

Chapter 1

INTRODUCTION

Numerous researchers and practitioners are currently inspired by the goal of proposing

innovative ideas and solutions about a better utilization of advanced IT by enterprises.

That goal is reflected in the evolution of business processes: Considered as an essential

enterprise asset, business processes used to receive much attention, for the sake of

improving the enterprise performance, decreasing the enterprise costs, increasing the

satisfaction of customers, and so on. Hence, it was widely agreed that by improving

business processes, enterprises could substantially increase their value. Many years

ago, improving business processes was a matter just of enterprise engineering – then

the big challenge was how to organize ordering, accounting, shipping, etc., such that

all the different tasks are in synch while the business processes are as simple as possible,

leading to effectiveness and efficiency in serving the customer. Nevertheless, changes

in business processes came when computers first appeared on the scene and it was

possible to replace paper streams by databases, to re-use content, and to quickly find

needed information – then the big challenge already was how to make better use of

computers heavily dependent, in turn, on corresponding software: this was a matter also

of software engineering (next to enterprise engineering). Hence, enterprise engineering

and software engineering had to be brought together [54]. However, those two

disciplines developed separately because the so-called ‘computerization’ was simply

about automation – the same tasks realized by human entities had to be ‘given’ to

computers. Automation indeed allowed many companies to tremendously bring down

their workforce but the quality of the IT support delivered to enterprises used to be low

exactly because of the mentioned ‘separation’: Enterprise engineers would only

superficially re-design their business processes (when bringing in computers) because

they lacked deep IT knowledge while software engineers would only partially respond

to the original business requirements because they lacked deep domain knowledge.

This was labeled as a ‘mismatch (or gap) between enterprise modeling and software

design’. Since the new millennium, we have been witnessing more and more efforts

directed toward bringing together enterprise engineering and software engineering, for

the sake of bridging the above-mentioned gap. This would mean de facto bringing

together:

2

(a) social theories, such as enterprise ontology, organizational semiotics, theory of

organized activity, etc. (see Chapter 3);

(b) computing paradigms, such as component-based software development, service-

oriented computing, model-driven engineering, etc. (see Chapter 4).

However, this appeared to be a non-trivial task because:

 Within the scope of enterprise engineering, as according to [19], used to be the

creation of enterprise models capable of usefully restricting the software

system-to-be, but this only reached the level of software functionality

specification, leaving ambiguity with regard to the implementation choices,

platform choices, networking choices, and their impact with regard to the

business processes.

 Within the scope of software engineering, as according to [66], used to be the

development of software, based on computation-independent models and/or the

composition of software services (considered at high level and pointing at

underlying technical complexity), but all those issues stemmed from a view on

the software itself, not assuming an enterprise-modeling-driven derivation of

software.

Hence, not bridging that gap has led and is currently leading to failures of many

(current) software projects as well as to projects going over budget, and we often

observe evidence of low levels of customer satisfaction with regard to software

applications and/or (enterprise) information systems [8].

Further, the above-mentioned gap is pointing not only at the creation of software as

a way of allowing enterprises to utilize advanced IT but also at the integration of

already created (legacy) IT systems in enterprises. We observe that many software

systems being developed need to be adequately integrated in their enterprise context

and sometimes already running software applications are ‘part’ of that enterprise

context. For this reason, it is essential to have alignment and traceability between the

enterprise level and the software level, and therefore it seems logical to try identify

enterprise systems and software systems, and bridge the two on that basis [54]. As is

well-known, when speaking of a system, we are interested in what the system

components are (composition), how they are related to each other (structure), how they

are related to the environment, and what the principles are that guide the system

evolution. We need an integrated view of the system under consideration and for an

enterprise this would point at a coherent whole of principles, methods and models that

are used in the design and realization of the enterprise's structure, processes, (possibly)

information systems, and infrastructure. Even though structure, processes, and data are

essential for software development as well, more complexities occur when developing

software (coming through analysis, design, and implementation) - what lags behind is

managing system complexity expressed in terms of dependencies between system

elements. Finally, current enterprises and software applications both need to be

adaptable because of the constantly changing real-life environment to which they

should conform. This all raises a number of challenges, the most important of

which are:

