
Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
Design of Software Applications Using Generic Business Components

Boris Shishkov and Jan L.G. Dietz
Delft University of Technology

Faculty of Electrical Engineering, Mathematics and Computer Science
Mekelweg 4, 2628 CD, Delft, The Netherlands

E-mails: b.b.shishkov@ewi.tudelft.nl, j.l.g.dietz@ewi.tudelft.nl

Abstract

 One frequent cause of software project failure is the
mismatch between the (business) requirements and the
actual functionality of the delivered (software)
application. An approach is proposed in this paper, for
design of software, basing consistently this design on
prior business process modeling. The alignment
between these two tasks is realized in a component-
based way, by deriving the software model from
identified (generic) business components, thus - taking
advantage of the benefits of object-orientation. The
paper introduces not only the concepts of the approach
but also elaborated views on how it could be
implemented using particular software design and
business process modeling techniques. A way to
implement the approach is through UML - the
standard language for designing software. The
suggested approach is expected to be a useful
contribution to the knowledge on aligning business
process modeling and software design.

1. Introduction

Software applications are supposed to have the
crucial role of an environment between the technology
(in particular – Information and Communication
Technology – ICT) and the business processes
supported by it. Hence, an essential issue for current
business development is the effective application
support.

Considering the development of software
applications that should support (business) processes,
one frequent cause of software project failure is the
mismatch between the (business) requirements and the
actual functionality of the delivered application.
Actually, we observe two opposite phenomena [13].

On one hand, we observe software being developed
without prior consistent investigation of the (business)
0-7695-2056-1/04
processes to be supported by it. This means that the
business requirements are poorly determined and the
software design model does not have its roots in a
business process model. Thus, the developed software
would support the business processes inadequately.
Although its quality might be high from a software
point of view, the effectiveness of the support it offers
to the target business processes would remain low.

On the other hand, although (in many cases) sound
business process modeling is conducted prior to the
design of software, the business process model is only
partially used, since it is not straightforwardly
transformable into a relevant input for the software
design. This does not allow for full employment of the
software and ICT possibilities in solving the particular
business problem(s).

Therefore, the two outlined tasks need to be aligned
in a better way: the business process modeling and the
development of ICT applications for the support of the
business processes. They both should be considered as
one integrated task.

Many researchers address issues related to these
problems. Most of the existing formal representations
for describing business processes are not further related
to software design. Olivera, Filho and Lucena have
contributed in this direction, by investigating the
design of software on the basis of business
requirements analysis [11]. Their suggested approach
is a step ahead even though it does not yet offer a
straightforward mapping of a business process model
into a software design model. Hikita and Matsumoto
have studied how the appearance of additional
requirements could be reflected in the system’s
construction [5], which is also a promising result
achieved so far (although not completely solving the
problem). Krutchen suggests (based on the existing use
case concepts [6]) a “Business use case” – considered
useful in bridging business process modeling and
software design [8]. But it is still a question how to
consistently identify such use cases. Therefore, it might
be concluded that further knowledge is still required in
 $17.00 (C) 2004 IEEE 1

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
the direction of consistently basing application design
on business process modeling.

With respect to the outlined research problem, a
promising contemporary approach for application
development is the component-based development [6],
founded on the principles of object-orientation (OO).
As it is well known, OO (characterized by the
fundamental concepts of encapsulation, classification,
inheritance and polymorphism) is widely considered as
a special approach to the construction of models of
complex systems, in which a system consists of a large
number of objects. This applies not only to software
systems but also to business systems [7]. Thus, it
seems feasible to expect that software design and
business process modeling could be bridged by basing
the design on software components which are derived
from some business components. Such components
should fill the gap between the two mentioned tasks. If
generic components are identified, they could be re-
used for designing different applications. Next to that,
component-based development seems beneficial for the
application design itself. By basing application
development on encapsulated, individually definable,
reusable, replaceable, interoperable and testable
(software) components, developers could build
applications which possess durable configuration and a
high degree of flexibility and maintainability. The
process of application development would also be
improved because building new applications would
include using already developed components. This
reduces development time and improves reliability.
The performance and maintenance of developed
applications would be enhanced because changes could
occur in the implementation of any component without
affecting the entire application. All this makes the
component-based application development much more
effective than the traditional way of application
development.

