IADIS International Journal on WWW/Internet
Vol. 1, No. I, pp. 1-14
ISSN: 1645 - 7641

APPROACH FOR COMPONENT-BASED

SOFTWARE SPECIFICATION
Using DEMO-UML Based Generic Components to Design a Tele-Work Brokerage
System

Boris Shishkov Delfi University of Technology, Faculty ITS, Department ISA. Mekelweg 4, 2628
CD, Delft, The Netherlands

Shishkov@IS. TWI.TUDelfi.nl; hup:/iwww.shishkov.tk

Jan L.G. Dietz Delft University of Technology, Faculty ITS, Department 1SA. Mekelweg 4, 2628
CD, Delfi, The Netherlands

Jlg.dietz@its.tudelfi.n!

ABSTRACT

Realization of effective match-making between telew orkers and companies offering Tele-Work positions
is considered crucial for the successful development of Tele-Work. This should be realized by ICT
(software) applications which operate across distributed computing environments. A frequent cause of
software project failure in this regard is the mismatch between the (business) requirements and the actual
functionality of the delivered application. We contribute to the solution of this problem by suggesting in
this paper an approach for the design of software, basing consistently this design on prior business
process modeling. The alignment between these two tasks is realized in a component-based way (by
reflecting identified business components in the design of software). This is a definite advantage because
of the possibility to identify generic business components and reuse them in the development of different
applications, The suggested approach is expected to be useful for Tele-Work (and in particular, for the
development of effective Tele- Work brokerage systems) as well as for the design of software in general.

KEYWORDS

Modeling; Tele- Work (TW); Brokerage System; DEMO; UML; Generic Component

1. INTRODUCTION

Tele-Work (TW) is a kind of work, in which all parties (worker-supervisor, customer-
supplier, etc.) use the possibilities of the new Information and Communication Technology

IADIS International Journal on WWW/Internet

(ICT), including modern software environments, to exchange data (c.g. work results) over
some distance, and thus — being relatively independent on time and space respects (Barjis and
Shishkov, 2001).

ICT creates new opportunities which could dramatically change our ways of living and
thus also working. The possibility to establish a full-value distant communication and
exchange all kinds of information determines the new reality in which one could work for his
company from home, collaborating with his colleagues and granting the work results to his
boss virtually. The collaboration technologies which are based entirely on ICT even create
some additional “centripetal forces”, as defined in (Carmel, 1999), for successful distant
collaboration - e.g. global teams.

There is no doubt that modern socicty should benefit to a maximum degree from TW,
because this could not only improve people’s standard of living but also save resources, travel
time, office equipment expenses, and increase mobility and flexibility of individuals, and
business itself. From this point of view, TW would be crucial for the social prosperity of
tomorrow. TW application area already covers vitally important spheres such as remote
education, remote services (e.g. banking) etc. (Bonyuet and Bagayas, 2000). For more
information on TW, interested readers are referred to (Andriessen and Roe, 1994; European
Commission, 2000).

Among the actual problems to be solved for the successful development of TW are 1) the
insufficient level of facilitating people with advanced ICT infrastructure (essential for
conducting TW activities); 2) the insufficient degree of knowledge about the technology used
in realizing TW activities; 3) the lack of effective mechanisms for matching between
individuals looking for TW positions and companies offering such positions. This particular
problem has been addressed in the current paper.

We suggest an approach for developing TW Brokerage Systems (TWBS). TW BS are
supposed to match up effectively teleworkers and companies using such workers.

In designing the approach, we have addressed one of the actual problems of modern
software development, namely the mismatch (in many cases) between the (business)
require ments and the actual functionality of the delivered software application. The suggested
approach allows for designing software based on prior business process modeling.

Another essential issue is that we adopt the promising ideas of component-based system
development — allowing for reuse of developed components (reusing and replacing
components in the design of software is claimed to increase flexibility, case maintainability,
reduce the development time and costs). In our approach, we suggest basing the design of
software (supposed to support (business) processes) on components identified from them.
Since, according to the approach, these components are to be generic for the considered
(business) domain, they would be reusable in designing a broad range of software applications
within the particular domain. This would require the generic components to be adjustable in
one way or another, depending on the particular use. For example: a generic component with
brokerage functionality (such a component will be considered further on in this paper) could
be adjusted and extended in one way or another for building a TWBS, etrade brokerage
system, hotel reservation system, etc.