3

- Identifying the enterprise system(s) and/or the software system(s) to be

considered;

- Building aspect models accordingly, including models that reflect structure,

processes, data, and so on;

- Establishing inter-model consistency;

- Capturing the granularity levels that feature the enterprise models and the

(corresponding) software models, acknowledging that it is possible that the

particular enterprise models and software models point at different granularity

levels;

- Establishing alignment and traceability between enterprise models and

corresponding software models;

- Addressing possible dependencies between system elements;

- Allowing for ways to model adaptability.

Referring to [8], we are inspired to consider several solution directions

relevant to the above-mentioned challenges:

 Modeling viewpoints and overall consistency: No matter if one would model

an enterprise or software, different modeling viewpoints can be applied – one

could look at structure, behavior, data, and so on. Hence, only if overall

consistency is achieved, such models would have sufficient value because

modeling structure with no grasp on behavioral aspects or modeling behavior

with no grasp on data issues (for example) would be of limited use. Further,

projecting this also over the enterprise-software ‘bridge’ would add value. This

would mean emphasizing the similarities between enterprise systems and

software systems, despite their specific differences, such that it is possible to

create enterprise models and software models which are ‘written in the same

language’. This would be the basis for bridging enterprise modeling and

software specification – only when the specification of software is properly

restricted by a corresponding enterprise model, it would be possible to develop

software that adequately meets the original business requirements. For this

reason, consistency is to be aimed not only ‘within a system’ (among the

different aspect models characterizing the system under study) but also ‘across

systems’ (in our case – between models featuring enterprise systems and models

featuring software systems).

 Integrating data analytics in enterprise modeling and software

development: Current information system development assumes increasing

importance of data analytics. Data has always been important functionally and

non-functionally in both modeling enterprises and specifying software: at

design time, we use (statistical) data for making our models more realistic, while

at run time, we use ‘incoming’ environmental data for adapting the system

behavior accordingly. A question however is: what does make difference today,

compared to several years ago and why is the emerging discipline of data

science receiving so much attention currently? Is a reason for that the current

abundance of (sensor) data showering us every day and if yes, how are we

coping with this abundance – distinguishing between the really useful data and

the data that may be ignored? Further, it is important to know how we translate

4

low-level (sensor) data into higher-level information that is a basis for

reasoning, and as well how we know which data to trust. Currently, those

questions are even more important than in the past. The integration of data

analytics in enterprise modeling and software development is hence not only

about establishing the context situation or providing a statistical data modeling

background but it is also about other issues, such as quality-of-data, occurrence

probabilities, data formats, and so on. Hence, in aligning enterprise modeling

and software specification, it is important to take those issues into account.

 Supporting adaptability: When developing an information system, we usually

aim at making it adaptable with regard to environmental changes. At the same

time, there are restrictions which are two-fold: (i) the system behavior ‘patterns’

through which adaptability would be realized, need to be foreseen and

‘prepared’ at design time; (ii) environmental changes are not always trivial to

‘sense’; hence, it is important to know to what and how and information system

should adapt, and also is this concerned with pre-defined (at design time)

scenarios and/or with the run-time behavior of the information system. Further,

if we assume that adapting means adjusting behavior to a changing

environment, it would be interesting to also consider how we capture those

changes (probably through sensors) and how we process and interpret this

information (see above). Finally, all those issues point at context-awareness,

assuming that the system ‘switches’ to a particular behavior based on the

appearance of a particular context state. Thus, context-awareness is to be

considered in the enterprise perspective, in the software perspective, and also

with regard to the alignment between enterprise modeling and software

specification.