For all these reasons, in considering the problem of
alignment between business process modeling and
software design, we focus in particular on realizing this
on the basis of (generic) business components
identified from target business processes. By basing
the design of applications on such components, it is
expected that the application support to business
processes can be improved considerably. In this paper,
the SDBC (SDBC stands for Software Derived from
Business Components) approach is introduced. The
approach allows for specification of software based on
identified (generic) business components.

The outline of the paper is as follows: Section 2
outlines the essential issues behind SDBC. Section 3
briefly introduces SDBC. Section 4 elaborates on some
aspects of the implementation of the approach. Section
5 contains the conclusion.
0-7695-2056-1/04
2. SDBC – essential foundations

Being an approach for specifying software on the
basis of identified (generic) business components,
SDBC is based on four essential fundaments: 1)
integrated view over business process modeling and
software specification; 2) the DEMO [4] transaction
theory; 3) the principles of component-based system
development; 4) re-use requirements. These four
fundaments are elicited further on in this section.

Integrated view over business process modeling

and software specification. SDBC integrates business
process modeling activities and software specification
activities (as shown on Fig. 1), contrary to the current
software design approaches which consider business
issues from software design point of view.

2. ss

br
1. bpm

br: business reality
bpm: business process modeling
ss: software specification

Figure 1: Integrated view over business

modeling and software specification

As seen from the figure, before conducting the
software specification, it is necessary to realize
consistent business process investigation that
thoroughly reflects the considered business reality.
This investigation should result in a business process
model that grasps all essential business issues. Based
on such a model, the software specification model
should be derived. This would allow for precise
reflection of the business requirements in the
functionality of the specified software.

DEMO transaction theory. The Business Process
concept is essential for SDBC. This concept is
fundamentally based on the DEMO (Dynamic
Essential Modeling of Organizations) transaction
theory (information on the theory is to be found in [4]),
as depicted in Figure 2.
 $17.00 (C) 2004 IEEE 2

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

DEMO
theory

Trans. theory

…

…

SDBC

LAP

OS

PO

LAP: Language/Action Perspective
OS: Organizational Semiotics
PO: Philosophical Ontology

Figure 2: The importance of DEMO

Transaction theory for SDBC

In complementing the DEMO Transaction theory,
the concept starting transaction is suggested. A
starting transaction is defined as a transaction that is
not triggered by another transaction but may trigger
other transactions.

A definition of a Business Process (considered
crucial for SDBC) is proposed, which is based on the
DEMO Transaction theory:
 Definition 1: A Business Process is a collection

of connected transactions that are realized in
order to fulfil a starting transaction.

Further developing Definition 1 would lead to the

Business Component concept:
 Definition 2: A Business Component is a model

in which a Business Process is modeled. The
model should be characterized by a good
representation of the Business Process
(according to Definition 1), providing elicitation
on the considered transactions (including
elicitation on the links that some of them realize
to the outside environment) as well as on the
actors involved.

Hence, a Business Component is seen as a part of a

system, that has a clearly defined function and clearly
defined interface to the other parts.

As for defining a Software Component, some
existing concepts [17] are considered. Based on them,
the following definition is suggested:
 Definition 3: A Software Component is a self-

contained part of a software system, possessing
its particular functionality.

c
r
n

d
m
t
s
3
o
c
b
s
t
p
w
t
b
t

b
a
b
s
c
c
e
c
i
c
d
a
s
c

0-7695-2056-1/04
The Business Component concept and the Software
omponent concept are essential for SDBC. They
elate to the third fundament essential for SDBC,
amely the component-based system development.

Principles of component-based system

evelopment. Conducting the business process
odeling in a component-based way and specifying

he software in a component-based way is of
ignificant importance for SDBC. As depicted in Fig.
, the studied business reality is to be reflected in a set
f identified business components. Based on these
omponents, a (component-based) software model is to
e specified. It should be noted that the business and
oftware components are not to be mapped always one
o one – the bottom line in developing the business
rocess model should be a business-oriented study,
hile the software specification (and integration),

hough derived based on the business components, is to
e realized from the perspective of the functionality of
he software system under development.

