

Chapter 2

SYSTEMS AND CONTEXT

There are numerous scientific disciplines: some are purely scientific, such as

mathematics, physics, and biology while others are applied, such as computer science

and engineering [80]. In considering any discipline nevertheless, the notion of system

is an important one [19]; in physics, they study physical systems, in biology, they study

biosystems, in sociology, they study social systems, and so on. Hence, the development

of the General Systems Theory has been inspired [7,78], referred to as systemics.

Systemics focuses on the characteristics of systems across the barriers between

scientific disciplines. Such a perspective is considered important with regard to EIS

since in approaching EIS, one would have to deal with social systems (because there

are human entities, human behavior, and so on, in any enterprise), also with technical

systems (because there are technical devices, software applications, and so on, in any

information system). Hence, both social systems and technical systems would not only

need to be studies in isolation but it is also necessary to understand their

interrelationships.

For this reason, firstly in the current chapter, we will clarify what we mean by

‘system’ and then we will touch upon enterprise systems and (enterprise) information

systems – all considered essential with regard to the focus of this book. Secondly, we

will explicitly discuss not only the construction of any system, by considering

ontological systems, but also its function, emphasizing as well on the distinction

between the two, reflected in two essential perspectives on system behavior: a. the

black-box perspective considering what the system is delivering to its environment

(functionally) and b. the white-box perspective considering how the system is delivering

this. Thirdly, we will touch upon the evolvability of any technical (software-intensive)

(sub-)system, part of an EIS, by considering combinatorial effects, in general and the

Normalized Systems Theory, in particular. Finally in the chapter, we will consider

context as an essential notion with regard to the system environment.

16

2.1 Systems

The General Systems Theory (already mentioned) proposes a unified approach in

considering a system, based on the (justified) claims that there are some:

 concepts and structural principles that seem to hold for systems of many kinds;

 modeling strategies that seem to hold everywhere.

That has inspired Bunge [10] to consider theories that focus on the structural

characteristics of systems and can therefore cross the ‘largely artificial’ barriers

between disciplines. Such efforts have triggered interest to discover similarities among

systems of many kinds despite their specific differences, such that studying current

(complex) enterprises would become easier [54] – this often assumes de-emphasizing

the aspects concerning the particular scientific discipline, focusing instead on the

structure and the behavior of the system as such. This even goes beyond systemics and

points to the broader notion of system analysis, as defined by Bunge: the

essential goal behind system analysis is to enable one understand how a system

operates.

Since those views are considered relevant to our focus on systems in general and

enterprise systems (and EIS), in particular, we have adopted the system definition

proposed by Bunge [10]:

DEFINITION 1 Let T be a nonempty set. Then the ordered triple  = <C, E, S> is

system over T if and only if C (standing for Composition) and E (standing for

Environment) are mutually disjoint subsets of T (i.e. C  E = ), and S (standing for

Structure) is a nonempty set of active relations on the union of C and E. The system is

conceptual if T is a set of conceptual items, and concrete (or material) if T   is a set

of concrete entities, i.e. things.

The system definition of Dietz [19] is consistent with the above definition,

acknowledging that among the properties of a system are:

 composition: a set of elements of some category (physical, social, biological,

etc.);

 environment: a set of elements of the same category; the composition and the

environment are disjoint;

 structure: a set of influence bonds among the elements in the composition, and

between the elements in the environment.

Nevertheless, Dietz considers one more property, namely production, pointing that:

 the elements in the composition produce things, such as goods, services, and so

on, that are delivered to elements in the environment.

For us, the composition-environment-structure system view is appropriate because

even though production characterizes most systems, we claim that it is also possible

that the composition elements of a system stay inactive (for a period of time or forever),

still being part of the system.

Further, in line with the systemics views, we would consider further system

categorization depending on the (research) area of interest; some examples of such

categories are:

17

 legislative system – a system concerning legal norms and acts;

 planet system – a system concerning planets;

 political system – a system concerning political subjects.

Since our focus is on enterprises and information systems supporting enterprises, we

are interested in two system categories, namely:

 enterprise system;

 EIS.

As for the enterprise system concept, it should correspond to a view on business, in

general, and for this we refer to [54]: by ‘business thing’, it is not meant only things

concerning trade/commerce but also all things that refer to any organized activity which

is driven by a particular goal. Next to that, businesses are envisioned as human-driven

since humans are those through whom businesses operate. Hence, inspired by the views

of Shishkov and Dietz [56], we propose the following definition:

DEFINITION 2 A system should be considered being an enterprise system

if and only if it is composed of human entities collaborating among each other through

actions which are driven by the goal of delivering products to entities belonging to the

environment of the system.

By ‘product’ we mean anything that is or can be delivered to a customer, no matter

if it is a material thing (often called product or goods) or an immaterial thing (often

called service), and this is referred to as a production fact.

In the same spirit and inspired by [54], we propose the following EIS definition

where ‘ICT’ stands for ‘Information and Communication Technology’:

DEFINITION 3 A system should be considered being an EIS if and only if it is

composed of human entities (often facilitated by ICT applications as well as by

technical and technological facilities) collaborating among each other driven by the

goal of supporting informationally a corresponding enterprise system.

Definition 2 and Definition 3 both reflect the ontological (constructional) essence of

the addressed system categories. This is claimed to be insufficient nevertheless with

regard to EIS because an enterprise information system is not only about structurally

bringing together different human and technical entities but it is also about enabling

technical entities, such as devices, ICT applications, and so on, to support

corresponding human entities accordingly. We argue that in order to achieve deep

understanding on this, one would also need a functional view as well, such that one

could step in the shoes of a particular human entity and understand the way this human

entity is supported functionally by a device and/or ICT application. For this reason, we

propose also another EIS definition that assumes a functional perspective, inspired by

[54]:

18

DEFINITION 4 Concerning its functional characteristics, an EIS is a system

which manipulates data and normally serves to collect, store, process and exchange (or

distribute) data among users within or between enterprises, or among people within

wider society.

In the following two sections, we will subsequently consider enterprise systems and

EIS.

2.2 Enterprise Systems

In considering enterprise systems, we stick to Definition 2, according to which the goal

of delivering products to the environment is essential and for this reason we take this

as an important criterion for determining whether or not a particular entity belongs to

an enterprise system. Only entities driven by the same goal would be considered

belonging to the same enterprise system. If a consultancy company is also dealing with

property rental, for example, then the human entities and activities about property

management should not be considered belonging to the consultancy enterprise system

since they are irrelevant with respect to the consultancy goal, and similarly, the human

entities and activities about consultancy should not be considered belonging to the

property renting enterprise system. Hence, this is all about the role and behavior that a

particular human entity takes, not about the formal belonging of the entity to one

organization or another. Further, this goal-driven criterion is not in conflict with our

adopting a composition-environment-structure system view (as discussed already) since

the goal itself (delivering consultancy, for example) may be existing and entities in

relevant roles may be existing but this does not mean that those entities are active.

Hence, although it does not directly concern the composition and structure of an

enterprise system, the goal driving it has to be taken into account when considering

such a system.

Further, in identifying an enterprise system, it is important being aware of the actions

and human entities (as well as the roles in which they appear) that are relevant to the

system.

As for actions that may take place in an enterprise system, we distinguish

between two action types, namely production and communicative (coordination) ones:

Production actions (or acts) concern a particular output in the form of a material

product or an immaterial product while Communicative (coordination) actions (or acts)

concern the collaboration within the enterprise system; this collaboration is in support

of the realization of (corresponding) production actions [54].

As for human entities and the roles in which they appear, we consider just

the actor-roles: the roles being fulfilled by corresponding human entities; this we

consider adequate for enterprise analyses because otherwise it would be confusing

considering some entities who may appear in different roles, including non-typical ones

(for example: a professor sending a fax, thus fulfilling the role secretary). Hence, we

are interested in the role and not in the particular human entity fulfilling the role.

19

We thus view an enterprise system as a collection of actions and corresponding

actor-roles: the actor-roles are the composition elements of the system while the actions

concern its structure, as depicted in Figure 2.1 [54]:

ENTERPRISE SYSTEM <E>

Actor-rolei

Actionij (Goal <G>) Actor-rolej

Fig. 2.1. Simplified view on an enterprise system.

As seen from the figure, within an enterprise system, one could identify actions

whose realization relates to corresponding actor-roles.

In order to bring a deeper clarification regarding enterprise systems, we need to

further elaborate on the notion of action (as mentioned already, we distinguish between

production actions (or acts) and communicative (coordination) actions (or acts), and

this also needs to be considered). We reflect this in the transaction concept [19]

because of its capabilities to grasp those two aspects, namely production and

coordination. Further, this concept is well aligned with the actor-role notion, assuming

the possibility that not only a particular human entity could fulfill more than one actor-

roles but that a particular actor-role could be fulfilled by more than one human entities.

If nevertheless one particular actor-role is being fulfilled by one particular human

entity, then the combination of the human entity and the actor-role is called actor.

Hence, we consider the following definition [21,54]:

DEFINITION 5 A transaction is a finite sequence of coordination acts

between two actors, concerning the same production fact. The actor who starts the

transaction is called the initiator. The general objective of the initiator of a transaction

is to have something done by the other actor, who therefore is called the executor.

Hence, transactions should be considered as the elementary building blocks of an

enterprise system. As studied by Dietz [20], transactions are related to each other in a

tree-structure. The top of the tree is called the starting transaction [57] - it is a

transaction that is not caused directly by another transaction (from the particular tree)

but triggers the execution of other transactions (within the tree).

Considering transaction trees (as a level of granularity) rather than transactions is

more appropriate to be done in modeling enterprise systems because at the granularity

level of transactions, the complexity is often rather big: even a simple enterprise system

would contain a great number of transactions, making it difficult for modelers to grasp

precisely and describe those transactions [54]. Thus, the consideration of transaction

trees would help partitioning somehow the multitude of transactions, grouping them

into segments. We hence introduce the business process concept in this regard

[57]:

20

DEFINITION 6 A business process is a structure of (connected)

transactions that are executed in order to fulfil a starting transaction.

Thus, in our view, the operation of enterprise systems concerns business processes

(which are driven by the goal characterizing the system). Each business process consists

of transactions, including a starting transaction – as exhibited in Figure 2.2.

Transactions in turn relate to initiators and executors.

ENTERPRISE SYSTEM <E>

bpi (Goal <G>)

bpj (Goal <G>)

bpk (Goal <G>)

bpl (Goal <G>)

bp = Business Process

…

Fig. 2.2. Visualizing the operation of an enterprise system.

The figure shows a particular example of an enterprise system operation. It concerns

many business processes; four of them are depicted in the figure, namely bpi, bpj, bpk,

and bpl. As seen from the figure, each of the business processes (driven generally by

the goal <G>) consists of transactions (with a starting transaction on top). The

transactions are presented by white diamonds, the starting transactions are presented by

black diamonds. A starting transaction could be activated in any of the following three

ways: outside cause (activation from a customer), periodic activation (usually

concerning payment activities), and activation resulting from a waiting relation (a

transaction could start only after another one is completed) [22].

Summarizing so far: we have presented our viewing the operation of enterprise

systems as concerning a number of business processes driven by a common general

goal. We have also elaborated on our defining a business process.

A further consideration of enterprise systems should touch upon decomposition:

firstly, because as it is well-known, decomposition reduces complexity in considering

any system and secondly, because addressing particular parts of an enterprise system

could allow for treating them separately and also for re-using them. Hence, we will

consider the notion of enterprise sub-system, by putting forward the following

definition [54]:

21

DEFINITION 7 An enterprise sub-system is a system which is a part of

an enterprise system.

Based on Definition 7, it becomes clear that if W is the set containing all the

transactions and actors included in an enterprise system, any sub-set Wi  W which

satisfies the system definition, would represent an enterprise sub-system.

Nevertheless, using the enterprise sub-system concept without any other restrictions

makes little use because of the non-determinism of the concept: any combination of

transactions and actors could be an enterprise sub-system. Hence, we argue that making

use of the mentioned concept should assume the application of clear criteria when

deciding what enterprise sub-systems to use and here the re-use potential is claimed to

be of importance - this includes a clear granularity positioning of the enterprise sub-

systems which one is to consider [54].

A possible and logical way of defining an enterprise sub-system is to consider

corresponding business processes, because:

 the issues related to a particular business process are distinguishable from all

other issues that belong to the corresponding enterprise system;

 business processes relate to a useful granularity level (between the transaction

level and the enterprise system level).

Hence, we will consider such enterprise sub-systems that relate to a particular

business processes. We will call such enterprise sub-systems business

components, bringing forward the following definition [56]:

DEFINITION 8 A business component is an enterprise sub-system that

comprises exactly one business process.

If more business processes are to be considered, for example three, then this would

point to three corresponding business components. If it would then be necessary to

bring two of them together (for example), this would mean just bringing together two

business components, ending up in a component of components. This is certainly

possible if: (i) the inter-relations concerning those components (two in our example)

are well-defined; (ii) the relations with the environment are well-defined also, since this

would not necessarily mean just ‘putting together’ the relations of one of the

components with its environment and the relations of the other one with its environment

– possible conflicts, redundancy, and so on should be avoided.

We have now introduced and clarified some basic EIS-relevant notions, paying

special attention to the concept of business component. Definition 8 positions this

concept within the enterprise engineering area unlike other definitions according to

which business component is a software engineering concept [1,4].

Still, the consideration of the notion of component vs the notion of system

requires further discussion because in our view touching upon those issues is not only

a matter of granularity but also a more general thing pointing to basic terminology

currently used in systems engineering, software engineering, and so on. It would often

be the case that our system of consideration is pointing to a particular enterprise but

22

this may also depend on the view point, as discussed already. Business processes are

identified within the enterprise and on that basis we identify business components.

Hence, it might be (although not necessarily) that an enterprise system is decomposed

in terms of business components which are nevertheless not the atomic entities within

the enterprise – business components could be decomposed themselves.

In programming, components are decomposed in terms of objects [1] but what is

object in enterprise engineering? According to Dietz [19], an object is an observable

and identifiable individual thing, for example a person or a car. Hence, we observe

different ways of defining object in different disciplines – software engineering and

enterprise engineering in this case. Since EIS relates to both of those disciplines, we

need to go deeper in discussing that notion, such that we position it correctly among

the other concepts we are considering in the current chapter. To do this, we note the

word observable from the definition of Dietz and this bring us to organizational

semiotics [43] where sign is defined as: something that stands for something else in

some respect or capacity. Organizational semiotics brings useful value to enterprise

engineering, by its theoretically relating the notions of object and sign through the so

called meaning triangle, as depicted in Figure 2.3:

Fig. 2.3. The meaning triangle.

As the figure suggests, people use signs as representations of objects in order to be

able to communicate about those objects and here the notion of concept is to be

considered as well – this notion is subjective (unlike the notions of object and sign

which are objective). Hence, a sign is an object that is used as a representation of

something else. A well-known class of signs are the symbolic signs, as used in all natural

languages, for example the name ‘John Atkinson’ – we may write this name many times

without the corresponding person named John Atkinson to be present, and we use this

23

sign in support of our communicating about the mentioned person. When it comes to

the object ‘John Atkinson’, this assumes our being physically able to perceive John, his

face, and so on. This corresponds to the notion of concrete object - observable by human

beings, unlike objects that are not observable by human beings, for example: 'number

three', called abstract objects. Further, the properties of an object collectively

constitute the 'form' of the object [19]. Objects may be composite: an aggregation

of two or more objects is also an object, for example: a car as a whole is an object but

also the back seat of the car (or any other (composite) detail) is an object by itself.

What about business components and how does the notion of business component

relate to the notion of object, as above presented? Let us take as an example a tourist

enterprise, dealing with vacations' organization, accommodation bookings, flight

bookings, and so on, and let us consider different business processes there, such as the

accommodation booking business process and the flight booking business process.

Hence, those two business processes would point to corresponding business

components, namely Accommodation booking and Flight booking. As it is clearly seen

from the example, we may consider those business components as:

 abstract objects since they are not observable by human beings;

 composite objects because we can go to finer granularity, for example, splitting

the accommodation booking into the booking itself and the payment that goes

as part of the booking.

Even though many examples one could think of point to abstract composite objects,

it would not be justified claiming that all business components represent abstract

composite objects. Still, being considered as an object, a business component represents

a useful enterprise modeling unit, yet not the atomic modeling unit because, as

discussed above, most business components could undergo further decomposition. This

is logical because a business component points to a corresponding business process and

the business process in turn represents a structure of transactions, as according to

Definition 6. For this reason, we consider transactions as the atomic enterprise

modeling units.

Still, at a higher level (with regard to elaboration), one could consider business

components that give the right perspective for grasping the enterprise while at a lower

level, where a more elaborated view is needed, considering transactions would be

better.

Furthermore, when considering actor-roles, transactions, business components, and

so on, it is necessary to establish what governs their (complex) inter-relationships and

behavior. For this reason, we consider as well regulations in general, as important

with regard to behavior orchestration, and in particular: (aggregation) rules that help

introducing behavior restrictions [39]. We find organizational semiotics useful in this

regard and particularly its norm analysis method reflected in the widely popular rule

(norm) pattern [43]:

whenever <condition>

if <state>

then <agent>

is <deontic operator>

to <action>

24

We will not go discussing the norm pattern in more detail in this chapter – we only

justify the need for regulations and rules in analyzing and/or modeling an enterprise

system.

Finally, valid challenges in the context of what has been presented so far in the

current chapter could hence be: (i) realizing an enterprise model that may help in better

understanding the enterprise under consideration and/or re-engineering the enterprise,

and/or engineering a new enterprise, and so on; (ii) delivering an enterprise model to

be used as basis for software specification, that may help if automation is to be

introduced within the enterprise, running software is to be updated, and so on. Thus,

(ii) is especially relevant with regard to EIS. As studied by Shishkov [54], the

enterprise-modeling-driven software specification is a complex

task that could usefully be accomplished in a component-based way, such that re-use,

traceability, and evolvability are possible.

Hence, an enterprise-modeling-driven software specification would assume using

business components (and possibly transactions and corresponding rules) as basis for

specifying software. This represents therefore a model-driven enterprise-software

alignment, and elaborating on what we mean by model is necessary in this regard.

As considered by Shishkov [54] and Dietz [19], a model of system A is a system used

to acquire knowledge about system A. Those views are consistent with the definition of

Apostel [3], which we use:

DEFINITION 9 Any subject using a system A that is neither directly or indirectly

interacting with a system B, to obtain information about the system B is using A as a

model for B.

Moreover, realizing that a model of anything gives usually a 'partial picture', we need

to define what should be considered as a complete model, and for this we firstly consider

the notions composition and structure of an (enterprise) system, which notions are

essential. They both concern two things, one of them is: how the entities belonging to

the system are positioned among each other and the other one is: what are the (business)

processes realized accordingly; the former is referred to as structure and the latter is

referred to as behavior (or dynamics). We secondly consider data because any system

(possibly an enterprise system, an EIS, or any other one), holds the need for storing,

processing, and communicating data (it is always that things are counted, (statistical)

data analysis is applied), and so on, no matter if this concerns biology, politics, or

enterprises, to give just three examples of system domains. On that basis, we define

complete model as follows:

DEFINITION 10 A complete model is a model that is elaborated at least in

three perspectives, namely structural perspective, dynamic perspective, and data

perspective.

We will also present (below) the business coMponent concept denoting a

complete model of a business component where the word 'coMponent' is with a capital

'M' to indicate the relation to the word 'model' [54]:

25

DEFINITION 11 A business coMponent is a complete model of a business

component.

Hence, if we know the structure of an enterprise unit, the processes over this

structure, and the related data flows, we claim to have a somehow 'complete' perception

of the enterprise unit, but is this always the case? What about situations in which

complicated human-to-human communication goes beyond the mere business

processes and data flows? We may consider two examples: (i) a holder of a debit card

tries several times unsuccessfully to withdraw money from a cash machine, entering

wrong personal identification number => we observe a business process and data flows

but nothing actually happens between the bank and its customer; (ii) as a result of a

simple conversation between a pizza restaurant waiter and a customer, a commitment

appears for delivering a pizza to the customer => even though this is just a simple

conversation, it brings in an obligation that has actual business sense. Thus, EIS as

systems consisting of human entities, technical entities, and so on, are often

characterized by human-to-human communications and those are to be

considered as part of the enterprise modeling since such communications bring in

promises, commitments, negotiations, and so on, and those issues may have impact on

particular business processes and corresponding enterprise (information) systems. For

this reason, in [54] this has especially been labelled as communication

perspective. We have not considered such a perspective explicitly because

according to Definition 6, business processes are considered as structures of

transactions and transactions in turn are not only about the production acts but also

about the communicative (coordination) acts - we believe that this already gives good

reference to human-to-human communication and represents a guarantee that when

considering business processes from a dynamic perspective, such communications

would be adequately reflected.

And in the end, in Figure 2.4, we outline our view on how to use those concepts for

modeling.

Business
Component C

…

Business
Component B

Business
CoMponent B

ENTERPRISE SYSTEM <E>

Business
Component A

modeling

Fig. 2.4. The component-coMponent relation.

26

As seen from the figure, we view an enterprise system as composed of business

components. We could represent such components in terms of business coMponents via

modeling. Those coMponents could be used either as enterprise modeling units or as

input for further software specification tasks.

2.3 Enterprise Information Systems

As mentioned at the beginning of the current chapter, after discussing systems and

enterprise systems, we are addressing (in this section) particularly EIS, noting

nevertheless that: (i) enterprise systems are a well-known class of systems; (ii)

enterprise information systems are a class of enterprise systems. Thus, all

characteristics of systems and enterprise systems, as discussed already, are to conform

to EIS as well. For this reason, we will only focus on the distinctive features of EIS in

this regard. Further, we make the assumption that ICT in general and ICT

applications, in particular represent important part of any EIS – by ‘ICT

application’ we mean a software application that is nevertheless operating in a

distributed networked environment and thus benefitting from current mobile and cloud

technologies [12]. Still, no matter if we consider a software application or (more

broadly) an ICT application, the software specification task is claimed to

play a crucial role [54]. For this reason, we outline two important challenges, namely:

 the software specification task and its role in the creation of EIS;

 the relation between business coMponents and software specification.

Further, being an enterprise system itself, an EIS has the following properties:

 its compositional elements are human entities;

 human entities fulfill particular actor-roles in realizing activities within the EIS;

 the EIS structure concerns inter-role relations which are in turn driven by goals.

However, with regard to enterprise systems, the goal is the delivery of business

products and/or services to entities belonging to the system environment, while with

regard to EIS, the goal is the informational support to a

corresponding enterprise system. As for environments: the environment

of an enterprise system consists of actor-roles (those actor-roles may be fulfilled by

human entities but they may also be fulfilled by technical entities) and actions, and

those are external with regard to the enterprise of consideration; the actor-roles and

actions that belong to the environment of an EIS, in contrast, are usually internal with

regard to the enterprise of consideration, and the reason for this is the role of an EIS as

supporting a corresponding enterprise system [54].

Thus, an enterprise system exploits an EIS, benefitting from corresponding EIS

services. Said otherwise, an EIS supports a corresponding enterprise system, by

providing services to it.

As mentioned already, such kind of support is usually realized by means of ICT

applications which allow enterprise systems to utilize current possibilities that are

related to ICT. With regard to this, we consider the following definition for ‘ICT

27

application’, adapted from [54], that is consistent with the definitions and assumptions

put forward in the current chapter:

DEFINITION 12 An ICT application is an implemented software product

realizing a particular functionality for the benefit of entities that are part of the

composition of an enterprise system and/or a (corresponding) EIS.

ENTERPRISE SYSTEM <E> EIS <I>

Business
Component A

Business
CoMponent T

ICT application Z
support

support

specification support

modeling

Fig. 2.5. Business coMponents’ supporting the applications’ specification.

Hence, ICT applications are largely instrumental with regard to the way in which

enterprise systems are supported informationally, and in many cases, this is about the:

(i) automation of business processes belonging to an enterprise system – for example,

part of what human insurance brokers are doing is being automated, such that this same

work is realized in an automated way, by means of software; (ii) enrichment of existing

business processes for the sake of utilizing new technological possibilities – for

example, moving storage to the Cloud would assume additional efforts on coping with

information security, possible latency, and so on, to mention just two possible

implications in such a context. Therefore, an ICT application is to be ‘covering’ either

a whole enterprise system (this is obviously rare because as above suggested, the

delivered ICT support is most often focused on a particular issue(s) within the

enterprise under consideration) or part(s) of it corresponding to particular business

processes – this makes ICT applications straightforwardly aligned to business

components or components consisting of business components. Since this is matter of

granularity, we would not distinguish between the cases when an ICT application

points to one particular business component and the cases when an ICT application

points to a group of (several) inter-related business components (which we called

component of business components) – we will speak of an ICT application pointing to

28

a business component and mean both. Such a relationship should (logically) assume

that the business component would have to be precisely reflected in the

specification of the corresponding ICT application; otherwise, the ICT

application support would be inconsistent with regard to the enterprise context. For

this reason, we propose using business coMponents as source for the derivation of ICT

application’s specification; this is depicted in Figure 2.5.

As seen from the figure, the support (indicated by the dashed line) that an EIS

realizes to an enterprise system is facilitated (actually driven) by ICT applications. As

also seen from the figure, a business coMponent might support the specification of a

corresponding ICT application. Hence, of particular interest are the relations:

business component – business coMponent – ICT application.

Said otherwise, we are interested to know how a (re-usable) business coMponent

could be identified and also how it could be reflected in the specification of an ICT

application.

Thus, we would need to discuss the role of specification in the design and

development of an ICT application and also possibilities for decomposing the

specification model.

We will hence firstly position the specification task, considering the three-phase

software creation process, following Atkinson and Muthig [5]:

 specification, addressing the functionality of the software artefact-to-be;

 realization, addressing the specification’s (further) refinement and also

technological aspects;

 implementation, addressing the model-based coding bringing about the final

software application output.

Hence, the modeling support that is provided by a business coMponent affects the

specification phase as depicted in Figure 2.6 [54]:

Business
CoMponent A

ICT application Z

specification

realization

implementation

support

Fig. 2.6. A support of a business coMponent to the specification of an ICT application.

As far as ICT applications are concerned, we take also into account the current

software development standards, as discussed at recent editions of the international

29

symposium on Business Modeling and Software Design – BMSD [8] according to

which the component-based software specification and

development are largely recognized.

Usually, within the software community, the term software component is associated

with the component-based development of ICT applications, which is characterized by

assembling re-usable software components [54]. They represent prefabricated,

configurable, and independently evolving building blocks which provide some

functionality that can be used separately or in composition with the functionality

provided by other software components.

According to the middleware perspective [31], which does not necessarily envision

a software component in the context of the development of an ICT application, software

components are blocks of code ready to be deployed on top of a suitable execution

environment (often called container) which provides a number of generic services for

the execution of components, such as event notification, authentication, and so on.

We hence conclude about several essential characteristics of software components,

also referring to MDA (see Chapter 4) [47], relevant to the software engineering

domain:

 any software component is characterized by a particular functionality and is

driven by the goal of providing service(s) to its environment;

 in its providing service(s), a software component could collaborate with other

software components;

 the environment of a software component may consist of other software

components, ICT applications, supporting platforms, and so on.

Hence, in addressing software components, we consider it necessary paying attention

to the interface specification, component dependencies, deployment, and granularity –

those issues are briefly discussed below. This is in tune with related studies reported in

[31].

An interface specification can be seen as a contract which is established between a

software component providing (implementing) a service and the component’s

environment using (invoking) it.

The component dependencies comprise the events that can be either produced or

consumed by a software component, in its providing service(s).

Given its binary representation, a software component is a self-contained building

block which could be independently deployed in a variety of environments.

Noting composability, a software component should not necessarily be a complete

ICT application; it may be a part of the whole. It is well known, nevertheless, that there

are examples of large software components that could be envisioned either as

components or as applications. Thus, considering the granularity of a software

component under development is of significant importance. In our view, in specifying

the size of a software component, the modeler should take into account the fundamental

requirement that a software component should be general enough to be re-usable in a

number of ICT applications [55].