 Considering re-usable modeling patterns: It is widely agreed that if possible,

modeling should be based on re-usable modeling building blocks, such that the

modeling itself is more effective and efficient [54]. For this reason, in aligning

enterprise modeling and software specification, it would be good to identify

corresponding modeling building blocks and their in turn corresponding

mapping – this would allow for bridging the gap between enterprise modeling

and software design in a component-based way. Nevertheless, it is still a

question how to methodologically identify enterprise modeling patterns and

reflect them in corresponding software components, as it will be further

discussed in the current book. We still miss exhaustive guidelines on how to

realize this, taking into account granularity concerns, traceability concerns, and

re-use concerns. Further, a shift to service-based systems is often the case since

more and more current software applications provide support to their users

through services (running software instances), as will be discussed in Chapter

4. This in turn leads to questions because developers are often with limited or

no control over the software components which are running the services that are

used, but developers should still keep this aligned with corresponding enterprise

models and particularly - the modeling patterns related to them. Hence, those

concerns need to be reflected in the way we look at the enterprise-software

relationship. This would help developers in their succeeding to align enterprise

modeling and software specification in a component-based way.

5

Fig. 1.1. Labels of disciplines and areas.

6

 Enabling service-orientation: As mentioned above, it is often that customers

utilize IT/software, by composing web services (or ‘services’, for short) – this

allows for letting the users consider services at high level, not being burdened

by their underlying complexity, while at the same time, developers consider the

corresponding software components running the services. That is how services

relate to both enterprise engineering and software specification. For this reason,

in aligning enterprise modeling and software specification, it is important to

assume the possibility that the resulting software would be service-oriented and

if necessary – re-design the enterprise accordingly.

We argue that the above-presented solution directions are realistic, balanced, and

relevant to the identified challenges. Nevertheless, those solution directions need to be

positioned conceptually, such that it is possible to consider them from a scientific

perspective, minding numerous labels that point to (overlapping) disciplines, areas,

terms, etc. (as illustrated in Figure 1.1), related to information systems that support

enterprises.

As it is seen from the figure, there are labels pointing at different relevant disciplines

or areas. Nevertheless, even though some of those labels are more widely accepted than

others, we argue that more precision is needed in this regard and we put forward several

questions as justification for that observation:

- Is ‘computer science’ covering only software-development-related issues or is

it also covering enterprise modeling that may be relevant to the development of

software?

- What is the difference between ‘computer science’ and ‘data science’, and is

‘computer science’ not covering data analytics or is ‘data science’ focused on

data aspects only, not touching upon other related issues?

- Should we consider ‘requirements engineering’ as a part of ‘enterprise

engineering’, if we stress upon the original business requirements or should we

consider ‘requirements engineering’ as a part of ‘software engineering, if we

stress upon the user-defined technical requirements that straightforwardly

concern the specification of software?

- Is ‘cloud computing’ only about the utilization of cloud resources or is ‘cloud

computing’ also about the software-related issues concerning this?

- Is the label ‘management information system’ referring to the management of

information systems, assuming a technical-independent view?

- and so on.

Those are just several questions that are not ‘expecting’ answers. Instead, we use

those questions to inspire a discussion on how to position and label our work that

concerns enterprises and the software support they are utilizing. We realize that there

are two disciplines essentially underlying the issues discussed above:

 ENTERPRISE ENGINEERING;

 SOFTWARE ENGINEERING.

Enterprise engineering is about analyzing, modeling, and (re-)designing an

enterprise without considering anything in a technology-specific perspective. Said

otherwise, we are interested in the entities (observed within the enterprise under study),

their relations, and corresponding processes, no matter if the entities are human beings

7

or technical devices (we may consider technical devices but we abstract from their

internal technical complexity).

As for software engineering, firstly, it should have a focus – there maybe software

developed for cars, or software developed for hospital equipment, or software

embedded in devices, and so on; we particularly focus on enterprise software. Further,

the software engineering scope is the software system-to-be. Finally, with regard to the

software system-to-be, we take a technology-specific perspective. Said otherwise, we

are interested in the technical complexity inside the software system-to-be.

 Our bringing together enterprise engineering and software engineering would

point at what we label as:

E N T E R P R I S E I N F O R M A T I O N S Y S T E M S.