Software Components (sc)

sc

sc

sc

sc

sc

…

Business Components (bc)

bc

bc bc

bc
bc bc

…

Business Reality

Figure 3: From business components to

software specification

Hence, following the principles of component-
ased system development brings all the advantages
ssociated with this type of system development to
oth the business process modeling phase and the
oftware design phase. If some business requirements
hange, it would be possible to replace a business
omponent with another one, without affecting the
ntire business process model. Next to that, in some
ases business components may be re-used (this issue
s considered further on). As for the software
omponents, as already said, they are to be individually
efinable, testable, maintainable and so on. As for the
lignment between business process modeling and
oftware specification, the fact that this alignment
oncerns mapping of one component-based model to
 $17.00 (C) 2004 IEEE 3

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
another component-based one, contributes to
consistency of the alignment.

Re-use requirements. As stated already, re-use is an

essential issue for SDBC. It benefits from the
advantages of re-use both in the business process
modeling phase and in the software specification one.
This is depicted in Fig. 4.

business process

business component

software component

Figure 4: Levels of re-use

As seen from the figure, three re-use levels are to
be distinguished: business processes, business
components, and software components can be
considered for the purpose of re-use.

Regarding the specification of a business process as
a set of transactions, if this is generalized, then the
specified business process could be re-used for the
development of different business components.

As for business components, if general or generic
ones (discussed below) are identified, they could be re-
used in the specification of different software artefacts.

As long as software components are concerned,
their reusability is left beyond the scope of this
reported study, since the existing knowledge on
integrating software, based on re-usable software
components, is considered to be sufficient. However,
in general, the logic of re-use is considered to be
analogous with business components and software
components.

Regarding the derivation of a business component,
the most trivial way to do this is by developing a model
on the basis of a business process. However, it is also
possible to derive a business component using re-
usable patterns: considering SDBC, we distinguish
between general business components and generic
ones (Fig. 5). General business components are models
which reflect core issues and can be applied from
different perspectives. For example, a general
brokerage model could be further developed – in one
way for building an e-trade system and in another, for
building a hotel reservation system. Hence, a general
business component needs to be extended depending

o
b
o
c
o

3

in
g
M
su
th
D
su
st
th
o

d
S
in
re
a

0-7695-2056-1/04
n the purpose of use. On the contrary, a generic
usiness component should contain in itself several
ptional extensions. Through parameterization, such a
omponent can be adjusted depending on the purpose
f use.

… extending
parameterizing

bc

Figure 5: Extending a general component or

parameterizing a generic one

. SDBC - outline

 Based on the essential SDBC fundaments, (already
troduced) this section outlines the approach. Two

raphical tools are developed for this purpose: Activity
odel and Input/Output Model. The development of
ch tools was considered necessary because neither of
e popular existing activity techniques (e.g. Activity
iagram, Flow charts and so on) proved to be
fficiently effective to thoroughly represent SDBC’s
eps, providing information on both the dynamics of
e activities to be realized and their inputs and

utputs.
The Activity Model (Fig. 6) represents the

ynamics of the steps to be realized in implementing
DBC; the Input/Output Model (Fig. 7) represents the
puts and outputs of each activity. The legend
garding the graphical representation of these tools is

s follows:

[A..Z]

bank

• activity

• activity number (identification)

• activity’s input (output)

• a point to which a (sufficient) number of iterations
have to be made before proceeding further

• OR (AND) synchronization bar

• a synchronization bar’s IN point

• a bank to store models in and/or use models from

n

()