Hence, on the basis of the above analysis, we consider a relevant software

component ontological definition [57]:

30

DEFINITION 13 Software components are implemented pieces of software,

which represent parts of an ICT application, and which collaborate among each other

driven by the goal of realizing the functionality of the application.

Since the software component concept concerns the implementation phase, we

would need to propose also a functional definition, inspired by Szyperski [73]:

DEFINITION 14 A software component is functionally a part of an ICT

application, which is self-contained, customizable, and composable, possessing a

clearly defined function and interfaces to the other parts of the application, and which

can also be deployed independently.

Thus, by creating an instance of a software component, we do actually deploy it. We

could view, therefore, such a component instance as an object. However, there is little

agreement on the differences between software components and objects [31]. For this

reason, we will not enter this discussion within the current chapter.

Since any support from a business coMponent would concern the specification

phase, we should consider another relevant concept referring to the logical building

blocks of an ICT application (in contrast to software components representing the

physical application building blocks, in the sense of physical component technologies,

such as CORBA [11], .NET [4], EJB [26], and so on). We hence introduce the term

software coMponent to reflect the above mentioned logical aspects:

DEFINITION 15 A software coMponent is a conceptual specification model

of a software component.

Summarizing our views and referring to Shishkov [54]:

 an enterprise system consists of business components;

 an ICT application consists of software components;

 the creation of a software component is supported conceptually by a

corresponding software coMponent;

 the identification of the software coMponents is supported conceptually by a

corresponding business coMponent.

Figure 2.7 illustrates this:

31

Software CoMponent K1

Software CoMponent K2

…

Software CoMponent Kn

Software Component K1

Software Component K2

…

Software Component Kn

Business
CoMponent K

 n  1

Fig. 2.7. Business coMponents, software coMponents, and software components.

As seen from the figure and as already stated, a business coMponent supports

conceptually the identification of at least one software coMponent. A software

coMponent in turn supports conceptually the creation of a corresponding software

component.

We hence claim that the concepts introduced so far in the current chapter, allow for

deriving a (component-based) software specification model on the basis of a

corresponding enterprise model, realizing in this way a (component-based) business-IT

alignment.

Construction is crosscutting with regard to all this – by construction we mean the

ontological dependencies and relations among system elements, relevant to the question

How is the system realizing its functionality? (as opposed to the question What is the

system realizing as functionality?), and this will be considered in the following section.

Still, it is to be noted that we have been consistent with such an ontological perspective

in this chapter so far – what we will only do in the following section is to consider those

issues more explicitly.

2.4 Ontological Systems and Function

Referring to the notions addressed in the previous sections, we consider a system and

its environment, and we may like to also be explicit about the system boundary –

the system boundary separates the system from its environment. Let us then consider

together the system, the system boundary, and the system environment, calling this

collectively Universe of Discourse or UoD, for short. Then, according to Dietz

[19]: the system composition, the system, the environment, and the structure (spanning

over them) are collectively called the UoD construction. The UoD construction can

thus be described by enumerating the entities within the system, the entities of the

32

environment, as well as the relationships in the structure – this is illustrated in Figure

2.8:

Fig. 2.8. The UoD construction.

On the figure: the composition of the system consists of the gray-colored elements;

the environment consists of the white-colored elements; as for the black-colored

elements – since they do not have influencing bonds with elements of the system, they

are considered UoD-external; the black line separating the system elements and the

environment elements represents the boundary; the lines represent the structural bonds

between elements. Thus, only the bonds among the system-internal elements and the

bonds between system elements and environment elements belong to the UoD

structure. Finally, the UoD composition, together with the UoD structural bonds is

called the UoD kernel.

An identical but more precise formal definition of the UoD construction,

following Bunge [10], is presented below, using two special symbols, namely: (i) ≺

meaning is part of and (ii) ▻ meaning acts upon, and particularly: x acts upon y if and

only if x influences the behavior of y; if both x▻y and y▻x hold, we say that x and

y interact:

Let σ represents our considered UoD and Γ a class of things, called the category of

σ. Then, the composition C of σ is defined as:

33

   C x x   ,

the environment E of σ is defined as:

        :E x x C y y C x y y x        

and the structure S of σ is defined as:

            , ,S x y x y y x x y C x C y E            

As for the notion of sub-system that has been already considered in this chapter, we

are now re-visiting this notion, providing below a precise definition from an ontological

perspective [19].

Let there be a system σ1 with the construction:

<C(σ1), E(σ1), S(σ1)>

and a system σ2with the construction:

<C(σ2), E(σ2), S(σ2)>.

Then system σ2 is a sub-system of system σ1 if and only if

   

        

   

2 1

2 1 2 1

2 1

\

C C

E C C E

S S

 

   

 







Further, with regard to a UoD, the collective activity of the system elements and the

environment elements is called operation. Even though this concerns not only the

system but the whole UoD, the operation is essentially initiated and driven by the

system (and possible contribution from elements that belong to the system environment

is triggered by system elements). For this reason, we may say that the operation of a

system is the manifestation of its construction in the course of time – this encompasses

both the production actions and the related coordination actions, preformed

accordingly [19].

And in the end, heterogeneous systems (for example, a car where one could identify:

(i) a mechanical system; (ii) an electrical system, and so on) are more complex than

homogenous systems (just the mechanical system, for instance, if we take the above

example), and the above definitions and discussion apply straightforwardly to

homogenous systems. When one would address a heterogeneous system, nonetheless,

34

one would have to reflect such a system in a number of homogenous systems which are

related to each other in a layered nesting [10]. The way in which a collection of

homogenous systems constitutes a heterogeneous system is not trivial and this holds

particularly for enterprises since enterprise systems are heterogeneous systems [19].

However, we will not go deeper in this discussion in the current chapter. Instead, we

will touch upon another important perspective over a system, namely the functional

perspective (as opposed to the constructional perspective considered above). Below,

we will explicitly discuss each of those two perspectives and will emphasize on the

distinction between them.

2.4.1 Construction vs Function

When modeling a system, one could take a white-box perspective that is closest to

the ontological view considered above – this is about capturing the construction and

the operation of the system, while abstracting from implementation details which are

assumed to be irrelevant; the white-box model is hence adequate for building or

changing a system. Contrary to this, taking a black-box perspective is about

capturing the interactions between the system composition and the environment – this

conveys the functional perspective on a system and a black-box model hence has no

direct relation with the construction and operation of the system under consideration

[19].

In order to illustrate this, we consider for example a car, and we take a white-box

view over the car as well as a black-box view, as shown in Figure 2.9.

As seen from the figure, the white-box view is close to the mechanic’s perspective

– the mechanic being interested in HOW the components of the engine, the components

of the suspension, the components of the electric system, and so on work (each one and

in combination among each other), such that the desired performance is realized. In

contrast, the black-box view is close to the driver’s perspective – the driver being

interested WHAT the car can do for him/her in terms of an input triggering

corresponding output – whether or not pressing the inside lamp button would lead to

illumination inside the coupe, whether or not turning on the car key would lead to noise

from the engine, whether or not pressing the brake pedal (while the car is moving)

would stop the car, and so on.

Hence, taking a white-box perspective would lead to a constructional decomposition

into engine, wheels, exhaust, and so on, while taking a black-box perspective would

lead to a functional decomposition into the power system, the brake system, the audio

system, and so on, as suggested by the figure.

After having discussed the construction and function of a system, we will turn to

another important issue concerning systems, namely evolvability. In the following

section, we will consider combinatorial effects, as strongly relevant to the mentioned

concern, addressing this from the perspective of the Normalized Systems Theory.

35

Fig. 2.9. White-box view vs black-box view

36

2.5 Normalized Systems

We consider the Normalized Systems Theory, referring to [35], acknowledging that EIS

should be able to evolve over time; said otherwise, an EIS should be designed in such a

way that it is capable of accommodating change. Hence, such kind of evolution

concerns the maintenance of the software ‘part’ of an EIS. Software maintenance is not

only expensive but it also leads to: (i) increased architectural complexity; (ii) decreased

software quality [25]. This is also recognized by Lehman's Law of Increasing

Complexity, indicating for a degradation of the structure of an EIS over time [40]. Thus,

the impact of a single change will increase over time.

In order to avoid such quality degradation, it is suggested aiming at theoretic stability

[44], referring to the fact that bounded input to a function results in bounded output

values, even as t → ∞. This means that a specific change to an EIS should require the

same effort, irrespective of the size of the EIS or the point in time when being applied.

Each change that is applied to an EIS requires a certain amount of effort. This effort

can be measured in, for example, the amount of time or the lines of code needed to

apply the change. This effort would nevertheless increase if on top of this intrinsic

amount of effort, additional software components need to be adapted. How such effort

increases over time is illustrated in Figure 2.10:

Fig. 2.10. Impact of combinatorial effects [45].

37

As it is seen from the figure, when an 'ideal' system is considered, the effort required

to apply a specific change does not increase over time. However, this effort would

actually increase over time (as mentioned above and as according to Lehman's Law) in

a 'real' system, leading to deteriorating effects (over time) resulting from the applied

changes - this is represented by the traditional system curve. Hence, there is a distance

between the two curves, increasing over time. It is combinatorial effects that

contribute to this distance [45].

Combinatorial effects occur when the impact of a change is dependent on the size of

the EIS and avoiding combinatorial effects would lead to avoiding the software quality

deterioration as explained already. The identification of such combinatorial effects

assumes that software is considered as a modular structure.

Huysmans [35] considers the inter-module EIS dependencies as causing

combinatorial effects, claiming that in such cases, realizing a change in a specific

module would lead to impact on other modules that are (in principle) unrelated to the

original change. Such dependencies can be introduced at design time while the vision

on stability requires that not a single dependency is introduced, even when an unlimited

amount of modules would be added - this is called the assumption of unlimited systems

evolution [46]: thus, only when no combinatorial effects occur while the EIS grows, it

is considered to be evolvable.

An EIS would be considerable as a normalized system, if exhibiting stability

with respect to a defined set of changes and the Normalized Systems Theory deduces a

set of four design theorems that act as design rules to identify and circumvent most

combinatorial effects [46], claiming that any failure to adhere to one of those theorems

would result in the introduction of combinatorial effects.

With regard to this, considering modular structures, taking a basic view, assumes

the consideration of action modules and data modules only, called ‘entities’. Hence,

our simplified view assumes considering action entities which perform certain

operations on data entities (action entities also receive input in the form of data

entities). A data entity thus contains attributes - concrete values or links to other data

entities. An action entity in turn represents an operation at a given modular level and

this would concern (several) tasks - a task is a set of instructions performing a certain

functionality. Such a conceptualization is consistent with Definition 10 where structure,

behavior, and data are considered essential with regard to an EIS.

The first theorem, separation of concerns, implies that every change driver or

concern should be separated from other concerns. The theorem allows for the isolation

of the impact of each change driver; this means that each module can contain only one

sub-modular task (which is defined as a change driver), but also that workflow should

be separated from functional sub-modular tasks.

The second theorem, data version transparency, implies that data should be

communicated in version-transparent ways between components. This requires that

introducing the data change (for example, sending additional data between two

components) should take place without having an impact on the components and their

interfaces.

38

The third theorem, action version transparency, implies that a component can be

upgraded without impacting the calling component(s).

The fourth theorem, separation of states, implies that actions or steps in a workflow

should be separated from each other in time, by keeping state after every action or step.

This suggests an asynchronous and stateful way of calling other components.

Hence, those theorems show at which point in the modular structure of an EIS,

combinatorial effects occur and that the only modular structures free from

combinatorial effects are the fine-grained structures. Especially the principles of

separation of concerns and separation of state indicate that modules have to be

separated both functionally and in time.

We are not going in more detail on discussing those four theorems and we are also

not elaborating further on the Normalized Systems Theory because our goal in this

section is to only consider the impact of combinatorial effect with regard to the

evolution of an EIS.

In the following section, we will shift focus from the system to the environment –

considering the challenge of adapting the behavior of an EIS to the surrounding context.

2.6 Context-Awareness

Let us consider again the constructional UoD view presented in Figure 2.8 and elaborate

the view on the environment, such that those environment entities using the system

products and/or services (called users), are made more explicit, as shown in Figure

2.11. What is depicted on the figure is:

 a system comprising entities and corresponding relationships;

 an environment comprising other entities and their corresponding relationships;

 a boundary separating the two (the system and its environment);

 a user comprising some entities belonging to the environment (in the figure they

are, for example, two) and their corresponding relationships;

 the broader universe where the UoD (the system and its environment) belongs.

Following such a view nevertheless, one may establish that there are ‘limits’ of the

environment, that is certainly not true because we engineer enterprises / EIS and in

doing that, we are certainly limiting the system, establishing what is to belong to the

system but we are not engineering the environment and thus we are not in a position to

say what belongs to the environment and what does not belong to the environment. It

is, for this reason, more straightforward to consider as environment anything that is

outside the system. Still, this would be an obstacle to distinguish between those entities

(outside the system) that are somehow interacting with the system and those entities

(outside the system) that are not interacting with the system. Said otherwise, we position

as belonging to the environment anything that is not only system-external but is also

concerned with interaction(s) with the system, and this goes beyond our control – the

designer cannot establish who and how may happen to be interacting with the system.

For this reason, although necessary, the separation between what belongs and what does

not belong to the system environment remains abstract.

39

Fig. 2.11. Modeling the user as part of the environment.

As the figure suggests, there is always a user – no matter what a system delivers, it

is delivered to a user (otherwise, the functioning of the system would be unjustified).

We claim that the user is to be part of the environment because otherwise, it would

mean that the user of what is delivered cannot be separated from the deliverer. Further,

the system user may comprise one or more entities belonging to the system environment

– each of them (or they both (if they are two, for example)) could consume different

services (or one service together). Finally, not all entities belonging to the system

environment should necessarily be parts of the user since it might be that the system

needs to collaborate with other entities from the environment (different from the user),

such that it is capable of delivering the requested products and/or services to the user.

Hence, a user perspective is needed in order to capture such a delivery of products

and/or services (we call this service, for short). Further, it is often that the service

delivered to the user is to be adapted to the situation of the user. For example, a person

wearing a body-area network [6] through which body vital signs are captured, may

appear to be at ‘normal state’ and then, for example, vital signs are captured and

recorded as archival information, or the person may appear to be in an ‘emergency

state’ and then help would need to be urgently arranged. Thus, one kind of service

would be needed at normal state and another kind of service would be needed at

emergency state. For this reason, the system (or a corresponding system-internal EIS or

ICT application) should be able to: (i) identify the situation of the user; (ii) deliver a

service to the user, which is suited for the particular situation. This is illustrated in

Figure 2.12:

40

Fig. 2.12. Schematic representation of a context-aware application.

As it is seen from the figure a service is delivered to the user and the user is

considered within his or her context, such that the service is adapted on the bases of

the context state (or situation) the user finds himself / herself in. That state is to be

somehow sensed and often technical devices, such as sensors, are used for this purpose.

In the current chapter, we do not go into discussing sensor technology in detail and for

this reason, by sensor we broadly mean the technical or other facility that helps

establishing the user situation. As mentioned before, it might be an EIS delivering the

service to the user or it might be that just one ICT application (for example) as part of

the EIS is delivering the service – no matter whether the former or the latter, we call it

context-aware application in the current section. Hence, a context-aware

application adapts its behavior, in delivering service(s) to the user, based on the actual

context state of the user, which context state is captured by sensors and corresponding

information – sent to the context-aware application accordingly.

In the remaining of the current section, we will firstly consider context-aware

applications and secondly – the analysis of context situations (states) related to this.

2.6.1 Context-aware Applications

Traditional ICT application development methods do not consider the context of

individual users of the ICT application (or application, for short) under development,

assuming instead that end-users would have common requirements independent of their

context. This may be a valid assumption for applications running on and accessed at

desktop computers, but would be less appropriate for applications whose services are

delivered via mobile devices. Ignoring the dynamic context of users may lead to sub-

optimal applications, at least for a subset of the context situations the end user may find

himself / herself in. Hence, context-aware applications (mentioned already) have

emerged, driven by the successful uptake of mobile telephony and wireless

telecommunications [12]. Such applications are, to a greater or lesser extent, aware of

the end-user context situation (for example, user is at home, user is traveling) and

provide the desirable services corresponding to the situation at hand [61]. This quality

points also to another related characteristic, namely that context-aware applications

must be able to capture or be informed about information on the context of end-users,

preferably without effort and conscious acts from the user part [62].

41

Developing context-aware applications is hence not a trivial task and as above

suggested, the following related challenges have been identified: (i) Properly deciding

what physical context to sense and what high-level context information to pass to an

application, and also bridging the gap between raw context data and high-level context

information; (ii) Deciding which potential end-user context situations to consider and

which ones to ignore; (iii) Modeling context-aware application behavior including

switching between alternative behaviors [61].

The basic assumption underlying the development of context-aware applications is

that end-user needs are not static, however partially dependent on the particular

situation the end-user finds himself / herself in, as already mentioned. For example,

depending on his / her current location, time, activity, social environment,

environmental properties, or physiological properties, the end-user may have different

interests, preferences, or needs with respect to the services that can be provided by

applications.

Context-aware applications are thus primarily motivated by their potential to

increase user-perceived effectiveness, i.e. to provide services that better suit the needs

of the end-user, by taking account of the user situation. We refer to the collection of

parameters that determine the situation of an end-user, and which are relevant for the

application in pursue of user-perceived effectiveness, as end-user context, or context

for short, in accordance to definitions found in literature [18].

Context-awareness implies that information on the end-user context must be

captured, and preferably so without conscious or active involvement of the end-user.

Although in principle the end-user could also provide context information by directly

interacting with the application, one can assume that in practice this would be too

cumbersome if not impossible; it would require deep expertise to know the relevant

context parameters and how those are correctly defined, and furthermore be very time

consuming and error-prone to provide the parameter specifications as manual input

[61].

Context-aware applications can be particularly effective if the end-user is mobile

and uses a personal handheld device for the delivery of services. The mobile case is

characterized by dynamic context situations often dominated by changing location

(however not necessarily restricted to this). Different locations may imply different

social environments and different network access options, which offer opportunities for

the provision of adaptive or value-added services based on context sensitivity.

Especially in the mobile case, context changes are continuous, and a context-aware

application may exploit this by providing near real-time context-based adaptation

during a service delivery session with its end-user. The adaptation is near real-time

because context information is an approximation (not exact representation) of the real-

life context and thus there may be a time delay [12].

Hence, through context-awareness, applications can be pro-active with respect to

service delivery, in addition to being just re-active, by detecting certain context

situations that require or invite the delivery of useful services which are then initiated

by the application instead of by a user request. Otherwise said, traditional applications

provide service in reaction to user requests (re-active), whereas context-aware

applications have also the possibility of initiating a service when a particular context

situation is detected, without user input (pro-active).

42

In summary, context-awareness concerns the possibility of delivering effective

personalized services to the end-user, taking into account his / her particular situation

or context state. Technological advances enable better and richer context-awareness,

beyond mere location-sensitivity.

With regard to the design implications concerning context-aware applications, those

applications require knowledge on context and exploit this knowledge to provide the

best possible service, as mentioned above. This concerns the end-user context, i.e. the

situation of a person who is the potential user of services offered by an application.

Examples of end-user context are the location of the user, the user’s activity, the

availability of the user, and the user’s access to certain devices or facilities. The

assumption we make is that the end-user is in different context situations over time, and

as a consequence, (s)he has changing preferences or needs with regard to services.

This corresponds to what is exhibited in Figure 2.12: the application is informed by

sensors of the context (or of context changes), where the sensing is done as

unobtrusively (and invisibly) for the end-user as possible. Sensors sample the user's

environment and produce (primitive) context information, which is an approximation

of the actual context, suitable for computer interpretation and processing. Higher-level

context information may be derived through inference and aggregation (using input

from multiple sensors) before it is presented to applications which in turn can decide

on the current context of the end-user and the corresponding service(s) that must be

offered. Further, according to Shishkov and Van Sinderen [61], the design,

implementation, deployment, and operation of context-aware applications have many

interesting concerns, including:

 social / economical: how to determine useful context-aware services, where

useful can be defined in terms of functional and monetary value?

 methodological: how to determine and model the context of the end-user that is

relevant to the application; how to relate the context to the service of the

application and how to model this service; how to design the application such

that the service is correctly implemented?

 technical: how to represent context in the technical domain; how to manage

context information such that it is useful to the application; how to use context

information in the provisioning of context-aware services?

Addressing the last two concerns (especially the last one) starts with considering

possible IT architectures and according to Shishkov and Van Sinderen [61], two

principle architectures could be appropriate, namely:

 Context-aware Selection: end-user request(s) and end-user-related context

information are used to discover a matching service (or service composition).

Discovery is supported by a repository of context-enhanced service

descriptions. A context-enhanced service description not only specifies the

functional properties (goals, interactions, input, output) and non-functional

properties (performance, security, availability), but also the context properties

of the service. Context properties indicate what context situations the service is

targeting. For example, a service could provide information which is region-

specific (such as a sightseeing tour), and therefore the context properties could

indicate the relevance for a particular geographical area.

43

 Context-aware Execution: after the end-user request(s) has been processed and

a matching service(s) has been found (possibly in the same way as described

above), the service delivery itself would adapt to changing context during the

service session with the end-user. When the context of the end-user changes in

a relevant (to the application) way, the service provided is adapted to the

situation at hand. For example, the user may move from one location to another

while using a service that offers information on objects of interest, which are

close-by (such as historic buildings within a radius of five kilometers, for

example).

In both context-aware selection and context-aware execution, a new role is

introduced, namely the role of context provider. A context provider is an

information service provider where the information is context information. A context

provider captures raw context data and/or processes context information with the

purpose of producing richer context information which is of (commercial) interest.

Interested parties could be other context providers or application providers. Further, a

context-ware application obviously requires an adaptive service provisioning

component and a context information provisioning component.

As far as the design of context-aware applications is concerned, we follow an

approach that is a partial refinement of an existing one considered in [64], that concerns

a general design life cycle comprising amongst other phases:

 Enterprise Modeling: during that phase, the end-user is considered in relation

to processes that either support him / her directly or the goal(s) of related

business(es). Those processes have to be identified, modeled and analyzed with

respect to their ability to (collectively) achieve the stated goals. A model of the

processes and their relationships is called an enterprise model.

 Application Modeling: during that phase, the attention is shifted from the

business to the IT domain. The purpose is to derive a model of the application,

which can be used as a blueprint for the software implementation based on a

target technological platform. A model of the application, whether as an

integrated whole or as a composition of application components, is called an

application model. Enterprise models and application models should certainly

be aligned, in order to achieve that the application properly contributes to the

realization of the business/user goals. As a starting point for achieving proper

alignment, one could delineate in the final enterprise model which (parts of)

processes are subject to automation (i.e., are considered for replacement by

software applications). The most abstract representation of the delineated

behavior would be a service specification of the application (as an integrated

whole), which can be considered as the initial application model.

 Requirements Elicitation: both the enterprise model and the application model

have to meet certain requirements, which are captured and made explicit during

the phase called requirements elicitation. Application requirements can be seen

as a refinement of part of the business requirements, as a consequence of the

proposition that the initial application model can be derived considering (parts

of) the business processes (within the final enterprise model), especially those

processes selected for automation.

44

 Context Elicitation: an important part of the design of a context-aware

application is the process of finding out the relevant end-user context from the

application point of view; we will refer to that phase as context elicitation. End-

user context is relevant to the application if a context change would also change

the preferences or needs of the end-user, regarding the service of the

application. Context elicitation can therefore be seen also as the process of

determining an end-user context state space, where each context state

corresponds to an alternative desirable service behavior. Since relevant end-

user context potentially has many attributes (location, activity, availability, and

so on), a context state can relate to a complex end-user situation, composed of

(statements on) several context attributes. Moreover, context elicitation relates

to requirements elicitation in the sense that each context state is associated with

requirements (i.e., preferences and needs of the end-user) on desirable

application behavior. Context elicitation can best be done in the final phase of

enterprise modeling and the initial phase of application modeling, when the role

and responsibility of the end-user and the role and responsibility of the

application in their respective environments are considered.

Figure 2.13 depicts those different phases and activities:

refine

Business Requirements
refine

constrain constrain

Application Requirements

Application Modeling Enterprise Modeling

Context Requirements

Fig. 2.13. Application design life cycle.

Following [62], we assume that an end-user context space can be defined and that

each context state within this space corresponds to an alternative application service

behavior. In other words, the application service consists of several sub-behaviors or

variations of some basic behavior, each corresponding to a different context state. Any

service behavior model would have to express the context state dependent transitions

from one sub-behavior (or behavior variation) to another one.

With respect to those issues, the following challenges have been identified:

 Properly deciding what to sense and how to interpret it in adapting application

behavior can be problematic since the interpreted sensed information must be a

valid indication for a change in the situation of the end-user and it is not always

trivial to know how context information is to correspond to a user situation.

45

 Deciding which potential end-user context situations to consider and which

ones to ignore is challenging because there may be tens or even hundreds of

possible end-user situations, with only several of them with high probability to

occur, and therefore considering the others at design time is not sensible with

respect to adequate resources expenditure.

 Modeling the application behavior including the switching between alternative

desirable application behaviors can be complicated because alternative

behaviors are behaviors themselves which also are to be considered in an

integrated way, allowing for modeling the switching between them, driven

possibly by rules.

Those challenges will be discussed below.

With regard to deriving context information: an adequate decision about what

should be sensed and how it is to be interpreted, concerns the extraction of context

information from raw data, which relates broadly to context reasoning [6].

Context reasoning is concerned with inferring context information from raw

sensor data and deriving higher-level context information from lower-level context

information. As for the extraction of context information from raw data, related

algorithms are needed to support it, and two main concerns are to be taken into account:

 the ability of specific target applications, e.g. in domains such as healthcare or

finance (for example), to use the output of the algorithms;

 the availability of sensors providing input to the algorithms.

Current standard mobile devices can already operate as sensors, e.g. they can gather

GPS info, Wi-Fi info, cellular network info, Bluetooth info, voice call info, and so on.

In addition, dedicated sensors (that for example measure vital signs) can be integrated

with existing mobile networked devices. Next to that, future standard mobile devices

may even include other types of sensors, e.g. measuring temperature.

Hence, it is considered crucial developing efficient context reasoning algorithms, by

investigating whether it is possible to derive certain specific context information from

certain specific sensor information. In order to adequately refine such algorithms,

additional restrictions would need to be taken into account: (i) restrictions concerning

the (specific) processing environments of mobile devices; (ii) restrictions on memory

usage, processing power, battery consumption, wireless network usage; (iii)

restrictions that concern real-time versus delayed availability of extracted context.

In order to develop adequate algorithms that extract context from raw sensor data, it

is therefore important to appropriately consider gathering raw sensor data which is

augmented with user input. Concerning the sensor data, it should be pre-processed and

filtered, in order to be properly structured as input for the context reasoning algorithms

which in turn would be expected to automatically yield the desired output. The

(delivered) context information must be of certain (minimal) quality in order to be

useful; otherwise said, certain quality-of-context levels should be maintained.

Finally, some issues that have more indirect impact, need also to be taken into

account:

(a) The delivered context information would have to be often applied in real-

time environments where failures, performance requirements, available interfaces, and

operational environments are to be taken into careful consideration;

46

(b) In order new applications to be enabled, it is important to investigate how

the algorithms could be integrated in the infrastructure for context awareness.

With regard to context situations, it is to be noted that it may be that there are many

(tens, hundreds, and even more) possible end-user situations, for example: user at home,

user driving, user busy, user out of battery, user on holiday, user in emergency, and so

on. Situations are situations but which situations are relevant, how many of them have

high occurrence probability, which situation corresponds to the so called main success

scenario? Those questions points to the following claims:

 The application designers should only consider relevant context states. For

example, if this is about arranging a phone call with John, then ‘John is at home’

or ‘John is driving’, or ‘John is in a meeting’, and so on are relevant context

states but ‘John is insured’ is irrelevant.

 Out of all possible relevant context states, there should be several ones that are

of high occurrence probability and thus all other ones are of lower occurrence

probability (see the next sub-section).

- The high-probability context states could be reflected at design time;

this makes sense because the applications developers are preparing a

‘solution-box’, such that upon identifying a particular high probability

context state, the application ‘takes’ a system behavior version out of

the box – a behavior version that matches the context state; this would

lead to adequate system behavior, carefully ‘prepared’ at design time.

