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SYSTEMS AND CONTEXT 
 

 

 

 

 

 

There are numerous scientific disciplines: some are purely scientific, such as 

mathematics, physics, and biology while others are applied, such as computer science 

and engineering [80]. In considering any discipline nevertheless, the notion of system 

is an important one [19]; in physics, they study physical systems, in biology, they study 

biosystems, in sociology, they study social systems, and so on. Hence, the development 

of the General Systems Theory has been inspired [7,78], referred to as systemics. 

Systemics focuses on the characteristics of systems across the barriers between 

scientific disciplines. Such a perspective is considered important with regard to EIS 

since in approaching EIS, one would have to deal with social systems (because there 

are human entities, human behavior, and so on, in any enterprise), also with technical 

systems (because there are technical devices, software applications, and so on, in any 

information system). Hence, both social systems and technical systems would not only 

need to be studies in isolation but it is also necessary to understand their 

interrelationships. 

For this reason, firstly in the current chapter, we will clarify what we mean by 

‘system’ and then we will touch upon enterprise systems and (enterprise) information 

systems – all considered essential with regard to the focus of this book. Secondly, we 

will explicitly discuss not only the construction of any system, by considering 

ontological systems, but also its function, emphasizing as well on the distinction 

between the two, reflected in two essential perspectives on system behavior: a. the 

black-box perspective considering what the system is delivering to its environment 

(functionally) and b. the white-box perspective considering how the system is delivering 

this. Thirdly, we will touch upon the evolvability of any technical (software-intensive) 

(sub-)system, part of an EIS, by considering combinatorial effects, in general and the 

Normalized Systems Theory, in particular. Finally in the chapter, we will consider 

context as an essential notion with regard to the system environment. 
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2.1   Systems 

The General Systems Theory (already mentioned) proposes a unified approach in 

considering a system, based on the (justified) claims that there are some: 

 concepts and structural principles that seem to hold for systems of many kinds; 

 modeling strategies that seem to hold everywhere. 
 

That has inspired Bunge [10] to consider theories that focus on the structural 

characteristics of systems and can therefore cross the ‘largely artificial’ barriers 

between disciplines. Such efforts have triggered interest to discover similarities among 

systems of many kinds despite their specific differences, such that studying current 

(complex) enterprises would become easier [54] – this often assumes de-emphasizing 

the aspects concerning the particular scientific discipline, focusing instead on the 

structure and the behavior of the system as such. This even goes beyond systemics and 

points to the broader notion of system analysis, as defined by Bunge: the 

essential goal behind system analysis is to enable one understand how a system 

operates. 

Since those views are considered relevant to our focus on systems in general and 

enterprise systems (and EIS), in particular, we have adopted the system definition 

proposed by Bunge [10]: 

 

DEFINITION 1   Let T be a nonempty set. Then the ordered triple  = <C, E, S> is 

system over T if and only if C (standing for Composition) and E (standing for 

Environment) are mutually disjoint subsets of T (i.e. C  E = ), and S (standing for 

Structure) is a nonempty set of active relations on the union of C and E. The system is 

conceptual if T is a set of conceptual items, and concrete (or material) if T   is a set 

of concrete entities, i.e. things. 

 

The system definition of Dietz [19] is consistent with the above definition, 

acknowledging that among the properties of a system are: 

 composition: a set of elements of some category (physical, social, biological, 

etc.); 

 environment: a set of elements of the same category; the composition and the 

environment are disjoint; 

 structure: a set of influence bonds among the elements in the composition, and 

between the elements in the environment. 
 

Nevertheless, Dietz considers one more property, namely production, pointing that: 

 the elements in the composition produce things, such as goods, services, and so 

on, that are delivered to elements in the environment. 
 

For us, the composition-environment-structure system view is appropriate because 

even though production characterizes most systems, we claim that it is also possible 

that the composition elements of a system stay inactive (for a period of time or forever), 

still being part of the system. 

Further, in line with the systemics views, we would consider further system 

categorization depending on the (research) area of interest; some examples of such 

categories are: 
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 legislative system – a system concerning legal norms and acts; 

 planet system – a system concerning planets; 

 political system – a system concerning political subjects. 

 

Since our focus is on enterprises and information systems supporting enterprises, we 

are interested in two system categories, namely: 

 enterprise system; 

 EIS. 

 

As for the enterprise system concept, it should correspond to a view on business, in 

general, and for this we refer to [54]: by ‘business thing’, it is not meant only things 

concerning trade/commerce but also all things that refer to any organized activity which 

is driven by a particular goal. Next to that, businesses are envisioned as human-driven 

since humans are those through whom businesses operate. Hence, inspired by the views 

of Shishkov and Dietz [56], we propose the following definition: 

 
DEFINITION 2   A system should be considered being an enterprise system 

if and only if it is composed of human entities collaborating among each other through 

actions which are driven by the goal of delivering products to entities belonging to the 

environment of the system. 

 
By ‘product’ we mean anything that is or can be delivered to a customer, no matter 

if it is a material thing (often called product or goods) or an immaterial thing (often 

called service), and this is referred to as a production fact. 

In the same spirit and inspired by [54], we propose the following EIS definition 

where ‘ICT’ stands for ‘Information and Communication Technology’: 

 
DEFINITION 3   A system should be considered being an EIS if and only if it is 

composed of human entities (often facilitated by ICT applications as well as by 

technical and technological facilities) collaborating among each other driven by the 

goal of supporting informationally a corresponding enterprise system. 

 
Definition 2 and Definition 3 both reflect the ontological (constructional) essence of 

the addressed system categories. This is claimed to be insufficient nevertheless with 

regard to EIS because an enterprise information system is not only about structurally 

bringing together different human and technical entities but it is also about enabling 

technical entities, such as devices, ICT applications, and so on, to support 

corresponding human entities accordingly. We argue that in order to achieve deep 

understanding on this, one would also need a functional view as well, such that one 

could step in the shoes of a particular human entity and understand the way this human 

entity is supported functionally by a device and/or ICT application. For this reason, we 

propose also another EIS definition that assumes a functional perspective, inspired by 

[54]: 
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DEFINITION 4   Concerning its functional characteristics, an EIS is a system 

which manipulates data and normally serves to collect, store, process and exchange (or 

distribute) data among users within or between enterprises, or among people within 

wider society. 

 

In the following two sections, we will subsequently consider enterprise systems and 

EIS. 

2.2   Enterprise Systems 

In considering enterprise systems, we stick to Definition 2, according to which the goal 

of delivering products to the environment is essential and for this reason we take this 

as an important criterion for determining whether or not a particular entity belongs to 

an enterprise system. Only entities driven by the same goal would be considered 

belonging to the same enterprise system. If a consultancy company is also dealing with 

property rental, for example, then the human entities and activities about property 

management should not be considered belonging to the consultancy enterprise system 

since they are irrelevant with respect to the consultancy goal, and similarly, the human 

entities and activities about consultancy should not be considered belonging to the 

property renting enterprise system. Hence, this is all about the role and behavior that a 

particular human entity takes, not about the formal belonging of the entity to one 

organization or another. Further, this goal-driven criterion is not in conflict with our 

adopting a composition-environment-structure system view (as discussed already) since 

the goal itself (delivering consultancy, for example) may be existing and entities in 

relevant roles may be existing but this does not mean that those entities are active. 

Hence, although it does not directly concern the composition and structure of an 

enterprise system, the goal driving it has to be taken into account when considering 

such a system. 

Further, in identifying an enterprise system, it is important being aware of the actions 

and human entities (as well as the roles in which they appear) that are relevant to the 

system. 

As for actions that may take place in an enterprise system, we distinguish 

between two action types, namely production and communicative (coordination) ones: 

Production actions (or acts) concern a particular output in the form of a material 

product or an immaterial product while Communicative (coordination) actions (or acts) 

concern the collaboration within the enterprise system; this collaboration is in support 

of the realization of (corresponding) production actions [54]. 

As for human entities and the roles in which they appear, we consider just 

the actor-roles: the roles being fulfilled by corresponding human entities; this we 

consider adequate for enterprise analyses because otherwise it would be confusing 

considering some entities who may appear in different roles, including non-typical ones 

(for example: a professor sending a fax, thus fulfilling the role secretary). Hence, we 

are interested in the role and not in the particular human entity fulfilling the role. 
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We thus view an enterprise system as a collection of actions and corresponding 

actor-roles: the actor-roles are the composition elements of the system while the actions 

concern its structure, as depicted in Figure 2.1 [54]: 
 

 

ENTERPRISE SYSTEM <E> 

Actor-rolei 

Actionij (Goal <G>) Actor-rolej 

 

Fig. 2.1. Simplified view on an enterprise system. 

 

As seen from the figure, within an enterprise system, one could identify actions 

whose realization relates to corresponding actor-roles. 

In order to bring a deeper clarification regarding enterprise systems, we need to 

further elaborate on the notion of action (as mentioned already, we distinguish between 

production actions (or acts) and communicative (coordination) actions (or acts), and 

this also needs to be considered). We reflect this in the transaction concept [19] 

because of its capabilities to grasp those two aspects, namely production and 

coordination. Further, this concept is well aligned with the actor-role notion, assuming 

the possibility that not only a particular human entity could fulfill more than one actor-

roles but that a particular actor-role could be fulfilled by more than one human entities. 

If nevertheless one particular actor-role is being fulfilled by one particular human 

entity, then the combination of the human entity and the actor-role is called actor. 

Hence, we consider the following definition [21,54]: 

 

DEFINITION 5   A transaction is a finite sequence of coordination acts 

between two actors, concerning the same production fact. The actor who starts the 

transaction is called the initiator. The general objective of the initiator of a transaction 

is to have something done by the other actor, who therefore is called the executor. 

 

Hence, transactions should be considered as the elementary building blocks of an 

enterprise system. As studied by Dietz [20], transactions are related to each other in a 

tree-structure. The top of the tree is called the starting transaction [57] - it is a 

transaction that is not caused directly by another transaction (from the particular tree) 

but triggers the execution of other transactions (within the tree). 

Considering transaction trees (as a level of granularity) rather than transactions is 

more appropriate to be done in modeling enterprise systems because at the granularity 

level of transactions, the complexity is often rather big: even a simple enterprise system 

would contain a great number of transactions, making it difficult for modelers to grasp 

precisely and describe those transactions [54]. Thus, the consideration of transaction 

trees would help partitioning somehow the multitude of transactions, grouping them 

into segments. We hence introduce the business process concept in this regard 

[57]: 
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DEFINITION 6   A business process is a structure of (connected) 

transactions that are executed in order to fulfil a starting transaction. 

 

Thus, in our view, the operation of enterprise systems concerns business processes 

(which are driven by the goal characterizing the system). Each business process consists 

of transactions, including a starting transaction – as exhibited in Figure 2.2. 

Transactions in turn relate to initiators and executors. 

 

 

ENTERPRISE SYSTEM <E> 

bpi (Goal <G>) 

bpj (Goal <G>) 

bpk (Goal <G>) 

bpl (Goal <G>) 

bp = Business Process 

… 

 

Fig. 2.2. Visualizing the operation of an enterprise system. 

 

The figure shows a particular example of an enterprise system operation. It concerns 

many business processes; four of them are depicted in the figure, namely bpi, bpj, bpk, 

and bpl. As seen from the figure, each of the business processes (driven generally by 

the goal <G>) consists of transactions (with a starting transaction on top). The 

transactions are presented by white diamonds, the starting transactions are presented by 

black diamonds. A starting transaction could be activated in any of the following three 

ways: outside cause (activation from a customer), periodic activation (usually 

concerning payment activities), and activation resulting from a waiting relation (a 

transaction could start only after another one is completed) [22]. 

Summarizing so far: we have presented our viewing the operation of enterprise 

systems as concerning a number of business processes driven by a common general 

goal. We have also elaborated on our defining a business process. 

A further consideration of enterprise systems should touch upon decomposition: 

firstly, because as it is well-known, decomposition reduces complexity in considering 

any system and secondly, because addressing particular parts of an enterprise system 

could allow for treating them separately and also for re-using them. Hence, we will 

consider the notion of enterprise sub-system, by putting forward the following 

definition [54]: 
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DEFINITION 7   An enterprise sub-system is a system which is a part of 

an enterprise system. 

 

Based on Definition 7, it becomes clear that if W is the set containing all the 

transactions and actors included in an enterprise system, any sub-set Wi  W which 

satisfies the system definition, would represent an enterprise sub-system. 

Nevertheless, using the enterprise sub-system concept without any other restrictions 

makes little use because of the non-determinism of the concept: any combination of 

transactions and actors could be an enterprise sub-system. Hence, we argue that making 

use of the mentioned concept should assume the application of clear criteria when 

deciding what enterprise sub-systems to use and here the re-use potential is claimed to 

be of importance - this includes a clear granularity positioning of the enterprise sub-

systems which one is to consider [54]. 

A possible and logical way of defining an enterprise sub-system is to consider 

corresponding business processes, because: 

 the issues related to a particular business process are distinguishable from all 

other issues that belong to the corresponding enterprise system; 

 business processes relate to a useful granularity level (between the transaction 

level and the enterprise system level). 
 

Hence, we will consider such enterprise sub-systems that relate to a particular 

business processes. We will call such enterprise sub-systems business 

components, bringing forward the following definition [56]: 

 

DEFINITION 8   A business component is an enterprise sub-system that 

comprises exactly one business process. 

 
If more business processes are to be considered, for example three, then this would 

point to three corresponding business components. If it would then be necessary to 

bring two of them together (for example), this would mean just bringing together two 

business components, ending up in a component of components. This is certainly 

possible if: (i) the inter-relations concerning those components (two in our example) 

are well-defined; (ii) the relations with the environment are well-defined also, since this 

would not necessarily mean just ‘putting together’ the relations of one of the 

components with its environment and the relations of the other one with its environment 

– possible conflicts, redundancy, and so on should be avoided. 
  

 

We have now introduced and clarified some basic EIS-relevant notions, paying 

special attention to the concept of business component. Definition 8 positions this 

concept within the enterprise engineering area unlike other definitions according to 

which business component is a software engineering concept [1,4]. 

Still, the consideration of the notion of component vs the notion of system 

requires further discussion because in our view touching upon those issues is not only 

a matter of granularity but also a more general thing pointing to basic terminology 

currently used in systems engineering, software engineering, and so on. It would often 

be the case that our system of consideration is pointing to a particular enterprise but 
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this may also depend on the view point, as discussed already. Business processes are 

identified within the enterprise and on that basis we identify business components. 

Hence, it might be (although not necessarily) that an enterprise system is decomposed 

in terms of business components which are nevertheless not the atomic entities within 

the enterprise – business components could be decomposed themselves. 

In programming, components are decomposed in terms of objects [1] but what is 

object in enterprise engineering? According to Dietz [19], an object is an observable 

and identifiable individual thing, for example a person or a car. Hence, we observe 

different ways of defining object in different disciplines – software engineering and 

enterprise engineering in this case. Since EIS relates to both of those disciplines, we 

need to go deeper in discussing that notion, such that we position it correctly among 

the other concepts we are considering in the current chapter. To do this, we note the 

word observable from the definition of Dietz and this bring us to organizational 

semiotics [43] where sign is defined as: something that stands for something else in 

some respect or capacity. Organizational semiotics brings useful value to enterprise 

engineering, by its theoretically relating the notions of object and sign through the so 

called meaning triangle, as depicted in Figure 2.3: 

 

 

Fig. 2.3. The meaning triangle. 