According to the suggested approach, a considered (business) system is presented in terms
of a set of generic (business) components. Further on, the business process models of these
components are reflected in the design of software. This leads to software models that stem
out from corresponding business process models, and is a guaranty that the business
requirements are properly reflected in the designed software. This is an essential advantageous

LR

APPROACH FOR COMPONENT-BASED SOFTWARE SPECIFICATION

feature of the suggested approach. Another benefit is the possibility to reuse developed
components in building different applications.

The outline of the paper is as follows. In section 2, the suggested approach is outlined.
Section 3 briefly introduces and discusses DEMO and its relation to UML (these modeling
tools and their combined application are considered crucial for the suggested approach).
Section 4 illustrates an essential part of the approach, namely the identification of a generic
business component and its reflection in a software model. Section 5 contains the conclusions,

2. INTEGRATED APPROACH FOR SYSTEM MODELING
BASED ON GENERIC COMPONENTS

Aiming at consistently aligning the design of software systems and prior business process
modeling, we suggest in this section an integrated approach that allows software design
straightforwardly stemming from a business process model.

Before outlining the approach, we will discuss briefly some fundamental considerations
regarding it.

An issue that we claim to be essential in designing software applications which effectively
support processes in contemporary (business) domains (e.g. TW, e-Business, Banking, ctc.), is
the consistent alignment between software design and prior (business) process modeling (as
stated in the introduction, one frequent cause of software project failure is the mismatch
between the business requirements and the actual functionality of the delivered application).
For this reason, the software design activities (within the suggested approach) stem from a
model of the (business) processes to be supported by the software under development.

Another fundamental consideration is the adoption of component-based software
development (Jacobson et al, 1992), as a promising contemporary way of software

development, founded on the principles of object-orientation. As it is well known, object-

orientation (characterized by the fundamental concepts of encapsulation, classification,
inheritance and polymorphism) is widely considered as a special approach to the construction
of models of complex systems, in which a system consists of a large number of objects. This
applies not only to software systems but also to business systems (Jacobson et al, 1992). Thus,
it seems feasible to expect that software design and business process modeling could be
bridged by basing the design on software components which are derived from some (business)
components. The components should fill the gap between the two mentioned tasks. If generic
components are considered, they could be reused for designing different applications. Next to
that, component-based development seems beneficial for the application design itself. By
basing application development on encapsulated, individually definable, reusable, replaceable,
interoperable and testable components, developers could build applications which possess
durable configuration and a high degree of flexibility and maintainability. The process of
application development would also be improved because building new applications would
include using already developed components. This reduces development time and improves
reliability. The performance and maintenance of developed applications would be enhanced
because changes could occur in the implementation of any component without affecting the
entire application. All this makes the component-based application development much more
effective than the traditional way of application development,

IADIS International Journal on WW W/Internet

A third fundamental consideration is that in contemporary software development (where
software systems are built by distributed teams and arc supposed to include reusable,
replaceable, upgradeable software components, to be operated my a multitude of developers
spread across different locations) it is crucial that the software artefacts are being developed
using common, unified, standard development tools and environments that are known by as
broad circles as possible. For this reason, we suggest basing our approach on the Unified
Modeling Language — UML (OMG, 2000); UML is becoming de facto the standard language
for modeling software systems (Shishkov and Dietz, 2002), widely recognized by both
researchers and practitioners. However, because of the limited scope of this paper, we will not
discuss UML in more detail. It is considered well-known to the public.

Based on these three fundamental considerations, we can narrow the demands in
developing the approach: it should allow for representing a target (business) system in terms
of reusable, replaceable, interoperable and extensible generic components, as well as for
further reflection of these components in UML software models.