- The low-probability context states, in contrast, may be ignored at

design time because spending time and resources for system behavior

versions that are not expected to occur, is considered inappropriate.

Still, it is possible (even though not very probable) that such context

states occur. For this reason, we argue that even though not reflected

at design time, such context states are to be addressable at run time,

through intelligent algorithms.

 There should always be a default behavior because in our view, the application

behavior modeling needs a main success scenario to serve as the regulation back

for the system – then, any possible deviations from the main success scenario

could be modeled as extensions [54].

This is illustrated in Figure 2.14:

context state of high occurrence probability

context state

default context state ...

context state of low occurrence probability

Fig. 2.14. Classification of context states.

47

As seen from the figure, from the perspective of developing a context-aware

application, one is to distinguish between context states of high occurrence probability

and context states of low occurrence probability, and the default context state is

certainly one of the context states of high occurrence probability.

With regard to switching between application behaviors, this is an important issue

as well because even if context states are identified properly and also matched to

corresponding desired behaviors (or addressed by intelligent algorithms), it is a

challenge to handle the mere switching between one (current) desired behavior of the

application and another one (upcoming). Let us take for example the case of supporting

a person wearing a body-area network, by means of a context-aware e-health

application [6] and let us take for simplicity just two of the possible context states,

namely: ‘normal’ (the person is being just monitored, by transmitting data that concerns

vital signs to a hospital) and ‘emergency’ (the person urgently needs medical help and

the goal is that the person sees a medical specialist as soon as possible, no matter who

the medical specialist is or which is the hospital where the medical specialist stays, or

if this would be arranged by an ambulance reaching the person). Then, if there is a

context change, for example: from ‘normal’ to ‘emergency’, how would this be

realized? If the application would stop the vital signs data transmission and start

searching for the closest medical specialist, would the vital sign info be recorded such

that it is possibly used by the medical specialist? In the opposite case, if there is a

context change, from ‘emergency’ to ‘normal’ (for example, if the person feels better

and indicates that (s)he would not need emergency treatment any more) and the

application would hence have to stop dealing with the emergency help arrangement and

would have to go back to transmitting data concerning vital signs, then what would

happen if for example an ambulance is traveling to the location of the person, should

the application also take care of informing the approached medical specialist(s) that the

emergency situation has been cancelled? Those examples show that switching between

application behaviors is not trivial and this challenge needs to be adequately addressed

at design time.

Summarizing the above, a context-aware system can be seen as concerning a

sequence of actions that achieve: S (sensing and capturing), I (interpretation and state

derivation), w (switching), and P (provisioning), as shown in Figure 2.15:

48

S

Legend:
S: Sensing
I: Interpretation
w: Switching
P: Provisioning
 = action
 = dependency

I

w

P

Fig. 2.15. Simplified view on a context-aware system.

With regard to S: The system should be able to sense context and capture this context

as context information.

With regard to I: the system should be able to interpret the captured context

information and derive higher-level context information, in particular – user context

state changes, as triggers to alternative behaviors.

With regard to w: the system should be able to handle the switching between its

alternative behaviors.

With regard to P: the system should be able to provide services covering all possible

context states.

This is obviously a simplified model, since each of the actions represents a

potentially complex process, and the dependencies between those normally involve

multiple instances of information exchange and triggering. Still, the (probabilities-

driven) context analysis challenge has crucial importance with regard to all above-

discussed issues. For this reason, we consider this issue further in the next sub-section.

2.6.2 Context Analysis, Context States, Occurrence Probabilities, and Context

Parameters

As studied by Shishkov & Van Sinderen [62], context analysis is to be about

approaching the possible context states and corresponding desired behaviors, and this

is to include not only studying the possible context states and their occurrence

probabilities but also discovering useful context parameters whose values indicate the

occurrence of particular states.

As far as occurrence probabilities are concerned, it is to be noted that in

deciding about the states, the designer is sometimes inevitably driven by subjective

judgements that are hardly supportable by rules: How a situation is perceived? What

behaviors can be expected? Further, the designer must often make pragmatic decisions

– ignoring, for example, states that usually do not occur (although they might occur).

In our view, besides such subjective decisions, there are steps which in general help to

49

adequately approach the context analysis challenge. Those steps concern the

consideration of random variables. Exploring their probabilities, allows us to

apply statistical analysis, including hypotheses testing and parameters

estimation [42].

Considering just possible outcomes is sometimes not enough in approaching a

phenomenon; we might need to refer to an outcome in general. This is possible if we

have a random variable and we study the occurrence probability of the outcomes.

Let us consider for example land border security and particularly the activities of

border police officers on preventing illegal border crossings, supported by technical

infrastructure and devices [59]. Further, let us consider particularly the case of distant

monitoring: there is a camera transmitting in real-time and a border police officer is

following the visual information being received; essential in this case is whether the

camera is transmitting or not (if the camera is not transmitting, this would be alarming

and there may be numerous reasons for that, such as illegal human intervention, outage,

natural cause, and so on).

We can consider here the random variable Y with respect to those outcomes,

namely: camera transmitting and camera not transmitting. Y would be a discrete

random variable [42] since it may take on only a countable number of distinct values

– two in our case. Provided the number of possible distinct values is exactly two, we

have the case of a priori probabilities of each of the alternative outcomes

(one of those probabilities can be calculated by deducting the other one from 1).

Hence, if (for example) statistical information from the border authorities indicates

that within a certain time frame, in 80% of the time a particular camera was

transmitting, we would conclude that the a priori probability of the first of the

mentioned possible outcomes (namely: ‘camera transmitting’) is 0.8. The a priori

probability of the second alternative outcome is thus 0.2.

Hence, our context states represent the ‘camera transmitting’ and ‘camera not

transmitting’ alternatives, with a priori probabilities 0.8 and 0.2, respectively –

Figure 2.16:

camera not transmitting co
n
te

xt

camera transmitting

alternative outcomes

a priori probabilities

0.8

0.2

Fig. 2.16. Two context state alternatives.

It is to be noted, with regard to the current example, that even though we observe

whether a camera is transmitting or not, it is not the camera that is the end-user of what

a context-aware application is delivering because the context-aware application is not

supporting the camera but the border police officer who is using the camera’s output.

Hence, those alternative outcomes point to two alternative situations for the border

50

police officer, namely: (i) the border police officer is counting on the camera; (ii) the

border police officer is not counting on the camera. Depending on the situation of the

border police officer, the context-aware application would deliver one kind of support

or another.

Therefore, knowing the occurrence probability of each outcome helps in deciding

about the de fault system behavior, about the optimal allocation of resources, about

risks, and so on.

Further, in order to prescribe how to recognize each of the states (two in our case),

we assume that the state at a particular moment is recognizable through observing the

values of appropriate parameters. If we have n parameters appropriate to our

scenario and if each of them has certain possible values, then each value combination

would point to a particular state.

Then, by considering the value combinations, we can know the context state, by

simply observing the values at any moment [62].

It is also necessary to analyze potential context states, such that the ones of high

occurrence probability are identified. We argue that this may be done intuitively or on

the basis of statistical information. We are hence interested in considering the latter in

more detail.

With regard to this, we consider statistics, data analysis, and probability theory, and

for this we refer to Freund [28].

Although descriptive statistics is an important branch of statistics and it continues

to be widely used, statistical information usually arises from samples (from

observations made on only part of a large set of items), and this means that its analysis

requires generalizations which go beyond the data – this is an observed shift in

emphasis from descriptive statistics to the methods of statistical inference. As for

probability theory, it provides the basis for the methods which are used when

generalizations are made from observed data, namely when the methods of statistical

inference are used.

Let us take as an example a support delivered by a context-aware application to

workers – the application supports a worker, by informing the worker of the

environmental conditions, in general, and the concentration (in the air) of sulfur oxides,

in particular, such that the worker knows if it is safe to be out or not. It is hence

necessary knowing the concentration levels of sulfur oxides, which are of high

occurrence probabilities. This would allow for better designing the application and to

be able as well to establish a realistic work plan, knowing (approximately) how many

working days to plan for the worker to work outside the factory.

In our example, we have made 80 observations – one sample per one day, hence 80

days in total; let us consider the following example results (sulfur oxides in tons):

15.8 26.4 17.3 11.2 23.9 24.8 18.7 13.9 9.0 13.2

22.7 9.8 6.2 14.7 17.5 26.1 12.8 28.6 17.6 23.7

26.8 22.7 18.0 20.5 11.0 20.9 15.5 19.4 16.7 10.7

19.1 15.2 22.9 26.6 20.4 21.4 19.2 21.6 16.9 19.0

18.5 23.0 24.6 20.1 16.2 18.0 7.7 13.5 23.5 14.5

14.4 29.6 19.4 17.0 20.8 24.3 22.5 24.6 18.4 18.1

8.3 21.9 12.3 22.3 13.3 11.8 19.3 20.0 25.7 31.8

25.9 10.5 15.9 27.5 18.1 17.9 9.4 24.1 20.1 28.5

51

Since the smallest value is 6.2 (put on gray background) and the largest value is 31.8

(put on gray background as well), we make a choice for the following classification

assuming 7 classes:

 5.0 – 8.9 first class;

 9.0 – 12.9 second class;

 13.0 – 16.9 third class;

 17.0 – 20.9 fourth class;

 21.0 – 24.9 fifth class;

 25.0 – 28.9 sixth class;

 29.0 – 32.9 seventh class.

It is now necessary to establish how many items fall into each class (those are called

‘class frequences’) and as well what is the corresponding percentage and the cumulative

percentage:

 3 items (out of 80) into first class 3.75% 3.75%;

 10 items (out of 80) into second class 12.50% 16.25%;

 14 items (out of 80) into third class 17.50% 33.75%;

 25 items (out of 80) into fourth class 31.25% 65.00%;

 17 items (out of 80) into fifth class 21.25% 86.25%;

 9 items (out of 80) into sixth class 11.25% 97.50%;

 2 items (out of 80) into seventh class 2.50% 100.00%.

This is graphically presented as histogram in Figure 2.17:

5.0 – 8.9 9.0 – 12.9 13.0 – 16.9 17.0 – 20.9 21.0 – 24.9 25.0 – 28.9 29.0 – 32.9

tons of sulfur oxides

0

10

20

fr
eq

u
en

cy

Fig. 2.17. Histogram of the distribution of the sulfur oxides emission data.

As it is seen from the figure, most items (25) fall into the fourth class:

 31.25 percent of all sample items show between 17.0 and 20.9 tons of sulfur

oxides;

 33.75 percent of all sample items show less than 17.00 tons of sulfur oxides;

 therefore, 65.00 percent of all sample items show less than 21.00 tons of sulfur

oxides.

52

Further, let us calculate the mean, by summing up the 80 numbers (15.8 + … + 28.5)

and dividing the resulting number by 80: 1511,7 /80 = 18,9. In this case, we can trust

that number because each of the 80 days has equal importance weight in contrast to

cases when this is not the case, as for example observations summarized in big London

against observations summarized in small Delft.

In order to avoid the possibility of getting misled using the mean (as above

mentioned), it is recommended to consider the median – see Figure 2.18:

5.0 – 8.9 9.0 – 12.9 13.0 – 16.9 17.0 – 20.9 21.0 – 24.9 25.0 – 28.9 29.0 – 32.9

tons of sulfur oxides

0

10

20

fr
eq

u
en

cy

z 4-z

 = 19.03

Fig. 2.18. The median of the distribution of the sulfur oxides emission data.

The median should ‘split’ the sample items, such that 50% of them have values

smaller than the value the median points to and hence 50% of them have values greater

than the value the median points to. In the considered example, we need to find this

number that fulfills the following: 50% of the sample sulfur oxides values are smaller

than the number and 50% are greater. On the figure, the median is displayed in dashed

line.

We find the median of the distribution of the sulfur oxides emission data in the

following way:

1. We note that 33.75% of the sample items have values lower than 17.00 (this can

be seen from the numbers presented above); we note also that 50.00% of the

sample items have values lower than the so called ‘median value’ (pointed by

the median as shown in Figure 2.18). The difference between the two is: 50.00%

– 33.75% = 16.25%. We note also that the mentioned 33.75% correspond to:

first class + second class + third class while at the same time 31.25% correspond

to the fourth class only (those are values greater than 17.0 and smaller than

20.9). Thus the median value corresponds to the fourth class (because 16.25%

is smaller than 31.25%). For this reason, we state that the median value equals

to 17 + z, which means that the ‘distance’ between the median value and 21

(where the fifth class ‘begins’), equals to: 4 – z, because we have class intervals

of 4 (9.0 – 5.0 = 4, 13.0 – 9.0 = 4, and so on).

53

2. We then split the fourth class into two sub-classes, namely four-L and four-H,

such that: (i) the items belonging to the fourth-L sub-class have values that are

greater than 17 and smaller than the median value; (ii) the items belonging to

the fourth-H sub-class have values that are greater than then median value and

smaller than 21. Thus: (a) 31.25% of all sample items belong to fourth-L sub-

class + fourth-H sub-class; (b) 16.25% of all sample items belong to the fourth-

L sub-class (50.00% - 33.75% = 16,25%: see above); (c) thus, 15.00% of all

sample items belong to the fourth-H sub-class (31.25% - 16.25% = 15.00%); (d)

52.00% of the sample items belonging to the fourth class, belong to the fourth-

L class ((16.25/31,25)*100).

3. We assume that the values in each class are evenly distributed (spread evenly

throughout the class); this would mean that if 52.00% of all values belonging to

the fourth class belong to the fourth-L class, then 52.00% of the whole class

interval (that is 4) correspond to z (Figure 2.18) which is the ‘sub-class interval’

corresponding to the fourth-L sub-class. This would mean: z = 52% * 4 = 2.08.

4. The way amounts have actually been grouped in the considered example is

precise to the point of the nearest tenth of a ton (5.0, 8.9, 9.0, and so on) and this

is to assume refinement to some extend – for example, considering that 5.0

includes everything from 4.95 to 5.05, the class 5.0 – 8.9 includes everything

from 4.95 to 8.95, and so on. Such a desired level of precision points to the so

called ‘class boundaries’ – if we assume such level of precision for the example,

this would mean that the lower boundary of the fourth class is 16.95.

5. Hence, in order to find the median value, we should add the corresponding sub-

class interval (2.08) to the lower boundary of the class (16.95): 16.95 + 2.08 =

19.03, as also seen from Figure 2.18.

Hence, half of the sample items have values that are smaller than 19.03 and the other

half of the sample items have values that are greater than 19.03.

In summary, in the current example:

 the MEAN equals to 18.90;

 the MEDIAN equals to 19.03.

In the example, as explained already, both values are very close and we could round

this to 19.00, hence claiming that for the period in which the sample values were

taken, it may be expected that the amount of sulfur oxides (in tons) in the air would

be around 19. If this is acceptable, according to the regulations, then this would mean

that it is to be planned than in most days, workers would be able to work out; otherwise,

it is to be planned that in most days, workers are to be kept inside the factory, for

example.

Let us assume that 19.00 points to possibility to work out. In this case, the default

application behavior would assume that the end-user is working out and only if the

situation of the end-user changes – the amount of sulfur oxides in the air goes above

the norm, the application would switch to another behavior that assumes instructing the

end-user to get inside, and so on.

Thus, in developing context-aware applications, it is helpful conducting data

analysis as above-suggested, such that the default application behavior is adequately

determined – with regard to this, the data distribution is to be considered, as well as the

mean and/or the median values; still, with regard to those issues, we are not going in

54

more detail in the current section, noting nevertheless that what statistics and

probability theory offer can be even more instrumental (through other concepts and

approaches as well) with regard to context analysis.

IN SUMMARY, in the current chapter, we introduced our systemics views, touching

upon systems and their composition, on one hand, and the system environment and

context of users, on another hand, extending this to enterprise systems and EIS. In the

following two chapters, we will present relevant social theories (Chapter 3) and

computing paradigms (Chapter 4), elaborating on how the concepts and views

considered in the current chapter, can be rooted both enterprise-wise and technology-

wise.

55

Chapter 3

SOCIAL THEORIES

As mentioned already, we are considering in this chapter social theories, such that we

ground our modeling views concerning enterprise systems and EIS, as presented and

discussed in the previous chapter, and in particular – we are addressing those issues that

are about the human aspects relevant to enterprise systems and EIS. This is because

human behavior, human decisions, human communication, human failures, and so on

are all about the functioning of any enterprise system or EIS. For this reason, we need

to be explicit in considering such issues when modeling / designing such systems.

Further, just referring to a theory would be insufficiently useful because aligning

concepts and views to a particular theory is not trivial – we argue that this could only

be achieved if concepts (and views) are bridged to theories, driven by particular

concerns since only such an approach can justify the selection of particular theories.

For this reason, we firstly present several concerns whose identification has been

inspired by Shishkov [54] and in line with the views presented in the previous chapter:

 Intuitive Behavior: There are human entities in any enterprise system /

EIS and often their behavior is driven by interpretations, knowledge,

judgements, beliefs, values, and so on – those are not always easy to objectively

observe and identify. For this reason, it is claimed that intuitive human behavior

is an essential concern that needs to be addressed explicitly in the analysis and

design of such systems.

 The Human Element: In line with the above paragraph, it is to be noted that

human entities differ from any other non-human entities, such as devices,

applications, and so on, because all processes in Society are human-driven – it

is only humans who have rights, it is only humans who benefit from social

prosperity, it is only humans who can be kept responsible, and so on. For this

reason, no matter what is happening (for example, a drone is in the air,

monitoring a land border), it is to be possible to ‘trace’ this to corresponding

human authority and responsibility.

56

intuitive behavior
human element

language
role

affordance
sign, rule

Human
Relativism

Theory of
Organized Activity

Language / Action
Perspective

Enterprise
Ontology

Semantic
Analysis Method

Norm
Analysis Method

O
rg

a
n

iz
a

ti
o

n
a
l

S
e
m

io
ti
c
s

CONCERNS

THEORIES

Fig. 3.1. Concerns and theories.

 Language: Human entities, being part of any enterprise system / EIS,

communicate among each other, using language – this goes beyond what is just

driven by rules, since through language, human entities give promises, express

disagreement, lead negotiations, and so on. Such issues have impact on the

functioning of a system and need to be adequately modeled.

 Role: Human entities are more sophisticated in their behavior than technical

entities – unlike a technical entity which follows ‘embedded’ rules only, a

person would often think, make decisions (especially in exceptional situations),

and so on, and this may result in conflicts with the rules; hence, it may happen

that a human entity realizes activities that are not part of his/her ‘job profile’ (a

professor faxing for example, with this being part of the secretary’s

responsibilities); for this reason, we argue that it is appropriate modeling roles,

not just the (human) entities fulfilling those roles, as already discussed in

Chapter 2.

 Affordance: There are many different objects that need to be considered

when modeling an enterprise system / EIS and what is important in this regard

is reflecting their features and capabilities, for example: in a library, a book

affords to be borrowed; thus, we consider the ‘affordance’ concept useful as it

concerns the modeling of (enterprise) systems.

57

 Sign: In an enterprise context, often something stands for something else, for

the sake of properly conveying semantics to corresponding entities, for example

– in case of fire within a building, if a person is not sure which direction to

follow in order to leave the building, in case a green light can be seen from

somewhere, the person would take this direction because it is widely accepted

that ‘Exit’ signs are colored green and illuminated; hence, the green light helps

the person make the right decision how to proceed in a complex situation – this

is thus a sign (we have discussed the ‘sign’ concept in the previous chapter, and

we argue that this notion should be adequately reflected in the modeling of

enterprise systems / EIS.

 Rule: Any (enterprise) system is essentially governed by regulations and rules

(norms) and for this reason, it is essential to be capable of adequately reflecting

rules in modeling enterprise systems / EIS.

Following Shishkov [54] and considering recent studies [8], we have established

that: (i) human relativism and the Theory of Organized Activity

(TOA) well cover the human element and intuitive human behavior; (ii) the

Language / Action Perspective (LAP) and enterprise ontology

well cover the (language-based) human communication and corresponding roles that

corresponding human entities can fulfill; (iii) organizational semiotics, in

general, and the semantic analysis method as well as the norm analysis

method, in particular, well cover the concepts of affordance, sign, and norm (rule), as

suggested by Figure 3.1.

For this reason, in the remaining of the current chapter, we will firstly consider

human relativism and TOA, secondly – LAP and enterprise ontology, and thirdly –

organizational semiotics.

We consider those social theories as underlying with regard to our concepts, views,

and way of modeling, as it concerns enterprise systems and EIS, in general and the

modeling of human aspects in this context, in particular. As mentioned before, social

theories are insufficient when it also comes to ICT and software – for this we need as

well computing paradigms, such that the social theories applied and the computing

paradigms followed are complementary with regard to each other. We address the

social theories in the current chapter and the computing paradigms – in the following

chapter.

3.1 Human Relativism and TOA

In order to provide theoretical principles with respect to the necessity of taking properly

into account the human element and its behavior, in [16], a new philosophical stance –

human relativism – was proposed, together with an analysis of human action

seen as the kernel element of any approach following that stance. The same perspective

characterizes TOA where organized activity is the key concept. Those theories will be

addressed further on in the current section.

58

3.1.1 Human Relativism

Human relativism, as considered in [16] takes a World perspective consistent with

functionalism, social relativism, radical structuralism, and neo-humanism, as presented

in [33], also establishing the possibility of complementary using formal methods and

theories, for the sake of overcoming the limitations of most objectivist stances, related

mainly to cases of unpredictable behavior usually related to the human element – this

including most inter-subjective experiences, such as interpretation, knowledge, beliefs,

intentions, value, and so on, which often remain hidden from our senses. It is claimed

that scientific methods and objectivism are unable to deal with human behavior in

general since it is impossible (from such a perspective) to reproduce or predict things

like interpretation or understanding, or to regulate mechanically human actions [16].

To tackle this from the perspective of human relativism assumes acknowledging the

human centeredness and the unpredictable behavior of human entities. Human

relativism recognizes this human centrality in all human activities, by acknowledging

an objective reality as human relative. There are many evidences of this human relative

view even in objectivism. The visible images transformed from infrareds into the

visible spectrum, for example, allow us to experience a different reality where human

bodies cannot be easily separated from the environment, because there are no clear

boundaries. However, this reality is in fact seen and experienced by some animal

species as science proofs. In this sense we may question ourselves, which is the real

reality, the reality we observe with our vision or the reality observed using, for instance,

the infrared spectrum? Or, are they different views of the same reality? There is no

claim in human relativism that the reality we see is the real reality, neither an

explanation nor sense of what a real reality is. The solution is more a practical solution

– this is the reality we have, we experience and we share. By assuming the human at

the center we also assume and accept his/her view as bounded, focused and particular.

Further, information is human-related as well – information is extracted by humans

from the reality using perception and interpretation processes. The distinction between

perceptions, the process of acknowledging the external reality through our senses, and

interpretation, the meaning making process, is a useful way to help understanding the

nature of information and its acquisition process. Only information goes through an

interpretation process, the other elements of the (human) reality are just perceived. In

fact, perception filters part of the human reality accessible to a particular individual.

To perceive does not mean to interpret and this separation allows us to understand

what observable is. Usually, observability concerns what we think a human being is

able to percept or acquire through his/her senses. This excludes the interpretation

process and information as well. Usually information is not observable but it can be

extracted from observable things. Observable things can be viewed as material or

physical things from the objectivist view, for example - a smile (that is an observable

thing) may express happiness (that is not an observable thing). At the same time

nonetheless, observing a smile on the face of a person does not guarantee happiness –

this is a matter of interpretation and also, different persons may express themselves

differently. To solve this ambiguity or meaning problem, the above-mentioned

observability concept is the first step and with regard to this, human relativism has the

following assumption:

59

ASSUMPTION Anything that is observable will be more consensual, precise,

and therefore more appropriate to be used by scientific methods.

Further, in considering the notion of ‘observability’ it is necessary to consider a

related notion as well, namely, the notion of precision.

According to [15], to have a high degree of precision means to have a reduced level

of ambiguity and different meanings in some term or element making it generally

accepted, recognized, and shared. One way of achieving precision, for example, is the

use of physical measurement.

This leads to stating an important human relativistic hypothesis:

HYPOTHESIS By adopting observable elements or high precision

elements under a human relativistic view, it is possible to derive a scientific and

theoretical well-founded approach to EIS.

Those basic human relativistic ideas are claimed to be aligned with social

constructivism and objectivism, making a proper connection between them.

Since most enterprise systems / EIS are ‘challenged’ by issues related to the human

element, such as unpredictability (and this prevents the use of scientific and objective

methods), human relativism identifies and highlights this point, by recognizing human

behavior as an essential challenge with respect to those issues.

Those thoughts point to another important human relativistic hypothesis:

HYPOTHESIS We may freely apply technical approaches if there is no

unpredictable behavior present, specifically human behavior.

Hence, human relativism points a way to overcome the difficulty in dealing with

unpredictable behavior, in particular human behavior. When approaching human

behavior, one would realize that what is ‘seen’ is just the observable part of the

behavior – the observable human actions. One should then acknowledge importance of

the unpredictable aspects of human behavior, for building adequate models of

enterprise systems /EIS. Still, besides just acknowledging those issues, human

relativism proposes ways to cope with ambiguities resulting from unpredictable human

behavior:

 to reduce the dependability of the enterprise system / EIS on human behavior;

 to better use the power of human behavior, through support coming from tools

that are not only facilitating humans but are also stimulating them to generate

feedback that in turn could help to better capture the different aspects of human

behavior.

Thus, building upon other philosophical stances, human relativism is essentially

focusing on human behavior with recognition of the fact that even though precision can

be achieved, observable behavior is just a part of the complex human behavior, and in

order to cope with this complexity, one could either make systems less dependent on

human behavior or introduce tools that not only support humans with regard to their

actions but also help the system better capture the different aspects of human behavior.

60

As already mentioned, in the following sub-section, we will further the discussion

on human behavior, by addressing the Theory of Organized Activity – TOA.

3.1.2 TOA

The Theory of Organized Activity – TOA, proposed by Anatol Holt [34] considers a

concept relevant to human behavior, namely the concept of Organized Activity,

or OA for short, and Anatol Holt states the following with regard to that concept:

“I intend the expression ‘organized activity’ to mean a human universal. Like

language, organized activity exists wherever and whenever people exist. It will be

found in social groups of a dozen, or in social groups of millions - in the jungle and

in New York City, in every culture, and at every stage of cultural/technological

history. It is manifest in every form of enterprise, whether catching big game, coping

with a fire, or running a modem corporation – even acquiring and communicating

by language.”

This is how Anatol Holt positions the OA concept acknowledging the TOA

emphasizing the following issues that concern any OA:

 A common communication language – expressed not only by words, but by

actions and things as well, known as units and recognized by people sharing or

involved in the same activity. Behind this idea there is an essential and

associated meta-theory called the theory of units.

 Actions – which directly affect, involve or act on things or materials. Actions

are related to a temporal dimension.

 Bodies – representing things or materials, related to a material dimension.

 Action Performers – always persons and/or organizational entities.

TOA is thus mainly considering actions, bodies, and action performers as well as

their inter-relationships.

As far as actions are concerned, TOA emphasizes especially on human actions,

acknowledging that responsibility can only be attributed to humans, which would mean

that computers and other tools cannot perform actions.

As for action performers, human actions are motivated and driven by them (in the

interest of the action performers).

Figure 3.2 [34] defines the OA kernel. The figure is presenting two dichotomies,

namely persons <-> organizational entities and actions <-> bodies, suggesting that (as

according to Anatol Holt) any OA, no matter how complex and subtle, can be usefully

represented in those terms.

Besides the action and body concepts, TOA also defines the concepts of state and

information. A state in TOA only applies to bodies and is only understood within

specific domains of action. This notion makes a TOA state different from the usual

technical description of a state. Regarding information, in TOA it has the exclusive end

use of making decisions, which determines the following course of actions. Information

in TOA is carried in lumps by bodies, being those lumps exclusive properties of those

bodies. Information contents of a body depend on the context of its use and on the

particular actors performing the actions. The same information can be used differently

by different actors or in different contexts.