As the figure suggests, people use signs as representations of objects in order to be 

able to communicate about those objects and here the notion of concept is to be 

considered as well – this notion is subjective (unlike the notions of object and sign 

which are objective). Hence, a sign is an object that is used as a representation of 

something else. A well-known class of signs are the symbolic signs, as used in all natural 

languages, for example the name ‘John Atkinson’ – we may write this name many times 

without the corresponding person named John Atkinson to be present, and we use this 
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sign in support of our communicating about the mentioned person. When it comes to 

the object ‘John Atkinson’, this assumes our being physically able to perceive John, his 

face, and so on. This corresponds to the notion of concrete object - observable by human 

beings, unlike objects that are not observable by human beings, for example: 'number 

three', called abstract objects. Further, the properties of an object collectively 

constitute the 'form' of the object [19]. Objects may be composite: an aggregation 

of two or more objects is also an object, for example: a car as a whole is an object but 

also the back seat of the car (or any other (composite) detail) is an object by itself. 

What about business components and how does the notion of business component 

relate to the notion of object, as above presented? Let us take as an example a tourist 

enterprise, dealing with vacations' organization, accommodation bookings, flight 

bookings, and so on, and let us consider different business processes there, such as the 

accommodation booking business process and the flight booking business process. 

Hence, those two business processes would point to corresponding business 

components, namely Accommodation booking and Flight booking. As it is clearly seen 

from the example, we may consider those business components as: 

 abstract objects since they are not observable by human beings; 

 composite objects because we can go to finer granularity, for example, splitting 

the accommodation booking into the booking itself and the payment that goes 

as part of the booking. 
 

Even though many examples one could think of point to abstract composite objects, 

it would not be justified claiming that all business components represent abstract 

composite objects. Still, being considered as an object, a business component represents 

a useful enterprise modeling unit, yet not the atomic modeling unit because, as 

discussed above, most business components could undergo further decomposition. This 

is logical because a business component points to a corresponding business process and 

the business process in turn represents a structure of transactions, as according to 

Definition 6. For this reason, we consider transactions as the atomic enterprise 

modeling units. 

Still, at a higher level (with regard to elaboration), one could consider business 

components that give the right perspective for grasping the enterprise while at a lower 

level, where a more elaborated view is needed, considering transactions would be 

better. 

Furthermore, when considering actor-roles, transactions, business components, and 

so on, it is necessary to establish what governs their (complex) inter-relationships and 

behavior. For this reason, we consider as well regulations in general, as important 

with regard to behavior orchestration, and in particular: (aggregation) rules that help 

introducing behavior restrictions [39]. We find organizational semiotics useful in this 

regard and particularly its norm analysis method reflected in the widely popular rule 

(norm) pattern [43]: 

 
whenever <condition> 

if <state> 

then <agent> 

is <deontic operator> 

to <action> 
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We will not go discussing the norm pattern in more detail in this chapter – we only 

justify the need for regulations and rules in analyzing and/or modeling an enterprise 

system. 

Finally, valid challenges in the context of what has been presented so far in the 

current chapter could hence be: (i) realizing an enterprise model that may help in better 

understanding the enterprise under consideration and/or re-engineering the enterprise, 

and/or engineering a new enterprise, and so on; (ii) delivering an enterprise model to 

be used as basis for software specification, that may help if automation is to be 

introduced within the enterprise, running software is to be updated, and so on. Thus, 

(ii) is especially relevant with regard to EIS. As studied by Shishkov [54], the 

enterprise-modeling-driven software specification is a complex 

task that could usefully be accomplished in a component-based way, such that re-use, 

traceability, and evolvability are possible. 

Hence, an enterprise-modeling-driven software specification would assume using 

business components (and possibly transactions and corresponding rules) as basis for 

specifying software. This represents therefore a model-driven enterprise-software 

alignment, and elaborating on what we mean by model is necessary in this regard. 

As considered by Shishkov [54] and Dietz [19], a model of system A is a system used 

to acquire knowledge about system A. Those views are consistent with the definition of 

Apostel [3], which we use: 

 

DEFINITION 9   Any subject using a system A that is neither directly or indirectly 

interacting with a system B, to obtain information about the system B is using A as a 

model for B. 

 

Moreover, realizing that a model of anything gives usually a 'partial picture', we need 

to define what should be considered as a complete model, and for this we firstly consider 

the notions composition and structure of an (enterprise) system, which notions are 

essential. They both concern two things, one of them is: how the entities belonging to 

the system are positioned among each other and the other one is: what are the (business) 

processes realized accordingly; the former is referred to as structure and the latter is 

referred to as behavior (or dynamics). We secondly consider data because any system 

(possibly an enterprise system, an EIS, or any other one), holds the need for storing, 

processing, and communicating data (it is always that things are counted, (statistical) 

data analysis is applied), and so on, no matter if this concerns biology, politics, or 

enterprises, to give just three examples of system domains. On that basis, we define 

complete model as follows: 

 

DEFINITION 10   A complete model is a model that is elaborated at least in 

three perspectives, namely structural perspective, dynamic perspective, and data 

perspective. 

 

We will also present (below) the business coMponent concept denoting a 

complete model of a business component where the word 'coMponent' is with a capital 

'M' to indicate the relation to the word 'model' [54]: 
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DEFINITION 11   A business coMponent is a complete model of a business 

component. 

 

Hence, if we know the structure of an enterprise unit, the processes over this 

structure, and the related data flows, we claim to have a somehow 'complete' perception 

of the enterprise unit, but is this always the case? What about situations in which 

complicated human-to-human communication goes beyond the mere business 

processes and data flows? We may consider two examples: (i) a holder of a debit card 

tries several times unsuccessfully to withdraw money from a cash machine, entering 

wrong personal identification number => we observe a business process and data flows 

but nothing actually happens between the bank and its customer; (ii) as a result of a 

simple conversation between a pizza restaurant waiter and a customer, a commitment 

appears for delivering a pizza to the customer => even though this is just a simple 

conversation, it brings in an obligation that has actual business sense. Thus, EIS as 

systems consisting of human entities, technical entities, and so on, are often 

characterized by human-to-human communications and those are to be 

considered as part of the enterprise modeling since such communications bring in 

promises, commitments, negotiations, and so on, and those issues may have impact on 

particular business processes and corresponding enterprise (information) systems. For 

this reason, in [54] this has especially been labelled as communication 

perspective. We have not considered such a perspective explicitly because 

according to Definition 6, business processes are considered as structures of 

transactions and transactions in turn are not only about the production acts but also 

about the communicative (coordination) acts - we believe that this already gives good 

reference to human-to-human communication and represents a guarantee that when 

considering business processes from a dynamic perspective, such communications 

would be adequately reflected. 

And in the end, in Figure 2.4, we outline our view on how to use those concepts for 

modeling. 

 

 

Business 
Component C 

… 

Business 
Component B 

Business 
CoMponent B 

ENTERPRISE SYSTEM <E> 

Business 
Component A 

modeling 

 

Fig. 2.4. The component-coMponent relation. 
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As seen from the figure, we view an enterprise system as composed of business 

components. We could represent such components in terms of business coMponents via 

modeling. Those coMponents could be used either as enterprise modeling units or as 

input for further software specification tasks. 
 

2.3   Enterprise Information Systems 

As mentioned at the beginning of the current chapter, after discussing systems and 

enterprise systems, we are addressing (in this section) particularly EIS, noting 

nevertheless that: (i) enterprise systems are a well-known class of systems; (ii) 

enterprise information systems are a class of enterprise systems. Thus, all 

characteristics of systems and enterprise systems, as discussed already, are to conform 

to EIS as well. For this reason, we will only focus on the distinctive features of EIS in 

this regard. Further, we make the assumption that ICT in general and ICT 

applications, in particular represent important part of any EIS – by ‘ICT 

application’ we mean a software application that is nevertheless operating in a 

distributed networked environment and thus benefitting from current mobile and cloud 

technologies [12]. Still, no matter if we consider a software application or (more 

broadly) an ICT application, the software specification task is claimed to 

play a crucial role [54]. For this reason, we outline two important challenges, namely: 

 the software specification task and its role in the creation of EIS; 

 the relation between business coMponents and software specification. 
 

Further, being an enterprise system itself, an EIS has the following properties: 

 its compositional elements are human entities; 

 human entities fulfill particular actor-roles in realizing activities within the EIS; 

 the EIS structure concerns inter-role relations which are in turn driven by goals. 
 

However, with regard to enterprise systems, the goal is the delivery of business 

products and/or services to entities belonging to the system environment, while with 

regard to EIS, the goal is the informational support to a 

corresponding enterprise system. As for environments: the environment 

of an enterprise system consists of actor-roles (those actor-roles may be fulfilled by 

human entities but they may also be fulfilled by technical entities) and actions, and 

those are external with regard to the enterprise of consideration; the actor-roles and 

actions that belong to the environment of an EIS, in contrast, are usually internal with 

regard to the enterprise of consideration, and the reason for this is the role of an EIS as 

supporting a corresponding enterprise system [54]. 

Thus, an enterprise system exploits an EIS, benefitting from corresponding EIS 

services. Said otherwise, an EIS supports a corresponding enterprise system, by 

providing services to it. 

As mentioned already, such kind of support is usually realized by means of ICT 

applications which allow enterprise systems to utilize current possibilities that are 

related to ICT. With regard to this, we consider the following definition for ‘ICT 
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application’, adapted from [54], that is consistent with the definitions and assumptions 

put forward in the current chapter: 

 

DEFINITION 12   An ICT application is an implemented software product 

realizing a particular functionality for the benefit of entities that are part of the 

composition of an enterprise system and/or a (corresponding) EIS. 

 

 

 

ENTERPRISE SYSTEM <E> EIS <I> 

Business  
Component A 

Business  
CoMponent T 

 

 

ICT application Z 
support 

support 

specification support 

modeling 

 

Fig. 2.5. Business coMponents’ supporting the applications’ specification. 

 

Hence, ICT applications are largely instrumental with regard to the way in which 

enterprise systems are supported informationally, and in many cases, this is about the: 

(i) automation of business processes belonging to an enterprise system – for example, 

part of what human insurance brokers are doing is being automated, such that this same 

work is realized in an automated way, by means of software; (ii) enrichment of existing 

business processes for the sake of utilizing new technological possibilities – for 

example, moving storage to the Cloud would assume additional efforts on coping with 

information security, possible latency, and so on, to mention just two possible 

implications in such a context. Therefore, an ICT application is to be ‘covering’ either 

a whole enterprise system (this is obviously rare because as above suggested, the 

delivered ICT support is most often focused on a particular issue(s) within the 

enterprise under consideration) or part(s) of it corresponding to particular business 

processes – this makes ICT applications straightforwardly aligned to business 

components or components consisting of business components. Since this is matter of 

granularity, we would not distinguish between the cases when an ICT application 

points to one particular business component and the cases when an ICT application 

points to a group of (several) inter-related business components (which we called 

component of business components) – we will speak of an ICT application pointing to 
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a business component and mean both. Such a relationship should (logically) assume 

that the business component would have to be precisely reflected in the 

specification of the corresponding ICT application; otherwise, the ICT 

application support would be inconsistent with regard to the enterprise context. For 

this reason, we propose using business coMponents as source for the derivation of ICT 

application’s specification; this is depicted in Figure 2.5. 

As seen from the figure, the support (indicated by the dashed line) that an EIS 

realizes to an enterprise system is facilitated (actually driven) by ICT applications. As 

also seen from the figure, a business coMponent might support the specification of a 

corresponding ICT application. Hence, of particular interest are the relations: 

 

business component – business coMponent – ICT application. 

 

Said otherwise, we are interested to know how a (re-usable) business coMponent 

could be identified and also how it could be reflected in the specification of an ICT 

application. 

Thus, we would need to discuss the role of specification in the design and 

development of an ICT application and also possibilities for decomposing the 

specification model. 

We will hence firstly position the specification task, considering the three-phase 

software creation process, following Atkinson and Muthig [5]: 

 specification, addressing the functionality of the software artefact-to-be; 

 realization, addressing the specification’s (further) refinement and also 

technological aspects; 

 implementation, addressing the model-based coding bringing about the final 

software application output. 

Hence, the modeling support that is provided by a business coMponent affects the 

specification phase as depicted in Figure 2.6 [54]: 

 

Business  
CoMponent A 

ICT application Z 

specification 

realization 

implementation 

support 

 

Fig. 2.6. A support of a business coMponent to the specification of an ICT application. 

 

As far as ICT applications are concerned, we take also into account the current 

software development standards, as discussed at recent editions of the international 
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symposium on Business Modeling and Software Design – BMSD [8] according to 

which the component-based software specification and 

development are largely recognized. 

Usually, within the software community, the term software component is associated 

with the component-based development of ICT applications, which is characterized by 

assembling re-usable software components [54]. They represent prefabricated, 

configurable, and independently evolving building blocks which provide some 

functionality that can be used separately or in composition with the functionality 

provided by other software components. 

According to the middleware perspective [31], which does not necessarily envision 

a software component in the context of the development of an ICT application, software 

components are blocks of code ready to be deployed on top of a suitable execution 

environment (often called container) which provides a number of generic services for 

the execution of components, such as event notification, authentication, and so on. 

We hence conclude about several essential characteristics of software components, 

also referring to MDA (see Chapter 4) [47], relevant to the software engineering 

domain: 

 any software component is characterized by a particular functionality and is 

driven by the goal of providing service(s) to its environment; 

 in its providing service(s), a software component could collaborate with other 

software components; 

 the environment of a software component may consist of other software 

components, ICT applications, supporting platforms, and so on. 
 

Hence, in addressing software components, we consider it necessary paying attention 

to the interface specification, component dependencies, deployment, and granularity – 

those issues are briefly discussed below. This is in tune with related studies reported in 

[31]. 

An interface specification can be seen as a contract which is established between a 

software component providing (implementing) a service and the component’s 

environment using (invoking) it. 

The component dependencies comprise the events that can be either produced or 

consumed by a software component, in its providing service(s). 

Given its binary representation, a software component is a self-contained building 

block which could be independently deployed in a variety of environments. 

Noting composability, a software component should not necessarily be a complete 

ICT application; it may be a part of the whole. It is well known, nevertheless, that there 

are examples of large software components that could be envisioned either as 

components or as applications. Thus, considering the granularity of a software 

component under development is of significant importance. In our view, in specifying 

the size of a software component, the modeler should take into account the fundamental 

requirement that a software component should be general enough to be re-usable in a 

number of ICT applications [55]. 

Hence, on the basis of the above analysis, we consider a relevant software 

component ontological definition [57]: 
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DEFINITION 13   Software components are implemented pieces of software, 

which represent parts of an ICT application, and which collaborate among each other 

driven by the goal of realizing the functionality of the application. 

 
Since the software component concept concerns the implementation phase, we 

would need to propose also a functional definition, inspired by Szyperski [73]: 

 

DEFINITION 14   A software component is functionally a part of an ICT 

application, which is self-contained, customizable, and composable, possessing a 

clearly defined function and interfaces to the other parts of the application, and which 

can also be deployed independently. 