An essential issue in this regard is the necessity to properly model the generic (business)
components — to be adopted in the design of software. It is necessary to apply a consistent
business process modeling tool that is complete, straightforwardly relatable to UML as well as
capable of capturing the essence of the (business) processes to be supported by the software
under development (this last feature is considered crucial since only such a full abstraction
could offer the right (re)design freedom for the software system designer (Shishkov, 2002)).
As such modeling tool we consider DEMO (Dietz, 1999). For this reason, we basc out
suggested integrated approach on DEMO as a business process modeling tool. The following
section considers DEMO as well as its relatability to UML.

Based on all the considerations, stated above, we introduce the suggested approach (Figure

).
Specifying DEMO Business UML Based
_Requirements Process Modeling Software Design
Standard Business Repository of Generic Business
Processcs (SBP): Components and Interfaces : m
b SBP | [.MSKM.ZJ s ‘
L SBP2 [:: B 7 Subsystem il
P SBPi I~
- [:: I s Subsystemim
\\
i [EE;D s

Domain
Study

As seen from the figure, the starting point (according to the suggested approach) should be
to study the considered (business) domain(s) and analyze different user requirements related to gf
it. On this basis a set of business processes, standard for the considered domain should be ¢
defined (SBP 1 ... SBP n). It should be then possible to represent any particular user
requirement(s) in terms of combination(s) of SBP. Thus, by building software capable of i
consistently supporting SBP, we would respond to the user requirements. “

[Validation J

Figure 1. Approach for component-based system development

APPROACH FOR COMPONENT-BASED SOFTWARE SPECIFICATION

Further on, DEMO should be applied to investigate SBP, aiming at grasping the
relationship between the system to be modeled and these business processes. The output of the
DEMO investigation should be a repository of generic business components and interfaces.

Based on this, each component should be reflected in the design of software as a self-
contained system model. Hence, the overall functionality of the system under development
should be modeled, based on the realized business process investigation. Each modeled
system needs to be validated.

The next step should be: partial representation of (some) system(s) (with particular
importance) as a subsystem, and further granularity of the modeled subsystem(s) with respect
to structure and realized activities. Looking inside some of the subsystems is considered useful
since it would allow for an extended insight regarding their structure and dynamics. These
modeling activities should also be validated.

Actually, validation is considered essential for different parts of the suggested approach
since it is useful to know if the source (business) process model(s) is consistently reflected in a
(software) system model as well as to validate the constructed subsystems making sure that
their structural and dynamic models are relevant to the needed system functionality.

The intermediary results in designing the essential parts of the suggested approach have
been reported (Shishkov, 2002; Shishkov and Dietz, 2002) and demonstrated through case
studies.

In fact, the fundamental goal behind the suggested approach is related in one way or
another to the goals behind Tropos (Mylopolous et al, 2001) and other consistent approaches
addressing software system development. However, among the distinctive beneficial features
of our approach are the following:

® The software design stems from a complete and consis tent business process study.

® The software design and prior business process modeling are aligned in a component-

based way, taking benefits from the advantages of object-orientation.

® The software design is based on the standard language for modeling software systems.

® The software design is based on generic business components that could be reused.

In the following section, we elaborate on DEMO and its relation to UML since these issues
are of fundamental importance for the suggested approach.

3. REALIZING BUSINESS PROCESS MODELING WITH
DEMO AND ITS RELATION TO UML

Dynamic FEssential Modeling of Organizations - DEMO is a methodology for
understanding, analyzing, (re)designing and (re)engineering business processes. Its underlying
theory about organizations is rooted in the Language/Action Perspective (Flores and Ludlow,
1980), Organizational Semiotics (Liu, 2000) and Philosophical Ontology (Bunge, 1979).
DEMO reveals the “construction” and “operation” of an organization, contrary to the current
function and behavior-oriented approaches. It is characterized by three major features: 1) a
white-box architecture of actors, production and coordination, 2) the extraction of the essence
of business processes from their realization, 3) the transaction pattern.