61

ACTIONS

PERSONS

ORGANIZATIONAL
ENTITIES

BODIES

perform

possess

perform

possess

take

take

are

are

space

time

material lumps

effort lumps

involve are involved in

Fig. 3.2. The OA kernel.

Anatol Holt claims that itt is only TOA that:

 relates information to human decision;

 has potential to define measures consistent with those of Claude Shannon;

 makes explicit all real-world operations performed on real-world information.

Thus, we claim that both human relativism and TOA provide a useful perspective on

enterprise systems / EIS, emphasizing on human behavior. In the following section, we

are going to consider the (language-driven) communication among (human) entities.

3.2 LAP and Enterprise Ontology

According to Definition 10: “A complete model is a model that is elaborated at least in

three perspectives, namely structural perspective, dynamic perspective, and data

perspective”, and as suggested in the previous chapter, if one would be considering an

enterprise system or an EIS, one would be interested in capturing the structure of the

system, the system’s behavior, and the corresponding data flows. As also suggested in

the mentioned chapter nevertheless, is that the human-to-human communication

(characterizing enterprise systems and EIS) needs to be considered as well – actually,

the communicative actions (related to human-to-human communication) are related to

the transaction concept (Definition 5) and transactions are considered as the

elementary building blocks of enterprise systems. For this reason, besides addressing

structural issues, behavioral issues, and data (or factual) issues, we need to take as well

a communicative perspective concerning human-to-human communication.

This perspective is addressed in the current section, and in particular – LAP and

enterprise ontology.

62

3.2.1 LAP

Taking a communicative perspective in approaching an enterprise system, is motivated

by the importance of grasping not only the structural, factual, and behavioral (dynamic)

enterprise system aspects but also the communicative aspect [52], and one of the most

sound and popular theories behind that issue is the Language / Action Perspective –

LAP [82]. LAP is a theoretical orientation towards approaching the modeling of

business processes, by emphasizing the importance of interaction and communication.

The theory recognizes that language is not only used for exchanging information, as in

reports (for example), but that language is used also to perform actions, as in promises

or orders (for example). Such actions are claimed to represent the foundation of

communities and organizations, and must be understood to create effective EIS. For

this reason, it is claimed that adequately capturing the communicative aspects,

characterizing the considered enterprise system(s), would contribute to the creation of

sound and complete business process models [54]. Further, referring to the white-box

vs black-box enterprise systems modeling, reflecting construction vs function (Figure

2.9), it is to be noted that applying LAP allows for revealing the construction and

operation of an enterprise, not just capturing the enterprise dynamics. Such a direction

corresponds to the consideration of transactions as enterprise modeling elements

(Definition 5).

Hence, taking a white-box perspective and considering the notions of actor,

production, and coordination (as explained in the previous chapter), LAP suggests that

the functional behavior of an enterprise is brought about by the collective working of

its constructional components [54]. The construction and the working of a system are

most near to what a system really is, to its ontological description [10]. Acknowledging

Bunge’s vision, Dietz takes a LAP perspective in considering enterprises, claiming that

an enterprise is a discrete dynamic system in the category of social systems, having

social individuals or actors, each of them having a particular authority to perform

production acts (P-acts) and a corresponding responsibility to do that in an appropriate

and accountable way; the structure of an enterprise consists of coordination acts (C-

acts), i.e. the actors enter into and comply with commitments regarding the

performance of P-acts [23] – that all points to the generic white-box model of an

enterprise, consisting of the actors, the P-world, and the C-world [54], as presented in

Figure 3.3:

Fig. 3.3. The white-box model of an enterprise.

C-acts concern human-to-human communications. An instance of such kind of

communication consists of two human processes:

63

 a sender (role 1) expressing something (a message) and

 a receiver (role 2) interpreting the message.

What can be communicated between a sender and a receiver? Elementary

communicative acts, such as request, promise, state, accept, and so on, are

considered from the LAP perspective. This is consistent with Definition 5 according to

which “a transaction is a finite sequence of coordination (communicative) acts between

two actors concerning the same production fact”. Hence, production acts and

coordination (communicative) acts appear to be performed in particular

sequences or chains that can be viewed as paths through a generic pattern

pointing to a transaction [23], and also, in the enterprise context Role 1 (see above)

would correspond to customer while Role 2 – to producer.

Hence, a more elaborated (and LAP-driven) view on transactions suggests that a

transaction is a finite sequence of C-acts between two actor-

roles, the customer and the producer. It takes place in three phases: the order

phase (O-phase), the execution phase (E-phase), and the result phase (R-

phase). O-phase is a conversation that starts with a request by the customer and that, if

successful, ends with a promise by the producer. E-phase basically consists of the

performance of the P-act by the producer. R-phase starts with a statement by the

producer that the requested act is performed and ends, if successful, with an acceptance

by the customer. All this is reflected in the generic transaction pattern depicted in Figure

3.4:

O-phase E-phase R-phase

pmrq

rj

acst

dc

sp

gu

sprj

dc

sp

success lay er

discussion lay er

f ailure lay er

request promise state accept

d
e
c
lin

e

re
s
u
m

e

re
s
u
m

e

d
e
c
lin

e

stop stop stop

reject reject

give up resume

Fig. 3.4. The transaction pattern.

As it is seen on the figure, besides the three phases – O-phase, E-phase, and R-phase,

there are as well three layers, namely: success layer, discussion layer, and failure layer;

further, the elementary communicative acts considered and their abbreviations are as

follows:

64

- rq request

- pm promise

- st state

- ac accept

- dc decline

- rj reject,

and as well two ‘factual’ acts are considered, namely: sp (stop) and gu (give up). The

generic transaction pattern needs to be further explained and for this we will use a toy

example reflecting the situation in which a customer enters a small pizza shop.

Let us firstly consider the success layer:

The customer (John) enters the shop and requests a pizza to be delivered to him,

assuming to pay for this according to the announced prices. The person at the desk

(Tim), realizing that the ingredients for the requested pizza (such as cheese, tomato

paste, and so on) are available, promises to deliver a pizza to John. Then Tim goes to

the kitchenette and prepares the pizza for John. Up to this point, we have two

elementary communicative acts, namely: request and promise (as it can be seen from

the figure, communicative acts are presented as disks) and one production act: the pizza

preparation (as it can be seen from the figure, production act is presented as diamond).

Further, after having prepared the pizza, Tim comes back to John, bringing the pizza to

him, stating that the request was fulfilled. John takes the pizza and pays, implicitly

meaning that he is satisfied with the result and accepts what was delivered (a pizza in

this case). It is only the acceptance that makes the transaction completed. Said

otherwise, if such an acceptance is not reached (and for example, John refuses to pay

and goes out), then there is no transaction, no matter how many communicative /

production acts have taken place.

Let us secondly consider the discussion layer:

If after John asks for a pizza, Tim, realizing that not all pizza ingredients are

available, declines the request, this puts John and Tim into some kind of negotiations.

As part of such negotiations, Tim may announce that even though he cannot deliver a

pizza, he can deliver a sandwich instead, for example. Then, there are two possibilities

– John either agrees to have a sandwich or not. If John agrees to have a sandwich, this

means that John introduces a new request (instead of requesting a pizza, John is already

requesting a sandwich). To this Tim promises to deliver a sandwich to John (new

promise) and all goes back to the success layer. If nevertheless, John would decide that

he would not go for a sandwich, then all goes to the failure layer, as shown on the

figure. Considering further the discussion layer: if after having started the pizza /

sandwich preparation, Tim unexpectedly experiences an electricity outage, this would

result in his impossibility to adequately finalize the delivery – this puts John and Tim

into negotiations. As part of such negotiations, Tim may announce that due to an

electricity outage, he cannot deliver the pizza / sandwich within reasonable time but,

based on information from the electricity supplier, he expects all to be back to normal

within one hour, for example, and hence, he can deliver the pizza / sandwich with a

one-hour delay (for example), because he had to temporarily give up the pizza /

sandwich preparation, causing in this way inconvenience to John, but this could be

65

compensated by a lower price, for example. If John would agree, this would mean that

implicitly John has made a request assuming the ‘new’ conditions (new request) and

Tim has promised to deliver according to the ‘new’ conditions (new promise), and Tim

is in the process of preparing the pizza / sandwich according to the ‘new’ conditions

(new production). Then all goes back to the success layer. If nevertheless, John has no

time to wait, then all goes to the failure layer, as shown on the figure. And in the end,

if the pizza / sandwich is ready and Tim delivers it to John, stating that what was

requested was fulfilled, it is possible that instead of accepting the pizza / sandwich,

John declines accepting the delivered result, for example – if John finds the way the

pizza / sandwich looks inadequate. This puts John and Tim into negotiations. Tim may

offer a lower price as compensation for the inadequate look of the pizza / sandwich, for

example. If John would agree, then all goes back to the success layer and this would

mean that implicitly John has made a request (new request) and Tim has made a promise

(new promise) as according to the ‘new’ conditions, the pizza / sandwich was delivered

(new production and new statement) and paid according to the new conditions, the

result is accepted and this means that the transaction is completed. If nevertheless

John would not like to accept the delivered pizza / sandwich even at a new (lower)

price, then all goes to the failure layer.

Let us finally consider the failure layer:

No matter if the transaction has reached the failure layer because John would not

like to have a sandwich instead of a pizza (O-phase) or because John would not like to

wait more (E-phase), or because John would not like to accept a pizza / sandwich that

according to John has a look that is inadequate, even at a lower price (R-phase), as in

the considered example, the transaction is incomplete; this means that nothing

essential has objectively happened in reality.

Thus, by modeling an enterprise system / EIS in terms of actor-roles and

transactions, we assume the potential for anything to take place among actor-

roles, which is nevertheless not necessarily to happen.

Further, as mentioned in the previous chapter, we consider transactions as the atomic

enterprise modeling units and this does not contradict with the fact that transactions in

turn represent a sequence of C-acts (as mentioned above). What matters with regard to

the business processes is whether there is a completed transaction or not – the C-acts

alone are not enough to justify a business process. For example, if a person would use

a cash machine just to enter his/her personal identification number and would then stop,

this would leave no ‘business trace’, or if a person would just ask (within a pizza shop)

what the price of a pizza is and would then leave. In those examples, we observe C-acts

but no completed transactions.

Finally, our systemics concepts and views are claimed to be consistent with LAP and

for this reason, we especially emphasize the transaction concept that is considered

to have essential importance in this regard.

In the following sub-section, we consider the theory of enterprise ontology as

proposed by Dietz [19] not only because this theory is partially based on LAP but also

because some views of Dietz have influenced our previous work [54].

66

3.2.2 Enterprise Ontology

The DEMO methodology [17] has been developed on the basis of LAP and reflected in

the SDBC approach [54]. This has inspired Dietz [19] to consider LAP in combination

with philosophical ontology [10] and organizational semiotics [43] to propose the Ψ-

theory, underlying Enterprise Ontology (EO). The overall goal of the Ψ-theory

/ EO is to extract the essence of an enterprise from its actual

appearance, such that corresponding white-box models could be adequately derived

– this is the enterprise ontological modeling. The organization theorem has

crucial importance with regard to the above-mentioned goal and the theorem in turn is

essentially backed by four axioms, namely: the operation axiom, the

transaction axiom, the composition axiom, and the distinction

axiom, as shown in Figure 3.5:

OPERATION
AXIOM

TRANSACTION
AXIOM

COMPOSITION
AXIOM

ORGANIZATION THEOREM

DISTINCTION
AXIOM

ENTERPRISE
ONTOLOGY

Fig. 3.5. EO – background.

Hence, in the remaining of this sub-section, we will firstly consider the operation

axiom, secondly – the transaction axiom, thirdly – the composition axiom, fourthly –

the distinction axiom, and finally – the organization theorem.

67

Operation Axiom

The operation axiom states that the operation of an enterprise (see Figure 2.9) is

constituted by actors (see Section 2.2) who perform two kinds of acts, namely P-acts

and C-acts (see Figure 3.3), as according to LAP.

By performing P-acts, actors contribute to bringing about the goods and/or

services that are delivered to the environment of the enterprise under consideration

(assuming that in the current sub-section we consider enterprise systems – see

Definition 2).

Further, in line with the discussion on material things and immaterial things (see

Section 2.1) related to the notion of ‘product’ (see Definition 2), we note that P-acts

could be either material or immaterial:

 examples of material P-acts are manufacturing acts, storage acts, transportation

acts, and so on;

 examples of immaterial P-acts are judgement acts of a court (to sentence

someone, for example), decision acts of an insurer (to grant an insurance claim,

for example), appointment acts (bringing someone to the presidency of a

company, for example), and so on.

By performing C-acts, actors enter into and comply with commitments towards

each other regarding the performance of P-acts.

Transaction Axiom

Referring to the LAP-driven transaction pattern (see Figure 3.4) and to the operation

axiom, we establish that

 a C-act is performed by one actor (called ‘producer’) and directed to another actor

(called ‘customer’);

 C-acts are always, either directly or indirectly, about P-acts.

Thus, the notion of transaction refers to the question how P-acts and C-acts are

related to each other, and the transaction pattern is referred to as a generic coordination

pattern in the above context.

Hence, the transaction axiom recognizes the LAP-driven transaction pattern

according to which transactions always involve two actor roles and are aimed at

achieving a particular result.

Further, taking the perspective of EO, a conversation is defined as a sequence

of C-acts between two actor roles that are aimed at achieving a well-defined result

concerning a P-act.

Thus, a transaction actually consists of two conversations, namely:

 an actagenic conversation (it is about the order) and

 a factagenic conversation (it is about the result).

If we consider the transaction pattern (Figure 3.4), we see that the actagenic

conversation points to the order phase and the factagenic conversation points to the

result phase, while between them is the execution of the P-act, which both

conversations are about.

What can also be seen from the pattern is that the INITIATOR of the transaction is

the customer while the EXECUTOR of the transaction is the producer (it is the

customer who would request a pizza, for example and this would initiate the

68

transaction, and also with respect to the same example, it would be the producer who

would prepare and deliver the pizza, in this way executing what has been requested).

Hence:

 in the order phase, the initiator and the executor work to reach an agreement

about the intended result of the transaction, i.e., the production fact that the

executor is going to create as well as the intended time of creation;

 in the execution phase, this production fact is actually brought about by the

executor;

 in the result phase, the initiator and the executor work to reach an agreement

about the production fact that has actually been produced, as well as the actual

time of creation (both of which may differ from what was originally requested.

Only if that agreement is reached will the production fact come into existence,

as discussed in the previous sub-section.

Composition Axiom

The composition axiom concerns the business process notion (see Definition 6),

considering a business process to be a structure of causally related transaction types.

All causally related transactions are executed in order to fulfill a starting transaction –

such a starting transaction is either activated from the enterprise environment or is self-

activated on the basis of some kind of self-activation condition.

…

 LAN

switch

1..1

server

1..1

router

1..1

printer

1..2

…

…

…

…

…

…

HDD

1..2

motherboard

1..1

speakers

2..4

…

…

2..5

monitor

1..1

PC

…

…

…

…

…

Fig. 3.6. A component structure of a LAN.

69

Said otherwise, something is requested to be delivered but in order for it to be

delivered, the result of something else would be needed, and so on – we will illustrate

this by means of a hardware example:

- a Local Area Network – LAN [12] is requested to be installed in an office;

- before configuring the LAN, the following is needed: a server, Personal

Computers – PCs, a switch, a router, printer(s), and so on

- before a PC is delivered, the following is needed for its assembly and

configuration: a motherboard, HDD(s), a monitor, speakers, and so on.

This is illustrated in Figure 3.6 to be read from left to right, suggesting that in order

to configure a LAN (in the particular case), one would need 2 to 5 PCs, one switch, one

server, one router, 1 to 2 printer(s), and so on, for example, and in turn for a PC to be

configured, one would need one monitor, 1 to 2 hard drives (HDD), one motherboard,

2 to 4 speakers, and so on. Hence, one should firstly get the monitors, HDDs,

motherboards, speakers, and so on, such that the PCs are configured, and then the same

for the switch, the server, the router, and so on, and only after all of this has been

realized, the LAN would be ready to be installed – this is a good example for causal

relationships discussed above. The same is with the transaction belonging to a

business process in an enterprise context: similarly to the need to configure a LAN (as

in the above example), some kind of starting transaction needs to be executed and in

order for it to be executed, it is necessary that (before it gets executed) other

transactions get executed, and they may need in turn still other transactions to be

executed, and so on. For this reason, the way we have presented such causal

relationships in Figure 3.6 is considered helpful and we will apply the same way of

representation (one entity type depends on the entity types to the right of it and the

possible number of instances for each entity is given to the left of its label as interval).

Let us consider a simple example from the enterprise domain: A student (John) visits

a property agency asking ADVICE in the form of recommendation – which is the best

available for rent property, matching his demands. The consultant (Steve) from the

agency is capable of delivering such kind of advice to John, assuming that John would

pay for the delivered consultancy. Nonetheless, in order to deliver the advice, Steve

would need (before delivering the advice) to realize some kind of MATCH-MAKING

‘between’ the demands of John and the characteristics of the available properties. And

in turn, in order for Steve to realize such kind of match-making, he would have to do

(before realizing the match-making) two things, namely: (i) REQUEST

PROCESSING, such that the demands of John are appropriately reflected in

standardized forms such that their effective use is possible and (ii) DATA SEARCH,

such that there is an actual list of all currently available properties. Thus, Steve should

firstly do the request processing and the data search, and only on that base he would be

able to realize the match-making, and it is the match-making that is needed by Steve,

such that he is able to deliver the requested advice to John. This is illustrated in Figure

3.7:

70

MATCH-MAKING

REQUEST PROCESSING

DATA SEARCH

ADVICE DELIVERY

Fig. 3.7. Illustrating a causal relationship.

Thus, reading the figure from left to right suggests that ADVICE DELIVERY can

be realized but under the condition that MATCH-MAKING is realized first. What the

figure suggest as well is that MATCH-MAKING can be realized but under the

condition that REQUEST PROCESSING and DATA SEARCH are realized first.

This represents a business process that is driven by the goal of fulfilling the ADVICE

DELIVERY starting transaction.

Hence, after considering elementary acts (see the operation axiom) and transactions

(see the transaction axiom), we are considering the composition axiom that addresses

business processes.

Distinction Axiom

The distinction axiom serves to separate the distinct human abilities playing a role with

regard to communication and in order to give useful background (claimed to be

helpful in understanding the axiom), we refer to the so called semiotic ladder [43] that

presents the (human-to-human) communication in terms of layers, in the following

way:

 PHYSICAL WORLD: If two persons would like to communicate, they need

physical conditions – this could be their closeness in terms of space, such that

they can hear each other or a telecommunications channel, such as telephone

connection, and so on.

 EMPIRICS: Even if the persons have physical conditions to communicate, the

communication channel itself is to also be adequate – for example, if the

persons are close to each other but there is too much noise, they would not be

able to hear each other or if they have established a telephone connection but

the quality of service is too low for them to hear each other well and without

delays.

 SYNTAX: If the persons have adequate physical conditions and

communication channel, this is still not enough for a full value communication

to take place because they need to speak the same language or use the same

communication patterns.

71

 SEMANTICS: If the persons are adequately exchanging information using the

same language, for example, this is still not enough if they do not get the

correct meaning. For instance, if John is at a garage, needing his car to be

repaired urgently and he sees a queue of 10 cars, and it looks obvious that the

garage would not be able to serve all those cars within the day, and if John

asks the receptionist whether it would be possible his car to be treated urgently,

and the receptionist answers ‘Yes, as long as the cars from the queue get

served’, this actually means ‘No’, because it is obvious that the car of John

would not be served the same day. If the receptionist had wished to mean

‘Yes’, he would have answered, for example: ‘There are many cars in the

queue but we will make an exception and treat you with priority’. This

example, shows that the syntactic ‘Yes, as long as the cars from the queue get

served’ has the meaning of ‘No’. Hence, getting correctly the semantics is

necessary in order to communicate of full value.

 PRAGMATICS: Even if the persons are adequately handling the

communication both physically and also empirically, syntactically, and

semantically, they also need to adequately handle the context in which they

are communicating – for example, if John’s colleague says to John ‘I am

freezing’ and John is close to the widely open window during winter time, it

is not enough that John gets the right meaning of what his colleague is saying;

what goes beyond the meaning is that John should realize that by saying this,

his colleague is trying to convince John to close the window, and John is

expected to ‘participate’ in this negotiation (about whether to close the

window or not) and not discuss with his colleague the way he is feeling.

 SOCIAL WORLD: Even if pragmatics, semantics, and so on are all handled

adequately, there are societal norms of behavior that need to be respected. In

the above example, it is expected that John would close the window even if

John is not feeling cold because it is societally adequate to respect (when

possible) the needs of the persons around. In this case, the colleague of John

is not feeling good and John may like to help because closing the window

would not immediately hurt John’s comfort – still, this would help another

person feel better and this is to be considered good behavior from a societal

point of view.

In order to align the above semiotic perspective to communication, we consider the

corresponding views of Habermas [32] who has identified three spheres of human

existence, that play a role with respect to communication, namely: (i) objective world

those are the things that are outside the subject and to a large extend exist on their own;

(ii) subjective world – unique for every distinct subject; (iii) social world – what the

subjects build and maintain in interaction. Then:

- With regard to (i), the (human-to-human) communication is aligning the

concept of TRUTH => Here we have the class of acts for which the dominant

validity claim is the claim to truth, for example assertions (John asks Betty what

time it is, for instance, and then Betty would assert the current time).

This is labelled as constativa.

72

- With regard to (iii), the (human-to-human) communication is aligning the

concept of JUSTICE. => Here we have the class of acts for which the dominant

validity claim is the claim to justice, for example requests and promises (If I

request a loaf from the baker, for instance, I primarily claim that I am in the

social position to do so and that the baker is in the social position to be addressed

with the request; I hence accept the authority and responsibility of the baker to

respond to the request, and the baker accepts my authority and responsibility to

make a request, as exemplified by Dietz [19]).

This is labelled as regulativa.

- With regard to (ii), the (human-to-human) communication is aligning the

concept of SINCERITY. => Here we have the class of acts for which the

dominant validity claim is the claim to sincerity, for example praises and

apologies (If I bump into somebody, for instance, my apologizing is to convey

to the person information that I am sincere, otherwise, and apology would not

make sense).

This is labelled as expressiva.

Next to that, ‘non dominant’ claims are possible as well, mixing up the above issues

and several examples considered by Dietz [19] are brought forward in this regard:

› If I appear to be near a head of state and I ask him/her what time it is,

things about truth and justice are mixed up because it is not considered

just that one ask the time to the head of state.

› If I ask from a baker 100 loaves of the same time, things about justice and

truth are mixed up because objectively, it is impossible for him to deliver

at one 100 loaves.

› If John asks Richard what time it is and after hearing the answer, he asks

Betty the same question, things about truth and sincerity are mixed up

because if John knows the time already, is he sincere saying to Betty that

he wants to know what time it is?

In this respect, EO is primarily about regulativa since: (a) It is

assumed that the constativa issues are taken indirectly; (b) The expressiva issues are

disregarded and this is not because emotions are considered unimportant but because

they fall outside the ontological view on enterprises, as according to Dietz [19].

Hence, in the pizza example from the previous sub-section, just one elementary

communicative (coordination) act (for example: ‘the person at the desk promises to

deliver a pizza’), as we label it ‘C-act’ for short, assumes communication conforming

to the semiotic ladder (see above) and in the regulativa perspective, and in this we bring

together the pragmatic and social considerations (as according to the semiotics ladder)

claiming that the following three layers bring together the above views, taking a LAP

perspective:

 PERFORMA: This is the actual act of evoking an attitude (for example, the

customer had the person at the desk PROMISE to deliver a pizza or a

conversation in a library and the context of the conversation had a person

REQUEST membership, and so on). => This brings together the behavioral

pragmatics and the societal relevance, as according to the semiotics ladder.

73

 INFORMA: This is about conveying semantics – for example, John may well

explain in a library that he would like to have them deliver a pizza to him and

they may get this correctly semantically but still this would not lead to a promise

from their side because the situational context and social relevance are

inappropriate with regard to what John is suggesting. => This corresponds to

the semantics layer of the semiotics ladder.

 FORMA: This is about conveying information of full value and using the same

language or communication pattern – for example, John may utter many

sentences at a pizza desk and what John is saying may be adequately heard and

syntactically understood but still, it may not be the case that they understand

that John is asking a pizza to be delivered to him. => This brings together

empirics and syntactics, as according to the semiotics ladder.

 Finally, the physical conditions necessary for such kind of communication, are

acknowledged by EO but not explicitly considered since they are claimed to fall

outside the ontological view on enterprises.

This is illustrated in Figure 3.8, summarizing the distinction axiom:

performer’s perspective

COORDINATION

HUMAN ABILITY

COORDINATION

 addressee’s perspective

exposing commitment

expressing thought
(formulating)

uttering information
(speaking, writing)

evoking commitment

educing thought
(interpreting)

perceiving information
(listening, reading)

PERFORMA

INFORMA

FORMA

Fig. 3.8. Summary of the distinction axiom.

As it is seen on the figure: (i) The forma ability (bringing together empirics and

syntactics) is about conveying information, as above mentioned, for example – uttering

and perceiving of sentences in some language. (ii) The informa ability (building upon

74

the forma layer) is about conveying semantics, as above mentioned, for example –

interpreting what was said or written, getting the correct meaning. (iii) The performa

ability (building upon the forma layer and the informa layer) is about bringing in new

original things, rightfully considering the context (pragmatics) and the societal

relevance, as above mentioned, for example – engaging into commitments.

Hence, the distinction axiom states that there are three distinct human abilities

playing a role in the operation of actors, namely: performa, informa, and forma,

as explained and discussed already.

We consider the performa ability as the essential human ability for doing business

of any kind.

Organization Theorem

We have already introduced, explained, and discussed four EO axioms, namely:

the operation axiom, the transaction axiom, the composition axiom,

and the distinction axiom – this brought focus on the:

 actor roles as composition elements of enterprise systems as well as their

potential to realize production acts and coordination acts;

 three basic human communicative abilities (performa, informa, and forma)

with regard to the performance of production / coordination acts;

 transactions as the atomic enterprise modeling units;

 causal relationships among transactions, justifying business processes as

structures of transactions.

D-organization

I-organization

B-organization

datalogical
production

infological
production

ontological
production

Fig. 3.9. Representation of the organization theorem.

75

Hence, the goal of the organization theorem is to establish, based on the

mentioned axioms, a concise, comprehensive, coherent, and

consistent enterprise notion corresponding to a white-box

(constructional) perspective.

The organization theorem states that an enterprise is a
heterogeneous system that is constituted as the layered

integration of three homogeneous systems: the B-organization

(from BUSINESS), the I-organization (from INTELLECT), and the D-

organization (from DOMUMENT), related among each other in the following

way (as shown in Figure 3.9):

 the D-organization supports the I-organization;

 the I-organization supports the B-organization.

All three homogeneous systems, as represented in the figure, are in the category of

social systems, which means that they are similar as far as coordination is concerned:

the elements are subjects that enter and comply with commitments to each other

regarding production acts (in line with LAP). They differ only in the kind of production:

 the production in the B-organization is ONTOLOGICAL;

 the production in the I-organization is INFOLOGICAL;

 the production in the D-organization is DATALOGICAL.

This is the reason for considering an enterprise to be a heterogeneous system and

hence the B-organization, the I-organization, and the D-organization represent aspect

systems of the (total) enterprise.

As acknowledged by Dietz [19], an enterprise is more than just a well-established

integration of those three aspect organizations. Firstly, human beings as biological

beings need a particular environment to live in, as well as specific facilities to make

their biological lives comfortable. Being a biological individual includes being a

physical thing. Hence, physical requirements must be met, like the need for work space

and mobility services. Moreover, a human being is an emotional being, a psychological

being, and so on. While it is recognized that those additional aspects must be

considered, they are irrelevant as far as EO is concerned since they do not directly

relate to the notion of enterprise. Still, we consider as precondition dealing with those

human aspects in a satisfactory way.

Thus, we argue that by considering LAP-EO, one could build enterprise models that

are adequately rooted in corresponding real-life processes. In the following section, we

are going to consider semiotics, emphasizing on semantics and (business) rules.