 
Thus, by creating an instance of a software component, we do actually deploy it. We 

could view, therefore, such a component instance as an object. However, there is little 

agreement on the differences between software components and objects [31]. For this 

reason, we will not enter this discussion within the current chapter. 

Since any support from a business coMponent would concern the specification 

phase, we should consider another relevant concept referring to the logical building 

blocks of an ICT application (in contrast to software components representing the 

physical application building blocks, in the sense of physical component technologies, 

such as CORBA [11], .NET [4], EJB [26], and so on). We hence introduce the term 

software coMponent to reflect the above mentioned logical aspects: 

 

DEFINITION 15   A software coMponent is a conceptual specification model 

of a software component. 

 
Summarizing our views and referring to Shishkov [54]: 

 an enterprise system consists of business components; 

 an ICT application consists of software components; 

 the creation of a software component is supported conceptually by a 

corresponding software coMponent; 

 the identification of the software coMponents is supported conceptually by a 

corresponding business coMponent. 

 

Figure 2.7 illustrates this: 
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Software CoMponent K1 

Software CoMponent K2 

… 

Software CoMponent Kn 

Software Component K1 

Software Component K2 

… 

Software Component Kn 

Business  
CoMponent K 

 n  1  

Fig. 2.7. Business coMponents, software coMponents, and software components. 

 

As seen from the figure and as already stated, a business coMponent supports 

conceptually the identification of at least one software coMponent. A software 

coMponent in turn supports conceptually the creation of a corresponding software 

component. 

We hence claim that the concepts introduced so far in the current chapter, allow for 

deriving a (component-based) software specification model on the basis of a 

corresponding enterprise model, realizing in this way a (component-based) business-IT 

alignment. 

Construction is crosscutting with regard to all this – by construction we mean the 

ontological dependencies and relations among system elements, relevant to the question 

How is the system realizing its functionality? (as opposed to the question What is the 

system realizing as functionality?), and this will be considered in the following section. 

Still, it is to be noted that we have been consistent with such an ontological perspective 

in this chapter so far – what we will only do in the following section is to consider those 

issues more explicitly.  

 

2.4   Ontological Systems and Function 

Referring to the notions addressed in the previous sections, we consider a system and 

its environment, and we may like to also be explicit about the system boundary – 

the system boundary separates the system from its environment. Let us then consider 

together the system, the system boundary, and the system environment, calling this 

collectively Universe of Discourse or UoD, for short. Then, according to Dietz 

[19]: the system composition, the system, the environment, and the structure (spanning 

over them) are collectively called the UoD construction. The UoD construction can 

thus be described by enumerating the entities within the system, the entities of the 
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environment, as well as the relationships in the structure – this is illustrated in Figure 

2.8: 

 

 

Fig. 2.8. The UoD construction. 

 

On the figure: the composition of the system consists of the gray-colored elements; 

the environment consists of the white-colored elements; as for the black-colored 

elements – since they do not have influencing bonds with elements of the system, they 

are considered UoD-external; the black line separating the system elements and the 

environment elements represents the boundary; the lines represent the structural bonds 

between elements. Thus, only the bonds among the system-internal elements and the 

bonds between system elements and environment elements belong to the UoD 

structure. Finally, the UoD composition, together with the UoD structural bonds is 

called the UoD kernel. 

An identical but more precise formal definition of the UoD construction, 

following Bunge [10], is presented below, using two special symbols, namely: (i) ≺ 

meaning is part of and (ii) ▻ meaning acts upon, and particularly: x acts upon y if and 

only if x influences the behavior of y; if both x▻y and y▻x hold, we say that x and 

y interact: 

 

Let σ represents our considered UoD and Γ a class of things, called the category of 

σ. Then, the composition C of σ is defined as: 
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   C x x   , 

 

 

the environment E of σ is defined as: 

 

 

        :E x x C y y C x y y x        

 
 

 

and the structure S of σ is defined as: 

 

            , ,S x y x y y x x y C x C y E            

 
 

As for the notion of sub-system that has been already considered in this chapter, we 

are now re-visiting this notion, providing below a precise definition from an ontological 

perspective [19]. 

 

Let there be a system σ1 with the construction: 

<C(σ1), E(σ1), S(σ1)> 

and a system σ2with the construction: 

<C(σ2), E(σ2), S(σ2)>. 

 

Then system σ2 is a sub-system of system σ1 if and only if 

 

   

        

   

2 1

2 1 2 1

2 1

\

C C

E C C E

S S

 

   

 







 

 

Further, with regard to a UoD, the collective activity of the system elements and the 

environment elements is called operation. Even though this concerns not only the 

system but the whole UoD, the operation is essentially initiated and driven by the 

system (and possible contribution from elements that belong to the system environment 

is triggered by system elements). For this reason, we may say that the operation of a 

system is the manifestation of its construction in the course of time – this encompasses 

both the production actions and the related coordination actions, preformed 

accordingly [19]. 

And in the end, heterogeneous systems (for example, a car where one could identify: 

(i) a mechanical system; (ii) an electrical system, and so on) are more complex than 

homogenous systems (just the mechanical system, for instance, if we take the above 

example), and the above definitions and discussion apply straightforwardly to 

homogenous systems. When one would address a heterogeneous system, nonetheless, 
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one would have to reflect such a system in a number of homogenous systems which are 

related to each other in a layered nesting [10]. The way in which a collection of 

homogenous systems constitutes a heterogeneous system is not trivial and this holds 

particularly for enterprises since enterprise systems are heterogeneous systems [19]. 

However, we will not go deeper in this discussion in the current chapter. Instead, we 

will touch upon another important perspective over a system, namely the functional 

perspective (as opposed to the constructional perspective considered above). Below, 

we will explicitly discuss each of those two perspectives and will emphasize on the 

distinction between them.  
 

2.4.1   Construction vs Function 

When modeling a system, one could take a white-box perspective that is closest to 

the ontological view considered above – this is about capturing the construction and 

the operation of the system, while abstracting from implementation details which are 

assumed to be irrelevant; the white-box model is hence adequate for building or 

changing a system. Contrary to this, taking a black-box perspective is about 

capturing the interactions between the system composition and the environment – this 

conveys the functional perspective on a system and a black-box model hence has no 

direct relation with the construction and operation of the system under consideration 

[19]. 

In order to illustrate this, we consider for example a car, and we take a white-box 

view over the car as well as a black-box view, as shown in Figure 2.9. 

As seen from the figure, the white-box view is close to the mechanic’s perspective 

– the mechanic being interested in HOW the components of the engine, the components 

of the suspension, the components of the electric system, and so on work (each one and 

in combination among each other), such that the desired performance is realized. In 

contrast, the black-box view is close to the driver’s perspective – the driver being 

interested WHAT the car can do for him/her in terms of an input triggering 

corresponding output – whether or not pressing the inside lamp button would lead to 

illumination inside the coupe, whether or not turning on the car key would lead to noise 

from the engine, whether or not pressing the brake pedal (while the car is moving) 

would stop the car, and so on. 

Hence, taking a white-box perspective would lead to a constructional decomposition 

into engine, wheels, exhaust, and so on, while taking a black-box perspective would 

lead to a functional decomposition into the power system, the brake system, the audio 

system, and so on, as suggested by the figure. 

 

After having discussed the construction and function of a system, we will turn to 

another important issue concerning systems, namely evolvability. In the following 

section, we will consider combinatorial effects, as strongly relevant to the mentioned 

concern, addressing this from the perspective of the Normalized Systems Theory. 
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Fig. 2.9. White-box view vs black-box view 

 



36 

 

2.5   Normalized Systems 

We consider the Normalized Systems Theory, referring to [35], acknowledging that EIS 

should be able to evolve over time; said otherwise, an EIS should be designed in such a 

way that it is capable of accommodating change. Hence, such kind of evolution 

concerns the maintenance of the software ‘part’ of an EIS. Software maintenance is not 

only expensive but it also leads to: (i) increased architectural complexity; (ii) decreased 

software quality [25]. This is also recognized by Lehman's Law of Increasing 

Complexity, indicating for a degradation of the structure of an EIS over time [40]. Thus, 

the impact of a single change will increase over time. 

In order to avoid such quality degradation, it is suggested aiming at theoretic stability 

[44], referring to the fact that bounded input to a function results in bounded output 

values, even as t → ∞. This means that a specific change to an EIS should require the 

same effort, irrespective of the size of the EIS or the point in time when being applied. 

Each change that is applied to an EIS requires a certain amount of effort. This effort 

can be measured in, for example, the amount of time or the lines of code needed to 

apply the change. This effort would nevertheless increase if on top of this intrinsic 

amount of effort, additional software components need to be adapted. How such effort 

increases over time is illustrated in Figure 2.10: 

 

 

Fig. 2.10. Impact of combinatorial effects [45]. 
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As it is seen from the figure, when an 'ideal' system is considered, the effort required 

to apply a specific change does not increase over time. However, this effort would 

actually increase over time (as mentioned above and as according to Lehman's Law) in 

a 'real' system, leading to deteriorating effects (over time) resulting from the applied 

changes - this is represented by the traditional system curve. Hence, there is a distance 

between the two curves, increasing over time. It is combinatorial effects that 

contribute to this distance [45]. 

Combinatorial effects occur when the impact of a change is dependent on the size of 

the EIS and avoiding combinatorial effects would lead to avoiding the software quality 

deterioration as explained already. The identification of such combinatorial effects 

assumes that software is considered as a modular structure. 

Huysmans [35] considers the inter-module EIS dependencies as causing 

combinatorial effects, claiming that in such cases, realizing a change in a specific 

module would lead to impact on other modules that are (in principle) unrelated to the 

original change. Such dependencies can be introduced at design time while the vision 

on stability requires that not a single dependency is introduced, even when an unlimited 

amount of modules would be added - this is called the assumption of unlimited systems 

evolution [46]: thus, only when no combinatorial effects occur while the EIS grows, it 

is considered to be evolvable. 

An EIS would be considerable as a normalized system, if exhibiting stability 

with respect to a defined set of changes and the Normalized Systems Theory deduces a 

set of four design theorems that act as design rules to identify and circumvent most 

combinatorial effects [46], claiming that any failure to adhere to one of those theorems 

would result in the introduction of combinatorial effects. 

With regard to this, considering modular structures, taking a basic view, assumes 

the consideration of action modules and data modules only, called ‘entities’. Hence, 

our simplified view assumes considering action entities which perform certain 

operations on data entities (action entities also receive input in the form of data 

entities). A data entity thus contains attributes - concrete values or links to other data 

entities. An action entity in turn represents an operation at a given modular level and 

this would concern (several) tasks - a task is a set of instructions performing a certain 

functionality. Such a conceptualization is consistent with Definition 10 where structure, 

behavior, and data are considered essential with regard to an EIS. 

 

The first theorem, separation of concerns, implies that every change driver or 

concern should be separated from other concerns. The theorem allows for the isolation 

of the impact of each change driver; this means that each module can contain only one 

sub-modular task (which is defined as a change driver), but also that workflow should 

be separated from functional sub-modular tasks. 

 

The second theorem, data version transparency, implies that data should be 

communicated in version-transparent ways between components. This requires that 

introducing the data change (for example, sending additional data between two 

components) should take place without having an impact on the components and their 

interfaces. 
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The third theorem, action version transparency, implies that a component can be 

upgraded without impacting the calling component(s). 

 

The fourth theorem, separation of states, implies that actions or steps in a workflow 

should be separated from each other in time, by keeping state after every action or step. 

This suggests an asynchronous and stateful way of calling other components. 

 

Hence, those theorems show at which point in the modular structure of an EIS, 

combinatorial effects occur and that the only modular structures free from 

combinatorial effects are the fine-grained structures. Especially the principles of 

separation of concerns and separation of state indicate that modules have to be 

separated both functionally and in time. 

We are not going in more detail on discussing those four theorems and we are also 

not elaborating further on the Normalized Systems Theory because our goal in this 

section is to only consider the impact of combinatorial effect with regard to the 

evolution of an EIS. 

In the following section, we will shift focus from the system to the environment – 

considering the challenge of adapting the behavior of an EIS to the surrounding context. 

2.6   Context-Awareness 

Let us consider again the constructional UoD view presented in Figure 2.8 and elaborate 

the view on the environment, such that those environment entities using the system 

products and/or services (called users), are made more explicit, as shown in Figure 

2.11. What is depicted on the figure is: 

 a system comprising entities and corresponding relationships; 

 an environment comprising other entities and their corresponding relationships; 

 a boundary separating the two (the system and its environment); 

 a user comprising some entities belonging to the environment (in the figure they 

are, for example, two) and their corresponding relationships; 

 the broader universe where the UoD (the system and its environment) belongs. 
 

Following such a view nevertheless, one may establish that there are ‘limits’ of the 

environment, that is certainly not true because we engineer enterprises / EIS and in 

doing that, we are certainly limiting the system, establishing what is to belong to the 

system but we are not engineering the environment and thus we are not in a position to 

say what belongs to the environment and what does not belong to the environment. It 

is, for this reason, more straightforward to consider as environment anything that is 

outside the system. Still, this would be an obstacle to distinguish between those entities 

(outside the system) that are somehow interacting with the system and those entities 

(outside the system) that are not interacting with the system. Said otherwise, we position 

as belonging to the environment anything that is not only system-external but is also 

concerned with interaction(s) with the system, and this goes beyond our control – the 

designer cannot establish who and how may happen to be interacting with the system. 

For this reason, although necessary, the separation between what belongs and what does 

not belong to the system environment remains abstract. 
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Fig. 2.11. Modeling the user as part of the environment. 

As the figure suggests, there is always a user – no matter what a system delivers, it 

is delivered to a user (otherwise, the functioning of the system would be unjustified). 

We claim that the user is to be part of the environment because otherwise, it would 

mean that the user of what is delivered cannot be separated from the deliverer. Further, 

the system user may comprise one or more entities belonging to the system environment 

– each of them (or they both (if they are two, for example)) could consume different 

services (or one service together). Finally, not all entities belonging to the system 

environment should necessarily be parts of the user since it might be that the system 

needs to collaborate with other entities from the environment (different from the user), 

such that it is capable of delivering the requested products and/or services to the user. 

Hence, a user perspective is needed in order to capture such a delivery of products 

and/or services (we call this service, for short). Further, it is often that the service 

delivered to the user is to be adapted to the situation of the user. For example, a person 

wearing a body-area network [6] through which body vital signs are captured, may 

appear to be at ‘normal state’ and then, for example, vital signs are captured and 

recorded as archival information, or the person may appear to be in an ‘emergency 

state’ and then help would need to be urgently arranged. Thus, one kind of service 

would be needed at normal state and another kind of service would be needed at 

emergency state. For this reason, the system (or a corresponding system-internal EIS or 

ICT application) should be able to: (i) identify the situation of the user; (ii) deliver a 

service to the user, which is suited for the particular situation. This is illustrated in 

Figure 2.12: 
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Fig. 2.12. Schematic representation of a context-aware application. 

 

As it is seen from the figure a service is delivered to the user and the user is 

considered within his or her context, such that the service is adapted on the bases of 

the context state (or situation) the user finds himself / herself in. That state is to be 

somehow sensed and often technical devices, such as sensors, are used for this purpose. 

