of Quality Bern, 1981

6. Dale E, Chall JS, A Formula for Predicling Readability. Educational Research
Bulletin, Vol 27, Feb 1948, p.221-233.

7. Gunning R. Technique of Clear Writing New York, McGraw-Hill, 1968

B Halstead M L., Elements of Software Science. New York, Elsevier, 1977

9 McCabe T.J, A Complexity Measure IEEE Transactions on SE, Vol SE-2, No 4,
Dec. 1976, p 308-320.

10 McCall JA, PKRichards, GF Walters, Factors in Software Quality Vol 1
Concepts and Defintions of Software Quality Vol 2 Metric Data Collection and Validation
Vol 3. Preltminary Handbook on Software Quality for an Acquisition Manager Springfield, Va,
NTIS, AD-AD 49014, Nov 1977

11 Cote V P Bourque, S Oligny, N Rivard, Software Metrics' An Overview of Recent
Results J of Syslems and Software, Vol 8 No 2, March 1988, p 121-131

12 Hoecker H W itzfeldt, M Schmidt, M Timm, Comparative Description of Software
Quality Measures GMD Studien No 81, March 1981

13. Rechenberg P, Ein neues Mass fuer die softwaretechnische Komplexitaet
von Programmen. Informatik Forschung und Entwicklung, Band 1, Heft 1, 1986, p 26-37

14. DeYoung G E . G R Kampen, Program Factors as Predictors of Program Readability
Proc. Computer Software and Applications Conference, IEEE, 1979, p 668-673

15 Kincad JP, JA Aagard, JW O'Hara, L K Cottrell, Computer Readability Editing
System |EEE Trans on Professional Commumications, Vol PC-24, No 1, March 1981, p 38-41

16. Stewer L, Ausarbeitung von Lesbarkeitsformeln fuer die deutsche Sprache College
d'Enseignement Moyen et Professionel du Nord, 1976

17. Steinbach |, | Langer, R Tausch, Merkmale von Wissens- und Informationstexten im
Zusammenhang mit der Lerneffektivitaet Zeitshcnift fuer Entwicklungspsychologie und
Paedagogische Psychologie, Vol IV, Heft 2, 1972, p 130-139

18 Yau S S, JS Collofello, Some Stability M wes for Soft Maintenance Proc
Computer Software and Applications Conference, IEEE, 1979, p 674-679

19 Gilb T, Software Metnics Cambnidge, Mass, Winthrop Publishers, Inc, 1977

20 Mohanty SN, M Adamowicz, Proposed Measures for the Evaluation of Software
Microwave Research Institute of the Polylechmic Institule of New York, Proc Symposwm of
Computer Software Engineerning, 1976, p 485-497.

21 Paige M, A Metric for Software Test Planning Proc Computer Software and
Applications, IEEE, 1980, p 499-504

13

22 Pmot S, JC Rault, A Software Rehability Assessment Based on Structural and
Behawvioral Analysis of Programs. Proc 2nd Intl Conference on Software Engineering, 1976, p 486-
491

23 Woodward MR, D Hedley, M A Hennel, Experience with Path Analysis and Testing
Programs |EEE Trans on SE, Vol SE-6, No 3, May 1980, p 278-286.

24 Yin BH, Software Design Testability Analysis Proc Computer Software and
Application Conference, IEEE, 1980, p 729-734

25 Ofttenstein L M., Quanlitative Estimates of Debugging Requirements |EEE Trans on
SE, Vol SE-5, No 5, 1979, p 504-514

26 Musa JD, The Measurement and Management of Software Reliability. Proc IEEE,
Vol 68, No 9, Sept 1980, p 1131-1143

27 Remus H., S Zilles, Prediction And Management of Program Quality Proc. 4th
Intl. Conference on Software Engineering, 1979, p 341-350

28 Nelson EC., A Statistical Basis for Software Reliability Assessment TRW
Software Series, TRW-55-73-03, IEEE, Long Beach, Ca , June 1977

29 Hecht H, Measurement, Estimation, and Prediction of Software Reliability Software
Engineenng Techniques, Infotech Intl , Maidenhead, Berkshire, England, 1977

30 Schick GJ, RW Wolverton, An Analysis of Competing Software Reliability Software
Models IEEE Trans on SE, Vol SE-4, No 2, March 1978, p 104-120

31 Littlewood B, How to measure Software Reliability and how to. Proc. 3rd Intl
Conference on Software Engineering, Atlanta, Georgia, May 1978, p.37-45.

32 Chidamber SR, CF Kemerer Towards a Metrics Suite for Object Oriented Design.
SIGPLAN Notices, 26(11), Oct. 1991, p 197-211

33 A Eskenasi Evaluation of Software Quality by Means of Classification Methods. J of
Systems and Software, vol 10, No 3, October 1989, p 213-216

14