1ADIS International Journal on WWW/Internet

Actors, production, coordination

Like every other system (e.g. an alarm clock or a racing car), the functional behavior of an
organization is brought about by the collective working of the constructional components. The
construction and the working of a system are most near to what a system really is, to its
ontological description (Bunge, 1979). An organization is defincd as a (discrete dynamic)
system in the category of social systems. This means that the elements are social individuals
or actors, each having a particular authority to perform production acts (P-acts) and a
corresponding responsibility to do that in an appropriate and accountable way. The structure of
an organization consists of coordination acts (C-acts), i.c. the actors enter into and comply
with commitments regarding the performance of P-acts. The generic white-box organizational
model (Figure 2) consists of: the actors, the P-world, and the C-world (Dietz, 1999).

C-fact P-fact

C-act P-act
—-— Actors

Figure 2. The white-box model of an organization

By performing Racts, the organization does what it is supposed to do according to its
function. C-acts serve to coordinate and control the performance of P-acts.

Essence and realization
In DEMO, three perspectives on an organization are distinguished, called essential,
informational and documental (Dietz, 1994), as exhibited in Figure 3:

Figure 3. The three perspectives on organizations

e essential - the organization viewed as a system of authorized and responsible actors that
create new original facts;

e informational - the organization viewed as a system of information processors that
remember facts and derive new facts from existing ones;

e documental - the organization viewed as a system of formal operators that collect,
transport, store, copy and destroy representations of facts.
Take for example the process of withdrawing money from a bank account using an ATM

machine. Think of observing this process through essential, informational or documental
“glasses™ as a metaphor. Looking through documental “glasses” we sce someone inserting a

APPROACH FOR COMPONENT-BASED SOFTWARE SPECIFICATION

<ard into a machine, pushing buttons on a keyboard and finally getting out the card and other
pieces of paper. Nothing with respect to the information on it or the purpose for which they are
used, is seen. Looking at the same process through informational “glasses”, we see someone
providing information to an ATM system: a PIN code and specification of an amount of
money. Also, the machine provides information if withdrawal is possible to the customer, We
se¢ that the machine outputs money and receipts. Looking through essential “glasses” shows
responsible actors, their actions and interactions. A customer requests a bank to withdraw
money from an account. The bank decides to do this and states that the money is withdrawn.
'Funber on, the customer accepts it.
- The transaction pattern
- Production acts and coordination acts appear to be performed in particular sequences that can
~ Be viewed as paths through a generic pattern called the (business) transaction (Dictz, 1999). 1t
s exhibited in Figure 4:

O-phase E-phase R-phase

Figure 4. The Transaction Pattern

A transaction is a finite sequence of C-acts between two actor roles, the customer and the
producer. It takes place in three phases: the order phase (O-phase), the execution phase (-
phase), and the result phase (R-phase). O-phase is a conversation that starts with a request by
the customer and that, if successful, ends with a promise by the producer. Ephase basically
consists of the performance of the P-act by the producer. R-phase starts with the statement by
the producer that the requested act is performed and ends, if successful, with the accept by the
customer. The whole pattern of a transaction is represented by one symbol in the so-called
Coordination Structure Diagram (CSD). Figure 5 exhibits CSD for the noney withdrawal
example. The two boxes represent the two actor roles involved: AO(Al) is the
customer(producer). The small black box indicates that Al is the producer of T1 (and
consequently A0 is the customer). The successful result of a transaction T1 is the Pfact
“withdrawal W is performed” where W is constituted by the account, the amount and the time.

IADIS International Journal on WWW/Internet

Al
bank

money withdrawal

Figure 5. CSD of the money withdrawal example

Relating DEMO and UML :
The above paragraphs elaborated on the features of DEM O that are beneficial for using it in
the suggested approach. Since, as already stated, the approach is based on UML, another
cssential issue in this regard is the possibility to reflect a DEMO business process model into a
UML software one. This means to consistently derive use cases based on a DEMO business
process model (because use cases play a crucial role for linking the application domain (the
business world) to the software domain in the UML based software design). This issue has
been thoroughly investigated (Shishkov and Dietz, 2002; Shishkov et al, 2002) and it was
studied that a DEMO Coordination Structure Model (CSM) is straightforwardly mappable into
a UML use case model (Shishkov and Dietz, 2003).

However, we will not discuss use cases in more detail since they are considered well-
known to the public from numerous literatures and other sources (OMG, 2000; Jacobson ct al,
1992; Cockburn, 2000).