In the current chapter, we do not go into discussing sensor technology in detail and for 

this reason, by sensor we broadly mean the technical or other facility that helps 

establishing the user situation. As mentioned before, it might be an EIS delivering the 

service to the user or it might be that just one ICT application (for example) as part of 

the EIS is delivering the service – no matter whether the former or the latter, we call it 

context-aware application in the current section. Hence, a context-aware 

application adapts its behavior, in delivering service(s) to the user, based on the actual 

context state of the user, which context state is captured by sensors and corresponding 

information – sent to the context-aware application accordingly. 

In the remaining of the current section, we will firstly consider context-aware 

applications and secondly – the analysis of context situations (states) related to this.  

2.6.1   Context-aware Applications 

Traditional ICT application development methods do not consider the context of 

individual users of the ICT application (or application, for short) under development, 

assuming instead that end-users would have common requirements independent of their 

context. This may be a valid assumption for applications running on and accessed at 

desktop computers, but would be less appropriate for applications whose services are 

delivered via mobile devices. Ignoring the dynamic context of users may lead to sub-

optimal applications, at least for a subset of the context situations the end user may find 

himself / herself in. Hence, context-aware applications (mentioned already) have 

emerged, driven by the successful uptake of mobile telephony and wireless 

telecommunications [12]. Such applications are, to a greater or lesser extent, aware of 

the end-user context situation (for example, user is at home, user is traveling) and 

provide the desirable services corresponding to the situation at hand [61]. This quality 

points also to another related characteristic, namely that context-aware applications 

must be able to capture or be informed about information on the context of end-users, 

preferably without effort and conscious acts from the user part [62]. 
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Developing context-aware applications is hence not a trivial task and as above 

suggested, the following related challenges have been identified: (i) Properly deciding 

what physical context to sense and what high-level context information to pass to an 

application, and also bridging the gap between raw context data and high-level context 

information; (ii) Deciding which potential end-user context situations to consider and 

which ones to ignore; (iii) Modeling context-aware application behavior including 

switching between alternative behaviors [61]. 

The basic assumption underlying the development of context-aware applications is 

that end-user needs are not static, however partially dependent on the particular 

situation the end-user finds himself / herself in, as already mentioned. For example, 

depending on his / her current location, time, activity, social environment, 

environmental properties, or physiological properties, the end-user may have different 

interests, preferences, or needs with respect to the services that can be provided by 

applications. 

Context-aware applications are thus primarily motivated by their potential to 

increase user-perceived effectiveness, i.e. to provide services that better suit the needs 

of the end-user, by taking account of the user situation. We refer to the collection of 

parameters that determine the situation of an end-user, and which are relevant for the 

application in pursue of user-perceived effectiveness, as end-user context, or context 

for short, in accordance to definitions found in literature [18]. 

Context-awareness implies that information on the end-user context must be 

captured, and preferably so without conscious or active involvement of the end-user. 

Although in principle the end-user could also provide context information by directly 

interacting with the application, one can assume that in practice this would be too 

cumbersome if not impossible; it would require deep expertise to know the relevant 

context parameters and how those are correctly defined, and furthermore be very time 

consuming and error-prone to provide the parameter specifications as manual input 

[61].  

Context-aware applications can be particularly effective if the end-user is mobile 

and uses a personal handheld device for the delivery of services. The mobile case is 

characterized by dynamic context situations often dominated by changing location 

(however not necessarily restricted to this). Different locations may imply different 

social environments and different network access options, which offer opportunities for 

the provision of adaptive or value-added services based on context sensitivity. 

Especially in the mobile case, context changes are continuous, and a context-aware 

application may exploit this by providing near real-time context-based adaptation 

during a service delivery session with its end-user. The adaptation is near real-time 

because context information is an approximation (not exact representation) of the real-

life context and thus there may be a time delay [12]. 

Hence, through context-awareness, applications can be pro-active with respect to 

service delivery, in addition to being just re-active, by detecting certain context 

situations that require or invite the delivery of useful services which are then initiated 

by the application instead of by a user request. Otherwise said, traditional applications 

provide service in reaction to user requests (re-active), whereas context-aware 

applications have also the possibility of initiating a service when a particular context 

situation is detected, without user input (pro-active). 
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In summary, context-awareness concerns the possibility of delivering effective 

personalized services to the end-user, taking into account his / her particular situation 

or context state. Technological advances enable better and richer context-awareness, 

beyond mere location-sensitivity. 

 

With regard to the design implications concerning context-aware applications, those 

applications require knowledge on context and exploit this knowledge to provide the 

best possible service, as mentioned above. This concerns the end-user context, i.e. the 

situation of a person who is the potential user of services offered by an application. 

Examples of end-user context are the location of the user, the user’s activity, the 

availability of the user, and the user’s access to certain devices or facilities. The 

assumption we make is that the end-user is in different context situations over time, and 

as a consequence, (s)he has changing preferences or needs with regard to services. 

This corresponds to what is exhibited in Figure 2.12: the application is informed by 

sensors of the context (or of context changes), where the sensing is done as 

unobtrusively (and invisibly) for the end-user as possible. Sensors sample the user's 

environment and produce (primitive) context information, which is an approximation 

of the actual context, suitable for computer interpretation and processing. Higher-level 

context information may be derived through inference and aggregation (using input 

from multiple sensors) before it is presented to applications which in turn can decide 

on the current context of the end-user and the corresponding service(s) that must be 

offered. Further, according to Shishkov and Van Sinderen [61], the design, 

implementation, deployment, and operation of context-aware applications have many 

interesting concerns, including: 

 social / economical: how to determine useful context-aware services, where 

useful can be defined in terms of functional and monetary value? 

 methodological: how to determine and model the context of the end-user that is 

relevant to the application; how to relate the context to the service of the 

application and how to model this service; how to design the application such 

that the service is correctly implemented? 

 technical: how to represent context in the technical domain; how to manage 

context information such that it is useful to the application; how to use context 

information in the provisioning of context-aware services? 
 

Addressing the last two concerns (especially the last one) starts with considering 

possible IT architectures and according to Shishkov and Van Sinderen [61], two 

principle architectures could be appropriate, namely: 

 Context-aware Selection: end-user request(s) and end-user-related context 

information are used to discover a matching service (or service composition). 

Discovery is supported by a repository of context-enhanced service 

descriptions. A context-enhanced service description not only specifies the 

functional properties (goals, interactions, input, output) and non-functional 

properties (performance, security, availability), but also the context properties 

of the service. Context properties indicate what context situations the service is 

targeting. For example, a service could provide information which is region-

specific (such as a sightseeing tour), and therefore the context properties could 

indicate the relevance for a particular geographical area. 
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 Context-aware Execution: after the end-user request(s) has been processed and 

a matching service(s) has been found (possibly in the same way as described 

above), the service delivery itself would adapt to changing context during the 

service session with the end-user. When the context of the end-user changes in 

a relevant (to the application) way, the service provided is adapted to the 

situation at hand. For example, the user may move from one location to another 

while using a service that offers information on objects of interest, which are 

close-by (such as historic buildings within a radius of five kilometers, for 

example). 
 

In both context-aware selection and context-aware execution, a new role is 

introduced, namely the role of context provider. A context provider is an 

information service provider where the information is context information. A context 

provider captures raw context data and/or processes context information with the 

purpose of producing richer context information which is of (commercial) interest. 

Interested parties could be other context providers or application providers. Further, a 

context-ware application obviously requires an adaptive service provisioning 

component and a context information provisioning component. 

 

As far as the design of context-aware applications is concerned, we follow an 

approach that is a partial refinement of an existing one considered in [64], that concerns 

a general design life cycle comprising amongst other phases: 

 Enterprise Modeling: during that phase, the end-user is considered in relation 

to processes that either support him / her directly or the goal(s) of related 

business(es). Those processes have to be identified, modeled and analyzed with 

respect to their ability to (collectively) achieve the stated goals. A model of the 

processes and their relationships is called an enterprise model. 

 Application Modeling: during that phase, the attention is shifted from the 

business to the IT domain. The purpose is to derive a model of the application, 

which can be used as a blueprint for the software implementation based on a 

target technological platform. A model of the application, whether as an 

integrated whole or as a composition of application components, is called an 

application model. Enterprise models and application models should certainly 

be aligned, in order to achieve that the application properly contributes to the 

realization of the business/user goals. As a starting point for achieving proper 

alignment, one could delineate in the final enterprise model which (parts of) 

processes are subject to automation (i.e., are considered for replacement by 

software applications). The most abstract representation of the delineated 

behavior would be a service specification of the application (as an integrated 

whole), which can be considered as the initial application model. 

 Requirements Elicitation: both the enterprise model and the application model 

have to meet certain requirements, which are captured and made explicit during 

the phase called requirements elicitation. Application requirements can be seen 

as a refinement of part of the business requirements, as a consequence of the 

proposition that the initial application model can be derived considering (parts 

of) the business processes (within the final enterprise model), especially those 

processes selected for automation. 
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 Context Elicitation: an important part of the design of a context-aware 

application is the process of finding out the relevant end-user context from the 

application point of view; we will refer to that phase as context elicitation. End-

user context is relevant to the application if a context change would also change 

the preferences or needs of the end-user, regarding the service of the 

application. Context elicitation can therefore be seen also as the process of 

determining an end-user context state space, where each context state 

corresponds to an alternative desirable service behavior. Since relevant end-

user context potentially has many attributes (location, activity, availability, and 

so on), a context state can relate to a complex end-user situation, composed of 

(statements on) several context attributes. Moreover, context elicitation relates 

to requirements elicitation in the sense that each context state is associated with 

requirements (i.e., preferences and needs of the end-user) on desirable 

application behavior. Context elicitation can best be done in the final phase of 

enterprise modeling and the initial phase of application modeling, when the role 

and responsibility of the end-user and the role and responsibility of the 

application in their respective environments are considered. 
 

Figure 2.13 depicts those different phases and activities: 

 

refine 

Business Requirements 
refine 

constrain constrain 

Application Requirements 

Application Modeling Enterprise Modeling 

Context Requirements 

 

Fig. 2.13. Application design life cycle. 

 

Following [62], we assume that an end-user context space can be defined and that 

each context state within this space corresponds to an alternative application service 

behavior. In other words, the application service consists of several sub-behaviors or 

variations of some basic behavior, each corresponding to a different context state. Any 

service behavior model would have to express the context state dependent transitions 

from one sub-behavior (or behavior variation) to another one. 

With respect to those issues, the following challenges have been identified: 

 Properly deciding what to sense and how to interpret it in adapting application 

behavior can be problematic since the interpreted sensed information must be a 

valid indication for a change in the situation of the end-user and it is not always 

trivial to know how context information is to correspond to a user situation. 
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 Deciding which potential end-user context situations to consider and which 

ones to ignore is challenging because there may be tens or even hundreds of 

possible end-user situations, with only several of them with high probability to 

occur, and therefore considering the others at design time is not sensible with 

respect to adequate resources expenditure. 

 Modeling the application behavior including the switching between alternative 

desirable application behaviors can be complicated because alternative 

behaviors are behaviors themselves which also are to be considered in an 

integrated way, allowing for modeling the switching between them, driven 

possibly by rules. 
 

Those challenges will be discussed below. 

 

With regard to deriving context information: an adequate decision about what 

should be sensed and how it is to be interpreted, concerns the extraction of context 

information from raw data, which relates broadly to context reasoning [6]. 

Context reasoning is concerned with inferring context information from raw 

sensor data and deriving higher-level context information from lower-level context 

information. As for the extraction of context information from raw data, related 

algorithms are needed to support it, and two main concerns are to be taken into account: 

 the ability of specific target applications, e.g. in domains such as healthcare or 

finance (for example), to use the output of the algorithms; 

 the availability of sensors providing input to the algorithms. 
 

Current standard mobile devices can already operate as sensors, e.g. they can gather 

GPS info, Wi-Fi info, cellular network info, Bluetooth info, voice call info, and so on. 

In addition, dedicated sensors (that for example measure vital signs) can be integrated 

with existing mobile networked devices. Next to that, future standard mobile devices 

may even include other types of sensors, e.g. measuring temperature. 

Hence, it is considered crucial developing efficient context reasoning algorithms, by 

investigating whether it is possible to derive certain specific context information from 

certain specific sensor information. In order to adequately refine such algorithms, 

additional restrictions would need to be taken into account: (i) restrictions concerning 

the (specific) processing environments of mobile devices; (ii) restrictions on memory 

usage, processing power, battery consumption, wireless network usage; (iii) 

restrictions that concern real-time versus delayed availability of extracted context. 

In order to develop adequate algorithms that extract context from raw sensor data, it 

is therefore important to appropriately consider gathering raw sensor data which is 

augmented with user input. Concerning the sensor data, it should be pre-processed and 

filtered, in order to be properly structured as input for the context reasoning algorithms 

which in turn would be expected to automatically yield the desired output. The 

(delivered) context information must be of certain (minimal) quality in order to be 

useful; otherwise said, certain quality-of-context levels should be maintained. 

Finally, some issues that have more indirect impact, need also to be taken into 

account: 

(a) The delivered context information would have to be often applied in real-

time environments where failures, performance requirements, available interfaces, and 

operational environments are to be taken into careful consideration; 
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(b) In order new applications to be enabled, it is important to investigate how 

the algorithms could be integrated in the infrastructure for context awareness. 

 

With regard to context situations, it is to be noted that it may be that there are many 

(tens, hundreds, and even more) possible end-user situations, for example: user at home, 

user driving, user busy, user out of battery, user on holiday, user in emergency, and so 

on. Situations are situations but which situations are relevant, how many of them have 

high occurrence probability, which situation corresponds to the so called main success 

scenario? Those questions points to the following claims: 

 The application designers should only consider relevant context states. For 

example, if this is about arranging a phone call with John, then ‘John is at home’ 

or ‘John is driving’, or ‘John is in a meeting’, and so on are relevant context 

states but ‘John is insured’ is irrelevant. 

 Out of all possible relevant context states, there should be several ones that are 

of high occurrence probability and thus all other ones are of lower occurrence 

probability (see the next sub-section). 

- The high-probability context states could be reflected at design time; 

this makes sense because the applications developers are preparing a 

‘solution-box’, such that upon identifying a particular high probability 

context state, the application ‘takes’ a system behavior version out of 

the box – a behavior version that matches the context state; this would 

lead to adequate system behavior, carefully ‘prepared’ at design time. 

- The low-probability context states, in contrast, may be ignored at 

design time because spending time and resources for system behavior 

versions that are not expected to occur, is considered inappropriate. 

Still, it is possible (even though not very probable) that such context 

states occur. For this reason, we argue that even though not reflected 

at design time, such context states are to be addressable at run time, 

through intelligent algorithms. 

 There should always be a default behavior because in our view, the application 

behavior modeling needs a main success scenario to serve as the regulation back 

for the system – then, any possible deviations from the main success scenario 

could be modeled as extensions [54]. 
 

This is illustrated in Figure 2.14: 

 

context state of high occurrence probability 

context state 

default context state ... 

context state of low occurrence probability 

 

Fig. 2.14. Classification of context states. 
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As seen from the figure, from the perspective of developing a context-aware 

application, one is to distinguish between context states of high occurrence probability 

and context states of low occurrence probability, and the default context state is 

certainly one of the context states of high occurrence probability. 