3.3 Organizational Semiotics

It is considered useful applying the Semiotics Theory [13], regarding issues connected

with the analysis and modeling of business processes and enterprise systems. Actually,

a branch of semiotics is considered, namely – Organizational Semiotics (OS),

and in particular two OS methods: the Semantic Analysis Method and the Norm

76

Analysis Method [67,69,43]. OS focuses on the nature, characteristics and behavior of

signs. The term ‘organizational semiotics’ was officially coined in 1995 at an

international workshop in Enschede, The Netherlands, after a long time of research on

organizational studies and information systems. This section considers briefly some

essential issues related to the OS theory.

Peirce founded semiotics as the ‘formal doctrine of signs’ [51]. A sign is defined as

something that stands to someone for something else in some respect or capacity. OS

and the analytical methods [67,69,43] offer a theory to understand enterprises, with or

without the computerized information systems. Enterprises are deemed as systems

where signs are created, transmitted, and consumed for business purposes.

Stamper and his school of OS argue that in contrast to the concept of information,

signs offer a more rigorous and solid foundation to understand information systems.

For example, within a business context, a bank note is much more than a piece of

colored paper with digits on it. It stands for the bank note holder’s wealth and ability to

pay, as well as the issuing bank’s authority and credibility, and much more. Large

quantity of underlying social relationships and behavior possibilities are attached to

those business concepts; oversimplifying them into pure digits would be dangerous. On

one hand, computers can only process and manipulate such digits; on the other hand,

the underlying meanings and possibilities must be exposed to enable the correct

processing. Adopting the concept of sign enables us to study the enterprise in a more

balanced way, taking account of both the technological issues, and the human and

social aspects of information resources, products, and functions.

OS adopts a subjectivist philosophical stance and an agent-in-action ontology. This

philosophical position states that, for all practical purposes, nothing exists without a

perceiving agent and the agent engaging in actions.

Stamper adopts the concept of affordance from the perceptual psychologist

James Gibson, who defined the affordances of the environment as ‘what it offers the

animal, what it provides or furnishes, either for good or ill…’ [29]. Based on the theory,

since a person perceives things by recognizing what he can do with them or to them, a

thing can be defined as an invariant repertoires of behaviors, either substantive

affordances or social norms that are available to the responsible person [67]. For

example, in the context of a university library, a book affords to be borrowed by a

library user.

Borrowing a book is a potential ability, which may or may not be implemented in

the reality. Nevertheless, once it is implemented, new possibilities may emerge. For

example, a borrowed book may be retained or returned to the library by the user. Under

certain circumstances, the library may also call it back. This shows that affordances

have dependency relationships among them. In OS such a relationship is called

ontological dependency.

We may schematically show this relationship as following, with the antecedents

on the left side and the dependencies on the right, and the solid line denotes the

ontological dependency:

book – borrow – return

77

Ontological dependency does not only show the logic relationship between the

concepts. What’s more important is that it shows the dependencies get their meaning

from the existence of the antecedents. Since the existence of dependencies would not

be possible without the existence of the antecedents, the lifecycle of the dependencies

is always included by that of the antecedents. The existence of the antecedents thus

forms a context for the dependencies.

For example, talking about returning a book without referring to the fact that the

book was previously borrowed from the library would be off the topic.

Further, two essential OS methods considered (as it was mentioned already) are the

Semantic Analysis Method and the Norm Analysis Method. Those

methods are briefly discussed below.

3.3.1 Semantic Analysis

The Semantic Analysis Method is fundamentally based on the Semiotic Theory that has

been discussed above. This method is a method for elicitation and specification of user

requirements. It considers the signs created by members of an enterprise. Semantic

analysis is theoretically founded in OS [68] and the semiotic framework. The method

has been applied in many fields such as user requirements for enterprise systems,

organizational analysis, legal documents design, and analysis and design of Computer

Systems [43,54]. The semantic analysis is conducted usually in four steps, outlined

below, and the final result is a semantic schema, called ontology chart:

 Taking into account that semantic analysis deals with analysis of documents and

conversations, the first step that is to be realized, is to gather relevant data and

understand the problem. This can be called problem statement.

 The second step is to produce a list of semantic units such as verbs, nouns,

adjectives and adverbs. Those semantic units may be used to describe human

agents and their respective patterns of behavior.

 The third step is to further analyze the semantic units by linking them together

according to their relationship in terms of generic-specific positioning. This is

shown graphically from the left to right on an ontology chart.

 The fourth step should bring together all the linked semantic units into a

coherent whole, which produces a complete semantic model. The model is

represented graphically through an ontology chart.

3.3.2 Norm Analysis

When studying enterprises from the perspective of entities’ behavior it is necessary to

specify the norms based on which this behavior is realized. Norms [70] are the rules

and patterns of behavior, either formal or informal, explicit or implicit, existing within

a society, an enterprise, or even a small group of people working together to achieve a

common goal.

Norms are determined by Society or collective groups, and serve as a standard for

the members to coordinate their actions. An individual member uses the knowledge of

78

norms to guide his or her actions. If the norms can be identified, the behaviors of the

individuals, hence their collective behaviors, are mostly predictable. From this

perspective, to specify an organization can be done by specifying the norms [71] and

this holds also for enterprises.

Four types of norms exist, namely evaluative norms, perceptual norms, cognitive

norms and behavioral norms. Each type of norms governs human behavior from

different aspects. In business process modeling, most rules and regulations fall into the

category of behavioral norms. Those norms prescribe what people must, may,

and must not do, which are equivalent to three deontic operators: ‘is obliged’, ‘is

permitted’, and ‘is prohibited’. Hence, the following format is considered suitable for

specification of behavioral norms.

whenever <condition>

if <state>

then <agent>

is <deontic operator>

to <action>

It is essential to recognize that norms are not as rigid as logical conditions. If a person

does not drink water for certain duration of time he cannot survive. But an individual

who breaks the working pattern of a group does not have to be punished in any way.

For those actions that are permitted, whether the agent will take an action or not is

seldom deterministic. This elasticity characterizes business processes, therefore is of

particularly value to understand the corresponding enterprise(s).

A norm analysis is normally carried out on the basis of the results of a semantic

analysis (for information on semantic analysis interested readers are referred to [43]).

The semantic model delineates the area of concern of an enterprise. The patterns of

behavior specified in the semantic model are part of the fundamental norms that retain

the ontologically determined relationships between agents and actions without

imposing any further constraints. Nevertheless, norm analysis could be successfully

related also to other modeling tools, as studied by Shishkov [54].

In general, a complete norm analysis can be performed in four steps:

 First step: Responsibility Analysis;

 Second step: Proto-norm Analysis;

 Third step: Trigger Analysis;

 Fourth step: Detailed Norm Specification.

Responsibility analysis enables one to identify and assign responsible entities (or

‘agents’ as according to the OS terminology) to each action. The analysis focuses on

the types of agents and types of actions. In an enterprise, responsibilities may be

determined by the organizational constitution or by common agreements in the

enterprise.

Proto-norm analysis helps one to identify relevant types of information for making

decisions concerning a certain type of behavior. After the relevant types of information

are identified, they can be used as a checklist by the responsible agent to take necessary

factors into account when a decision is to be made. The objective of this analysis is to

facilitate the human decisions without overlooking any necessary factors or types of

information.

79

Trigger analysis is to consider the actions to be taken in relation to the absolute and

relative time. The absolute time means the calendar time, while the relative time makes

use of references to other events. The results of trigger analysis are specifications of the

schedule of the actions.

The detailed norm specification concerns the specification of norms in two versions,

a natural language and a formal language. The purposes of that are (1) to capture the

norms as references for human decision, and (2) to perform actions in the automated

system by executing the norms in the formal language.

For those norms identified in the business processes, some refers to the major

authorities and responsibilities of the major figures in the enterprises. Those norms

govern some trivial, relatively less important norms or those of lower priorities, from

the perspective of organizational functionalities [54]. This strongly suggests the

possible hierarchies exist not only in the enterprise structure, but also in the norms.

The terms ‘framing norm’ and ‘contractual norm’ are used to express such kinds of

hierarchies [69].

Hence, among the EIS-relevant strengths of OS are the following:

 Semantic analysis is powerful in situations in which it is necessary to put some

unstructured information in order. This is an unavoidable task in any software

project.

 Norm analysis is powerful in situations in which it is necessary to specify rules

and also to relate a number of rules to each other. Hence, semiotic norms could

be much useful in both business process modeling and software specification –

both tasks include consideration of rules.

 Semantic analysis and norm analysis are founded in the OS theory; it is a well-

established theory relevant to both business process modeling and software

specification.

Nevertheless, as studied by Shishkov [54], those semiotic methods alone are not

capable of soundly and completely aligning enterprise modeling and software

specification; those methods need to be incorporated in an approach that would not only

combine them adequately with other relevant social theories (besides OS) but would

also relate them to appropriate computing paradigms.

IN SUMMARY, in the current chapter, we presented and discussed social theories,

including human relativism, the theory of organized activity, the language/action

perspective, enterprise ontology, and organizational semiotics, justifying their

relevance to different aspects concerning enterprise systems and EIS. In the following

chapter, we will consider in turn computing paradigms that are currently actual and also

well-combinable with the mentioned social theories and consistent with the concepts

and views introduced in Chapter 2.

80

81

Chapter 4

COMPUTING PARADIGMS

As a starting point with regard to what will be presented in the current chapter, we take

the distinction between procedure-oriented programming and object-oriented

programming [54,80]:

 Procedure-oriented programming (or procedural programming) uses a list of

instructions to tell the computer what to do step-by-step. Procedural

programming relies on PROCEDURES - a procedure contains a series of

computational steps to be carried out. Procedural programming is intuitive in

the sense that it is very similar to how a person would expect a program to work:

if one wants a computer to do something, one should provide step-by-step

instructions on how this is to be done. Examples of procedural languages

include the early programming languages, such as Fortran and COBOL, and

later on – Pascal and C, which have been around in the 1960s, 70s, 80s, and 90s.

 Object-oriented programming is an approach to problem-solving where all

computations are carried out using objects. An object is a component of a

program that ‘knows’ how to perform certain actions and how to interact with

other elements of the program. Objects are the basic units of object-oriented

programming. A simple example of an object would be a person. Logically, one

would expect a person to have a name. This would be considered a property of

the person. One would also expect a person to be able to do something, such as

walking, for example. This would be considered a method of the person. A

method in object-oriented programming is like a procedure in procedural

programming (the key difference is that the method is part of an object). Hence,

in object-oriented programming, the code is to be organized by creating objects,

giving those objects properties, and so on. A key aspect of object-oriented

programming is the use of classes. A class is a blueprint of an object: a class

can be considered as a concept and an object - as an embodiment of that concept.

For example, if a person is to be considered in a program, then one should be

able to describe the person and have the person do something. A class called

'person' would provide a blueprint for what a person looks like and what a person

can do. Examples of object-oriented languages include C++, Java, and so on.

82

A key difference between the two is that in procedural programming, procedures

operate on data and those two concepts, namely ‘procedure’ and ‘data’, are two separate

concepts while in object-oriented programming those two concepts are bundled into

objects. This makes it possible to create complicated behavior with less code. The use

of objects also makes it possible to re-use code. Once one has created an object with

more complex behavior, one could use it anywhere in the code.

A further move to component-oriented programming has been inspired by those

advantages [73]: With object-oriented programming focusing on the relationships

between classes that are combined into one large binary executable, component-

oriented programming focuses on interchangeable code modules that work

independently and don't require you to be familiar with their inner workings to use

them.

Thus, we observe an evolution

 from procedure-oriented programming

through object-oriented programming

to component-oriented programming.

That evolution in programming has not only been useful as a stimulus to more

effectively and efficiently producing code but it has also influenced the broader process

of software engineering comprising requirements analysis, system analysis, system

design, coding, testing, and implementation, with justifying an evolution from

monolithic software engineering through component-based software engineering to

service-oriented software engineering [54,72]:

 Developing a monolithic application assumes result that is monolithic binary

code. It may be that one even applies object-oriented programming and still the bottom-

line is monolithic development – one may factor the business logic into many fine-

grained classes, once those classes are compiled, if the final application is viewed that

way (to be monolithic), then the result is monolithic binary code: all the classes share

the same physical deployment unit (typically an EXE), process, address space, security

privileges, and so on. Hence, if multiple developers work on the same code base, they

have to share source files. Thus, in such an application, a change made to one class can

trigger a massive re-linking of the entire application and necessitate retesting and

redeployment of all the other classes.

In contrast, a component-based application comprises a collection of

interacting binary application modules —that is, its components and the calls that bind

them. The motivation for breaking down a monolithic application into multiple binary

components is analogous to that for placing the code for different classes into different

files. By placing the code for each class in an application into its own file, one would

loosen the coupling between the classes and the developers responsible for them. If one

would make a change to one class, although one would have to re-link the entire

application, one would only need to recompile the source file for that class. Further,

because a component-based application is a collection of binary building blocks, one

can treat its components like LEGO bricks – simply ‘adding’ and ‘removing’ them. If

one would need to modify a component implementation, changes are contained to that

component only. No existing client of the component requires recompilation or

redeployment. Components can even be updated while a client application is running,

83

as long as the components are not currently being used. Improvements, enhancements,

and fixes made to a component would immediately be available to all applications that

use that component, whether on the same machine or across a network. Finally, when

one has new requirements to implement, one can provide them in new components,

without having to touch existing components not affected by the new requirements. All

those advantages have contributed to the increasing popularity of component-based

applications, compared to monolithic applications.

The next step in those developments was marked by the appearance of service-

oriented software: component-based software is about how one would build and

implement a system – taking the whole system and dividing it into smaller better

manageable components, and so on, while service-orientation is about how different

systems communicate with each other, based on defined various standards for message

formats, transport security, and so on. Hence, that is about allowing users to compose

services at high-level, which services are realized by underlying software components.

The advantages here are two-fold: (i) the technical complexity, characterizing software

components, remains ‘hidden’ from the user who is composing services at ‘higher

level’; (ii) a user can bring together services whose underlying software components

may be created by different developers, running on different servers, and so on.

Thus, we observe an evolution

 from monolithic software engineering

through component-based software engineering

to service-oriented software engineering.

That software engineering evolution has not only been useful as a stimulus to more

effectively and efficiently producing and utilizing software but it has also influenced in

a broader perspective the way of developing, justifying an evolution from code-centric

development through model-driven development to agile development [66]:

The code-centric development (considered in the past) would not support the

analysis and design activities by modeling while the idea to use models for improving

software development practices was gaining increasing popularity.

That led to the emergence of model-driven development that is not only about

helping developers to reason at ‘higher level’ supported by models but is also about

distinguishing between computation-independent and technology-specific issues being

reflected in corresponding model types. This is considered as a viable ‘bridge’ between

the ‘Software World’ and the ‘Real-life World’ in a sense that firstly, domain-related

specifications are defined and secondly, those domain-related specifications are

reflected, by means of model transformations, in corresponding platform-specific

models, envisioning platforms, such as CORBA, J2EE, .Net, and so on. Model-driven

development is hence attractive for its capability of bringing together domain-specific

issues and technology-specific issues, by allowing for model transformations, as above

mentioned. Nevertheless, the lack of sufficient development flexibility and

collaborativeness as well as the insufficient capability to conveniently adapt modeling

to changes, has justified the need for new development paradigms.

That has inspired the emergence of agile development that is based on iterative

development, where requirements and solutions evolve via collaboration between self-

84

organizing cross-functional teams. Agile processes fundamentally incorporate iteration

and the continuous feedback that it provides to successively refine and deliver a

software system. Hence, agile development is people-centric, in contrast to model-

driven development that is model-centric and also in contrast to code-centric

development.

Thus, we observe an evolution

 from code-centric development

through model-driven development

to agile development.

With regard to what was stated in the above paragraphs, it is to be noted that some

of the paradigms discussed assume distributed computing environments (for example:

service-oriented software engineering would envision the composition of services

realized by components running on different computing environments) while others

implicitly assume mobility (for example: agile development would often envision

dynamic user feedback, possibly generated through applications running on mobile

devices). This has justified an evolution from mainframe infrastructures, through

client/server infrastructures, to cloud infrastructures [6,12]:

A mainframe infrastructure is based on a mainframe and terminals. A mainframe

can be looked upon as a ‘giant server’ since only it serves ‘dumb’ terminals. Such a

terminal has no drives, no independent operating system, and so on – it has just a screen

and a keyboard. All data of any type is contained in the mainframe. Any info changed

or added from a terminal would change the data in the mainframe.

In contrast, a client/server infrastructure assumes the partitioning of tasks or

workloads between the providers of a resource or service, called servers, and service

requesters, called clients. Hence, those principles are underlying with regard to current

distributed computing environments. What such distributed computing environments

lack as capability nevertheless is enabling ‘outside’ stakeholders to be served, possibly

through their portable devices connected to the Internet.

This has inspired the emergence of cloud infrastructures assuming the provision

of shared computer processing resources and data to computers and other devices on

demand. Cloud infrastructures have hence become underlying with regard to current

mobile computing environments.

Thus, we observe an evolution

 from mainframe infrastructures

through client/server infrastructures

to cloud infrastructures.

With respect to the paradigms considered above, most challenges mainly relate to

functional issues. Nevertheless, there are non-functional crosscutting

concerns, such as security, privacy, recoverability, logging, performance

monitoring, and so on. In the past, this was considered as part of the requirements

elicitation, then the label ‘crosscutting concerns’ was dominant, and currently we speak

of aspect-oriented software development considering crosscutting concerns (called

‘aspects’) at all stages of the software development life cycle [8].

85

The computing paradigms discussed above (except for aspect-oriented software

development) are presented in Figure 4.1, reflecting their evolution over time.

p
ro

c
e

d
u
re

-o
ri
e

n
te

d

p
ro

g
ra

m
m

in
g

programming
software

engineering

development

infrastructure

m
o
n
o

lit
h
ic

s
o
ft
w

a
re

 e
n

g
in

e
e
ri

n
g

c
o
d
e
-c

e
n
tr

ic

d
e
v
e

lo
p
m

e
n
t

m
a
in

fr
a
m

e

in
fr

a
s
tr

u
c
tu

re

…

…

…

…

o
b
je

c
t-

o
ri
e

n
te

d

p
ro

g
ra

m
m

in
g

c
o
m

p
o

n
e
n
t-

b
a
s
e
d

s
o
ft
w

a
re

 e
n
g
in

e
e
ri

n
g

m
o
d
e

l-
d
ri
v
e
n

d
e
v
e

lo
p
m

e
n
t

c
lie

n
t
/

s
e
rv

e
r

in
fr

a
s
tr

u
c
tu

re

c
o
m

p
o

n
e
n
t-

o
ri
e
n
te

d

p
ro

g
ra

m
m

in
g

s
e
rv

ic
e
-o

ri
e

n
te

d

s
o
ft
w

a
re

 e
n

g
in

e
e
ri

n
g

a
g
il
e

d
e
v
e

lo
p
m

e
n
t

c
lo

u
d

in
fr

a
s
tr

u
c
tu

re

…

…

…

…

t

Fig. 4.1. Computing paradigms – evolution over time.

86

As it is seen on the figure and as discussed already, over time: programming’s

evolution comes through procedure-orientation, object-orientation, and component-

orientation; software engineering’s evolution comes through monolithicity,

component-centricity, and service-orientation; development’s evolution comes through

code-centricity, model-centricity, and agility; infrastructure’s evolution comes through

mainframe solutions, client/server solutions, and cloud solutions. As it is seen as well

on the figure: time-wise, the ‘evolution patterns’ differ from category to category, for

example, the step forward from monolithic software engineering to component-based

software engineering is preceded by the step forward from procedure-oriented

programming to object-oriented programming. Nonetheless, those representations in

Figure 4.1 are schematic and not numerically precise. Further, those ‘transitions’ are

claimed to be viewed differently by different members of the Software Community and

hence, there is no wide agreement on when exactly object-oriented programming has

become ‘predominant’ compared to procedure-oriented programming, when exactly

service-oriented engineering ‘replaced’ component-based software engineering as the

preferred software engineering paradigm in the Software Community, and so on.

Finally, we claim that most often one would observe overlaps and/or mixtures among

paradigms, for example: why not claiming that both component-based and service-

oriented solutions were predominant in a particular period, or why not claiming that

some software applications have modules implemented using object-oriented

languages and also modules implemented procedure-oriented languages? Hence, that

representation mainly reflects the subjective views of the authors and is not claimed to

be exhaustive.

Next to that, due to the limited scope of the current chapter, we are unable to consider

all mentioned paradigms in more detail. Still, we have selected several of them for

further consideration – the ones whose labels are underlined in the figure: component-

based software engineering, service-oriented software engineering, and cloud

infrastructures, and we will use more ‘popular’ labels for them, respectively:

 component-based development (meaning ‘software development’);

 service-oriented architecture (meaning reference to ‘software

engineering’);

 model-driven engineering (meaning ‘development’);

 mobility (meaning based on a cloud infrastructure),

plus the one not reflected in the figure, namely:

 aspect-oriented software development.

Thus, all those terms: engineering, development, architecture, are de facto largely

overlapping, and we are not entering such a terminology discussion in the current paper.

The terms used in Figure 4.1 reflect our desire to be maximum clear in mentioning

different paradigms that belong to the same category. The corresponding terms to be

used in the sections below reflect the popular labels that would be recognized by the

wide audience.

And in the end, why exactly those paradigms and not other ones reflected in the

figure will be elaborated? The bottom line is the relevance to EIS in general and the

enterprise-modeling-driven software generation, in particular. Business

coMponents have been considered in the previous chapters as a desired basis for

87

specifying software. For this reason, in our computing paradigms consideration, we

would emphasize those paradigms that are relevant to the component-based

enterprise-software alignment. This brings us to components

(component-based development) and services (service-oriented architecture) that

are claimed to be useful relevant units of re-use. Further, we would emphasize on

model-driven engineering because we believe that only way to bring those two

Worlds together (enterprises and software) is through corresponding models. Finally,

we would emphasize on mobility and non-functional crosscutting

concerns because we claim that they have essential importance for any current EIS

and thus have to be explicitly considered and reflected in the specification of software.

For this reason, in the sections that follow we will consider: component-based

development, service-oriented architecture, model-driven engineering, mobility

(emphasizing on cloud computing), and aspect-oriented software development.

4.1 Component-Based Development

The Component-Based Development (CBD) is considered to be a promising

paradigm that addresses the design and development of ICT applications, and is

founded on the principles of object-orientation [54] – object orientation (characterized

by the fundamental concepts of encapsulation, classification, inheritance, and

polymorphism) that was briefly discussed already, is widely recognized as a special

approach to the construction of models of complex systems, in which a system consists

of a large number of objects. Hence, components are essential with regard to CBD –

if re-usable components are identified, they can be used many times for designing

different applications. Next to that, CBD seems beneficial for the application design

itself. By basing application development on encapsulated, individually definable, re-

usable, replaceable, interoperable and testable (software) components, developers can

build applications which possess durable configuration and a high degree of flexibility

and maintainability. The process of application development would also be improved

because building new applications would include using already developed components.

This reduces development time and improves reliability. The performance and

maintenance of developed applications would be enhanced because changes could

occur in the implementation of any component without affecting the entire application.

All this makes CBD reliable and effective.

All this justifies further the claim that business coMponents can be useful as basis

for specifying component-based applications (see Chapter 2). By basing the design of

applications on software components derived in turn from business coMponents, the

application support to business processes can be improved considerably [54].

Hence, CBD has strengths reaching beyond the application development itself – the

component-based application development can as well usefully support the enterprise-

modeling-driven generation of software.

The idea of constructing modular software systems dates back to 1968, as according

to Stojanovic [72], and referring to two complexity-avoidance approaches of that time

is important, they are: ‘buy before build’ and ‘re-use before buy’. This way of thinking

88

is considered to be an essential bottom line with regard to current CBD and this was

even before the ideas of object-orientation (see above) appeared. Hence, during the

1990’s, CBD has established itself as a natural extension and an evolution of object-

orientation. Components have first been introduced at the implementation level for fast

building a graphical interface using visual basic eXtensions controls and then there have

been the Component Object Model of Microsoft, the CORBA components, and

Enterprise Java Beans components – all of them proposed as standard component-

based implementation solutions. This has contributed to a shift of emphasis from

developing small, centralized, monolithic systems to developing complex systems

consisting of functional units deployed over nodes of the Web and two key concepts

have emerged, namely: (i) components as large-grain building blocks of a system and

(ii) architectures and frameworks as blueprints of the system describing its main

building blocks and the way of composing them into a coherent whole [72]. That

conceptual evolution has been reflected in several widely popular component

definitions:

 According to Szyperski [73], a software component is a unit of composition with

contractually specified interfaces and explicit context dependencies; a software

component can be deployed independently and is subject to composition by a

third party.

 According to Lewandowski [41], a component is defined as the smallest self-

managing, independent, and useful part of a system that works in multiple

environments.

 According to Stahl et al. [66], a component is a self-contained piece of software

with clearly defined interfaces and explicitly declared context dependencies.

We argue that those definitions further justify Definition 13 and Definition 14 (see

Chapter 2), and also the way of looking at a software component from two perspectives,

namely taking a constructional view and taking a functional view:

- CONSTRUCTIONALLY, software components are implemented pieces of

software, which represent parts of an ICT application, and which collaborate

among each other driven by the goal of realizing the functionality of the

application.

- FUNCTIONALLY, a software component is a part of an ICT application,

which is self-contained, customizable, and composable, possessing a clearly

defined function and interfaces to the other parts of the application, and which

also can be deployed independently.

It is to be noted however that even though all above definitions suggest essentially

the same view on software components, they differ with regard to the perspective taken.

What is to be taken into account in the current chapter is the explicit EIS focus we are

following, and this assumes that: (i) software is specified based on business

coMponents (see Chapter 2); (ii) software is delivered mainly in terms of ICT

applications.

Hence, we summarize what we consider essential with regard to software

components, taking into account the above-stated perspective:

89

 a software component is an implemented piece of

software;

 a software component is a part of an ICT application;

 a software component is self-contained;

 a software component possesses a clearly defined

function and goal (in context);

 a software component possesses clearly defined

interfaces to the other parts of the ICT application;

 a software component can be deployed independently;

 a software component can work in multiple ICT

applications and in multiple environments.

Hence, establishing the way the component notion and the object notion relate to

each other is important, and for that we refer to the studies of Stojanovic [72] where

components are considered as larger-grained objects that are deployed and as such they

would ‘reveal’ one or more classes ‘inside’. It is thus concluded that granularity

is the main issue in distinguishing components and objects. Further, if objects are

identifiable instances of classes, then component instances (representing programming

language objects) are instances of component types. Hence, components have much in

common with classes. Nevertheless, there are some significant differences:

 classes represent logical abstractions while components represent physical

things;

 components represent the physical packaging of otherwise logical elements and

are at a different level of abstraction than classes;

 classes may have attributes and operations accessible directly, in general,

components have operations that are reachable only through component

interfaces.

Therefore, a component is a physical thing that conforms to and realizes a set of

interfaces. Internally, a component may be implemented by a single class, by multiple

classes, or even by traditional procedures in a procedure-oriented programming

language.

For this reason, an explicit discussion is necessary on component interfaces:

As already suggested, a component is an encapsulated unit with a completely hidden

behavior behind an interface. As studied by Stojanovic [72], the interface provides and

explicit separation between the outside and the inside of a component, by:

 answering the question WHAT – What useful services are provided by the

component to the context of its existence?

 not answering the question HOW – How are those service actually realized?

We relate that to the black-box and white-box perspectives, respectively, as discussed

already (see Figure 2.9). A precisely defined interface allows for using the behavior

(services) delivered by the component without knowing how that behavior is actually

realized. Said otherwise, the component ‘interior’ remains hidden (and not important)

for the component’s environment as long as the component provides services, following

the constraints defined by its contractual interface – it is often that the interface reflects

the only information that shows the component’s ‘user’ that the component actually

does.

90

An interface is defined by Szyperski [73] as a named collection of operations that

are used to specify a service of a class or a component, hence defining a component

interface as a specification of the component’s access point.