()
$17.00 (C) 2004 IEEE 4

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

Figure 6: SDBC – Activity Model
 As seen from Fig. 7, the starting input for
implementing SDBC is any (informal, unstructured)
description of the business system to be considered.
This might be a textual description, a graphical model,
a conversation or any other form. The first activity’s
output should be a formal and well-structured
description of the studied system. This description
should thoroughly reflect the considered business
reality.
 As seen from Fig. 6, the first decision to be made is
whether the developed formal description should be
used for the specification of a particular business
process (e.g. hotel reservation match-making) or for
achieving a generalized view (e.g. match-making).
This decision should be based on consistent criteria
developed by studying the particular domain. For
example, it might be known that an issue is unique for
a company and thus, there is no sense to develop a
generalized model of it. As seen from Fig. 6, such a
generalized model can be developed not only from a
formal description of the studied business system but
also based on the specification of a particular business
process (this should be done if such a specification will
be further needed by the modeler). Such a specification
might be used also for building a generic business
component. As seen from Figures 6 and 7, for
modeling such a component, the required input is a
specification of at least two (seen from the “2” at point
0-7695-2056-1/04
D, Figure 6) particular business processes AND a
specification of one general business process. The
reason is that the generic model would require not only
core specification (derived from a general business
process) but also at least two realizations to be offered
as selection options (options selected through
parameterization).

A general business process is sufficient for building
a general business component (Activity 4). It is
possible that the developed general and/or generic
business components are stored in banks and be used
further on. It is possible also, besides storing them for
future purposes, to use them as a basis for the
development of business components – by extending a
general business component or by parameterizing a
generic business component. It is possible of course, to
develop a business component using directly a
particular business process specification (if coming
through point A – Fig. 6). A developed business
component is to be reflected in a software specification
model (as seen from Fig. 7, there is an option also to
use a prefabricated software component from an
external banc; however, this is left beyond the scope of
the current study since SDBC considers the issues
related to the alignment between business process
modeling and software specification). It is essential
that the model be consistently derived from the source
business component. Further on, the specification
$17.00 (C) 2004 IEEE 5

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
model is to be elaborated regarding its structure and
dynamics in order to bring sufficient elicitation for the
further software design activities. Based on a number
of such elaborated models, system integration is to be
conducted. This would put together the developed
0-7695-2056-1/04
software subsystems. All these steps are to be
validated.

Figure 7: SDBC – Input/Output Model
$17.00 (C) 2004 IEEE 6

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
4. SDBC – implementing the approach

Although the implementation of SDBC is not to be
limited to particular tools, to consistently validate it,
we have studied modeling techniques and tools (and
also their consistent combination) through which
SDBC could be applied.

4.1. From business components to software
specification

The suggested implementation of SDBC is
fundamentally based on UML [12] – the de facto
standards language for designing software. This means
to reflect an identified business component (activity nr.
6, Fig. 6,7) in the specification of a use case model
since, as it is well known, use cases serve to link the
application domain (the business world) to the software
domain, in the UML-based software design. Further
on, the use case model needs to be structurally and
dynamically elaborated (activity nr. 8, Fig. 6,7). And
finally, such different models (sufficiently elicited) are
to be integrated (activity nr. 9). Thus, this modeling
phase includes three major tasks: use case derivation;
use case elaboration; integration.

Use case derivation. Although there are a number
of studies related to use cases [6,3] the problem of
identifying use cases is however not satisfactory
resolved yet [15]. The problem of deriving use cases
from business processes has been studied from three
essential business process investigation perspectives:
Language/Action Perspective, Organizational
Semiotics, and Petri Net. The achieved results were
analyzed and conclusions were drawn that a sound
solution of the use case derivation problem would be
basing the derivation on DEMO (and also extending
DEMO with semiotic Norm Analysis [9] in some
particular cases), achieving in this way a derived use
case model consistently rooted in an essential and
complete business process model [15].

Use case elaboration. As for the elaboration of a

particular use case, inspired by the ideas of Cockburn
[3], a formal way of elaborating on a use case was
suggested [14].

Integration. Since the research on integration of a

number of specification models is still under
development, this issue is left beyond the scope of this
paper.