 

With regard to switching between application behaviors, this is an important issue 

as well because even if context states are identified properly and also matched to 

corresponding desired behaviors (or addressed by intelligent algorithms), it is a 

challenge to handle the mere switching between one (current) desired behavior of the 

application and another one (upcoming). Let us take for example the case of supporting 

a person wearing a body-area network, by means of a context-aware e-health 

application [6] and let us take for simplicity just two of the possible context states, 

namely: ‘normal’ (the person is being just monitored, by transmitting data that concerns 

vital signs to a hospital) and ‘emergency’ (the person urgently needs medical help and 

the goal is that the person sees a medical specialist as soon as possible, no matter who 

the medical specialist is or which is the hospital where the medical specialist stays, or 

if this would be arranged by an ambulance reaching the person). Then, if there is a 

context change, for example: from ‘normal’ to ‘emergency’, how would this be 

realized? If the application would stop the vital signs data transmission and start 

searching for the closest medical specialist, would the vital sign info be recorded such 

that it is possibly used by the medical specialist? In the opposite case, if there is a 

context change, from ‘emergency’ to ‘normal’ (for example, if the person feels better 

and indicates that (s)he would not need emergency treatment any more) and the 

application would hence have to stop dealing with the emergency help arrangement and 

would have to go back to transmitting data concerning vital signs, then what would 

happen if for example an ambulance is traveling to the location of the person, should 

the application also take care of informing the approached medical specialist(s) that the 

emergency situation has been cancelled? Those examples show that switching between 

application behaviors is not trivial and this challenge needs to be adequately addressed 

at design time. 

 

Summarizing the above, a context-aware system can be seen as concerning a 

sequence of actions that achieve: S (sensing and capturing), I (interpretation and state 

derivation), w (switching), and P (provisioning), as shown in Figure 2.15: 
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Fig. 2.15. Simplified view on a context-aware system. 

 

With regard to S: The system should be able to sense context and capture this context 

as context information. 

With regard to I: the system should be able to interpret the captured context 

information and derive higher-level context information, in particular – user context 

state changes, as triggers to alternative behaviors. 

With regard to w: the system should be able to handle the switching between its 

alternative behaviors. 

With regard to P: the system should be able to provide services covering all possible 

context states. 

This is obviously a simplified model, since each of the actions represents a 

potentially complex process, and the dependencies between those normally involve 

multiple instances of information exchange and triggering. Still, the (probabilities-

driven) context analysis challenge has crucial importance with regard to all above-

discussed issues. For this reason, we consider this issue further in the next sub-section.  

2.6.2   Context Analysis, Context States, Occurrence Probabilities, and Context 

Parameters 

As studied by Shishkov & Van Sinderen [62], context analysis is to be about 

approaching the possible context states and corresponding desired behaviors, and this 

is to include not only studying the possible context states and their occurrence 

probabilities but also discovering useful context parameters whose values indicate the 

occurrence of particular states. 

As far as occurrence probabilities are concerned, it is to be noted that in 

deciding about the states, the designer is sometimes inevitably driven by subjective 

judgements that are hardly supportable by rules: How a situation is perceived? What 

behaviors can be expected? Further, the designer must often make pragmatic decisions 

– ignoring, for example, states that usually do not occur (although they might occur). 

In our view, besides such subjective decisions, there are steps which in general help to 
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adequately approach the context analysis challenge. Those steps concern the 

consideration of random variables. Exploring their probabilities, allows us to 

apply statistical analysis, including hypotheses testing and parameters 

estimation [42]. 

Considering just possible outcomes is sometimes not enough in approaching a 

phenomenon; we might need to refer to an outcome in general. This is possible if we 

have a random variable and we study the occurrence probability of the outcomes. 

Let us consider for example land border security and particularly the activities of 

border police officers on preventing illegal border crossings, supported by technical 

infrastructure and devices [59]. Further, let us consider particularly the case of distant 

monitoring: there is a camera transmitting in real-time and a border police officer is 

following the visual information being received; essential in this case is whether the 

camera is transmitting or not (if the camera is not transmitting, this would be alarming 

and there may be numerous reasons for that, such as illegal human intervention, outage, 

natural cause, and so on). 

We can consider here the random variable Y with respect to those outcomes, 

namely: camera transmitting and camera not transmitting. Y would be a discrete 

random variable [42] since it may take on only a countable number of distinct values 

– two in our case. Provided the number of possible distinct values is exactly two, we 

have the case of a priori probabilities of each of the alternative outcomes 

(one of those probabilities can be calculated by deducting the other one from 1). 

Hence, if (for example) statistical information from the border authorities indicates 

that within a certain time frame, in 80% of the time a particular camera was 

transmitting, we would conclude that the a priori probability of the first of the 

mentioned possible outcomes (namely: ‘camera transmitting’) is 0.8. The a priori 

probability of the second alternative outcome is thus 0.2. 

Hence, our context states represent the ‘camera transmitting’ and ‘camera not 

transmitting’ alternatives, with a priori probabilities 0.8 and 0.2, respectively –

Figure 2.16: 
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Fig. 2.16. Two context state alternatives. 

 

It is to be noted, with regard to the current example, that even though we observe 

whether a camera is transmitting or not, it is not the camera that is the end-user of what 

a context-aware application is delivering because the context-aware application is not 

supporting the camera but the border police officer who is using the camera’s output. 

Hence, those alternative outcomes point to two alternative situations for the border 
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police officer, namely: (i) the border police officer is counting on the camera; (ii) the 

border police officer is not counting on the camera. Depending on the situation of the 

border police officer, the context-aware application would deliver one kind of support 

or another. 

Therefore, knowing the occurrence probability of each outcome helps in deciding 

about the de fault system behavior, about the optimal allocation of resources, about 

risks, and so on. 

Further, in order to prescribe how to recognize each of the states (two in our case), 

we assume that the state at a particular moment is recognizable through observing the 

values of appropriate parameters. If we have n parameters appropriate to our 

scenario and if each of them has certain possible values, then each value combination 

would point to a particular state. 

Then, by considering the value combinations, we can know the context state, by 

simply observing the values at any moment [62]. 

It is also necessary to analyze potential context states, such that the ones of high 

occurrence probability are identified. We argue that this may be done intuitively or on 

the basis of statistical information. We are hence interested in considering the latter in 

more detail. 

With regard to this, we consider statistics, data analysis, and probability theory, and 

for this we refer to Freund [28]. 

Although descriptive statistics is an important branch of statistics and it continues 

to be widely used, statistical information usually arises from samples (from 

observations made on only part of a large set of items), and this means that its analysis 

requires generalizations which go beyond the data – this is an observed shift in 

emphasis from descriptive statistics to the methods of statistical inference. As for 

probability theory, it provides the basis for the methods which are used when 

generalizations are made from observed data, namely when the methods of statistical 

inference are used. 

Let us take as an example a support delivered by a context-aware application to 

workers – the application supports a worker, by informing the worker of the 

environmental conditions, in general, and the concentration (in the air) of sulfur oxides, 

in particular, such that the worker knows if it is safe to be out or not. It is hence 

necessary knowing the concentration levels of sulfur oxides, which are of high 

occurrence probabilities. This would allow for better designing the application and to 

be able as well to establish a realistic work plan, knowing (approximately) how many 

working days to plan for the worker to work outside the factory. 

In our example, we have made 80 observations – one sample per one day, hence 80 

days in total; let us consider the following example results (sulfur oxides in tons): 

 

15.8 26.4 17.3 11.2 23.9 24.8 18.7 13.9 9.0 13.2 

22.7 9.8 6.2 14.7 17.5 26.1 12.8 28.6 17.6 23.7 

26.8 22.7 18.0 20.5 11.0 20.9 15.5 19.4 16.7 10.7 

19.1 15.2 22.9 26.6 20.4 21.4 19.2 21.6 16.9 19.0 

18.5 23.0 24.6 20.1 16.2 18.0 7.7 13.5 23.5 14.5 

14.4 29.6 19.4 17.0 20.8 24.3 22.5 24.6 18.4 18.1 

8.3 21.9 12.3 22.3 13.3 11.8 19.3 20.0 25.7 31.8 

25.9 10.5 15.9 27.5 18.1 17.9 9.4 24.1 20.1 28.5 
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Since the smallest value is 6.2 (put on gray background) and the largest value is 31.8 

(put on gray background as well), we make a choice for the following classification 

assuming 7 classes: 

 5.0 – 8.9  first class; 

 9.0 – 12.9  second class; 

 13.0 – 16.9 third class; 

 17.0 – 20.9 fourth class; 

 21.0 – 24.9 fifth class; 

 25.0 – 28.9 sixth class; 

 29.0 – 32.9 seventh class. 
 

It is now necessary to establish how many items fall into each class (those are called 

‘class frequences’) and as well what is the corresponding percentage and the cumulative 

percentage: 

 3 items (out of 80) into  first class 3.75%  3.75%; 

 10 items (out of 80) into second class 12.50%  16.25%; 

 14 items (out of 80) into third class 17.50%  33.75%; 

 25 items (out of 80) into fourth class 31.25%  65.00%; 

 17 items (out of 80) into fifth class 21.25%  86.25%; 

 9 items (out of 80) into sixth class 11.25%  97.50%; 

 2 items (out of 80) into seventh class 2.50%  100.00%. 
 

This is graphically presented as histogram in Figure 2.17: 
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Fig. 2.17. Histogram of the distribution of the sulfur oxides emission data. 

 

As it is seen from the figure, most items (25) fall into the fourth class: 

 31.25 percent of all sample items show between 17.0 and 20.9 tons of sulfur 

oxides; 

 33.75 percent of all sample items show less than 17.00 tons of sulfur oxides; 

 therefore, 65.00 percent of all sample items show less than 21.00 tons of sulfur 

oxides. 
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Further, let us calculate the mean, by summing up the 80 numbers (15.8 + … + 28.5) 

and dividing the resulting number by 80: 1511,7 /80 = 18,9. In this case, we can trust 

that number because each of the 80 days has equal importance weight in contrast to 

cases when this is not the case, as for example observations summarized in big London 

against observations summarized in small Delft. 

In order to avoid the possibility of getting misled using the mean (as above 

mentioned), it is recommended to consider the median – see Figure 2.18: 
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Fig. 2.18. The median of the distribution of the sulfur oxides emission data. 

 

The median should ‘split’ the sample items, such that 50% of them have values 

smaller than the value the median points to and hence 50% of them have values greater 

than the value the median points to. In the considered example, we need to find this 

number that fulfills the following: 50% of the sample sulfur oxides values are smaller 

than the number and 50% are greater. On the figure, the median is displayed in dashed 

line. 

We find the median of the distribution of the sulfur oxides emission data in the 

following way: 

1. We note that 33.75% of the sample items have values lower than 17.00 (this can 

be seen from the numbers presented above); we note also that 50.00% of the 

sample items have values lower than the so called ‘median value’ (pointed by 

the median as shown in Figure 2.18). The difference between the two is: 50.00% 

– 33.75% = 16.25%. We note also that the mentioned 33.75% correspond to: 

first class + second class + third class while at the same time 31.25% correspond 

to the fourth class only (those are values greater than 17.0 and smaller than 

20.9). Thus the median value corresponds to the fourth class (because 16.25% 

is smaller than 31.25%). For this reason, we state that the median value equals 

to 17 + z, which means that the ‘distance’ between the median value and 21 

(where the fifth class ‘begins’), equals to: 4 – z, because we have class intervals 

of 4 (9.0 – 5.0 = 4, 13.0 – 9.0 = 4, and so on). 
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2. We then split the fourth class into two sub-classes, namely four-L and four-H, 

such that: (i) the items belonging to the fourth-L sub-class have values that are 

greater than 17 and smaller than the median value; (ii) the items belonging to 

the fourth-H sub-class have values that are greater than then median value and 

smaller than 21. Thus: (a) 31.25% of all sample items belong to fourth-L sub-

class + fourth-H sub-class; (b) 16.25% of all sample items belong to the fourth-

L sub-class (50.00% - 33.75% = 16,25%: see above); (c) thus, 15.00% of all 

sample items belong to the fourth-H sub-class (31.25% - 16.25% = 15.00%); (d) 

52.00% of the sample items belonging to the fourth class, belong to the fourth-

L class ((16.25/31,25)*100). 

3. We assume that the values in each class are evenly distributed (spread evenly 

throughout the class); this would mean that if 52.00% of all values belonging to 

the fourth class belong to the fourth-L class, then 52.00% of the whole class 

interval (that is 4) correspond to z (Figure 2.18) which is the ‘sub-class interval’ 

corresponding to the fourth-L sub-class. This would mean: z = 52% * 4 = 2.08. 

4. The way amounts have actually been grouped in the considered example is 

precise to the point of the nearest tenth of a ton (5.0, 8.9, 9.0, and so on) and this 

is to assume refinement to some extend – for example, considering that 5.0 

includes everything from 4.95 to 5.05, the class 5.0 – 8.9 includes everything 

from 4.95 to 8.95, and so on. Such a desired level of precision points to the so 

called ‘class boundaries’ – if we assume such level of precision for the example, 

this would mean that the lower boundary of the fourth class is 16.95. 

5. Hence, in order to find the median value, we should add the corresponding sub-

class interval (2.08) to the lower boundary of the class (16.95): 16.95 + 2.08 = 

19.03, as also seen from Figure 2.18. 
 

Hence, half of the sample items have values that are smaller than 19.03 and the other 

half of the sample items have values that are greater than 19.03. 

In summary, in the current example: 

 the MEAN equals to 18.90; 

 the MEDIAN equals to 19.03. 
 

In the example, as explained already, both values are very close and we could round 

this to 19.00, hence claiming that for the period in which the sample values were 

taken, it may be expected that the amount of sulfur oxides (in tons) in the air would 

be around 19. If this is acceptable, according to the regulations, then this would mean 

that it is to be planned than in most days, workers would be able to work out; otherwise, 

it is to be planned that in most days, workers are to be kept inside the factory, for 

example. 

Let us assume that 19.00 points to possibility to work out. In this case, the default 

application behavior would assume that the end-user is working out and only if the 

situation of the end-user changes – the amount of sulfur oxides in the air goes above 

the norm, the application would switch to another behavior that assumes instructing the 

end-user to get inside, and so on. 

Thus, in developing context-aware applications, it is helpful conducting data 

analysis as above-suggested, such that the default application behavior is adequately 

determined – with regard to this, the data distribution is to be considered, as well as the 

mean and/or the median values; still, with regard to those issues, we are not going in 
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more detail in the current section, noting nevertheless that what statistics and 

probability theory offer can be even more instrumental (through other concepts and 

approaches as well) with regard to context analysis. 

 

IN SUMMARY, in the current chapter, we introduced our systemics views, touching 

upon systems and their composition, on one hand, and the system environment and 

context of users, on another hand, extending this to enterprise systems and EIS. In the 

following two chapters, we will present relevant social theories (Chapter 3) and 

computing paradigms (Chapter 4), elaborating on how the concepts and views 

considered in the current chapter, can be rooted both enterprise-wise and technology-

wise. 
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Chapter 3 

 

SOCIAL THEORIES 
 

 

 

 

 

 

As mentioned already, we are considering in this chapter social theories, such that we 

ground our modeling views concerning enterprise systems and EIS, as presented and 

discussed in the previous chapter, and in particular – we are addressing those issues that 

are about the human aspects relevant to enterprise systems and EIS. This is because 

human behavior, human decisions, human communication, human failures, and so on 

are all about the functioning of any enterprise system or EIS. For this reason, we need 

to be explicit in considering such issues when modeling / designing such systems. 