Thus, if a component has multiple access points, each of which represents a different

service offered by the component, then the component would be expected to have

multiple interfaces.

Further, an interface offers no implementation of any of its operations; instead, it

merely names a collection of operations and provides their descriptions – it is hence

possible to replace the implementation part without changing the interface [72].

Following Stojanovic further:

 a PROVIDED interface points to the services and operations that the component

provides to its environment, in realizing its function;

 a REQUIRED interface specifies the services and operations that the component

requires from its environment, in order to realize its function.

According to [80], any interface would have four attributes:

 name (each component interface is to have a unique name);

 keys (they are based on the search record definition of the component);

 properties (they relate to the record fields of the component);

 methods (a method is like a function that can perform a specific task according

to corresponding requirements).

Finally, we claim the following: FIRSTLY, in order to make an interoperable

component feasible, it is necessary to consider a corresponding component

implementation model and in Sub-section 4.1.1, we present three popular and

widely accepted component implementation models, namely the Microsoft Component

Model, the Enterprise Java Beans Model, and the CORBA Component Model, as

according to Stojanovic [72]. SECONDLY, with implementation technology not being

sufficient by itself for adequately developing component-based applications, methods

and approaches are needed for establishing how to reflect business requirements in the

design and development of such applications – this we refer to as component-

based development methods and in Sub-section 4.1.2, we present three popular

and widely considered component-based development methods, namely the Rational

Unified Process, KobrA, and Catalysis, as according to Shishkov [54].

4.1.1 Component Implementation Models

In the current sub-section, we will consider firstly the Microsoft Component Model,

secondly – the Enterprise Java Beans Model, and thirdly – the CORBA Component

Model.

Microsoft Component Model

The Component Object Model or COM for short, is a language-independent,

binary component standard [81] whose core concepts include:

91

 a binary standard for function calling between components;

 the typed grouping of functions into interfaces;

 a base interface providing mechanism for (i) other components to dynamically

discover the interfaces implemented by a component and (ii) a reference

counter, allowing components to track their own ‘lifetime’ and delete

themselves when appropriate;

 a globally unique identifier mechanism for components and their interfaces;

 a component loader to set up and manage component interactions.

COM provides as well mechanisms for shared memory management between

components and also error and status reporting. In COM, an interface is represented as

a pointer to an interface node and in turn, the interface node contains a pointer to a table

of operation variables and those variables in turn point to the actual implementation of

the operations.

Enterprise Java Beans Component Model

The Enterprise Java Beans Component Model or EJB for short, is a

server-side component model for the development of applications in the programing

language Java [26], where a component is called an enterprise bean. Further, there are

two kinds of enterprise beans:

 session enterprise beans (those are transient components that exist only during

a single client/server session);

 entity enterprise beans (those are persistent components that control permanent

data kept in permanent data stores, such as databases).

Moreover, an enterprise bean resides inside a container with a container in turn

consisting of a deployment environment for enterprise beans. Next to that, the

container provides a number of services for each enterprise bean, such as lifecycle

management, state management, transaction management, and so on. Finally, an EJB

server provides a runtime environment for one or more containers.

Finally, the client application interacts with the enterprise bean, by using two

interface types that are generated by the container, namely: (i) home interface (it can

be used by clients to create, destroy or find an existing enterprise bean instance); (ii)

object interface (it provides access to the application methods of the enterprise bean).

CORBA Component Model

The CORBA Component Model or CCM for short, is a server-side component model

extending the CORBA core object model with a deployment model; CCM is as well

providing a higher level of abstraction for CORBA and object services; the two major

advances introduced by the CCM are a component model and a runtime environment

model; a component is an extension and specialization of a CORBA object [11]. As for

the model of a CORBA component type:

 Any CORBA component is denoted by a component reference.

 CORBA components support a variety of surface features, called ports, through

which clients and other elements of an application environment may interact

with those components.

92

This is presented on Figure 4.2:

CORBA

component

facets

attributes

receptacles

event sink

event source

Fig. 4.2. CORBA component.

As seen from the figure, there are five different kinds of ports:

 facets – they are interfaces provided by the component for client interaction;

 receptacles – they are connection points that describe the interfaces used by the

component;

 event sources – they are connection points that emit events of a specified type

to interested event consumers;

 event sinks – they are connection points into which events of a specified type

are announced;

 attributes – they are named values primarily used for component configuration.

Further, a component may have multiple facets, receptacles, event sources, event

sinks, and attributes.

Finally, there are four categories of components, as studied by Stojanovic [72]:

 service components – they are stateless, have no identity, and support a single

invocation per instance;

 session components – they have a transient state, have no persistent identity, and

support more than one invocations per instance;

 process components – they have an explicitly declared state that is managed by

the runtime environment, have an identity managed by the client, and have a

behavior that may be transactional;

 entity components – they are similar to process components, except for their

identity which is visible to the client but managed by the runtime environment.

In summary, in the current sub-section we have briefly presented three popular

component implementation models; in the following sub-section, we will consider three

popular component-based development methods, as already mentioned.

93

4.1.2 Component-Based Development Methods

In the current sub-section, we will consider firstly the Rational Unified Process,

secondly – KobrA, and thirdly – Catalysis.

Rational Unified Process

The Rational Unified Process or RUP for short, is not only the development

process usually applied with UML (the Unified Modeling Language) but also a useful

development method (process) as far as component-based development is concerned,

which method covers the entire software development life-cycle [38].

The key RUP concept is the definition of activities, called workflows, throughout the

development life-cycle, such as requirements elicitation, analysis, design,

implementation, and testing. Unlike the classical waterfall process, those activities can

be overlapping and performed in parallel [72]. Within each of the activities, there are

well-defined stages of inception, elaboration, and transition. A support to component-

based development is encouraged even though that support is just declarative and

implicit, being directed towards physical packaging, as it can be seen from the RUP’s

defining a component as ‘a non-trivial, nearly independent, and replaceable part of a

system that fulfils a clear function in the context of a well-defined architecture, and that

conforms to and provides the physical realization of a set of interfaces’. Finally, one of

the main advantages of RUP is that it provides an opportunity for iterative and

incremental system development, which is seen as the best development practice [72].

KobrA

Our analysis on KobrA has been supported mainly by the following two sources: [4,5].

Interested readers could find there information about all concepts related to KobrA,

which have not been considered in the current sub-section.

The KobrA method is a state-of-the-art approach to component-based product-line

engineering with UML. Among the key characteristics of KobrA are: architecture-

centricity; systematic COTS component re-use; integrated quality assurance. The major

strengths of KobrA are its overall consistency, the embracement of the component

concept in all phases of the software life-cycle, and the UML-based graphical

specification of components. The main limitation is that there are no clear guidelines

how to relate the specification of software to a prior enterprise analysis and modeling.

A complementary workbench has been developed to support the use of the KobrA

method in conjunction with commercial CASE tools. A test bed for the approach has

been provided in the domain of enterprise resource planning.

KobrA is conceptually based on the foundation of product-line engineering. Hence,

before proceeding further, we would briefly introduce it. Product-line engineering is

an inherent part of the KobrA method. When pursuing a product-line approach in

KobrA, the overall software life cycle consists of two basic product line engineering

activities:

94

 Framework engineering. It applies the komponent (komponent means

component as seen from the perspective of the method KobrA) modeling and

implementation activities, accompanied by additional sub-activities for

handling variabilities and decision models, to support a family of similar

applications (i.e. development for reuse). A framework therefore contains a

generic komponent tree that captures the common and variable characteristics

of a product-line.

 Application engineering. It uses the framework developed during framework

engineering to build particular applications. Since one of the goals of

application engineering is to remove the variabilities in the framework, and

resolve the decisions in the decision model, komponent containment trees for

applications are very similar to those for a single system. The only difference is

that komponents are accompanied by a decision model instance, which captures

the decisions made in resolving the decision model for a particular komponent.

Based on the (above outlined) brief information about KobrA, we will come (below)

through some basic principles and issues characterizing the method.

A core principle of KobrA is the strict and systematic separation of concerns, so that

at all times during a development project developers are aware of what they should be

attempting to do and what concern they are working on. A manifestation of this

principle in KobrA is in the separation of the product from the process (contrary to

methods which arbitrarily mix the description of what engineers should be trying to

produce with the definition of how they should produce). Another fundamental

separation of concerns in KobrA is the organization of the method in terms of three

orthogonal dimensions of development: one dealing with the level of abstraction, one

dealing with the level of genericity, and one dealing with composition.

At the largest level of granularity, the product-line paradigm takes precedence in

KobrA. This splits the overall development cycle into two parts: (i) one dealing with

the development of a framework – a re-usable set of software artefacts whose core is

embedded within all products developed by the enterprise; (ii) another one concerned

with the development of an application – a concrete instance of the framework, adapted

and extended to meet the needs of a specific customer.

At the intermediate level of granularity, KobrA is driven by the component

paradigm. KobrA frameworks and applications are all organized in terms of hierarchies

of components. However, the components in KobrA represent the logical building

blocks of a software system (not physical components, as in CORBA – see above).

A central goal of KobrA is to enable the full expressive power of the UML to be used

in the modeling of components. To this end, the use of the UML in KobrA is driven by

four basic principles:

 Uniformity. Every behavior-rich entity is treated as a komponent, and every

komponent is treated uniformly, regardless of its granularity or location in the

containment tree.

 Encapsulation. The description of what a software unit does is separated from

the description of how it does it.

 Locality. All descriptive artifacts represent the properties of a komponent from

a local perspective rather than a global perspective.

95

 Parsimony. Every descriptive artifact should have ‘just enough’ information, no

more and no less.

As for the life-cycle of a KobrA, at the highest level of granularity, this life-cycle is

composed of a sequence of phases in which new versions of the central framework are

developed and new applications are instantiated from it to meet the expectations of new

customers.

In summary, the strict separation of concerns makes KobrA compatible with a large

number of practical implementation and middleware technologies. Its embracing the

component paradigm allows for adequately benefiting from re-use possibilities. Its

being soundly founded on the principles of the product-line engineering provides a

good theoretical foundation. Its consistency with UML results in a specification of

software, which is fully in tune with the current software design standards.

We outline as limitation nonetheless, the way KobrA is addressing the very early

software specification tasks and in particular - the relation to the original enterprise

system that is to be supported by the software-to-be. As mentioned before, there are no

clear guidelines how to relate the specification of software to a prior enterprise

analysis and modeling. This could be improved either by extending KobrA backwards

(towards a consideration of very early enterprise modeling activities) or by a

combination with a business process modeling tool.

Catalysis

Our analysis on Catalysis has been supported mainly by the following two source:

[24]. Interested readers could find there information about all concepts related to

Catalysis, which have not been considered in this sub-section.

Catalysis is a method for component-based and object-oriented software

development, which provides a strongly coherent set of techniques for enterprise

analysis (characterized by unambiguity about requirements) and system development

using UML as well as a coherent method for object-oriented analysis and design.

Catalysis provides also well-defined consistency rules across models and powerful

mechanisms for composing different views to describe complex systems.

Catalysis is specifically targeted as a method for component-based development, in

which families of products are assembled from kits of components. The method also

allows for re-use of other artefacts of the design process, such as frameworks of

collaboration between objects.

Catalysis includes techniques to map between (UML-based) system design and an

analysis model. The gap and inconsistencies are reduced by:

 unambiguous interface specification;

 techniques to define powerful component ‘connectors’ abstracting above the

level of object-oriented messages;

 ‘retrieval’ techniques for relating the differing models that different components

(especially bought-in or legacy components) usually have (this might include,

for example, different notions of what a customer is).

Use-cases [54] have a central role in Catalysis; they are applied at different abstract

levels. With each decomposition, the objects interact to fulfil the goals of the more

abstract use cases.

96

The Catalysis method basically comes through the following phases:

 A model of the domain is produced, specifying first, what objects are there and

second, the goals which are associated with the major use-cases.

 Scenarios are drawn on how (certain) component could help realizing the major

use-cases, breaking them down into individual steps.

 Viewing a component as a specification (this would be possible because at this

stage it is to be known what a component is supposed to do). The component

has some defined responsibilities, and defined collaborations with the actors

around it.

 Component’s responsibilities are distributed between objects inside it and also,

interactions between components are defined (use cases are used for that goal).

It is possible (if necessary) defining generic interactions between components,

so that they are made ‘pluggable’. This is done through template models.

Thus, essential characteristics of the Catalysis method are:

 Usability of generic chunks of software with robust, well-defined interfaces.

Dynamic coupling of components is just one form of re-use. Other forms include

the import of a generic chunk of design into many other designs. In this sense,

a ‘component’ can include any piece of development work (code, models, rules,

design patterns, and so on).

 Issues which concern the inter-component connections - ‘connectors’ play a

significant role in this task. They are specified independently on the

specification on (relevant) components. Just like objects, connectors are

encapsulated: the specification of what one achieves is independent of its

implementation.

 Software development evolving firstly through the rapid assembly of end

products from components and secondly – through the development of high-

quality components.

In Catalysis, there are particular validation mechanisms. The validation suite is a set

of ancillary components for two purposes: (i) some of them test a component once it is

installed in a particular context, to ensure it is running properly; (ii) others are test

versions of components, exercising the components they are connected to, to make sure

they behave as required.

According to Shishkov [54], Catalysis has certain limitations, particularly as it

concerns the proper alignment between enterprise modeling and software specification

since:

 the method does not offer a solid mechanism for the reflection of the original

business requirements in the specification of the software functionality - that is

because Catalysis is not rooted in any way in any social theory, that would have

allowed for a better grasp of real-life aspects;

 Catalysis is insufficiently focused as it concerns re-use, considering for re-use

not only components but also pieces of code, rules, and so on – this would

assume thorough multi-perspective re-use guidelines and such guidelines are

not available;

 Catalysis is insufficiently capable of grasping human-to-human

communication, similarly to KobrA.

97

In summary, we have considered CBD, touching upon its main characteristics, the

component notion, component implementation models, and component-based

development methods. In the following section, we will consider service-orientation.

4.2 Service-Oriented Architecture

The Service-Oriented Architecture (SOA) is considered to be a promising

paradigm building upon CBD, which shifts the focus from the operation of a software

component to the service the component is delivering to its user(s) [64].

Our analysis on SOA has been supported mainly by the following source: [76].

SOA was originally motivated by the need of enterprises to better match information

systems with their business goals, combined with the market trend of more and more

flexible cross-organizational collaboration between enterprises [49]. Vertical

integration (business-IT alignment) and horizontal integration (IT supported cross-

organizational collaboration) are considered crucial for modern enterprises, but

traditional IT architectures have serious integration deficiencies. Architectures often

comprise monolithic (silo) applications that are effective for the specific purpose they

were created, but which do not allow integration without custom coded connections.

Architectures with component-based applications provide units of business logic,

which ease the definition of connections, but still require that the flow of control and

the transformation of data formats are bound into the business logic.

SOA is an IT architectural style that tries to achieve integration by way of
defining composite applications as an orchestration of

services, with services potentially offered by different organizations. A service

externalizes public functions of an application that implements a repeatable business

task. Since a composite application can also be offered as a service, integration may

involve multiple levels of composition, and a service can be internal to an organization

or cross-organizational.

Those issues will be addressed in this section, by: (i) surveying (in Sub-section 4.2.1)

the concepts and architectural elements of SOA; (ii) briefly discussing (in Sub-section

4.2.2) web services that constitute one of the widely adopted technologies to implement

SOA.

4.2.1 SOA Foundations

The central concept of SOA – the service concept, has several interpretations, partly due

to the fact that SOA addresses two distinct disciplines, namely enterprise engineering

and software engineering, and each of those two disciplines has been considering the

service notion in its own perspective:

 in an enterprise context, a service involves the exchange of some action,

performance or promise for value between a client and a provider [64].

Examples are transportation services, health services, education services,

outsourcing services, and helpdesk services;

98

 in an IT context, a service refers to the external behavior of an IT system, as can

be observed and experienced by the users of that system [77]. Examples are data

communication services and application services.

For convenience, we will use the terms business service and IT service to distinguish

between the enterprise view and the IT view on services.

SOA holds the promise to bring business and IT together, by repeated aggregation of

IT services into composite applications supporting business services that in turn are

aggregated into business processes [75]. Figure 4.3 shows the basic

architectural pattern that underlies SOA. In this pattern, three roles

are distinguished: service provider, service broker and service requestor [50]. A service

provider offers one or more services, which may be implemented using arbitrary

technologies and involving backend systems protected by a firewall. Each service has

well-defined interfaces referred to in a service description. Service descriptions may be

published with a service broker, thus opening the possibility for service requestors to

find services by providing required service properties to the service broker. The service

broker searches for service descriptions that satisfy the required service properties, and

the service requestor can select from the result of this search. Based on the

location/access details in the service description, the service requestor can then bind to

a service provider that offers the selected service. After a successful binding, the service

requestor can invoke the service, according to the interface details in the service

description.

Fig. 4.3. The basic SOA pattern.

Using this pattern, vertical integration is tackled by presenting a service as a virtual

component that can be implemented by alternative concrete components using different

technologies. The service requestor is therefore decoupled from the implementation

concerns of the service provider. Using SOA for application design and proving a

service wrapping for legacy applications thus presents a viable approach to enterprise

application integration.

Vertical integration, or business-to-business integration, requires that each potential

business partner defines a public view on its private process, with corresponding

99

services and associated incoming and outgoing message exchanges that allow linking

to external partners. The previously presented basic SOA pattern only shows a single

service provider and a single service requestor role. In a business-to-business

collaboration scenario, business partners may play either role for any number of

supported services. An individual partner coordinates the services used and provided

through its private process. Since this in general does not determine the overall

coordination involving all partners, a coordination protocol can be defined that

concerns the public view on how the partners should work together. Such a

coordination protocol does not provide a concrete and executable process for the

coordination of a service. It only defines the order in which messages should be

exchanged, where messages are used to invoke a service or return a service result in

accordance to a service provided by one of the partners. A definition at this level of

abstraction is also referred to as service choreography, see Figure 4.4 (up):

Fig. 4.4. Service choreography and service orchestration.

100

Said otherwise, the choreography reflects the collaboration among different

services. Services participating in the choreography may belong to different providers;

the aim is that the participating services collaborate to implement a business process

[30]. In Figure 4.4 (up), the business process consists (for example) of three different

services. The service user triggers the business process, by invoking Service A with a

request. Service A processes the user request and then invokes Service B. Service B

processes the request from Service A and then invokes Service C. Service C processes

the request from Service B and then sends the result to the service user.

 It is to be noted that we use the term SERVICE REQUESTOR in Figure 4.3 and we

use the term SERVICE USER in Figure 4.4. Those terms are not conflicting and we

use different terms because both figures mentioned above reflect a simplified view on

reality. In Figure 4.3, we recognize a service requestor, emphasizing on the role of

formulating a request, searching for candidate services, making a selection, and binding

to a corresponding service provider. We abstract from the fact that the same entity

requesting the service is then the service user. In Figure 4.4, we abstract from the

request formulation, service discovery, and so on, emphasizing on the role of using the

selected service(s).

It is to be noted also that in Chapter 2, a business process is defined as ‘a structure

of (connected) transactions that are executed in order to fulfil a starting transaction’

(Definition 6) while what we discuss above concerns a structure of (connected) services

that are executed in order to fulfill a ‘starting’ service. How would then the transaction

and service concepts relate to each other and how would the business process and

choreography concepts relate to each other? Answering this question is considered

challenging because of the following reasons:

 The notion of transaction is not only grounded in enterprise engineering but is

also reflected in a pattern (Figure 3.4) while the notion of service addresses two

distinct disciplines – enterprise engineering and software engineering, as

mentioned above, leading to different interpretations.

 Within a business process as in line with Definition 6, a starting transaction is

triggered and possibly, in order for it to be executed, it is necessary that another

transaction is triggered, and this is done by the executor (producer) of the

starting transaction – it is the executor who initiates the second transaction, and

the executor of the second transaction (in turn) might need to initiate a third

transaction, and so on. Then, each result is delivered to the corresponding

transaction initiator which means that the result of the second transaction

would be delivered to the executor of the starting transaction who in turn would

deliver the final result to the customer (user). In contrast, the collaboration

among services, as presented above, is not that elaborate as the collaboration

among transactions since we go as far as establishing that the starting service

invokes another service which in turn invokes yet another service, and so on.

Further, when we consider a collaboration among transactions part of a business

process, it is the starting transaction that delivers the result to the customer

while in the service choreography, it is the last service being invoked that

delivers the result to the customer, as illustrated above.

For this reason, we allow ourselves to use the term business process in the service

choreography context only under the condition that we make it explicit that even

101

though similarities can be found, a ‘choreography of services’ is not the same as a

‘business process of transactions’.

What we consider conceptually closer to transactions-driven business processes is

service orchestration – see Figure 4.4 (down), assuming that the overall

coordination (concerning the collaborative behavior of different services) is assigned

to and executed in a centralized way by some computing node [76].

As in service choreography, also in service orchestration, the services (participating

in the orchestration) may belong to different providers. The difference is nonetheless

that in an orchestration, those services are coordinated from a central entity, the

orchestrator; the orchestrator invokes each service according to a given strategy. We

considered a choreography example featuring three services (see Figure 4.4 (up)) and

we now consider an orchestration example featuring the same three services (see Figure

4.4 (down)). As it is seen from the figure, in the orchestration case, services are

coordinated by another service, the composite service (called ‘orchestrator’) – this

service defines the composition of the services participating in the business process.

The service user triggers the business process, by invoking the orchestrator. Once the

orchestrator receives the user request, the first action it takes is to invoke Service A and

Service A would respond in turn with a message. Then (based on this response) the

orchestrator would invoke Service B and Service B would respond in turn with a

message. Then (based on this response) the orchestrator would invoke Service C and

Service C would respond in turn with a message. Then (based on this response) the

orchestrator would deliver the result to the service user. It was stated above that service

orchestration is conceptually closer to transactions-driven business processes

(compared to service choreography) because similarly to how a customer approaches

the executor of a starting transaction and in the end the executor of the starting

transaction would deliver the result to the customer (no matter how many other

transactions the executor of the starting transaction would have (directly or indirectly)

triggered in order to be able to execute the starting transaction), the service user

approaches the orchestrator and in the end the orchestrator would deliver the result to

the service user (no matter how many services the orchestrator would have triggered

in order to be able to respond to the request of the service user).

In order to illustrate the patterns discussed above (the basic SOA pattern – Figure

4.3, the choreography pattern – Figure 4.4 (up), and the orchestration pattern – Figure

4.4 (down)), we use the following simple real-life examples:

[Example 1]: Jamall Caribbean Custom Tailors (service provider) are active in the

Toronto area in Canada; they have advertised their services at

http://www.yellowpages.ca. John lives in Toronto; he has ripped his trousers (service

user) and discovers Jamall Caribbean Custom Tailors’ services in Yellowpages –

Canada. Then John would contact Jamall Caribbean Tailors, discussing the problem

and negotiating the conditions about their fixing his trousers. Once they reach an

agreement, John would bring his ripped trousers to the nearest collection desk of Jamall

Caribbean Custom Tailors whose rules on handling orders would be dominant and John

would have to adapt to the conditions of their services (for example: for how many days

this order would be handled, are week-end days counted, what is the extra pay for a

priority order, what are the compensations for damage on the clothing, and so on),

which conditions John must have discussed with them during the above-mentioned

negotiations. This example points to the basic SOA pattern.

102

[Example 2] Hristo is Bulgarian living in Sofia, Bulgaria, who has a PhD degree

from Delft University of Technology in The Netherlands. Hristo is appointed as

Assistant Professor at the Bulgarian Academy of Sciences and for this he needs a

legalization of his PhD degree. He applies for this to Delft University of Technology,

by: (i) submitting via e-mail a scanned copy of a filled in and signed form, and (ii)

transferring a corresponding fee. Then:

- A representative of Delft University of Technology (Delft) would issue a duplicate of

the diploma, send it to the DUO Agency of the Dutch Ministry of Education

(Groningen), and pay on behalf of the university a processing fee to DUO.

=> SERVICE 1.

- A representative of DUO (Groningen) would match the information in the document

to corresponding information in their databases and if all is OK, the person would apply

on behalf of DUO a sticker at the back of the document, send the document to the

Courthouse in Groningen, and then pay on behalf of DUO a processing fee to the Court.

=> SERVICE 2.

- A representative of the Court (Groningen) would check the details in the document

and the details of the diploma holder in the Dutch registries, and if all is OK, the person

would apply an apostille on the document and send the document to Hristo.

=> SERVICE 3.

This example points to service choreography because the coordination is realized

among the services themselves: Hristo is triggering Service 1 and then those who are

executing Service 1 know what to do and how to deliver it to and trigger Service 2 and

then those who are executing Service 2 know what to do and how to deliver it and

trigger Service 3 that in turn delivers the result to Hristo.

[Example 3] Jimmy is the leading manager of a small company in Sofia and Alice is

his business assistant who is authorizes to sign for Jimmy declarations, application

forms, to order payments on behalf of the company, and so on. Jimmy needs a

certificate of good standing concerning the company, and he asks Alice to get it for him.

Then:

- Alice would visit a solicitor, asking him or her to prepare the application letter, and

Alice would pay the solicitor for the service, on behalf of the company.

=> SERVICE 1.

- Having the application letter (for reference), Alice would go to the bank and transfer

a corresponding fee to the Court.

=> SERVICE 2.

- Having the application letter and the proof of payment, Alice would go to the Court,

submit those documents and immediately collect the certificate of good standing, if

everything is OK with regard to the company.

=> SERVICE 3.

Then Alice would go back to Jimmy, giving him the certificate of good standing.

This example points to service orchestration because the coordination is realized

through Alice who is just like the ‘orchestrator’ in Figure 4.4 (down): Jimmy is

triggering Alice who knows what and how to do, and in what order – Alice would firstly

sort things out with the solicitor, then she would do the fee payment, and finally, she

would go and collect the certificate of good standing at the Court. Based on this all,

Alice would go back to Jimmy and deliver the certificate to him.

103

Even though those examples illustrate the corresponding SOA patterns in terms of

underlying internal logic, the examples are not to be considered straightforwardly

because they are reflecting real-life situations while SOA is an IT architectural style, as

already mentioned.

Finally, after outlining the basic SOA pattern and touching upon service

coordination, it is necessary to discuss service composition since often the user

needs cannot be satisfied by simply using one particular service and composite services

are to be considered. According to Eduardo Goncalves da Silva [30], the service

composition is initiated by the specification of a service request where the service

requestor / user indicates requirements and preferences for the composite service to be

created. Following that, candidate services for the service composition are discovered

in the service registry. In case no services are discovered, the requirements for the

service may need to be re-formulated and/or refined. Following that, the discovered

services are composed to meet the specified requirements and this may be accompanied

by further interactions with the service registry, in case other services are necessary to

complement the already discovered services; once the specified service requirements

can be fulfilled by the created service composition, the resulting service can be

executed, such that the service requestor / user makes use of it. It is also possible that

the service developer is driving the service composition process – in such a case, the

resulting service composition may be published in the service registry so that it can be

used by other users or service developers in the future.

As it concerns the implementation of SOA, we mentioned at the beginning of

the current section that we will consider (in the following sub-section) web services that

constitute one of the widely adopted technologies to implement SOA.

4.2.2 Web Services

Web Services (WS) are a collection of emerging standards, which are widely

accepted as the technology of choice for implementing SOA [50]. WS to a large extent

support the concepts, patterns and principles mentioned in the previous sub-section. An

application designed and implemented according to WS standards is self-contained and

modular, has a description which can be published, can be found on basis of its

description, and can be located and invoked over networks.

The core WS standards are the following:

 Simple Object Access Protocol (SOAP): this is an Internet protocol

for web (service requestor and service provider) applications to communicate

on top of other standard Internet protocols, including HTTP. SOAP defines how

messages are structured and processed in a platform-independent way. It

comprises two message exchange patterns, viz. one-way and request-response.

 Web Service Description Language (WSDL): this is the language

for specifying the WS interfaces. It is used to provide a description of the service

for the (potential) service requestors. Such a description includes information

on which messages are related to each operation that is supported by the service,

how these messages are related (e.g., operation input and output), and how

SOAP messages are exchanged.