Example. An example is used to illustrate the use

case derivation and elaboration. A general business
component (representing a DEMO business process

m
(
p
b
h
f
t
c
f
c
s
(
c
(
f

f
f
a
d
u
a
a

f
b
u
r
e
i
i
s
t
T
T
e
(

0-7695-2056-1/04
odel) is considered, namely a “General Broker”
GB). GB is supposed to be extensible for use in a
articular domain, Tele-Work (TW) [14]. Similar core
rokerage functionality is required by TW, e-trade, and
otel reservation brokerage systems. Hence, it seems
easible to expect that identifying a GB (general for
hese domains) would allow us easily re-use this
omponent for building different brokerage systems,
or example a TW brokerage system (TWBS). In this
ase, what should be the functionality of such a GB? It
hould match the data of those looking for something
e.g. TW positions, goods, accommodation), we will
all them “Buyers”, and those offering such issues
“Sellers”). The general view of the required
unctionality of a GB is depicted in Fig. 8:

…

Buyer 1
Buyer 2

Buyer n

Seller 1

… GB
Seller 2

Seller m

There are:
a) different Sellers (S) aiming at succeeding to sell their goods as

quickly as possible;
b) different Buyers (B) aiming at purchasing specific goods they are

interested in.
GB is supposed 1) to let S i find the B interested in the goods offered
by him; 2) to let B j find the S offering the goods he is interested in.

S and B could, for example, pay on a subscriptional basis for the
realized service.

Figure 8: GB - functionality

Anyway, behind this not so complex general
unctionality, there are issues to be considered when
urther extending the model and developing a software
pplication: how to store, operate and maintain the
ata; how the application should provide its services to
sers, how some non-standard situations should be
pproached, and so on. These issues are partially
ddressed in the following modeling steps.

First. Based on the description of the required
unctionality, DEMO should be applied to explore the
usiness processes to be supported by the software
nder development. For more information on DEMO
eaders are referred to [4]. From the description, two
ssential business transactions (transaction types) are
dentified (how we arrive here starting from a textual
nformation (Activity 1, Fig. 6,7) is considered in the
econd half of this section). They are listed in Table 1,
ogether with their corresponding resulting fact types.
he focus is only on transactions on the essential level.
hat is in order to keep the business model abstract
nough so that it should remain unchanged during
eventual future) re-design of its realization.

$17.00 (C) 2004 IEEE 7

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
Table 1: Business transactions List
transaction type result fact type

T1 match-making F1 match <M> is made
T2 payment F2 the fee for period <P>

by <S/B> is paid

On the basis of the transactions and result facts, the
system(s) to be investigated should be selected,
relevant DEMO actor(s) - identified, and their roles
(customer/producer) – determined, as well as all
interaction relationships. All this is depicted in Fig. 9
A, representing the Coordination Structure Model or
CSM (the model is incomplete, because the purpose is
only illustrative).

EB1buyer/seller
data

AA0

buyer
/

seller

match-
maker

T1

T2

A3

payment
controler

C3
!

A1

A. DEMO CSD

Teleworker

Add Data
in DBC

Company

<<extends>>

<<include>>

Perform Match-making

Add Data
in DBT

Remove
Data from

DBT

Remove
Data from

DBC

<<extends>>

Check Data Accuracy

Check
user’s
info

<<include>> <<include>>

Request Additional
Information

B. Use case diagram

Figure 9: Coord. Str. Diagram of GB (A) and
Use case diagram of TWBS (B)

The explored system (GB) is considered as well as
the Seller and Buyer (as actors). Regarding the system,
it is represented on the figure in more detail: actors A1
and A3 (white boxes) whereas the Seller and Buyer are
taken together in the aggregate actor AA0 (grey box)
since they play the same role towards A1 and A3. The
transaction types are represented by a symbol
combining a disk and a diamond. The small disk C3
represents a so-called conversation for initiation. It
models the periodic activation of A3 to issue payment
requests. The system boundary is represented by a grey
round angle. There is a so-called external bank (EB1)
which contains the data provided by sellers/buyers.

T
a
t
i
s
m
p
(

a
s
a
d
v
a
U
T
r
b
b

d
v
o
a
C
t
i
w
c
A
h
i
r
“
“
t
a
r
t
D
I

o
h
D
a
a
d

“
s
m
m
u

0-7695-2056-1/04
he dotted line between EB1 and A1 means that A1 is
llowed to inspect the contents of EB1. The reason for
his allowance is that A1 needs to know the provided
nformation. How A1 gets access and also how
ellers/buyers add/ remove data is not shown. These
atters to belong to the informational and documental

erspective and thus are not represented in the
essential) CSM.