Further, just referring to a theory would be insufficiently useful because aligning 

concepts and views to a particular theory is not trivial – we argue that this could only 

be achieved if concepts (and views) are bridged to theories, driven by particular 

concerns since only such an approach can justify the selection of particular theories. 

For this reason, we firstly present several concerns whose identification has been 

inspired by Shishkov [54] and in line with the views presented in the previous chapter: 

 

 Intuitive Behavior: There are human entities in any enterprise system / 

EIS and often their behavior is driven by interpretations, knowledge, 

judgements, beliefs, values, and so on – those are not always easy to objectively 

observe and identify. For this reason, it is claimed that intuitive human behavior 

is an essential concern that needs to be addressed explicitly in the analysis and 

design of such systems. 

 The Human Element: In line with the above paragraph, it is to be noted that 

human entities differ from any other non-human entities, such as devices, 

applications, and so on, because all processes in Society are human-driven – it 

is only humans who have rights, it is only humans who benefit from social 

prosperity, it is only humans who can be kept responsible, and so on. For this 

reason, no matter what is happening (for example, a drone is in the air, 

monitoring a land border), it is to be possible to ‘trace’ this to corresponding 

human authority and responsibility. 
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Fig. 3.1. Concerns and theories. 

 

 

 Language: Human entities, being part of any enterprise system / EIS, 

communicate among each other, using language – this goes beyond what is just 

driven by rules, since through language, human entities give promises, express 

disagreement, lead negotiations, and so on. Such issues have impact on the 

functioning of a system and need to be adequately modeled. 

 Role: Human entities are more sophisticated in their behavior than technical 

entities – unlike a technical entity which follows ‘embedded’ rules only, a 

person would often think, make decisions (especially in exceptional situations), 

and so on, and this may result in conflicts with the rules; hence, it may happen 

that a human entity realizes activities that are not part of his/her ‘job profile’ (a 

professor faxing for example, with this being part of the secretary’s 

responsibilities); for this reason, we argue that it is appropriate modeling roles, 

not just the (human) entities fulfilling those roles, as already discussed in 

Chapter 2. 

 Affordance: There are many different objects that need to be considered 

when modeling an enterprise system / EIS and what is important in this regard 

is reflecting their features and capabilities, for example: in a library, a book 

affords to be borrowed; thus, we consider the ‘affordance’ concept useful as it 

concerns the modeling of (enterprise) systems. 
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 Sign: In an enterprise context, often something stands for something else, for 

the sake of properly conveying semantics to corresponding entities, for example 

– in case of fire within a building, if a person is not sure which direction to 

follow in order to leave the building, in case a green light can be seen from 

somewhere, the person would take this direction because it is widely accepted 

that ‘Exit’ signs are colored green and illuminated; hence, the green light helps 

the person make the right decision how to proceed in a complex situation – this 

is thus a sign (we have discussed the ‘sign’ concept in the previous chapter, and 

we argue that this notion should be adequately reflected in the modeling of 

enterprise systems / EIS. 

 Rule: Any (enterprise) system is essentially governed by regulations and rules 

(norms) and for this reason, it is essential to be capable of adequately reflecting 

rules in modeling enterprise systems / EIS. 
 

Following Shishkov [54] and considering recent studies [8], we have established 

that: (i) human relativism and the Theory of Organized Activity 

(TOA) well cover the human element and intuitive human behavior; (ii) the 

Language / Action Perspective (LAP) and enterprise ontology 

well cover the (language-based) human communication and corresponding roles that 

corresponding human entities can fulfill; (iii) organizational semiotics, in 

general, and the semantic analysis method as well as the norm analysis 

method, in particular, well cover the concepts of affordance, sign, and norm (rule), as 

suggested by Figure 3.1. 

For this reason, in the remaining of the current chapter, we will firstly consider 

human relativism and TOA, secondly – LAP and enterprise ontology, and thirdly – 

organizational semiotics. 

We consider those social theories as underlying with regard to our concepts, views, 

and way of modeling, as it concerns enterprise systems and EIS, in general and the 

modeling of human aspects in this context, in particular. As mentioned before, social 

theories are insufficient when it also comes to ICT and software – for this we need as 

well computing paradigms, such that the social theories applied and the computing 

paradigms followed are complementary with regard to each other. We address the 

social theories in the current chapter and the computing paradigms – in the following 

chapter. 

3.1   Human Relativism and TOA 

In order to provide theoretical principles with respect to the necessity of taking properly 

into account the human element and its behavior, in [16], a new philosophical stance – 

human relativism – was proposed, together with an analysis of human action 

seen as the kernel element of any approach following that stance. The same perspective 

characterizes TOA where organized activity is the key concept. Those theories will be 

addressed further on in the current section. 
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3.1.1   Human Relativism 

Human relativism, as considered in [16] takes a World perspective consistent with 

functionalism, social relativism, radical structuralism, and neo-humanism, as presented 

in [33], also establishing the possibility of complementary using formal methods and 

theories, for the sake of overcoming the limitations of most objectivist stances, related 

mainly to cases of unpredictable behavior usually related to the human element – this 

including most inter-subjective experiences, such as interpretation, knowledge, beliefs, 

intentions, value, and so on, which often remain hidden from our senses. It is claimed 

that scientific methods and objectivism are unable to deal with human behavior in 

general since it is impossible (from such a perspective) to reproduce or predict things 

like interpretation or understanding, or to regulate mechanically human actions [16].  

To tackle this from the perspective of human relativism assumes acknowledging the 

human centeredness and the unpredictable behavior of human entities. Human 

relativism recognizes this human centrality in all human activities, by acknowledging 

an objective reality as human relative. There are many evidences of this human relative 

view even in objectivism. The visible images transformed from infrareds into the 

visible spectrum, for example, allow us to experience a different reality where human 

bodies cannot be easily separated from the environment, because there are no clear 

boundaries. However, this reality is in fact seen and experienced by some animal 

species as science proofs. In this sense we may question ourselves, which is the real 

reality, the reality we observe with our vision or the reality observed using, for instance, 

the infrared spectrum? Or, are they different views of the same reality? There is no 

claim in human relativism that the reality we see is the real reality, neither an 

explanation nor sense of what a real reality is. The solution is more a practical solution 

– this is the reality we have, we experience and we share. By assuming the human at 

the center we also assume and accept his/her view as bounded, focused and particular. 

Further, information is human-related as well – information is extracted by humans 

from the reality using perception and interpretation processes. The distinction between 

perceptions, the process of acknowledging the external reality through our senses, and 

interpretation, the meaning making process, is a useful way to help understanding the 

nature of information and its acquisition process. Only information goes through an 

interpretation process, the other elements of the (human) reality are just perceived. In 

fact, perception filters part of the human reality accessible to a particular individual. 

To perceive does not mean to interpret and this separation allows us to understand 

what observable is. Usually, observability concerns what we think a human being is 

able to percept or acquire through his/her senses. This excludes the interpretation 

process and information as well. Usually information is not observable but it can be 

extracted from observable things. Observable things can be viewed as material or 

physical things from the objectivist view, for example - a smile (that is an observable 

thing) may express happiness (that is not an observable thing). At the same time 

nonetheless, observing a smile on the face of a person does not guarantee happiness – 

this is a matter of interpretation and also, different persons may express themselves 

differently. To solve this ambiguity or meaning problem, the above-mentioned 

observability concept is the first step and with regard to this, human relativism has the 

following assumption: 
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ASSUMPTION   Anything that is observable will be more consensual, precise, 

and therefore more appropriate to be used by scientific methods. 

 

Further, in considering the notion of ‘observability’ it is necessary to consider a 

related notion as well, namely, the notion of precision. 

According to [15], to have a high degree of precision means to have a reduced level 

of ambiguity and different meanings in some term or element making it generally 

accepted, recognized, and shared. One way of achieving precision, for example, is the 

use of physical measurement. 

This leads to stating an important human relativistic hypothesis: 

 

HYPOTHESIS   By adopting observable elements or high precision 

elements under a human relativistic view, it is possible to derive a scientific and 

theoretical well-founded approach to EIS. 

 

Those basic human relativistic ideas are claimed to be aligned with social 

constructivism and objectivism, making a proper connection between them. 

Since most enterprise systems / EIS are ‘challenged’ by issues related to the human 

element, such as unpredictability (and this prevents the use of scientific and objective 

methods), human relativism identifies and highlights this point, by recognizing human 

behavior as an essential challenge with respect to those issues. 

Those thoughts point to another important human relativistic hypothesis: 

 

HYPOTHESIS   We may freely apply technical approaches if there is no 

unpredictable behavior present, specifically human behavior. 

 

Hence, human relativism points a way to overcome the difficulty in dealing with 

unpredictable behavior, in particular human behavior. When approaching human 

behavior, one would realize that what is ‘seen’ is just the observable part of the 

behavior – the observable human actions. One should then acknowledge importance of 

the unpredictable aspects of human behavior, for building adequate models of 

enterprise systems /EIS. Still, besides just acknowledging those issues, human 

relativism proposes ways to cope with ambiguities resulting from unpredictable human 

behavior: 

 to reduce the dependability of the enterprise system / EIS on human behavior; 

 to better use the power of human behavior, through support coming from tools 

that are not only facilitating humans but are also stimulating them to generate 

feedback that in turn could help to better capture the different aspects of human 

behavior. 
 

Thus, building upon other philosophical stances, human relativism is essentially 

focusing on human behavior with recognition of the fact that even though precision can 

be achieved, observable behavior is just a part of the complex human behavior, and in 

order to cope with this complexity, one could either make systems less dependent on 

human behavior or introduce tools that not only support humans with regard to their 

actions but also help the system better capture the different aspects of human behavior. 
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As already mentioned, in the following sub-section, we will further the discussion 

on human behavior, by addressing the Theory of Organized Activity – TOA. 

3.1.2   TOA 

The Theory of Organized Activity – TOA, proposed by Anatol Holt [34] considers a 

concept relevant to human behavior, namely the concept of Organized Activity, 

or OA for short, and Anatol Holt states the following with regard to that concept: 
 

“I intend the expression ‘organized activity’ to mean a human universal. Like 

language, organized activity exists wherever and whenever people exist. It will be 

found in social groups of a dozen, or in social groups of millions - in the jungle and 

in New York City, in every culture, and at every stage of cultural/technological 

history. It is manifest in every form of enterprise, whether catching big game, coping 

with a fire, or running a modem corporation – even acquiring and communicating 

by language.” 
 

This is how Anatol Holt positions the OA concept acknowledging the TOA 

emphasizing the following issues that concern any OA: 

 A common communication language – expressed not only by words, but by 

actions and things as well, known as units and recognized by people sharing or 

involved in the same activity. Behind this idea there is an essential and 

associated meta-theory called the theory of units. 

 Actions – which directly affect, involve or act on things or materials. Actions 

are related to a temporal dimension. 

 Bodies – representing things or materials, related to a material dimension. 

 Action Performers – always persons and/or organizational entities. 
 

TOA is thus mainly considering actions, bodies, and action performers as well as 

their inter-relationships. 

As far as actions are concerned, TOA emphasizes especially on human actions, 

acknowledging that responsibility can only be attributed to humans, which would mean 

that computers and other tools cannot perform actions. 

As for action performers, human actions are motivated and driven by them (in the 

interest of the action performers). 

Figure 3.2 [34] defines the OA kernel. The figure is presenting two dichotomies, 

namely persons <-> organizational entities and actions <-> bodies, suggesting that (as 

according to Anatol Holt) any OA, no matter how complex and subtle, can be usefully 

represented in those terms. 

Besides the action and body concepts, TOA also defines the concepts of state and 

information. A state in TOA only applies to bodies and is only understood within 

specific domains of action. This notion makes a TOA state different from the usual 

technical description of a state. Regarding information, in TOA it has the exclusive end 

use of making decisions, which determines the following course of actions. Information 

in TOA is carried in lumps by bodies, being those lumps exclusive properties of those 

bodies. Information contents of a body depend on the context of its use and on the 

particular actors performing the actions. The same information can be used differently 

by different actors or in different contexts. 
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Fig. 3.2. The OA kernel. 

 

Anatol Holt claims that itt is only TOA that: 

 relates information to human decision; 

 has potential to define measures consistent with those of Claude Shannon; 

 makes explicit all real-world operations performed on real-world information. 
 

Thus, we claim that both human relativism and TOA provide a useful perspective on 

enterprise systems / EIS, emphasizing on human behavior. In the following section, we 

are going to consider the (language-driven) communication among (human) entities. 

3.2   LAP and Enterprise Ontology 

According to Definition 10: “A complete model is a model that is elaborated at least in 

three perspectives, namely structural perspective, dynamic perspective, and data 

perspective”, and as suggested in the previous chapter, if one would be considering an 

enterprise system or an EIS, one would be interested in capturing the structure of the 

system, the system’s behavior, and the corresponding data flows. As also suggested in 

the mentioned chapter nevertheless, is that the human-to-human communication 

(characterizing enterprise systems and EIS) needs to be considered as well – actually, 

the communicative actions (related to human-to-human communication) are related to 

the transaction concept (Definition 5) and transactions are considered as the 

elementary building blocks of enterprise systems. For this reason, besides addressing 

structural issues, behavioral issues, and data (or factual) issues, we need to take as well 

a communicative perspective concerning human-to-human communication. 

This perspective is addressed in the current section, and in particular – LAP and 

enterprise ontology. 
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3.2.1   LAP 

Taking a communicative perspective in approaching an enterprise system, is motivated 

by the importance of grasping not only the structural, factual, and behavioral (dynamic) 

enterprise system aspects but also the communicative aspect [52], and one of the most 

sound and popular theories behind that issue is the Language / Action Perspective – 

LAP [82]. LAP is a theoretical orientation towards approaching the modeling of 

business processes, by emphasizing the importance of interaction and communication. 

The theory recognizes that language is not only used for exchanging information, as in 

reports (for example), but that language is used also to perform actions, as in promises 

or orders (for example). Such actions are claimed to represent the foundation of 

communities and organizations, and must be understood to create effective EIS. For 

this reason, it is claimed that adequately capturing the communicative aspects, 

characterizing the considered enterprise system(s), would contribute to the creation of 

sound and complete business process models [54]. Further, referring to the white-box 

vs black-box enterprise systems modeling, reflecting construction vs function (Figure 

2.9), it is to be noted that applying LAP allows for revealing the construction and 

operation of an enterprise, not just capturing the enterprise dynamics. Such a direction 

corresponds to the consideration of transactions as enterprise modeling elements 

(Definition 5). 

Hence, taking a white-box perspective and considering the notions of actor, 

production, and coordination (as explained in the previous chapter), LAP suggests that 

the functional behavior of an enterprise is brought about by the collective working of 

its constructional components [54]. The construction and the working of a system are 

most near to what a system really is, to its ontological description [10]. Acknowledging 

Bunge’s vision, Dietz takes a LAP perspective in considering enterprises, claiming that 

an enterprise is a discrete dynamic system in the category of social systems, having 

social individuals or actors, each of them having a particular authority to perform 

production acts (P-acts) and a corresponding responsibility to do that in an appropriate 

and accountable way; the structure of an enterprise consists of coordination acts (C-

acts), i.e. the actors enter into and comply with commitments regarding the 

performance of P-acts [23] – that all points to the generic white-box model of an 

enterprise, consisting of the actors, the P-world, and the C-world [54], as presented in 

Figure 3.3: 

 

 

Fig. 3.3. The white-box model of an enterprise. 