104

 Universal Description, Discovery and Integration

(UDDI): this standard is defined to enable the storage of information for

organizing and discovering WS. UDDI consists of data structures and APIs for

publishing and querying WS. The UDDI APIs are themselves WS, and thus are

described and can be invoked as any other WS.

In addition, all WS standards rely on the Extensible Markup Language (XML) to

represent structured data. XML documents and schemas are defined to standardize the

format and typing of data communicated by WS. The basic SOA pattern (see Figure 4.3)

can be supported with SOAP, WSDL and UDDI. Those standards are, nevertheless,

insufficient to correlate messages exchanged between a service requestor and a service

provider, to distinguish between multiple instances of the same service, or to coordinate

the use of different services. Also they do not address policies that govern the use of

WS, non-functional aspects of WS such as reliability, security and atomicity. For this

purpose, several other WS standards have been developed. Figure 4.5 shows an

overview of standards supporting different aspects of SOA, as according to Van

Sinderen [76].

d
is

c
o

v
e

ry
,

n
e
g

o
ti
a
ti
o

n
,

a
n
d

 a
g

re
e

m
e

n
t

data transport

composition and coordination

stateful components

HTTP, TCP/IP, SMTP, FTP, …

XML messaging

SOAP, WS-Addressing

non-XML messaging

JMS, RMI, IIOP

interface and bindings

WSDL

policy

WS-Policy

reliability

WS-RM

security

WS-Security

atomicity

WS-Transaction

BPEL, CDL

WS-Coordination

WS-Resource Framework

U
D

D
I,
 W

S
-A

d
d

re
s
s
in

g
,
…

Fig. 4.5. WS and some other standards supporting SOA.

105

We argue that those standards have reached a certain level of technical maturity and

thus represent an adequate WS basis with regard to the implementation of SOA. This in

turn reflects promising, in our view, developments based on CBD (see the previous

section), such that COMPONENTS are considered useful UNITS OF

DEVELOPMENT while SERVICES are considered useful UNITS OF UTILIZATION

with regard to developing (distributed) software and making it available to users.

Complementing this, we will consider (in the following section) model-driven

engineering, featuring the development process itself, no matter if this concerns

component-based development of software applications or composition of services for

the sake of generating software-based solutions.

4.3 Model-Driven Engineering

Any subject using a system A that is neither directly or indirectly interacting with a

system B, to obtain information about the system B is using A as a model for B,

according to Definition 9. In reflecting that definition in real life, we establish that the

human mind would often ‘re-work’ reality, simplifying things, driven by an intuitive

‘push’ to identify similarities among objects, emphasizing those similarities in

perceiving different objects. For example, both the small Mitsubishi Colt and the big

Cadillac Eldorado are intuitively matched to the ‘car’ model by a person, firstly, and

the huge differences among those two objects go on second place. Said otherwise, upon

perception, a person would firstly try to relate the observed object(s) to a category item

already existing in his or her mind, abstracting from very many details. Abstraction

(pointing to the capability of finding the commonality in many different observations)

is hence essential with regard to how people perceive reality and reason about it –

people often generalize specific features of real objects (generalization), classify

the objects into coherent clusters (classification), and aggregate objects into

more complex ones (aggregation). Thus abstraction reflects the natural human

behavior in real life while in science, ABSTRACTION RELATES TO MODELING,

as suggested by the above definition. Hence, a model is a simplified and/or partial

representation of reality. Models are of importance in many scientific disciplines, such

as physics and chemistry, for example, where through simplified models of natural

phenomena, one would draw conclusions about the phenomena themselves. In this, one

would aim either at reflecting (through modeling) just a selection of relevant properties,

hence reducing complexity or at considering the features of an individual for the sake

of generalization. Further, models can be used to describe reality, to determine the

scope and details at which to study a problem, and so on. Through modeling, features

of products can be analyzed and discussed before the corresponding products get

produced. Finally, with us focusing on the development of software artefacts in this

chapter, we would consider particularly model-driven engineering, by which

we mean model-driven software development. According to [9], the need for model-

driven engineering is justified taking into account the following facts:

 Software artefacts are becoming more and more complex, and therefore they

need to be discussed at different abstraction levels, depending on the profile of

the involved stakeholders, phase of development, and objectives of the work.

106

 Software is more and more pervasive in real life, and the expectation is that the

need for new pieces of software or the evolution of existing ones will be

continuously increasing.

 Software development is not a self-standing activity: it often imposes

interactions with non-developers (e.g., customers, managers, business

stakeholders, and so on) which need some mediation in the description of the

technical aspects of development.

For this reason, it is not surprising that by applying model-driven engineering,

software developers increase efficiency and effectiveness [9]. This nonetheless does

not assume just using models and corresponding notations, for example UML; in model-

driven engineering, models do not constitute documentation but are considered equal

to code, as their implementation is automated, for example: a car order that includes

customer features is straightforwardly reflected into reality, in the context of a current

advanced automotive production line. Hence, the domain is essential for models.

Model-driven engineering thus aims at finding domain-specific abstractions and

making them accessible through formal modeling, this leading to automation of

software production, which in turn leads to increased productivity (since both the

quality and maintainability of software systems increase) – models that are domain-

specific and computation-independent can be understood by domain experts and at the

same time, those models are restricting accordingly the technology-specific models that

are essential for the construction of the software system under development. To

successfully apply this, three requirements must be met: (i) Domain-specific languages

are required to allow the actual formulation of models. (ii) Languages that can express

the necessary model-to-code transformations are needed. (iii) Compilers, generators,

or transformers are required that can run the transformations to generate code

executable on available platforms [66]. Said otherwise:

 It is necessary to consider computation-independent models that capture

adequately the domain features, abstracting from any computation and technical

details; such models would ideally capture the as-is situation, describing the

context in which the software system-to-be will be integrated.

 It is necessary to consider technology-independent models of the software

system-to-be, which models are already focused on the system-to-be (maybe

both functionally and constructionally) but just conceptually, not imposing any

technical restrictions whatsoever.

 It is necessary to consider technology-specific models that capture adequately

all technical features of the software system-to-be, which models are

straightforwardly reflect-able to corresponding code.

As studied by Shishkov [54], two modeling facilities are meeting those requirements,

namely the Model-Driven Architecture (MDA) and the Open Distributed

Processing Architecture (ODP), with MDA’s adopting influences from ODP. Further,

meta-modeling is one of the most important aspects of model-driven engineering

since so-called ‘meta-models’ are needed for describing the abstract syntax of domain-

specific modeling languages, and that in turn allows models to be validated against the

constraints defined in the meta-model, and that allows also for mappings between two

meta-models; this is all necessary with regard to the desired automated code generation.

Hence, meta-models are models that make statements about modeling. Four meta-levels

107

being defined and considered widely, are reflected in MOF – the Meta-Object

Facility [66]. For this reason, we will consider MDA and MOF in Sub-section 4.3.1

and Sub-section 4.3.2, respectively.

4.3.1 Model-Driven Architecture

Model-Driven Architecture (MDA) is a software architecture framework consisting of

a set of standards that assist in system creation, system implementation, system

evolution, and system deployment [66]. The key MDA technologies are UML, MOF (to

be considered in the following sub-section), and the XML Meta-data Interchange –XMI

[84,83]. MDA emphasizes the importance of modeling for the software architecture

design, suggesting a three-layered approach:

 Computation-Independent Model – CIM, describing a system from

the computation-independent point of view, to address structural aspects of the

system;

 Platform-Independent Model – PIM, defining a system in terms of a

technology-neutral virtual machine or a computational abstraction;

 Platform-Specific Model – PSM, capturing the technical platform

concepts and geared towards implementation.

A taxonomy of the models that play a central role in MDA is presented in Figure

4.6:

Fig. 4.6. Classification of models in the MDA context.

Since resolving the mismatch between (user) requirements and software application

functionality is an essential software development concern [54], MDA needs to address

it and this regard, one would inevitably face the necessity of bridging different

abstraction levels – a high-level business logic and a technology-driven application

108

functionality. A business function (corresponding to a unit of business logic) is specific

for a particular business and necessarily abstracts from technological solutions that can

be used to support it. A technology platform offers a generic engineering abstraction

(hence hiding implementation details) that is nonetheless technology-oriented.

According to [64], an adequate business – application alignment can only be achieved

if the initial enterprise model is: (i) a valid reflection of the relevant real-life aspects

and (ii) a suitable foundation for the generation of application models, preferably by

using automated transformations. The alignment nevertheless cannot be accomplished

only by prescribing how to define an enterprise model – an additional demand should

be that: (iii) the ‘architectural style’ used for organizing the application modeling

should facilitate the alignment; it cannot be obtained solely from top-down, but also

requires a bottom-up ‘preparation’.

Hence, we consider enterprise modeling to be computation-independent, with no

focus on the (partial) automation of business processes – this corresponds to the CIM

layer. Further, we consider we consider application modeling from a platform-

independent perspective, with no focus on the specific technological platform(s) on

which the application components are (to be) implemented – this corresponds to the

PIM layer. Thus:

 the enterprise-modeling-driven

 generation of software specification

 corresponds to a CIM-to-PIM transformation.

As for the PSM, it is specific with regard to J2EE, .NET, or other implementation

platforms. A platform-specific model is created from a platform-independent model via

a model transformation. Thus:

 the application-modeling-driven

 implementation of software

 corresponds to a PIM-to-PSM transformation.

In the following sub-section, we will consider meta-modeling and MOF, as already

mentioned.

4.3.2 Meta-Object Facility

The Meta-Object Facility (MOF) provides an open and platform-independent meta-

data management framework and associated set of meta-data services to enable the

development and interoperability of model and meta-data -driven systems. Examples of

systems that use MOF include modeling and development tools, data warehouse

systems, meta-data repositories, and so on [48]. The above-mentioned four meta-levels

are of importance with regard to MOF [66] – they are: (i) M0 – Instance; (ii) M1

– Model; (iii) M2 – Meta-model; (iv) M3 – Meta-meta-model.

Between M0 and M1, we have typical classification/instantiation, at M1 we have

the class level and at M0 we have the instance level, for example: a class is given the

109

name ‘Person’ and has a number of attributes, in the example – ‘sir name’ and ‘first

name’; an instance of that class is created at level M0, in the example – ‘Person’ is

instantiated to the persons with ‘ID 12345’, and we give corresponding values to the

attributes ‘sir name’ and ‘first name’ – ‘Smith’ and ‘Michael’, respectively, in this case.

Logically, a class can have more than one instance. As seen in the above example,

during the instantiation of a class, values are assigned to attributes of the class.

As for the M2 level, at this level, the constructs that are used at the M1 level are

defined. The elements of the M1 model are hence instances of the elements of the

meta-model at the M2 level; since in the above example we use classes in the M1

model, the construct Class must be defined in the M2 meta-model. The construct Class

in turn is to be considered as an instance of the meta-meta element MOF Classifier

(MOF classes are hence defined at the M3 level. Said otherwise, the MOF serves to

define modeling languages (such as UML, for example) at the M2 level.

Further, besides meta-relationships in which meta-models define the concepts

needed for creating corresponding models, it has to be acknowledged that models can

be located on different abstraction levels even though they can be located on

the same meta-level, for example: CIM, PIM, and PSM (see above). As already

discussed, transformations are used to map models at a higher abstraction level to

models at a lower abstraction level, and as mentioned before, each model is inevitably

an instance of a meta-model.

If we take the PIM-to-PSM transformation (where we reflect the higher abstraction

level model, PIM to lower level, PSM), we stay at the M1 level because no matter the

abstraction level, both PIM and PSM represent models. Each of those models thus has

a corresponding meta-model (at the M2 level): the PIM is an instance of the PIM meta-

model and the PSM is an instance of the PSM meta-model. In turn, both meta-models

are instances of MOF, MOF being positioned at the M3 level. This is illustrated in

Figure 4.7:

Fig. 4.7. Meta versus abstract.

110

In this section, we considered the model-driven software development, touching

upon abstraction levels, meta-levels, and corresponding transformations. In the

following section, we will consider the impact of mobility on the development and

utilization of software systems, featured mainly by cloud computing and corresponding

infrastructures.

4.4 Cloud Computing

Consolidated enterprise-IT solutions have proven to enhance business efficiency when

significant fractions of local computing activities are migrating away from desktop PCs

and departmental servers and are being integrated and packaged on the Web into the

computing cloud, according to Ivanov [36]. Whether referred to as grid computing,

utility computing, or cloud computing, the idea is basically the same: instead of

investing in and maintaining expensive applications and systems, users access and

utilize dynamic computing structures to meet their fluctuating demands on IT resources

efficiently and pay a fixed subscription or an actual usage fee. The immense economic

demands in the last several years, in conjunction with the immediate reduction of

upfront capital and operational costs when cloud-based services are employed, increase

the speed and the scale of cloud computing adoption both horizontally (across

industries) and vertically (in organizations' technology stacks). All that poses the need

for organizational changes – organizations would have to re-think and re-engineer (in

some cases) their traditional IT resources, advancing them with cloud architectures and

implementing services based on dynamic computing delivery models. The changes and

business transformations are underway on a large scale, from providers and customers

to vendors and developers. The key issues are not only in economics and management,

but essentially how emerging IT models impact organizational structures, capabilities,

business processes, and consequential opportunities.

There are usually three cloud service models under consideration, namely:

Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS), that relate to the cloud provider

[12]:

 SaaS moves the task of managing software and its deployment to third-party

services, such as security services, caching services, networking services, and

so on.

 PaaS functions at a lower level than SaaS, typically providing a platform on

which software can be developed and deployed, such as streaming platforms,

application development platforms, web platforms, and so on.

 IaaS in turn comprises highly automated and scalable compute resources,

complemented by cloud storage and network capability which can be self-

provisioned, metered, and available on-demand, such as e-mail building blocks,

ERP building blocks (‘ERP’ standing for ‘Enterprise Resource Planning’),

CRM building blocks (‘CRM’ standing for ‘Customer Relationship

Management’), and so on.

The cloud provisioning is hence bottom-lined by a SaaS-PaaS-IaaS basis, and

reaching out to customers via the Internet, such that the customer’s computers, servers,

111

databases, mobile devises and so on can actually benefit from corresponding cloud

services that are in turn utilized by customers in the form of images, news, music, chat

facilitations, ID management, TV, and so on, as illustrated in Figure 4.8:

Fig. 4.8. Vision of cloud computing.

112

As the figure suggests, customers utilize cloud services at high level, in an intuitive

and seamless way, such that the underlying SaaS-PaaS-IaaS-related technical

complexity remains hidden and would only become explicit for the customer as

reflections in corresponding (subscription) contracts. Thus, cloud computing brings

together many technical, organizational, contractual, and other concerns which we will

not discuss in more detail in the current chapter. Our goal was to present cloud

computing as a natural ‘extension’ of service orientation (already discussed) where the

utilization of services is combined with the utilization of resources, empowering

mobility – it is only through cloud computing that it is possible to access distant

resources / systems through a (portable) mobile device.

All this reflects the move from components through services to cloud solutions, and

we acknowledge the relevance of model-driven engineering (discussed already) to the

challenge of developing such components-services-cloud-based systems. What remains

uncovered nevertheless is the adequate consideration of non-functional issues, such as

privacy, for example, which are crosscutting and have reflection in different

components, at different development phases, and so on. We will discuss this in the

following section.

4.5 Aspect-Oriented Software Development

Privacy, transparency, traceability, and so on are labelled as values that are to be

weaved in the functioning of enterprise systems and EIS [2] and for this reason, they

are considered as crosscutting concerns because:

 Weaving them in the functioning of a system would not assume reflections in

one particular component only, instead: multiple components would need to be

‘re-factored’ as well as their interrelations, as well as their relations to other

components.

 Addressing such values in the software development context would come

through all the phases of the software development life-cycle.

Further, such values / crosscutting concerns have a non-functional essence because

they do not have any particular purpose or function, instead: they represent something

like ‘desired system qualities’.

Finally, even though the values / crosscutting concerns are non-functional, we

should find functional solutions for them, because we argue that a system could only

functionally achieve effects with impact on its environment.

This all (as above stated) concerns broadly enterprise systems touching upon both

human issues and technical issues. Narrowing this further to software systems

nevertheless brings us to such crosscutting concerns that are particularly touching upon

software development issues, such as security, distribution, recoverability, logging,

performance monitoring, and so on [8]. This is featuring the notion of aspect-

oriented software development whose foundations are separating concerns,

filter technologies, improving modularity, integrating new features, and so on. [27]. We

are not going in more detail in this direction.

What we only like to emphasize is that addressing such non-functional concerns is

to be functional which means that:

113

 We should ‘translate’ those concerns into system requirements.

 System development should not go in any unusual way, it should just ensure

that all requirements are properly reflected in the design and implementation.

 Introducing metrics and/or performance indicators would be necessary for

establishing how well the desired values have been reflected in the performance

of the system and if it is necessary, the requirements may have to be re-factored.

Aspect-orientation is thus necessary for properly weaving desired values in the

functioning of the system-to-be. If is featuring non-functional issues that nevertheless

have to be resolved functionally.

IN SUMMARY, in Chapter 2 we have considered some essential the concepts and

views; in Chapter 3 we have presented and discussed social theories, including human

relativism, the theory of organized activity, the language/action perspective, enterprise

ontology, and organizational semiotics, justifying their relevance to different aspects

concerning enterprise systems and EIS; in Chapter 4 we have considered computing

paradigms that are currently actual and also well-combinable with the social theories

and concepts considered. In the following chapter, we will bring those issues together,

featuring the SDBC approach.

114

115

Chapter 5

THE SDBC APPROACH

’SDBC’ stands for ‘Software Derived from Business Components’. SDBC is a software

specification approach that covers the early phases of the software development life

cycle and is particularly focused on the derivation of software specification models on

the basis of corresponding (re-usable) enterprise models. SDBC is based on three key

ideas: (i) The software system-to-be is considered in its enterprise context which not

only means that (as mentioned above) the software specification models are to stem

from corresponding enterprise models but means also that a deep understanding is

needed on real-life (enterprise-level) processes, corresponding roles, behavior patterns,

and so on. (ii) Bringing together two disciplines, namely enterprise engineering and

software engineering, SDBC pushes for applying social theories in addressing

enterprise-engineering-related tasks and for applying computing paradigms in

addressing software-engineering-related tasks, and also for bridging the two, by means

of sound methodological guidelines. (iii) Acknowledging the essential value of re-use

in current software development, SDBC pushes for the identification of re-usable

(generic) enterprise engineering building blocks whose models could be reflected

accordingly in corresponding software specification models.

The initial ideas behind SDBC have been proposed by Shishkov in 2005 [54] and

since then the approach has been maturing slowly. Since no sound and widely

recognized methodology has appeared to take the above focus and that lack is widely

claimed to continue to cause numerous failures of software projects, we are inspired to

work further on the SDBC project. Nevertheless, this has never been and is not a matter

of any kind of commercialization whatsoever neither it is related to branding or product

positioning. SDBC remains fundamentally driven by a scientific and research

inspiration, and for this reason, it is not aligned with particular commercialized

development tools. Hence, SDBC is positioned as an open modeling platform that may

accommodate different tools, as far as the overall principles of the approach are met,

and what stays essential about SDBC is the challenge of bringing together social

theories (in an enterprise engineering context) and computing paradigms (in a software

engineering context), aiming at the enterprise-modeling-driven specification of

software.

116

Fig. 5.1. The SDBC foundations.

As it concerns the modeling itself, SDBC assumes four modeling perspectives,

namely: Structural perspective that reflects entities and their relationships; Dynamic

perspective that reflects the overall business process and corresponding to this – the

states of each entity, evolving accordingly; Data perspective that reflects the

information flows across entities and within the business process; Language-action

perspective that reflects real-life human communication and expression of promises,

commitments, etc. as also relevant to soundly building an exhaustive enterprise model.

117

In this, SDBC is grounded, as Figure 5.1 shows, in the principles of systemics (see

Chapter 2) and also in:

 Enterprise engineering and in particular, enterprise ontology and

organizational semiotics (see Chapter 3);

 Software engineering and in particular, model-driven engineering and

component-based development (see Chapter 4).

As also suggested by the figure, software specification models derived by applying

SDBC, can be further updated to accommodate features pointing to: (i) service-

orientation (and mobility utilization related to this), as studied in [63]; (ii) context-

awareness, as studied in [53]; (iii) autonomic system behavior, as studied in [65].

Further, with regard to concepts, among the main SDBC concepts are the following:

 Component vs CoMponent: while components represent part of the whole,

coMponents reflect a model of a component adequately elaborated in all four

perspectives (see above), and we could thus have business components

(business sub-systems) and software components (pieces of implemented

software) as well as business coMponents and software coMponents,

respectively; Refer to Definition 8, Definition 11, Definition 13, Definition 14,

and Definition 15.

 General vs Generic: those concepts are both about re-use, still – general is about

re-using an abstract core (a general reservation engine, for example) while

generic is about parameterizing something that is multi-specific (a car system

to be adjusted to automatic or gear regime, for example).

 Software Specification Model – this is a technology-independent functionality

model of the software system-to-be.

To summarize the SDBC outline, we use Figure 5.2. As seen from the figure, we

consider an enterprise system from which a business component(s) is to be identified

and then reflected in a relevant model – a business coMponent. Another way for arriving

at a business coMponent is by applying re-use: either extending a general business

coMponent or parameterizing a generic one. Then, the business coMponent should be

elaborated with the domain-imposed requirements, in order to add elicitation on the

particular context in which its corresponding business component exists within the

enterprise system. Then, a mapping towards a software specification model should take

place and the user-defined requirements are to be considered, since the derived

software model should reflect not only the original business features but also the

particular requirements towards the software system-to-be. The software specification

model in turn needs a precise elaboration so that it provides sufficient elicitation in

terms of structure, dynamics, data and language-action –related aspects. It needs also

to be decomposed into a number of software coMponents reflecting functionality

pieces. Those coMponents then are to undergo realization and implementation, being

reflected in this way in a set of software components. Some software components could

also be purchased. The software components are implemented using software

component technologies, such as .NET or EJB, for instance. Finally, the (resulting)

component-based ICT application would support informationally the target enterprise

system, by automating anything that concerns the considered business component

(identified from the mentioned system).

118

Abbreviations:

 bc – Business Component ssm – Software specification model
 bk – Business CoMponent sc – Software Component
 glbk – General Business CoMponent sk – Software CoMponent
 gcbk – Generic Business CoMponent

Fig. 5.2. SDBC – outline [54].

In order to bring forward further elaboration with regard to the SDBC approach, it is

necessary to consider the SDBC design trajectory: As suggested by Figure 5.3-a [54],

one should firstly consider the initial descriptive information (provided by the future

user(s) of the software system-to-be) which is a usual input in any software project, as

it is well-known. Then a description of the approached business reality is derived.

However, it might be necessary to conduct re-design (imagine that the original business

reality consists of a local service provider and users; introducing mobility, we could

rely on a number of service providers based in different locations; thus, before

specifying software, we would need to describe the ‘future’ (desired) business reality

accordingly). Then, we should delimit a relevant part of the business reality depending

on our particular software goal (on what we are going to automate, according to the

requirements of the users). Figure 5.3-b [54] summarizes those issues.

enterprise system

119

BRD

DV

B P M

S S M

delimitation

business process modeling

software specification

requirements elicitation

 BRD = Business Reality Description
 DV = Business Reality Description - Delimited View
 BPM = Business Process Model

 SSM = Software Specification Model

user-defined requirements

domain-imposed requirements

re-design

design constraints

descriptive business
 information

description

current
(original)

enterprise system

desired
(designed)

 enterprise system

delimited (annotated)

enterprise system

 a)

 b)

Fig. 5.3. SDBC: design trajectory.

Hence, having the description of the delimited part of the original (or eventually re-

designed) business reality, we could proceed towards the business process modeling

task (Figure 5.3-a). As seen from the figure, another related input is to be the domain-

imposed requirements characterizing the original enterprise system.

We build a business process model that in turn is to be mapped towards a software

specification model. However, as it is depicted on the figure, besides the business

process modeling input, the SDBC design trajectory envisions two other necessary

inputs:

 the user-defined requirements – the requirements which the future user(s) of the

software system-to-be have stated concerning its functionality;

 design constraints – the design limitations which should be followed as a result

of software/hardware/netware (and other) project restrictions.

120

Thus, five basic tasks could be identified, namely description (plus eventually re-

design), delimitation, business process modeling, software specification as well as

requirements elicitation.

The figure shows as well that the requirements elicitation task would span not only

over the software specification but also over the business process modeling.

Concerning the items depicted on Figure 5.3-a: from left to right and from top to

bottom they become smaller (in area) and more regular (in shape). This is to indicate

that each following state relates to a smaller part of the original business reality (in the

delimitation, we exclude issues from the original model, in the business process

modeling, we further exclude issues from the delimited model, and so on) and is

becoming more and more structured.

We will now bring forward further insight on four of the above-mentioned tasks,

since they require elaboration - those are: (i) delimitation; (ii) business process

modeling; (iii) software specification; (iv) requirements elicitation.

(i) Delimitation

As seen from Figure 5.3-a, before the software specification and even before the

business process modeling activities take place, it is necessary to conduct a sound

business process study that thoroughly reflects the considered business reality,

achieving in this way a precise delimitation. We consider this necessary because, as it

is well-known, an adequate modeling should be conducted based on a proper

description and understanding of the addressed reality as well as on a precise focus on

the part of the reality to be considered in the modeling process [57]. In SDBC, we

respond to this through ‘description+filtration’:

 It is necessary to thoroughly describe the enterprise system being approached

(the business reality under consideration, which might be (eventually) re-

designed) and the suggested starting point in this regard is the consideration of

the original documentation of the studied system; however, it should be taken

into account that such information is usually insufficient and often full of errors.

Thus, it should be additionally analyzed and/or refined. The decision how

detailed the description should be depends on the selected granularity level that

in turn should be adequate to the characteristics of the software system-to-be.

 Then, with regard to only those issues from the description, which are relevant

to the software system-to-be, filtration needs to be applied. They are to be,

however, soundly rooted in the broader context of the approached business

reality. This link would contribute to building software that is well integrated in

the target enterprise.

In order to illustrate the above, we consider an example featuring a restaurant: to

make a DESCRIPTION with regard to a restaurant means to cover a number of issues,

such as location, opening hours, food details, price details, reservation procedure,

service peculiarities, reputation, and so on. There would be much information collected

along those lines which information would nevertheless remain unfocused. If we would

be introducing some technology within the restaurant, for example – an electronic

reservation system, then we would have to apply FILTRATION with regard to the

description, such that we extract only those description elements that are relevant to the

reservation functionality.

121

However, description and filtration are not to be always realized as two separate

tasks, it is possible that they overlap. Returning back to the example: it might be obvious

from the beginning that describing the porter (of the restaurant) is of no use since the

‘functionality’ of the porter is irrelevant to the restaurant (electronic) reservations;

irregardless of other circumstances, the Porter must stay by the restaurant’s entrance

during the opening hours.

It might be concluded that filtration concerns the alignment between business

process modeling and software specification since it focuses the business study on

particular part(s) of the studied business reality, which are to be automated through

(software) technology [57].

(ii) Business Process Modeling

Inspired by Definition 8, Definition 10, and Definition 11, we establish the need to

conduct business process modeling with providing elaboration in three perspectives,

namely: (i) Structural perspective; (ii) Dynamic perspective; (iii) Data perspective.

Further, inspired by the notion of transaction (see Definition 5 and Figure 3.4) and LAP

(see Chapter 3), we add another perspective, namely the communication perspective.

All this is illustrated in Figure 5.4:

business process modeling

structural perspective dynamic perspective

communication perspective

data perspective

Fig. 5.4. SDBC – business process modeling perspectives.

As for the perspectives: the structural perspective is about the entities and their

interrelations; the dynamic perspective is about the flow(s) of events; the data

perspective is about the factual issues; the communication perspective is about the

communicative acts exchanged during the business operation.

(iii) Software Specification

Since SDBC is to deliver a software specification model that is derived based on a

corresponding enterprise model that features in turn (among other things) business

processes to which four perspectives are applied, as discussed above, we need to reflect

a multi-perspective business process model in corresponding software specification

reflections. Further, if possible, such an alignment between business process modeling

and software specification is to be component-based. Said otherwise, the software

specification model is to be derived based on (re-usable) business coMponents.