We therefore make a clear distinction between issues that concern the enterprise-

engineering aspects of enterprise information systems and issues that concern the

software-engineering aspects of such systems. For this reason, any relevant discipline

or area of interest, as the ones presented in Figure 1.1, is to be ‘positioned’ with regard

to either enterprise engineering or software engineering. Bridging the two is a matter

of a dedicated approach, as it will be further studied in the current book.

Fig. 1.2. Viewing an enterprise information system as a socio-technical system.

8

Further, enterprise engineering concerns enterprise systems while software

engineering concerns software systems:

 The former we consider as SOCIAL SYSTEMS;

 The latter we consider as TECHNICAL SYSTEMS.

This inspires our viewing enterprise information systems as socio-technical systems

– Figure 1.2 [36] and taking an abstract perspective accordingly.

In line with this and as suggested by the figure, we may distinguish four primary

components that must be balanced and ‘work together’ such that the information

processing functionalities required by an enterprise to fulfill its information needs are

adequately delivered. There are also corresponding ‘driving forces’ among the four

components, as the figure shows. Hence:

 The HUMAN ELEMENT of an enterprise information system concerns the

people and corresponding (organizational) structures;

 The TECHNICAL ELEMENT of an enterprise information system concerns the

IT resources + services as well as corresponding (software) processes.

Thus, IT services and technical processes are supporting not only particular human

entities but also organizational units as such. At the same time the human entities are

functioning within corresponding organizational units. Further, IT services and

technical processes are essentially ‘fueled’ by actions realized by particular human

entities and also by collective actions realized by particular organizational units; in this

the IT services and the corresponding technical processes are to be in synch.

Fig. 1.3. Hierarchical, functional, and processes organizational perspectives.

9

Since the application area concerning enterprise information systems is the area of

enterprises and enterprises in turn represent ORGANIZATIONS, we need to have a

good overall organizational perception and inspired by [36], we consider accordingly

three essential perspectives, as depicted in Figure 1.3.

As the figure suggests:

 The HIERARCHICAL PERSPECTIVE (assuming a centralized organization)

features three primary levels in an organization where specific to each level of

activity and decision making events take place: (i) At the operational level,

short-term, highly structured activities are performed and the objective is an

efficient processes under a limited degree of uncertainty (hence, recurring

operations allow to be conveniently automated, assuring in this was speed,

accuracy, and precision in their execution); (ii) At the management level, semi-

structured (decision-making) activities are performed, mainly related to

functional areas, and focused on the execution and control over processes, based

on adopted patterns and proven models (hence, the typical IT support in this

context would come through decision-support systems that are founded on

enterprise-internal operations and resources); (iii) The executive level handles

all strategic planning and ad hoc circumstances, prioritizing long-term and

wide-range decisions (hence, they typical IT support in this context would come

through executive information systems that are capable of collecting, analyzing,

and synthesizing organizational and external trend data).

 The FUNCTIONAL PERSPECTIVE (assuming a decentralized organization)

features business entities based on distinct functional areas such as marketing,

operations, human-resources, finance, accounting, and so on.

 The PROCESSES PERSPECTIVE utilizes top-down methodology to achieve

internal business integration, activities rationalization, and duplications

elimination across functional areas and managerial levels.

Further, the two left-to-right arrows in the figure suggest an evolution over time from

hierarchical organizations through functional organizations to process-oriented

organizations, each of which has advantages and limitations. Still, we consider the

processes perspective as most appropriate with regard to enterprise information

systems because structures of processes are appropriate as basis for utilizing software

support.

Finally, even though we acknowledge the socio-technical components and

corresponding driving forces (as featured in Figure 1.2) and the organizational

perspectives (as featured in Figure 1.3), we claim that a sound approach to enterprise

information systems should assume a reference to the underlying disciplines (namely:

enterprise engineering and software engineering) and corresponding theories /

paradigms (namely: social theories and computing paradigms), as exhibited in Figure

1.4.

As it is seen from the figure, we observe both human entities and technical entities

not only within any enterprise information system but also within its environment.

Further, human entities as well as their relations and behavior are to be addressed

through social theories (as it will be discussed in Chapter 3); technical entities and their

operation are to be addressed through computing paradigms (as it will be discussed in

Chapter 4).