 

C-acts concern human-to-human communications. An instance of such kind of 

communication consists of two human processes: 
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 a sender (role 1) expressing something (a message) and 

 a receiver (role 2) interpreting the message. 
 

What can be communicated between a sender and a receiver? Elementary 

communicative acts, such as request, promise, state, accept, and so on, are 

considered from the LAP perspective. This is consistent with Definition 5 according to 

which “a transaction is a finite sequence of coordination (communicative) acts between 

two actors concerning the same production fact”. Hence, production acts and 

coordination (communicative) acts appear to be performed in particular 

sequences or chains that can be viewed as paths through a generic pattern 

pointing to a transaction [23], and also, in the enterprise context Role 1 (see above) 

would correspond to customer while Role 2 – to producer. 

Hence, a more elaborated (and LAP-driven) view on transactions suggests that a 

transaction is a finite sequence of C-acts between two actor-

roles, the customer and the producer. It takes place in three phases: the order 

phase (O-phase), the execution phase (E-phase), and the result phase (R-

phase). O-phase is a conversation that starts with a request by the customer and that, if 

successful, ends with a promise by the producer. E-phase basically consists of the 

performance of the P-act by the producer. R-phase starts with a statement by the 

producer that the requested act is performed and ends, if successful, with an acceptance 

by the customer. All this is reflected in the generic transaction pattern depicted in Figure 

3.4: 
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Fig. 3.4. The transaction pattern. 

 

 

As it is seen on the figure, besides the three phases – O-phase, E-phase, and R-phase, 

there are as well three layers, namely: success layer, discussion layer, and failure layer; 

further, the elementary communicative acts considered and their abbreviations are as 

follows: 
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- rq request 

- pm promise 

- st state 

- ac accept 

- dc decline 

- rj reject, 
 

and as well two ‘factual’ acts are considered, namely: sp (stop) and gu (give up). The 

generic transaction pattern needs to be further explained and for this we will use a toy 

example reflecting the situation in which a customer enters a small pizza shop. 

 

Let us firstly consider the success layer: 

The customer (John) enters the shop and requests a pizza to be delivered to him, 

assuming to pay for this according to the announced prices. The person at the desk 

(Tim), realizing that the ingredients for the requested pizza (such as cheese, tomato 

paste, and so on) are available, promises to deliver a pizza to John. Then Tim goes to 

the kitchenette and prepares the pizza for John. Up to this point, we have two 

elementary communicative acts, namely: request and promise (as it can be seen from 

the figure, communicative acts are presented as disks) and one production act: the pizza 

preparation (as it can be seen from the figure, production act is presented as diamond). 

Further, after having prepared the pizza, Tim comes back to John, bringing the pizza to 

him, stating that the request was fulfilled. John takes the pizza and pays, implicitly 

meaning that he is satisfied with the result and accepts what was delivered (a pizza in 

this case). It is only the acceptance that makes the transaction completed. Said 

otherwise, if such an acceptance is not reached (and for example, John refuses to pay 

and goes out), then there is no transaction, no matter how many communicative / 

production acts have taken place. 

 

Let us secondly consider the discussion layer: 

If after John asks for a pizza, Tim, realizing that not all pizza ingredients are 

available, declines the request, this puts John and Tim into some kind of negotiations. 

As part of such negotiations, Tim may announce that even though he cannot deliver a 

pizza, he can deliver a sandwich instead, for example. Then, there are two possibilities 

– John either agrees to have a sandwich or not. If John agrees to have a sandwich, this 

means that John introduces a new request (instead of requesting a pizza, John is already 

requesting a sandwich). To this Tim promises to deliver a sandwich to John (new 

promise) and all goes back to the success layer. If nevertheless, John would decide that 

he would not go for a sandwich, then all goes to the failure layer, as shown on the 

figure. Considering further the discussion layer: if after having started the pizza / 

sandwich preparation, Tim unexpectedly experiences an electricity outage, this would 

result in his impossibility to adequately finalize the delivery – this puts John and Tim 

into negotiations. As part of such negotiations, Tim may announce that due to an 

electricity outage, he cannot deliver the pizza / sandwich within reasonable time but, 

based on information from the electricity supplier, he expects all to be back to normal 

within one hour, for example, and hence, he can deliver the pizza / sandwich with a 

one-hour delay (for example), because he had to temporarily give up the pizza / 

sandwich preparation, causing in this way inconvenience to John, but this could be 
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compensated by a lower price, for example. If John would agree, this would mean that 

implicitly John has made a request assuming the ‘new’ conditions (new request) and 

Tim has promised to deliver according to the ‘new’ conditions (new promise), and Tim 

is in the process of preparing the pizza / sandwich according to the ‘new’ conditions 

(new production). Then all goes back to the success layer. If nevertheless, John has no 

time to wait, then all goes to the failure layer, as shown on the figure. And in the end, 

if the pizza / sandwich is ready and Tim delivers it to John, stating that what was 

requested was fulfilled, it is possible that instead of accepting the pizza / sandwich, 

John declines accepting the delivered result, for example – if John finds the way the 

pizza / sandwich looks inadequate. This puts John and Tim into negotiations. Tim may 

offer a lower price as compensation for the inadequate look of the pizza / sandwich, for 

example. If John would agree, then all goes back to the success layer and this would 

mean that implicitly John has made a request (new request) and Tim has made a promise 

(new promise) as according to the ‘new’ conditions, the pizza / sandwich was delivered 

(new production and new statement) and paid according to the new conditions, the 

result is accepted and this means that the transaction is completed. If nevertheless 

John would not like to accept the delivered pizza / sandwich even at a new (lower) 

price, then all goes to the failure layer. 

 

Let us finally consider the failure layer: 

No matter if the transaction has reached the failure layer because John would not 

like to have a sandwich instead of a pizza (O-phase) or because John would not like to 

wait more (E-phase), or because John would not like to accept a pizza / sandwich that 

according to John has a look that is inadequate, even at a lower price (R-phase), as in 

the considered example, the transaction is incomplete; this means that nothing 

essential has objectively happened in reality. 

 

Thus, by modeling an enterprise system / EIS in terms of actor-roles and 

transactions, we assume the potential for anything to take place among actor-

roles, which is nevertheless not necessarily to happen. 

Further, as mentioned in the previous chapter, we consider transactions as the atomic 

enterprise modeling units and this does not contradict with the fact that transactions in 

turn represent a sequence of C-acts (as mentioned above). What matters with regard to 

the business processes is whether there is a completed transaction or not – the C-acts 

alone are not enough to justify a business process. For example, if a person would use 

a cash machine just to enter his/her personal identification number and would then stop, 

this would leave no ‘business trace’, or if a person would just ask (within a pizza shop) 

what the price of a pizza is and would then leave. In those examples, we observe C-acts 

but no completed transactions. 

Finally, our systemics concepts and views are claimed to be consistent with LAP and 

for this reason, we especially emphasize the transaction concept that is considered 

to have essential importance in this regard. 

In the following sub-section, we consider the theory of enterprise ontology as 

proposed by Dietz [19] not only because this theory is partially based on LAP but also 

because some views of Dietz have influenced our previous work [54]. 
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3.2.2   Enterprise Ontology 

The DEMO methodology [17] has been developed on the basis of LAP and reflected in 

the SDBC approach [54]. This has inspired Dietz [19] to consider LAP in combination 

with philosophical ontology [10] and organizational semiotics [43] to propose the Ψ-

theory, underlying Enterprise Ontology (EO). The overall goal of the Ψ-theory 

/ EO is to extract the essence of an enterprise from its actual 

appearance, such that corresponding white-box models could be adequately derived 

– this is the enterprise ontological modeling. The organization theorem has 

crucial importance with regard to the above-mentioned goal and the theorem in turn is 

essentially backed by four axioms, namely: the operation axiom, the 

transaction axiom, the composition axiom, and the distinction 

axiom, as shown in Figure 3.5: 
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Fig. 3.5. EO – background. 

 

Hence, in the remaining of this sub-section, we will firstly consider the operation 

axiom, secondly – the transaction axiom, thirdly – the composition axiom, fourthly – 

the distinction axiom, and finally – the organization theorem. 
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Operation Axiom 

The operation axiom states that the operation of an enterprise (see Figure 2.9) is 

constituted by actors (see Section 2.2) who perform two kinds of acts, namely P-acts 

and C-acts (see Figure 3.3), as according to LAP. 

By performing P-acts, actors contribute to bringing about the goods and/or 

services that are delivered to the environment of the enterprise under consideration 

(assuming that in the current sub-section we consider enterprise systems – see 

Definition 2). 

Further, in line with the discussion on material things and immaterial things (see 

Section 2.1) related to the notion of ‘product’ (see Definition 2), we note that P-acts 

could be either material or immaterial: 

 examples of material P-acts are manufacturing acts, storage acts, transportation 

acts, and so on; 

 examples of immaterial P-acts are judgement acts of a court (to sentence 

someone, for example), decision acts of an insurer (to grant an insurance claim, 

for example), appointment acts (bringing someone to the presidency of a 

company, for example), and so on. 
 

By performing C-acts, actors enter into and comply with commitments towards 

each other regarding the performance of P-acts. 

 

Transaction Axiom 

Referring to the LAP-driven transaction pattern (see Figure 3.4) and to the operation 

axiom, we establish that 

 a C-act is performed by one actor (called ‘producer’) and directed to another actor 

(called ‘customer’); 

 C-acts are always, either directly or indirectly, about P-acts. 
 

Thus, the notion of transaction refers to the question how P-acts and C-acts are 

related to each other, and the transaction pattern is referred to as a generic coordination 

pattern in the above context. 

Hence, the transaction axiom recognizes the LAP-driven transaction pattern 

according to which transactions always involve two actor roles and are aimed at 

achieving a particular result. 

Further, taking the perspective of EO, a conversation is defined as a sequence 

of C-acts between two actor roles that are aimed at achieving a well-defined result 

concerning a P-act. 

Thus, a transaction actually consists of two conversations, namely: 

 an actagenic conversation (it is about the order) and 

 a factagenic conversation (it is about the result). 
 

If we consider the transaction pattern (Figure 3.4), we see that the actagenic 

conversation points to the order phase and the factagenic conversation points to the 

result phase, while between them is the execution of the P-act, which both 

conversations are about. 

What can also be seen from the pattern is that the INITIATOR of the transaction is 

the customer while the EXECUTOR of the transaction is the producer (it is the 

customer who would request a pizza, for example and this would initiate the 
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transaction, and also with respect to the same example, it would be the producer who 

would prepare and deliver the pizza, in this way executing what has been requested). 

Hence: 

 in the order phase, the initiator and the executor work to reach an agreement 

about the intended result of the transaction, i.e., the production fact that the 

executor is going to create as well as the intended time of creation; 

 in the execution phase, this production fact is actually brought about by the 

executor; 

 in the result phase, the initiator and the executor work to reach an agreement 

about the production fact that has actually been produced, as well as the actual 

time of creation (both of which may differ from what was originally requested. 

Only if that agreement is reached will the production fact come into existence, 

as discussed in the previous sub-section. 

 

 

Composition Axiom 

The composition axiom concerns the business process notion (see Definition 6), 

considering a business process to be a structure of causally related transaction types. 

All causally related transactions are executed in order to fulfill a starting transaction – 

such a starting transaction is either activated from the enterprise environment or is self-

activated on the basis of some kind of self-activation condition. 
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Fig. 3.6. A component structure of a LAN. 
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Said otherwise, something is requested to be delivered but in order for it to be 

delivered, the result of something else would be needed, and so on – we will illustrate 

this by means of a hardware example: 

- a Local Area Network – LAN [12] is requested to be installed in an office; 

- before configuring the LAN, the following is needed: a server, Personal 

Computers – PCs, a switch, a router, printer(s), and so on 

- before a PC is delivered, the following is needed for its assembly and 

configuration: a motherboard, HDD(s), a monitor, speakers, and so on. 

 

This is illustrated in Figure 3.6 to be read from left to right, suggesting that in order 

to configure a LAN (in the particular case), one would need 2 to 5 PCs, one switch, one 

server, one router, 1 to 2 printer(s), and so on, for example, and in turn for a PC to be 

configured, one would need one monitor, 1 to 2 hard drives (HDD), one motherboard, 

2 to 4 speakers, and so on. Hence, one should firstly get the monitors, HDDs, 

motherboards, speakers, and so on, such that the PCs are configured, and then the same 

for the switch, the server, the router, and so on, and only after all of this has been 

realized, the LAN would be ready to be installed – this is a good example for causal 

relationships discussed above. The same is with the transaction belonging to a 

business process in an enterprise context: similarly to the need to configure a LAN (as 

in the above example), some kind of starting transaction needs to be executed and in 

order for it to be executed, it is necessary that (before it gets executed) other 

transactions get executed, and they may need in turn still other transactions to be 

executed, and so on. For this reason, the way we have presented such causal 

relationships in Figure 3.6 is considered helpful and we will apply the same way of 

representation (one entity type depends on the entity types to the right of it and the 

possible number of instances for each entity is given to the left of its label as interval). 

Let us consider a simple example from the enterprise domain: A student (John) visits 

a property agency asking ADVICE in the form of recommendation – which is the best 

available for rent property, matching his demands. The consultant (Steve) from the 

agency is capable of delivering such kind of advice to John, assuming that John would 

pay for the delivered consultancy. Nonetheless, in order to deliver the advice, Steve 

would need (before delivering the advice) to realize some kind of MATCH-MAKING 

‘between’ the demands of John and the characteristics of the available properties. And 

in turn, in order for Steve to realize such kind of match-making, he would have to do 

(before realizing the match-making) two things, namely: (i) REQUEST 

PROCESSING, such that the demands of John are appropriately reflected in 

standardized forms such that their effective use is possible and (ii) DATA SEARCH, 

such that there is an actual list of all currently available properties. Thus, Steve should 

firstly do the request processing and the data search, and only on that base he would be 

able to realize the match-making, and it is the match-making that is needed by Steve, 

such that he is able to deliver the requested advice to John. This is illustrated in Figure 

3.7: 
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Fig. 3.7. Illustrating a causal relationship. 

 

Thus, reading the figure from left to right suggests that ADVICE DELIVERY can 

be realized but under the condition that MATCH-MAKING is realized first. What the 

figure suggest as well is that MATCH-MAKING can be realized but under the 

condition that REQUEST PROCESSING and DATA SEARCH are realized first. 

This represents a business process that is driven by the goal of fulfilling the ADVICE 

DELIVERY starting transaction. 

Hence, after considering elementary acts (see the operation axiom) and transactions 

(see the transaction axiom), we are considering the composition axiom that addresses 

business processes. 

 

Distinction Axiom 

The distinction axiom serves to separate the distinct human abilities playing a role with 

regard to communication and in order to give useful background (claimed to be 

helpful in understanding the axiom), we refer to the so called semiotic ladder [43] that 

presents the (human-to-human) communication in terms of layers, in the following 

way: 

 PHYSICAL WORLD: If two persons would like to communicate, they need 

physical conditions – this could be their closeness in terms of space, such that 

they can hear each other or a telecommunications channel, such as telephone 

connection, and so on. 