Second: extending the general business component
nd deriving a use case (UC) model. Due to the limited
cope of this paper, the extension of the DEMO model
nd the UC derivation procedure are omitted. The
iagram (Fig. 9 B), to be derived from an extended
ersion of the model depicted in Fig. 9 A, shows UC
nd actors in the context of TWBS. Only some of the
C and actors typical for such a system are considered.
he actions (important for the software design) which

epresent information providing but are not essential
usiness transactions are additionally identified in
uilding the UC model.

Regarding the diagram, “DB” stands for the
atabase, used by TWBS. For convenience, DB is
irtually divided into DBC/DBT (containing data of
ffered/searched TW positions, respectively). There
re two actors: Company and Teleworker. Concerning
ompany (Teleworker) – it(he) takes the decision, has

he responsibility, has the goal to add/remove data
n/from DBC (DBT), and have its(his) data matched up
ith relevant data from DBT (DBC). The diagram

ontains eight UC: “Add Data in DBC”, “Request
dditional Inf.”, etc. The UC “Add Data in DBC” is
ighlighted since it will undergo the further
nvestigation steps. There are three <<include>>
elationships (“Perform Match-making” requires
Check Data Accuracy”; “Add Data in DBC” and
Add Data in DBT” require “Check user’s inf.”) and
wo <<extends>> relationships (in some cases, before
dding their data to DBC/DBT, the system might
equest from Company/Teleworker additional data, so
he basic UC are “Add Data in DBC” and “Add Data in
BT”, and they are extended with “Request Additional

nf.”).
Third – further investigation of any particular UC

f interest, based on the concept of Cockburn [3]. We
ave selected, for illustrative purpose, the UC “Add
ata in DBC”, and the mentioned investigation is

pplied to it – Fig 10 (only those extensions related to
ctivity six, from the Main success scenario, are
epicted.

The UC’s scope is “system” (as opposed to
enterprise”) since an interaction with a computer
ystem is described. The indicated “summary” level
eans that the UC is long running (executed over
onths or years), showing the context in which the

ser goals operate.
 $17.00 (C) 2004 IEEE 8

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
 Fourth: a dynamic elaboration realized through
the construction of an activity diagram (AD) model for
the chosen UC. As seen from the main success
scenario, there are nine core activities (plus extensions)
in the UC “Add Data in DBC”. Some of them are
shown on Fig. 11 as an overall AD. And finally, from
the AD model it is straightforward to proceed with
computer simulation, in order to validate the model [1].

4.2. Deriving and modeling business
components

Two essential issues for the initial phase of SDBC
(Activities 1 to 6 – Fig. 6, 7) are: deriving a formal
model from any unstructured information about the
studied business reality and specifying a business
process; developing a business component (it might be
also general or generic) based on this. Due to the
limited scope of this paper, these issues are only
partially illustrated. It is demonstrated below how,
based on textual information, a formal model is
developed and based on it, a DEMO Business
Transactions Table is derived. Semantic Analysis (SA)
the purpose is just illustrative. We will not elaborate o

Figure 10: UC elaboration

Extensions
 …

6a. The data from the form
submitted by Company is
incomplete. => TWBS asks
Company to submit again the
form and provide complete
information, indicating what is
incomplete in the submitted
form. Go: 5.

6b. The data from the form
submitted by Company is
irrelevant with respect to
TWBS’s scope. => TWBS
informs Company that the
provided data is inadequate to
DBC and cancels the credit card
authorization procedure. Go:
END.

…

 Goal in context: Company’s information is added in DBC

Scope: System
Level: Summary

 Use case: “Add data in DBC”

 Primary actor (User): Company

 Stakeholders and Interests:

- Company – wants its data to be correctly added in DBC
- Owner of TWBS – wants to be compensated for running TWBS
- The Public – wants to be sure that the data in DBC (and DBT) is correct

Precondition: none

 Minimal guarantee:
 Company is in a position to provide correct data and pay for the service
 Trigger: Company decides to add information in DBC

Main success scenario

1. COMPANY: decides to add data in DBC (and initiates

contact with TWBS).