(iv) Requirements Elicitation

Requirements relate directly to the specification of software [79]. They are descriptions

of how the system-to-be should behave, application domain information, constraints on

the system’s operation, or specifications of a system property or attribute [37]. Thus, a

122

proper consideration of the original business requirements in the specification of a

software’s functionality is of significant importance in the process of aligning business

process modeling and software specification. Our consideration of the requirements

issue as illustrated in Figure 5.2 is in consistency with the SDBC design trajectory

(Figure 5.3).

Building a business process model should concern the discovery of a part of the

system requirements, namely those requirements that characterize particularly the

enterprise system under consideration, as discussed already. They are often called

domain-imposed requirements, as already mentioned. It is to be mentioned in this

regard that not only the domain-imposed requirements could affect the initial business

process model, by causing some updates in it but also that the business process model

affects the requirements elicitation, by stimulating the discovery (or specification) of

additional requirements.

As mentioned already, besides the domain-imposed requirements one should

identify also the so-called user-defined requirements that are determined by the users

of the system-to-be and are not directly related to the business process model.

In summary: during the business process modeling, the domain-imposed

requirements are to be discovered and considered in the mapping towards software

specification; next to that, the user-defined requirements are to complement the

business process model in providing the input for the derivation of the software

specification model.

Further, transactions (see Definition 5 and Figure 3.4) are considered as the

fundamental enterprise modeling building block in the SDBC context. Still, there is a

particular SDBC interpretation of the transaction concept.

SDBC interprets the transaction concept as centered around a particular

production fact (see Definition 5). The reason is that the actual output of any enterprise

system represents a set of production facts related to each other. They actually bring

about the useful value of the business operations to the outside world and the issues

connected with their creation are to be properly modeled in terms of structure,

dynamics, and data.

However, the already justified necessity of considering also the corresponding

communicative aspects is important. Although they are indirectly related to the

production facts, they are to be positioned around them. As already stated, SDBC

realizes this through its interpretation of the transaction concept, as depicted in Figure

5.5; as seen from the figure, the transaction concept (as featured Definition 5 and Figure

3.4) has been adopted, with a particular stress on the transaction’s output – the

production fact. The order phase is looked upon as an input for the production act,

while the result phase is considered to be the production act’s output. The dashed line

shows that a transaction could be successful (which means that a production fact has

been (successfully) created) only if the initiator (the one who is initiating the

transaction, as presented in Figure 5.5) has accepted the production act of the other

party (called executor). As for the (coordination) communicative acts, grasped by the

SDBC transaction, they are also depicted in the figure. The initiator expresses a request

attitude towards a proposition (any transaction should concern a proposition – for

example, a shoe to be repaired by a particular date and at a particular price, and so on).

Such a request might trigger either promise or decline - the executor might either

123

promise to produce the requested product (or service) or express a decline attitude

towards the proposition. This expressed attitude actually triggers a discussion

(negotiation), for example: ‘I cannot repair the shoe today, is tomorrow fine?... and so

on’. The discussion might lead to a compromise (this means that the executor is going

to express a promise attitude towards an updated version of the proposition) or might

lead to the transaction’s cancellation (this means that no production fact will be

created). If the executor has expressed a promise attitude regarding a proposition, then

(s)he must bring about the realization of the production act. Then the result phase

follows, which starts with a statement expression from the executor about the requested

proposition that in his/her opinion has been successfully realized. The initiator could

either accept this (expressing an accept attitude) or reject it (expressing a decline

attitude). Expressing a decline attitude leads to a discussion which might lead to a

compromise (this means that finally the initiator is going to express an accept towards

the realized production act, resulting from negotiations that have taken place and

compromise reached) or might lead to the transaction’s cancellation (this means that

no production fact will be created). Once the realized production act is accepted the

corresponding production fact is considered to have appeared in the (business) reality.

P-act
input output

r(I) p(E)

d(E)

compromise
found?

s(E) a(I)

d(I)

compromise
found?

P-fact

Legend
r: request I: Initiator
p: promise E: executor
s: state
a: accept
d: decline

cancel

Yes Yes

Fig. 5.5. The SDBC interpretation of the transaction concept.

Further, the component based enterprise-software alignment is considered crucial

with regard to SDBC and justified, inspired by the indisputable advantages of

component-based development (see Chapter 4) and related to this – the power of re-

use. The component-based alignment between business process modeling and software

specification is illustrated in Figure 5.6:

124

Business CoMponents (bk)

bk

bk bk

bk
bk bk

…

Software CoMponents (sk)

sk

sk

sk

sk

sk

…

Business

Reality

Fig. 5.6. From business coMponents to software specification.

As depicted in the figure, the target business reality is to be reflected in a set of

identified business coMponents (see Definition 11). Based on them, a component-based

software model is to be specified, in terms of software coMponents (see Definition 15).

The business coMponents and software coMponents are not to be necessarily mapped

one-to-one (the former is a purely enterprise engineering concern while the latter

should have the perspective of the software system-to-be).

Still, that kind of alignment allows for: (i) ease of modifications (both at enterprise

level and software level) that are ‘localized’ in a particular business / software

coMponents; (ii) traceability – one could easily ‘trace’ between enterprise level and

software level, being capable of analyzing, for example, what would be the software

impact of a newly introduced enterprise–level feature (and vice versa); (iii) business

coMponents and/or software coMponents could be conveniently re-used.

As for re-use, three re-use levels are essential for SDBC, namely:

 Re-use of software coMponents (lowest level)

 Re-use of business coMponents;

 Re-use of business processes (highest level).

Re-using software coMponents is an option within the SDBC approach,

acknowledging the power of re-using software components as according to component-

based development (see Chapter 4). Still, dealing with re-use at the software component

level goes beyond the direct scope of SDBC that focuses at the derivation of

SOFTWARE SPECIFICATION. Hence, dealing with software coMponents (see

Definition 15) is well within that focus. At the same time, methodologically re-using

software coMponents is a good basis for straightforwardly reflecting this in

corresponding software components. As for the re-use itself (of software coMponents),

we will discuss it only after explaining how software coMponents are to be identified

within SDBC. This is illustrated in Figure 5.7.

As it is seen from the figure, a business coMponent is to be methodologically

reflected in the specification of software. As also seen, such a ‘business process input’

alone is insufficient for specifying a piece of software. One is to consider as well what

do the (future) users of the system-to-be require, as discussed already. Said otherwise,

this is about considering the user-defined requirements.

One is to consider as well some technical (and technological) issues leading to design

restrictions (since software systems are about the technological solutions of some

‘problems’ in enterprise systems).

Based on all that input, a business coMponent could find its reflection in a software

specification model of the system-to-be. The model could be presented, for instance, in

the use case notations. However, for the purpose of re-use, we might find it useful to

125

identify (by decomposing the model) some software coMponents. Hence, we arrive at

the identification of a software coMponent(s). As shown in the figure, there is also

another possibility, especially when we do not have the usual situations of a number of

software coMponents corresponding to one business coMponent: the situation might be

(because of the granularity of a business coMponent, for example) that a business

coMponent is reflected in a software specification model which is not wise to undergo

decomposition (because it is re-usable as it is, for example). In such cases we directly

arrive at the identification of a software coMponent, on the basis of the business

coMponent. Figure 5.7 (its right part) illustrates particularly how in the first situation

(Situation ‘a’) we reflect a business coMponent in a number of software coMponents,

and in the second situation (Situation ‘b’) we reflect a business coMponent in just one

software coMponent.

business
coMponent

software
specification

model

user-defined

requirements

derived
software

coMponent

decomposition

tech.

aspects

 a b

business
coMponent

software
coMponent

Situation ‘b’

business
coMponent

software
coMponent 1

Situation ‘a’

…

software
coMponent n

Fig. 5.7. Deriving a software coMponent.

Hence, re-use at the level of software coMponents is about re-using modeling

patterns representing software specifications.

Re-using business coMponents points to the enterprise modeling level where we

identify BUSINESS ENGINEERING BUILDING BLOCKS. As it concerns re-use, we

are hence interested in re-usable (business engineering) building blocks that in turn can

be either GENERAL building blocks or GENERIC building blocks – see Figure 5.8-a:

126

re-usable building block

general building block

generic building block

Fig. 5.8-a. Re-usable building blocks.

To illustrate this:

 An analogy for general is a lorry platform – it can be ‘extended’ in one way if

the lorry would be transporting flowers and in another way – if the lorry would

be transporting cars, for example.

 An analogy for generic is a universal plug adaptor – it can be ‘adjusted’ in one

way if used in Japan and in another way – if used in UK, for example.

Hence, with regard to the re-usability of business coMponents, if general or generic

business coMponents are identified, they could be re-used in the specification of

different software artefacts; this could be realized either by extending a general

business coMponent or by parameterizing a generic business coMponent, as illustrated

in Figure 5.8-b:

… extending
parameterizing

bk

 bk = business
CoMponent

Fig. 5.8-b. Extending a general business coMponent or parameterizing a generic one.

General business coMponents are models that reflect core issues and can be extended

in a number of directions. For example, a general brokerage model could be further

developed – in one way for building an e-trade system and in another, for building a

hotel reservation system, for example. Hence, the particular extension of a general

business coMponent is motivated by the purpose of use. On the contrary, a generic

business coMponent should contain in itself more than one optional functionalities.

Through parameterization, such a coMponent can be adjusted depending on the desired

purpose of use.

In summary - within SDBC, it is possible to derive a business coMponent in three

ways: either in the trivial way (by building a model corresponding to a business

process), or by extending a general business coMponent, or by parameterizing

(adjusting) a generic business coMponent (Figure 5.9):

127

?

general
business

coMponent

generic
business

coMponent

business

process

derived
business

coMponent

modeling
extension

parameterization

Fig. 5.9. Deriving a business coMponent.

Re-using a business process within SDBC is a matter of making a general business

process description that is sufficiently abstract, such that re-use is possible. For

example, an <arrangement of a service> IN GENERAL may be specified as coming

through <registration> + <payment> + <reduction approval> + …, for example. Then,

this abstract description can be extended in different ways:

- One example could be a HOTEL RESERVATION ARRANGEMENT that in particular

comes through: NO REGISTRATION + PAYMENT OF A DEPOSIT & PAYMENT OF

ADMINISTRATIVE COSTS + EARLY BOOKING REDUCTION APPROVAL + …;

- Another example could be an AUTO INSURANCE ARRANGEMENT that in

particular comes through: REGISTRATION IN AN INSURANCE COMPANY +

INSURANCE PAYMENT & PAYMENT OF ADMINISTRATIVE COSTS + NO-CLAIM

REDUCTION APPROVAL + …;

- and so on.

Hence, a general business process could be reflected in different special business

processes, by adding some particular content to the general business description.

We have put forward the SDBC foundations and in the remaining of the current

chapter, we will firstly present the SDBC outline (in Section 5.1) and then – the main

SDBC notations (in Section 5.2).

5.1 SDBC Outline

Based on the essential SDBC fundaments presented already in the current chapter, this

section briefly outlines the approach. Two graphical techniques have been developed

for that purpose: the ACTIVITY MODEL and the INPUT/OUTPUT MODEL. The

development of such techniques was considered necessary because neither of the

popular ones (activity diagram, flow charts, petri net, IDEFo and so on [54]) proved to

be sufficiently effective for thoroughly representing the SDBC steps, by providing

information on both the dynamics of the activities to be realized and the inputs and

128

outputs of each of them. It is particularly useful not only that the activity model and the

input/output model provide views respectively in those two essential directions but also

that the two graphical techniques are completely consistent with each other. Hence, the

dynamic aspect and the ‘input-output’ aspect are soundly matched between the two

models [54]. The activity model itself (Figure 5.10) is sophisticated in terms of

dynamics (it supports parallel processes, two types of synchronization, and so on) of

the activities to be realized in applying SDBC; the input/output model in turn (Figure

5.11) represents the inputs and outputs of each activity. The legend regarding the

graphical representation of those tools is as follows:

[A..Z]

bank i

 activity

 decision point

 precedence

 connection between an output and its relevant input

 a point to which a (sufficient) number of iterations have to
be made before proceeding further

 OR synchronization bar

 AND synchronization bar

 a synchronization bar’s IN point

 a bank to store models in and/or use models from

 trigger to the SDBC modeling

i

activity <A>

i

activit
y <A>

 activity’s name

 activity’s input
 activity’s output

 activity’s number* (identification)

* minor activities are not assigned numbers

Next to that: bp/bc stand for business process/coMponent

ATTENTION: representing business coMponents in different figures in the current

book, we use either the label ‘bk’ or ‘bc’. No matter if a business coMponent is labelled

‘bk’ or ‘bc’, we mean the same. The difference in labelling is only due to

‘convenience’ with regard to the particular figure, such that all used notations are easy

to follow.

129

We will firstly consider the SDBC activity model, depicted in Figure 5.10. There are

nine activities on the figure, and also four minor activities (they are not assigned a

number; their names are backgrounded in grey).

There are three decision points and a point to which a sufficient number of iterations

have to be made before proceeding further. There are two OR synchronization bars: the

first one is associated with the IN points ‘A’ and ‘B’ (the AB bar); the second one is

associated with the IN points ‘E’, ‘F’, and ‘G’ (the EFG bar). There is an AND

synchronization bar; it is associated with the IN points ‘C’ and ‘D’ (the CD bar). There

is a trigger to the application of SDBC, pointing to Activity 1 (‘information structuring’).

The last activity from the model is Activity 9 (‘integration’). Activity 1 and Activity 9

are thus assigned ‘start’ and ‘end’ labels, respectively.

The trigger is pointing to Activity 1. It is about the information structuring,

concerning a focused structured description of the target business reality; this includes

thus a delimitation step (see above in the chapter). Then we arrive at the first decision

point (‘conduct business process generalization?’). There a decision is to be made on

whether the mentioned structured business reality description should be used for the

specification (modeling) of a particular business process (e.g. hotel reservation match-

making), as reflected in Activity 2 (‘identification of a business process’), or the

description is to be used for achieving a generalized view (e.g. match-making), as

reflected in Activity 3 (‘generalization of a business process’). This decision should be

based on certain criteria discovered in the process of studying the particular domain.

For example, it might be known that an issue is unique for a company and thus, there

is no sense to develop a generalized model of it. As seen from Figure 5.10, such a

business process generalization (Activity 3) could be realized not only based on a

structured description of the studied enterprise system but also based on the

specification of a particular business process (this should be done if a generalization of

such a specification will be also needed further by the modeler). That is why both before

and after Activity 2, it is allowed for reaching the ‘AB’ synchronization bar which leads

to Activity 3.

As also seen from Figure 5.10, a model of a particular business process (realized

within Activity 2) might be used as well for building a generic business coMponent

(Activity 5), as it is according to the second decision point (‘model a generic business

coMponent?’), in particular if the process flows towards the ‘CD’ synchronization bar.

Otherwise, the process would flow towards the minor activity ‘MODELING’, from

where we arrive at Activity 6 (‘constructing a business coMponent’), through the ‘EFG’

synchronization bar. This reflects the situation in which no re-use is realized – we just

specify a business process (Definition 6) and reflect it into a business coMponent

(Definition 11).The re-use facilities of SDBC hence relate to Activities 3, 4, and 5.

As for Activity 3, after it there follows the third decision point (‘model a general

business coMponent?’). There a decision is to be made on whether a general business

coMponent is going to be modeled; a general model of a business process is considered

sufficient for building a general business coMponent. If Yes, Activity 4 (‘modeling a

general business coMponent’) is reached, leading afterwards to the minor activity

‘EXTENSION’, from where we arrive at Activity 6 (‘constructing a Business

CoMponent’), through the ‘EFG’ synchronization bar. Otherwise the ‘CD’

synchronization bar is reached. It leads to Activity 5 (‘modeling of a generic Business

coMponent’).

130

2

identification of a bp

1 start

inf. structuring

3

generalization of a bp

4

modeling of a general bc

6

constructing a bc

8

elaboration

 end

9

integration

7

deriving a software
specification model

5

modeling of a generic bc

generalize?
model a

general bc?

Yes conduct bp
generalization?

Yes

Yes

Yes

model a
generic bc?

2

E F G

D

C

B

A

validation

activity <A>
MODELING

activity <A>
EXTENSION

activity <A>
PARAMETERIZATION

activity <A>
DECOMPOSITION

Fig. 5.10. SDBC – activity model.

As seen from the figure, for modeling such a coMponent, the required input is a

specification of at least two (seen from the “2” at IN point ‘D’) models of particular

business processes AND a general business process specification (model). The reason

is that the generic model would require not only a general specification which captures

‘core issues’ (derived from a generalized business process model) but also at least two

particular business process specifications to be related to (at least two) corresponding

selection options (options to be selected by parameterizing the model); actually, the

rationale behind using generic modeling patterns (that capture, as discussed already,

several possible design outputs based on grasped core issues) is that the modeler would

be able to easily adjust the generic pattern, arriving at either of the optional design

outputs offered by the pattern. After Activity 5, the process flows towards the minor

131

activity ‘PARAMETERIZATION’, from where we arrive at Activity 6 (‘constructing a

business coMponent’), through the ‘EFG’ synchronization bar.

Thus, the ‘EFG’ synchronization bar reflects the three ways of deriving (within

SDBC) a business coMponent: either without realizing re-use (by reflecting a business

process model in a business coMponent), or by extending a general business

coMponent, or by parameterizing a generic business coMponent (see Figure 5.9).

A constructed business coMponent is then to be reflected in a software specification

model; hence, we arrive at Activity 7 (‘deriving a software specification model’). A

sound mapping is to be accomplished allowing for a precise reflection between the two.

Both the business coMponent and the resulting software specification model should

undergo at least structural and dynamic validation [54]. This is indicated by the label

‘validation’, positioned along the line between Activity 6 and Activity 7.

Regarding the software specification model, as mentioned before, depending on the

granularity of the source business coMponent, the model could or could not refer to a

particular software coMponent (Figure 5.7). The question of software granularity is to

be addressed particularly from the perspective of the software system-to-be. Usually, a

derived software specification model is to be reflected in more than one software

coMponents. So, progressing from Activity 7 to Activity 8 (‘elaboration’) comes

through the minor activity ‘DECOMPOSITION’ (indication of the need to decompose

the software specification model into more than one software coMponents). However,

in the cases in which no decomposition would be necessary, the software specification

model is considered itself being a software coMponent.

Once identified, a software coMponent needs to be specified in more detail – further

elicitation should be provided concerning the coMponent’s entities and interactions. So,

once identified and specified, a software coMponent should undergo elaboration

(Activity 8).

And in the end, after a sufficient (see below) number of software coMponents have

been identified, specified, and elaborated, they should be integrated (Activity 9) in the

process of specifying the functionality of the software system-to-be. Hence, there is a

more special relation between Activity 8 and Activity 9; an indication for this is the

symbol positioned on the line between those activities, showing that many software

coMponents would be necessary that would represent together a sufficient input for

specifying a complete model of the software system-to-be. However, it is often not easy

to provide guidelines on how to decide what particular software coMponents represent

a sufficient input for specifying the software system-to-be; this decision is often

subjective and/or intuitive; anyway, we adopt in SDBC the relevant general guidelines

provided in [5], related to the component-based product-line engineering [4].

So, after considering the SDBC activity model, we proceed to the SDBC input/output

model. It is depicted in Figure 5.11. As seen from the figure, the starting input for

applying SDBC is any (informal, unstructured) description of the enterprise system to

be considered (Input 1.1), including domain-imposed requirements possibly

representing norms [43]. The description might be textual or it might be a graphical

model, a conversation or any other form. The first activity’s output (Output 1.1) should

be a structured description of the studied system. This description should thoroughly

reflect the considered business reality; next to that, the description must be precisely

delimited, as mentioned before. As seen from the figure, such a structured and delimited

132

description might be stored in a bank (D bank) from where to be usable also in other

relevant modeling tasks.

inf. structuring

elaboration

coMponents

o#1.1.
structured

information

D

P

C1

C2

decomposition

S

Fig. 5.11. SDBC – input/output model.

133

Such a description could be used as an input for either Activity 2 (Input 2.1) or

Activity 3 (Input 3.1) (either for identifying a business process or for building a

generalized business process model). Building a generalized business process model

could be done as well based on an identified business process (Input 3.2). An indication

for this is the line between Activity 2 and Activity 3.

A generalized business process model could be stored in a bank (P bank) for

multiple uses. It could also be used as an input for constructing (Activity 4) a general

business coMponent (Input 4.1). As seen from the figure, general business coMponents

could also be taken from an external bank (C1 bank) (Input 4.2). A constructed

general business coMponent could be either stored in a bank – C1 bank (for use in other

project(s)) or used as an input for the construction (Activity 6) of a business coMponent

(Input 6.2). As seen from Figure 5.10, this comes through extending the general

business coMponent.

Regarding the modeling of a generic business coMponent, it should be based on a

generalized business process model AND at least two (Figure 5.10) models of

particular business processes; this concerns Input 5.1, Figure 5.11. Generic business

coMponents could also be taken from an external bank (C2 bank). As seen from

Figure 5.11, a constructed generic business coMponent could be either stored in a bank

(C2 bank) (for use in other project(s)) or used as an input for the construction (Activity

6) of a business coMponent (Input 6.3). As seen from Figure 5.10, this comes through

parameterizing the generic business coMponent. And finally, as seen from Figure 5.11,

the third possible input (Input 6.1) for the construction of a business coMponent is a

business process model (Output 2.1).

Deriving a software specification model (from which software coMponents could be

identified, by applying decomposition, as already mentioned) is based either on a

business coMponent constructed in the above proposed way (Input 7.1) or on import of

software coMponents from an external bank (Input 7.2).

Each of the derived software coMponents should be elaborated (Activity 8; Input

8.1) in terms of structural, dynamic, and data aspects (in order to bring sufficient

elicitation for the further software design activities, as already mentioned) and stored

in a bank (S bank). From there, software coMponents will be taken (Input 9.1) and

integrated for the purpose of specifying the software system-to-be.

A specification model of a software system represents the final output (Output 9.1)

of the SDBC approach. Hence, the end point is reached and this is indicated by labelling

Activity 9 with ‘end’, as stated already.

In summary, we have outlined the SDBC approach, by means of the SDBC activity

model and the SDBC input/output, developed exclusively for that purpose. In the

following section, we will present the notations to be used for the SDBC modeling itself.

5.2 SDBC Notations

SDBC is an approach that has its underlying theoretical roots and also its process

outline elaborating on what and how to do in implementing the approach – all those

have already been introduced.

134

Fig. 5.12. SDBC – enterprise modeling notations.

135

Hence, it should be possible to apply any (graphical) notations in realizing SDBC

modeling as far as they conform to the approach’s underlying concepts. Still, we are

proposing particular graphical notations for SDBC modeling, making sure (based on

previous research [54]) that those notations are well aligned with SDBC’s underlying

concepts and supportive theories. For this reason, we recommend using those notations

although we do not claim that they are exclusive with regard to the implementation of

SDBC.

Since SDBC has two ‘grounding points’, namely enterprise engineering and

software engineering (see Figure 5.1), we will firstly present in this section several most

important enterprise-modeling-related notations (Figure 5.12) and then we will present

several most important software-specification-related notations (Figure 5.13).

Those notations will be featured in the following chapter, when the SDBC approach

will be demonstrated by means of a case study and illustrative examples.

With regards to the enterprise modeling notations, as it is seen from Figure 5.12:

 The RR (‘RR’ standing for ‘Roles and Relations’) model (or chart) that is

depicted up-left in the figure, reflects a RELATION between TWO roles

(meaning role types), assuming that any MORE COMPLEX relation can be

decomposed in a number of relations that are between two roles. In the chart,

the two roles are put in boxes and the label of the corresponding relation is put

in between, while the role pointing to the realization of the relation is underlined.

For example, if the two roles are ‘expert’ and ‘customer’, and the relation is

‘realize expertise’, then we should underline the role ‘expert’ because it is the

expert who realizes the expertise. Finally, each role-to-role relation is given a

unique code, as it can be seen from the right side of the RR model visualization.

 The SCI (‘SCI’ standing for ‘Structuring the Customer Information’) model (or

chart) that is depicted up-right in the figure, assumes an INSTANTIATION with

regard to the addressed enterprise and elaboration with regard to its structure. In

the chart, the addressed enterprise is modeled in a rounded rectangle with

smaller rectangles inside, corresponding to the internal organizational units of

the enterprise. Outside the rounded rectangle, there are rectangles that

correspond to the roles (not instantiated) collaborating with the addressed

enterprise, in general, and to its corresponding internal units – in particular. For

example, ABO Supermarket in Sofia, has a number of Departments including

Finance department, Sales department, Marketing department, and so on, while

at the same time, there are a number of related ABO-external role types, such

as Customer, Supplier, Insurer, and so on.

 Those relations (see above) are to be reflected in the end in corresponding

transactions (see Definition 5) that in turn are modeled using notations as

presented middle-left in the figure: we have the initiator and the executor put in

boxes while the transaction itself is modeled as a disk+diamond, conforming to

enterprise ontology [19]; the small black box in the chart is to indicate who the

executor is. Further, modeling self-activation is also possible, assuming that the

initiator and the executor are the same ‘entity’. Finally, zooming-in with regard

to a transaction is possible, such that all corresponding coordination acts are

revealed (modeled as a disk+box) as well as the corresponding production act

(modeled as a diamond+box), with ‘rq’, ‘pm’, ‘st’, and ‘ac’ meaning ‘request’,

‘promise’, ‘state’, and ‘accept’, respectively.

136

Fig. 5.13. SDBC – software specification notations.

137

 With transactions making up corresponding business processes (see Definition

6) which in turn are to be also modeled in terms of overall behavior, we need

appropriate notations and we have opted for the Petri Net (PN) notations [54],

depicted middle-right in the figure, and allowing for modeling sequential

behavior, parallel behavior, decision points, and so on, as shown there.

 Finally, with regard to factual (data) modeling, we have opted for ORM (the

Object Role Modeling), as presented in [54], that is presented at the bottom of

the figure. Using ORM notations, one could model (similarly to the RR

notations) two TYPES of entities/roles and a relation between them. What is

special about ORM is that it is about POPULATING the model in terms of data

corresponding to instantiations. For example, if we have the types ‘Professor’

and ‘Department’, and the relation ‘works for’, populating the model would

mean instantiating as follows: Professor John Smith works for the Computer

Science department, Professor Ben Starkey works for the Physics department,

Professor George Ashley works for the Chemistry department, and so on.

With regards to the software specification notations, as it is seen from Figure 5.13,

they are based on UML since the Unified Modeling Language is claimed to be a de

facto a notation standard with regard to the specification of software [54,74], and in

particular:

 The use case diagram is appropriate for capturing the functionality of the

software system-to be at high level, and for this reason, the system is represented

as a number of use cases (ovals) in a rectangular area, surrounded by the primary

actor (the system’s customer) and other stakeholders with related interests.

There may be relations among use cases or between an actor and a use case –

those are represented by lines (association symbol), as the figure shows. Finally,

there are two stereotypes considered, namely ‘include’ and ‘extend’.

 The UML class diagram is featuring classification and is capable of modeling

classes (specifying attributes and operations accordingly), aggregation,

generalization, and so on, as shown in the figure.

 The UML activity diagram is capable of modeling overall system behaviors,

having explicit notations that allow to model sequential behavior, parallel

behavior, decision / join / split patterns, as shown in the figure.

An in the end, it is to be noted that neither the enterprise modeling notations

considered above (see Figure 5.12) nor the software specification notations considered

above (see Figure 5.13) reflect exhaustive lists of notations since this is not considered

necessary. The notations we have presented are possible notations of choice when

applying SDBC and are expected to ‘cover’ most typical modeling situations.

IN SUMMARY, in this chapter, we have presented the SDBC approach, elaborating

its foundations, outline, and recommended notations. In this way, we have shared our

ideas on how enterprise engineering and software engineering can be brought together,

driven by the goal of specifying software. In the following chapter, we will demonstrate

this, by means of a case study and illustrative examples.

138