4. IDENTIFYING A “GENERIC BROKER” AND REFLECTING
IT IN SOFTWARE DESIGN

In this section, by considering the usage of a generic component for the design of a TWBS, we
will illustrate some aspects of the approach introduced in Section 2. We will demonstrate the
identification of a generic component and its representation via DEMO CSM, and based on
this — derivation of a use case model (extending the component) as well as further elaboration
(on structural and dynamic issues) concerning a particular use case from the constructed

model, using the use case theory of Cockburn (Cockburn, 2000), (Shishkov and Dietz, 2001) |

‘and UML Activity diagram, respectively, as studied in (Shishkov and Dietz, 2002).
The considered component - “Generic Broker” (GB), is supposed to be generic for a

4

particular domain. It is easily seen that similar brokerage functionality is required by a TWBS, 5

e-trade system, a hotel reservation system, etc. Hence, it seems feasible to expect that

identifying a GB in the entire domain of e-business would allow us easily use this component |

for building different brokerage systems, ¢.g. TWBS,

What should be the functionality of a GB? It should match the data of those looking for |
TW positions/goods/accommodation/etc. (we will call them “Buyers”) and thosc offering TW

positions/goods/accommodation/etc. (we will call them “Sellers”).
The general view of the required functionality of a GB is depicted on Figure 6:

APPROACH FOR COMPONENT-BASED SOFTWARE SPECIFICATION

Seller 1 Buyer 1
Seller 2 Buyer 2
GB

Seller m Buyer n

Figure 6. General view of the functionality of a GB

There are different Sellers §) aiming at succeeding to sell their goods as quickly as
puossible; different Buyers (B) aiming at purchasing specific goods they are interested in, as
sezn on the Figure. GB is supposed : 1) to let seller i find the buyer being interested in the
200ds offered by him; 2) to let buyer / find the seller offering the goods he is interested in, S

224 B could, for example, pay on a subscriptional basis for the realized service.
' Anyway, behind this not so complex general functionality, there are many issucs which
s2ould be taken into account when developing such a distributed application: how to store,
eperate and maintain the data; how the application should provide its services to users, how
seme non-standard situations should be approached, etc. These issues are to be addressed in
=e modeling process that follows below.
First
Based on the description of the required functionality, DEMO should be applied to explore the
Dusiness processes to be supported by the software under development. From the description,
T=0 essential business transactions (transaction types) are identified. They are listed in Table |
fior illustrative purpose, together with their corresponding resulting fact types. It should be
moted that the focus is only on transactions on the essential level. That is in order to keep the
Ssiness model abstract enough so that it should remain unchanged during (eventual future)
=-design of its realization.

Table 1. Business Transactions List

transaction type result fact type

T1 match-making F1 match <M> is made
T2 payment F2 the fee for period <P> by <S/B> is paid

On the basis of the transactions and result facts, the system(s) to be investigated should be
selected, relevant DEMO actor(s) should be identified, and their roles — determined (as
customer and producer). Once this is done, all interaction relationships are determined. All this
&5 depicted in Figure 7, representing the Coordination Structure Model or CSM (the model is
2ot complete, because the purpose is only to illustrate the application of DEMO within the
suggested approach),

IADIS International Journal on WWW/Internet

buyerlseller
data

A3

payment
controler

Figure 7. Coordination Structure Diagram of GB

The system under study (GB) is considered as well as the Seller and Buyer (as actors).
Regarding the system under study, it is represented on the figure in more detail: actors Al and
A3 (white boxes) whereas the Seller and the Buyer are taken together in the aggregate actor
AAO (grey box) since they basically play the same role towards the actors Al and A3. The
transaction types are represented by a symbol combining a disk and a diamond symbol. The
small disk C3 represents a so-called conversation for initiation. It models the periodic

_activation of A3 to issue payment requests. The system boundary is represented by a grey
round angle. There is a so-called external bank (EB1) which contains the company data
provided by the sellers and buyers. The dotted line between EB1 and Al means that actor Al
is allowed to inspect the contents of EB1. In other words, actor Al is allowed to know the
information provided by the sellers and buyers. The reason for this allowance is of course that
Al needs to know the provided information. How Al gets access and also how sellers and
buyers add and remove data is not shown. These matters are considered to belong to the
informational and documental perspective and therefore are not represented in the (essential)
CSM.