2. TWBS: provides initial information and requires ID data
and credit card number.

3. COMPANY: provides ID data and credit card number.

4. TWBS: initiates credit card authorization procedure and
lets Company log on.

5. COMPANY: enters TWBS and submits a form.

6. TWBS: checks the data provided and asks for
Company’s confirmation.

7. COMPANY: confirms its will the data to be saved.

8. TWBS: saves the data and charges Company’s credit
card with the fee for the selected period.

9. COMPANY: logs out.

Scenario’s END reached.

Figure 11: AD model for the UC: “Add data in DBC”

1

6

Decision to add data in DBC

…
[Data incomplete]

Data validation

[Data irrelevant]

[Data OK]

7

Confirmation

Log out of Company 9

…
0-7695-2056-1/0
reality, as well as to correctly distinguish between
these issues.

The considered example is about the Uniccord Ltd
(UCD) company [16]:

UCD deals with consultancy, sound recording and
accommodation booking. A software system is to be developed; it
should facilitate the organization of some core business activities of
UCD, and operate between the company (Co) and its clients (Cl). To
use the services of Co, Cl needs to subscribe. Three types of
subscriptions are offered – subscription for one/three of the types of
services (consultancy, recording, or booking), and group
subscription – if more than one Cl subscribe together, they pay a
special price under the condition that afterwards each of the Cl that
belong to the group uses at least once a service by Co within the
subscription period. Besides the subscription fees, Cl has to pay for
the particular service, realized by Co. In calculating the cost of a
particular service, there are issues which are common for all of the
service types (for instance: costs of an order handling) and others
that differ depending on the type of service (for instance:
accommodation costs or costs for recording). The payments that Cl
makes to Co should be specified and handled. Once a Cl has decided
to order a service to UCD, he/she should contact the receptionist
who fills in a standardized form.
Starting from the textual description and after
delimitation of the domain, SA is conducted. Resulting
from this follows the building of an Ontology chart –
Fig 12-1. The Ontology Model is incomplete because

n
[9] is to be used for building the formal model,
because, as studied in [2,16] this semiotic method
possesses the capability of structuring the information
concerning requirements in such a way that it is well
understandable for both developers and potential users.
Next to that, SA, possessing sound theoretical
foundation rooted in Semiotics, allows developers to
straightforwardly and precisely discover both specific
and generic issues characterizing the investigated
SA activities as well as on the construction of the
Ontology chart. Conducting SA and producing
Ontology Model based on textual description is well
studied and demonstrated in [9]. As seen from the
chart, the actors (or agents) will be: UCD, Hotel and
Client – UCD provides services to Client; Hotel is
involved in the accommodation services; Client is the
consumer of the services. The actions related to these
actors are: consulting, recording and so on. This is
4 $17.00 (C) 2004 IEEE 9

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004
depicted on Fig. 12-2. Based on this, it is proceeded
with precise identification and specification of the
transactions – Fig.12-3.

Consultancy
Recording
Booking Client
Subscription
Fee Payment

UC

Hotel

Society
UCD service

consultancy
recording

accm. booking

provide accm.

Nation
Hotel # consultancy fee

…

…

use Person
Client subscription

one/three services
group

fee

3

2

1

T1 subscription
T2 consultancy
T3 recording
T4 booking
T5 payment

F1 subscription <S> is made
F2 consultancy <C> by <UC> is realized
F3 recording <R> by <UC> is realized
F4 accm. booking <A> by <Hotel> is realized
F5 the fee for service <S> by <Client> is paid

transaction type result fact type

Figure 12: From an Ontology Model to

derivation of DEMO transactions

5. Conclusion

 The paper’s goal, as stated in the introduction, was
to reveal the authors’ ideas on aligning business
process modeling and software specification, by
introducing the SDBC approach. SDBC is supposed to
complement the existing knowledge in this area and
open a discussion on issues that need further study.