10

Fig. 1.4. Enterprise information systems – a modeling approach.

11

Inspired by [54] and acknowledging the gap between enterprise modeling and

software specification (as discussed already in the current chapter), we consider a

modeling approach toward enterprise information systems, grounding it in the

disciplines and corresponding theories / paradigms, as mentioned above and adding

further elaboration in terms of modeling viewpoints, as follows:

 Enterprise engineering is instrumental with regard to real-life enterprise

processes while software engineering is instrumental with regard to related

technical (IT) issues; requirements engineering concerns both since there are

not only (original) business requirements but also technical (user-defined)

requirements.

 Especially (social) theories are to be considered, touching upon human entities

and corresponding real-life behavior, and in particular:

- Human relativism (featuring human-centricity in enterprise modeling);

- Theory of organized activity (useful in modeling human behavior);

- Language-action perspective (useful in modeling language-driven

communicative acts);

- Enterprise ontology (useful in modeling coordination and production);

- Organizational semiotics (useful in modeling signs and business rules);

- Probabilities and statistics (useful in modeling surrounding context).

 Especially computing paradigms are to be considered, touching upon technical

entities and their operation, and in particular:

- Component-based development (useful in specifying component-

based software applications);

- Service-oriented architecture (useful in specifying web services);

- Model-driven engineering (useful in modeling based on abstractions);

- Cloud computing (useful in modeling the utilization of distant

resources);

- Aspect-oriented software development (useful in modeling

crosscutting non-functional concerns.

 Several modeling perspectives are to be considered, no matter if regarding

enterprise engineering or regarding software engineering, namely:

- Structure (how are different entities related to each other);

- Dynamics:

 What is the overall behavior of the considered entities;

 What are the states an entity comes through;

- Data.

 Depending on the purpose of modeling:

- A functional (black-box) view would be appropriate if establishing

what the system should do;

- A constructional (white-box) view would be appropriate if establishing

how the system should realize its functioning.

 In considering all this, a systemics approach is to be followed (see Chapter 2),

such that the modeling focus is put:

- Either on the system itself;

- Or on the system environment.

12

 The concepts to be considered in this regard (in line with the study presented in

Chapter 2) are:

- Concepts relevant to the system scope:

 System:

 Enterprise system;

 Enterprise Information System (EIS);

 Regulations;

 Business rules (also labelled ‘norms’).

- Concepts relevant to the environment scope:

 Context-awareness;

 Occurrence probability;

 Data analysis.

- Concepts relevant to both:

 Entity;

 Object;

 Sign;

 Component;

 Service;

 Role.

Hence, taking a modeling approach with regard to enterprise information systems

requires interdisciplinary efforts and multiple perspectives that are to be applied in

synch.

This book tells you how to bring together enterprise modeling and software

specification, such that an enterprise-engineering-driven software generation is

achieved – this is considered crucial with regard to the development of enterprise

information systems.

The remainder of the book is structured as follows:

CHAPTER 2 will introduce our systemics views, touching upon systems and their

composition, and also the system environment and context of users, extending this to

enterprise systems and enterprise information systems, and introducing a number of

concepts accordingly.

CHAPTER 3 will present relevant social theories (as according to Figure 1.4),

including: human relativism, theory of organized activity, language-action perspective,

enterprise ontology, and organizational semiotics.

CHAPTER 4 will present relevant computing paradigms (as according to Figure

1.4), including: component-based development, service-oriented architecture, model-

driven engineering, cloud computing, and aspect-oriented software development.

CHAPTER 5 will introduce the SDBC approach, presenting its foundations, outline,

and notations, driven by the goal of proposing a way to bring together enterprise

modeling and software specification for the sake of bridging the enterprise-software

gap (as discussed already in the current section).

13

CHAPTER 6 will feature one case study and two illustrative examples, in order to

demonstrate how enterprise engineering and software engineering can be brought

together, supported by SDBC and enriched by an explicit consideration of user-defined

requirements, and also how this can be extended to accommodate service-orientation

and middle-out modeling.

14