Second

The second step is development of a use case (UC) diagram, based on the DEMO CSM. The
diagram (Fig. 8) shows UC and actors in the context of the considered system — TWBS (GB is
being extended for this particular purpose). Since the goal is just illustrative, only some of the
UC and actors typical for such a system are considered.

It should be noted that, in addition to the essential busincss transactions (focused by
DEMO), the UC diagram considers also the actions which represent information providing
(but are not essential business transactions), ¢.g. adding data to the database used by TWBS.

These actions are additionally identified in building the UC diagram and are of great |

importance for the particular design of an ICT application.

10

AL

APPROACH FOR COMPONENT-BASED SOFTWARE SPECIFICATION

T Request Additional §
<<extends>> o Vntaemating . <<extends>>»
0y
47 %
’ s

<<include>> <<include>>

Add Data
in DBT

Add Data
in DBC

Remove Remove
Data from Data from
DBC DBT

l:l <<include=>>
< Perform Match-making >

Figure 8. Use case diagram of TWBS

Company
Teleworker

Regarding the diagram, the abbreviation DB stands for the database, used by TWBS. For
comvenience, DB is virtually divided into DBC/DBT (containing data of offered/searched TW
gasitions respectively). There are two actors: Company and Teleworker. Concerning Company
i Teleworker) — he takes the decision, has the responsibility, has the goal to add data in DBC
{DBT), and/or remove data from DBC (DBT), and have his information matched up with
melevant data from DBT (DBC). The diagram contains eight UC: “Add Data in DBC”,
“Request Additional Information”, etc. The UC “Add Data n DBC” is highlighted since it
#all undergo the further steps of the approach. There are three <<include>> relationships
{“Perform Match-making” requires “Check Data Accuracy”; “Add Data in DBC” and “Add
Betz in DBT” require “Check user’s inf.”) and two <<extends>> relationships (in some cases,
tefore adding their data to DBC/DBT, the system might request from Company/Teleworker
23ditional data, so the basic UC are “Add Data in DBC” and “Add Data in DBT”, and they are
<xtended with “Request Additional Inf.”).

Third

‘The third step is further investigation of any particular UC of interest, based on the concept of
Cockburn (Cockburn, 2000). We have selected, for illustrative purpose, the UC “Add Data in
DBC”, and the mentioned investigation is applied to it — Figure 9 (only those extensions
related to activity six are depicted). ‘

The UC is written at ‘system’ scope (as opposed to ‘enterprise’ scope) since it describes an
mnteraction with a computer system. The indicated ‘summary’ level means that the UC is long
running (executed over months or years), showing the context in which the user goals operate.

IADIS International Journal on WW W/Internet

¥

Figure 9. UC claboration

Fourth

The fourth step is construction of an activity diagram (AD) model for the chosen UC. As seen
from the main success scenario, there are nine core activities (complemented with extensions)
in the UC “Add Data in DBC”. Some of them are shown on Figure 10, as an overall AD. And

finally, from the AD model it is straightforward to proceed with computer simu lation, in order
to validate the model. This was studied in (Barjis and Shishkov, 2000).

-——Aﬁechlon(o add dltalnDB('mJ

!

4

Gan validation

(Data OK]J

-

[Data irrelevant

‘ Confirmation

!

4
‘ Log out of Company “J

®

Figure 10. AD model for the UC: “Add data in DBC” ;

12

APPROACH FOR COMPONENT-BASED SOFTWARE SPECIFICATION

5. CONCLUSION |

The purpose of this paper, as it was stated in the introduction is to suggest an approach for
~Geveloping TWBS (an approach, usable for developing ICT applications also in other
domzins) contributing in this way to the TW domain on one hand and to contemporary
softaare development, on the other hand. The suggested approach aligns i an original way
_ software design and business process modeling, using the principles of component-based
. #xstem development. It is suggested to identify generic business components and further
~ mzdlect them in the design of software, taking advantage of the reuse of identified components
b i the development of different applications.
It was shown how a UML software model could be consistently derived from a business

| process model. It was studied that DEMO is a proper tool for that purpose. It was studied also

2w 2 business system could be represented in terms of reusable generic components. The

~ m=flection of such a generic component in the design of software was illustrated,

The interaction among components and its reflection in software design is planned for

Sucter research.