By outlining the theoretical foundation behind the
approach, the authors show their research perspective
in treating problems related to business process
modeling and software design. By considering issues
connected with the implementation of the approach,
authors show their ideas about its practical application.

In fact, the fundamental goal behind the suggested
approach is related in one way or another to the goals
behind Tropos [10] and other consistent approaches
addressing software system development. However,
among the distinctive beneficial features of SDBC, to
be considered, are the following, concerning the goal
of sound software specification:
• it stems from a complete and consistent business

process study;
• it is aligned to prior business modeling in a

component-based way, benefiting from the
advantages of object-orientation;

• it is implementable through the standard language
for modeling software systems;

• it is based on re-usable patterns.
The realized research is expected to be a helpful

contribution to the knowledge on specifying software,
consistently basing this on business process modeling.

0-7695-2056-1/04
6. References

[1] Barjis, J. & B. Shishkov. UML Based Business Systems
Modeling and Simulation. Proc: 4th Int. Eurosim Congress,
2001, Delft, NL.
[2] Chong, S. & K. Liu. A Semiotic Approach to the Design
of Agent-mediated E-commerce Systems. Proc: 4th Int.
Conference ISCO’99, Leiden, NL.
[3] Cockburn, A. Writing Effective Use Cases. Addison-
Wesley, USA, 2001.
[4] Dietz, J.L.G. Generic Recurrent Patterns in Business
Processes, in: Aalst, W. van der, Hofstede, A. ter, Weske, M.
(eds.), Business Process Management, LNCS 2678, Springer-
Verlag, 2003.
[5] Hikita, T. and M.J. Matsumoto. Business Process
Modeling Based on the Ontology and First-order Logic.
Proc: 3rd Int. Conference on Enterprise Information Systems
(ICEIS) 2001, Setubal, PT.
[6] Jacobson, I.; M. Christenson; P. Jonsson; G. Overgaard.
Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley, Reading, MA, 1992.
[7] Jacobson, I., M. Ericsson, A. Jacobson.. The Object
Advantage, Business Process Reengineering with Object
Technology. Addison-Wesley, US, 1995.
[8] Kruchten, P. The Rational Unified Process: An
Introduction, Second Edition. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, 2000.
[9] Liu, K. Semiotics in Inf. Systems Engineering. UK:
Cambridge University Press, 2000.
[10] Mylopoulos, J.; M. Kolp; J. Castro. UML for Agent-
Oriented Software Development: the Tropos Proposal. Proc:
4th Int. Conf. on UML, 2001,Toronto, Ontario, CA.
[11] Olivera, T.C., I.M. Filho, C.J.P. Lucena. Using XML
and Frameworks to Develop Information Systems. Proc: 3rd
Int. Conference on Enterprise Information Systems (ICEIS)
2001, Setubal, PT.
[12] Object Management Group (OMG). UML, Version 1.3.
http://www.omg.org, 2000.
[13] Shishkov, B. Business Engineering Building Blocks.
Proc: 9th Doctoral Consortium on Advanced Inf. Systems
Eng. (CAiSE), 2002, Toronto, ON, CA.
[14] Shishkov, B. and J.L.G. Dietz. Design of Tele-Work
Brokerage Systems Using DEMO-UML Based Generic
Components. Proc: IADIS Int. Conference WWW/Internet
2002, Lisbon, PT.
[15] Shishkov, B. and J.L.G. Dietz. Deriving Use Cases from
Business Processes, the Advantages of DEMO. Proc: 5th Int.
Conference on Enterprise Information Systems (ICEIS)
2003, Angers, FR.
[16] Shishkov, B.; Z. Xie; K. Liu; J.L.G. Dietz. Identifying
Generic Business Processes Using Semantic Analysis. Proc.
of the 6th Workshop On Organizational Semiotics, 2003,
Reading, UK.
[17] Szyperski, C. Component Software: beyond Object-
Oriented Programming. ACM, 1998.
 $17.00 (C) 2004 IEEE 10

	HICSS37 2004
	Return to Previous View