REFERENCES

5}" Axdressen, JH.E. and R.A. Roe, 1994. Telematics and Work. Hove, Sussex: Lawrence Erlbaum.
| Bamis, 1 and B. Shishkov, 2000, UML based Business Systems Modeling and Simulation. Proceedings
| af 4k International EUROSIM Congress. Delft, The Netherlands. ,
3‘&7'5, 1. and B. Shishkov, 2001, Telematic Applications for Supporting Telework Related Activities.
- Pruceedings of 6th International Conference on Computer Supported Cooperative Work in Design.
Laedon, Ontario, Canada.
Seawwer, D. and L.H, Bagayas, 2000, The Internet in the New Millenium. Proceedings of World
Mdsconference on Systemics, Cybernetics and Informatics. Orlando, Florida, USA.
%ilf@:, MLA., 1979, Treatise on Basic Philosophy. /n D. Reidel Publishing Company, Vol. 4, Dordrecht,
el E 1999, Global Software Teams. Prentice-Hall, Inc., USA.
- CeckBum, A, 2000. Writing Effective Use Cases. Addison-Wesley, USA.
Dz, JL.G., 1994, Business Modelling for Business Redesign. Proceedings of 27" IEEE Hawaii
desermational Conference on System Sciences. Los Alamitos, USA.
Dier JL.G,, 1999, Understanding and Modelling Business Processes with DEMO. Proceedings of ER.
Panis, France.
Earopean Commission, 2000, eWork 2000 — Status Report on New Ways to Work in the Information
Soctety.
Flieess, F. and J.J. Ludlow, 1980. Doing and Speaking at the Office. In G. Fick and H. Sprague, Decision
Sagport Systems: Issues & Challenges, Perg. Press, New York, USA.
Jmwbson, 1., M. Christenson, P. Jonsson, G. Overgaard, 1992. Object-Oriented Software Engineering: A
Lie Case Driven Approach. Addison-Wesley, USA.
Lo K, 2000. Semiotics in Information Systems Engineering. Cambridge University Press, London, UK.
Afslopoulos, J., M. Kolp and J. Castro, 2001, UML for Agent-Oriented Software Development: the
Tropos Proposal. Proceedings of 4" International Conference on the Unified Modeling Language.
Toronto, Ontario, Canada.

JADIS International Journal on WWW/Internet

OMG, 2000. UML, version 1.3. Object Management Group — www.omg.org.

Shishkov, B., 2002, Business Engineering Building Blocks. Proceedings of 9" Doctoral Consortium on
Advanced Information Systems Engineering. Totonto, Ontario, Canada, pp. 85-96.

Shishkov, B. and J.L.G. Dictz, 2001, Analysis of Suitability, Appropriatencss And Adequacy of Use
Cases Combined With Activity Diagram For Business Systems Modeling. Proceedings of
3"International Conference on Enterprise Information Systems. Setubal, Portugal, pp. 854-858.

Shishkov, B. and J.L.G. Dietz, 2002, Integrated Methodology Allowing Design of ICT Applications
Based on Business Process Investigation. Proceedings of IASTED International Conference on
Applied Simulation And Modeling. Crete, Greece, pp. 1-6.

Shishkov, B. and J.L.G. Dietz,2003, Deriving Use Cases From Business Processes, The Advantages of
DEMO. Proceedings o " International Conference on Enterprise Information Systems. Angers,
France.

Shishkov, B., Z. Xie, K. Liu, J.L.G. Dietz, 2002, Using Norm Analysis to Derive Use Cases From
Business Processes. Proceedings of 5™ Workshop On Organizational Semiotics. Delft, The

Netherlands, pp. 187-195.

14

5

EEARRET