 EMPIRICS: Even if the persons have physical conditions to communicate, the 

communication channel itself is to also be adequate – for example, if the 

persons are close to each other but there is too much noise, they would not be 

able to hear each other or if they have established a telephone connection but 

the quality of service is too low for them to hear each other well and without 

delays. 

 SYNTAX: If the persons have adequate physical conditions and 

communication channel, this is still not enough for a full value communication 

to take place because they need to speak the same language or use the same 

communication patterns. 
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 SEMANTICS: If the persons are adequately exchanging information using the 

same language, for example, this is still not enough if they do not get the 

correct meaning. For instance, if John is at a garage, needing his car to be 

repaired urgently and he sees a queue of 10 cars, and it looks obvious that the 

garage would not be able to serve all those cars within the day, and if John 

asks the receptionist whether it would be possible his car to be treated urgently, 

and the receptionist answers ‘Yes, as long as the cars from the queue get 

served’, this actually means ‘No’, because it is obvious that the car of John 

would not be served the same day. If the receptionist had wished to mean 

‘Yes’, he would have answered, for example: ‘There are many cars in the 

queue but we will make an exception and treat you with priority’. This 

example, shows that the syntactic ‘Yes, as long as the cars from the queue get 

served’ has the meaning of ‘No’. Hence, getting correctly the semantics is 

necessary in order to communicate of full value. 

 PRAGMATICS: Even if the persons are adequately handling the 

communication both physically and also empirically, syntactically, and 

semantically, they also need to adequately handle the context in which they 

are communicating – for example, if John’s colleague says to John ‘I am 

freezing’ and John is close to the widely open window during winter time, it 

is not enough that John gets the right meaning of what his colleague is saying; 

what goes beyond the meaning is that John should realize that by saying this, 

his colleague is trying to convince John to close the window, and John is 

expected to ‘participate’ in this negotiation (about whether to close the 

window or not) and not discuss with his colleague the way he is feeling. 

 SOCIAL WORLD: Even if pragmatics, semantics, and so on are all handled 

adequately, there are societal norms of behavior that need to be respected. In 

the above example, it is expected that John would close the window even if 

John is not feeling cold because it is societally adequate to respect (when 

possible) the needs of the persons around. In this case, the colleague of John 

is not feeling good and John may like to help because closing the window 

would not immediately hurt John’s comfort – still, this would help another 

person feel better and this is to be considered good behavior from a societal 

point of view. 
 

 

 

In order to align the above semiotic perspective to communication, we consider the 

corresponding views of Habermas [32] who has identified three spheres of human 

existence, that play a role with respect to communication, namely: (i) objective world 

those are the things that are outside the subject and to a large extend exist on their own; 

(ii) subjective world – unique for every distinct subject; (iii) social world – what the 

subjects build and maintain in interaction. Then: 

- With regard to (i), the (human-to-human) communication is aligning the 

concept of TRUTH => Here we have the class of acts for which the dominant 

validity claim is the claim to truth, for example assertions (John asks Betty what 

time it is, for instance, and then Betty would assert the current time). 

This is labelled as constativa. 
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- With regard to (iii), the (human-to-human) communication is aligning the 

concept of JUSTICE. => Here we have the class of acts for which the dominant 

validity claim is the claim to justice, for example requests and promises (If I 

request a loaf from the baker, for instance, I primarily claim that I am in the 

social position to do so and that the baker is in the social position to be addressed 

with the request; I hence accept the authority and responsibility of the baker to 

respond to the request, and the baker accepts my authority and responsibility to 

make a request, as exemplified by Dietz [19]). 

This is labelled as regulativa. 

- With regard to (ii), the (human-to-human) communication is aligning the 

concept of SINCERITY. => Here we have the class of acts for which the 

dominant validity claim is the claim to sincerity, for example praises and 

apologies (If I bump into somebody, for instance, my apologizing is to convey 

to the person information that I am sincere, otherwise, and apology would not 

make sense). 

This is labelled as expressiva. 
 

Next to that, ‘non dominant’ claims are possible as well, mixing up the above issues 

and several examples considered by Dietz [19] are brought forward in this regard: 

› If I appear to be near a head of state and I ask him/her what time it is, 

things about truth and justice are mixed up because it is not considered 

just that one ask the time to the head of state. 

› If I ask from a baker 100 loaves of the same time, things about justice and 

truth are mixed up because objectively, it is impossible for him to deliver 

at one 100 loaves. 

› If John asks Richard what time it is and after hearing the answer, he asks 

Betty the same question, things about truth and sincerity are mixed up 

because if John knows the time already, is he sincere saying to Betty that 

he wants to know what time it is? 
 

 

In this respect, EO is primarily about regulativa since: (a) It is 

assumed that the constativa issues are taken indirectly; (b) The expressiva issues are 

disregarded and this is not because emotions are considered unimportant but because 

they fall outside the ontological view on enterprises, as according to Dietz [19]. 

Hence, in the pizza example from the previous sub-section, just one elementary 

communicative (coordination) act (for example: ‘the person at the desk promises to 

deliver a pizza’), as we label it ‘C-act’ for short, assumes communication conforming 

to the semiotic ladder (see above) and in the regulativa perspective, and in this we bring 

together the pragmatic and social considerations (as according to the semiotics ladder) 

claiming that the following three layers bring together the above views, taking a LAP 

perspective: 

 PERFORMA: This is the actual act of evoking an attitude (for example, the 

customer had the person at the desk PROMISE to deliver a pizza or a 

conversation in a library and the context of the conversation had a person 

REQUEST membership, and so on). => This brings together the behavioral 

pragmatics and the societal relevance, as according to the semiotics ladder. 
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 INFORMA: This is about conveying semantics – for example, John may well 

explain in a library that he would like to have them deliver a pizza to him and 

they may get this correctly semantically but still this would not lead to a promise 

from their side because the situational context and social relevance are 

inappropriate with regard to what John is suggesting. => This corresponds to 

the semantics layer of the semiotics ladder. 

 FORMA: This is about conveying information of full value and using the same 

language or communication pattern – for example, John may utter many 

sentences at a pizza desk and what John is saying may be adequately heard and 

syntactically understood but still, it may not be the case that they understand 

that John is asking a pizza to be delivered to him. => This brings together 

empirics and syntactics, as according to the semiotics ladder. 

  Finally, the physical conditions necessary for such kind of communication, are 

acknowledged by EO but not explicitly considered since they are claimed to fall 

outside the ontological view on enterprises. 
 

This is illustrated in Figure 3.8, summarizing the distinction axiom: 
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Fig. 3.8. Summary of the distinction axiom. 

 

As it is seen on the figure: (i) The forma ability (bringing together empirics and 

syntactics) is about conveying information, as above mentioned, for example – uttering 

and perceiving of sentences in some language. (ii) The informa ability (building upon 
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the forma layer) is about conveying semantics, as above mentioned, for example – 

interpreting what was said or written, getting the correct meaning. (iii) The performa 

ability (building upon the forma layer and the informa layer) is about bringing in new 

original things, rightfully considering the context (pragmatics) and the societal 

relevance, as above mentioned, for example – engaging into commitments. 

Hence, the distinction axiom states that there are three distinct human abilities 

playing a role in the operation of actors, namely: performa, informa, and forma, 

as explained and discussed already. 

We consider the performa ability as the essential human ability for doing business 

of any kind. 

 

Organization Theorem 

We have already introduced, explained, and discussed four EO axioms, namely: 

the operation axiom, the transaction axiom, the composition axiom, 

and the distinction axiom – this brought focus on the: 

 actor roles as composition elements of enterprise systems as well as their 

potential to realize production acts and coordination acts; 

 three basic human communicative abilities (performa, informa, and forma) 

with regard to the performance of production / coordination acts; 

 transactions as the atomic enterprise modeling units; 

 causal relationships among transactions, justifying business processes as 

structures of transactions. 
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Fig. 3.9. Representation of the organization theorem. 
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Hence, the goal of the organization theorem is to establish, based on the 

mentioned axioms, a concise, comprehensive, coherent, and 

consistent enterprise notion corresponding to a white-box 

(constructional) perspective. 

The organization theorem states that an enterprise is a 
heterogeneous system that is constituted as the layered 

integration of three homogeneous systems: the B-organization 

(from BUSINESS), the I-organization (from INTELLECT), and the D-

organization (from DOMUMENT), related among each other in the following 

way (as shown in Figure 3.9): 

 the D-organization supports the I-organization; 

 the I-organization supports the B-organization. 
 

All three homogeneous systems, as represented in the figure, are in the category of 

social systems, which means that they are similar as far as coordination is concerned: 

the elements are subjects that enter and comply with commitments to each other 

regarding production acts (in line with LAP). They differ only in the kind of production: 

 the production in the B-organization is ONTOLOGICAL; 

 the production in the I-organization is INFOLOGICAL; 

 the production in the D-organization is DATALOGICAL. 
 

This is the reason for considering an enterprise to be a heterogeneous system and 

hence the B-organization, the I-organization, and the D-organization represent aspect 

systems of the (total) enterprise. 

As acknowledged by Dietz [19], an enterprise is more than just a well-established 

integration of those three aspect organizations. Firstly, human beings as biological 

beings need a particular environment to live in, as well as specific facilities to make 

their biological lives comfortable. Being a biological individual includes being a 

physical thing. Hence, physical requirements must be met, like the need for work space 

and mobility services. Moreover, a human being is an emotional being, a psychological 

being, and so on. While it is recognized that those additional aspects must be 

considered, they are irrelevant as far as EO is concerned since they do not directly 

relate to the notion of enterprise. Still, we consider as precondition dealing with those 

human aspects in a satisfactory way. 

 

Thus, we argue that by considering LAP-EO, one could build enterprise models that 

are adequately rooted in corresponding real-life processes. In the following section, we 

are going to consider semiotics, emphasizing on semantics and (business) rules. 
 

3.3   Organizational Semiotics 

It is considered useful applying the Semiotics Theory [13], regarding issues connected 

with the analysis and modeling of business processes and enterprise systems. Actually, 

a branch of semiotics is considered, namely – Organizational Semiotics (OS), 

and in particular two OS methods: the  Semantic Analysis Method and the Norm 
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Analysis Method [67,69,43]. OS focuses on the nature, characteristics and behavior of 

signs. The term ‘organizational semiotics’ was officially coined in 1995 at an 

international workshop in Enschede, The Netherlands, after a long time of research on 

organizational studies and information systems. This section considers briefly some 

essential issues related to the OS theory. 

Peirce founded semiotics as the ‘formal doctrine of signs’ [51]. A sign is defined as 

something that stands to someone for something else in some respect or capacity. OS 

and the analytical methods [67,69,43] offer a theory to understand enterprises, with or 

without the computerized information systems. Enterprises are deemed as systems 

where signs are created, transmitted, and consumed for business purposes. 

Stamper and his school of OS argue that in contrast to the concept of information, 

signs offer a more rigorous and solid foundation to understand information systems. 

For example, within a business context, a bank note is much more than a piece of 

colored paper with digits on it. It stands for the bank note holder’s wealth and ability to 

pay, as well as the issuing bank’s authority and credibility, and much more. Large 

quantity of underlying social relationships and behavior possibilities are attached to 

those business concepts; oversimplifying them into pure digits would be dangerous. On 

one hand, computers can only process and manipulate such digits; on the other hand, 

the underlying meanings and possibilities must be exposed to enable the correct 

processing. Adopting the concept of sign enables us to study the enterprise in a more 

balanced way, taking account of both the technological issues, and the human and 

social aspects of information resources, products, and functions. 

OS adopts a subjectivist philosophical stance and an agent-in-action ontology. This 

philosophical position states that, for all practical purposes, nothing exists without a 

perceiving agent and the agent engaging in actions. 

Stamper adopts the concept of affordance from the perceptual psychologist 

James Gibson, who defined the affordances of the environment as ‘what it offers the 

animal, what it provides or furnishes, either for good or ill…’ [29]. Based on the theory, 

since a person perceives things by recognizing what he can do with them or to them, a 

thing can be defined as an invariant repertoires of behaviors, either substantive 

affordances or social norms that are available to the responsible person [67]. For 

example, in the context of a university library, a book affords to be borrowed by a 

library user.  

Borrowing a book is a potential ability, which may or may not be implemented in 

the reality. Nevertheless, once it is implemented, new possibilities may emerge. For 

example, a borrowed book may be retained or returned to the library by the user. Under 

certain circumstances, the library may also call it back. This shows that affordances 

have dependency relationships among them. In OS such a relationship is called 

ontological dependency.  

We may schematically show this relationship as following, with the antecedents 

on the left side and the dependencies on the right, and the solid line denotes the 

ontological dependency: 

 

 

book – borrow – return 
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Ontological dependency does not only show the logic relationship between the 

concepts. What’s more important is that it shows the dependencies get their meaning 

from the existence of the antecedents. Since the existence of dependencies would not 

be possible without the existence of the antecedents, the lifecycle of the dependencies 

is always included by that of the antecedents. The existence of the antecedents thus 

forms a context for the dependencies. 

For example, talking about returning a book without referring to the fact that the 

book was previously borrowed from the library would be off the topic. 

Further, two essential OS methods considered (as it was mentioned already) are the 

Semantic Analysis Method and the Norm Analysis Method. Those 

methods are briefly discussed below. 
 

3.3.1   Semantic Analysis 

The Semantic Analysis Method is fundamentally based on the Semiotic Theory that has 

been discussed above. This method is a method for elicitation and specification of user 

requirements. It considers the signs created by members of an enterprise. Semantic 

analysis is theoretically founded in OS [68] and the semiotic framework. The method 

has been applied in many fields such as user requirements for enterprise systems, 

organizational analysis, legal documents design, and analysis and design of Computer 

Systems [43,54]. The semantic analysis is conducted usually in four steps, outlined 

below, and the final result is a semantic schema, called ontology chart: 

 Taking into account that semantic analysis deals with analysis of documents and 

conversations, the first step that is to be realized, is to gather relevant data and 

understand the problem. This can be called problem statement. 

 The second step is to produce a list of semantic units such as verbs, nouns, 

adjectives and adverbs. Those semantic units may be used to describe human 

agents and their respective patterns of behavior. 

 The third step is to further analyze the semantic units by linking them together 

according to their relationship in terms of generic-specific positioning. This is 

shown graphically from the left to right on an ontology chart. 

 The fourth step should bring together all the linked semantic units into a 

coherent whole, which produces a complete semantic model. The model is 

represented graphically through an ontology chart. 
 

3.3.2   Norm Analysis 

When studying enterprises from the perspective of entities’ behavior it is necessary to 

specify the norms based on which this behavior is realized. Norms [70] are the rules 

and patterns of behavior, either formal or informal, explicit or implicit, existing within 

a society, an enterprise, or even a small group of people working together to achieve a 

common goal. 

Norms are determined by Society or collective groups, and serve as a standard for 

the members to coordinate their actions. An individual member uses the knowledge of 
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norms to guide his or her actions. If the norms can be identified, the behaviors of the 

individuals, hence their collective behaviors, are mostly predictable. From this 

perspective, to specify an organization can be done by specifying the norms [71] and 

this holds also for enterprises. 

Four types of norms exist, namely evaluative norms, perceptual norms, cognitive 

norms and behavioral norms. Each type of norms governs human behavior from 

different aspects. In business process modeling, most rules and regulations fall into the 

category of behavioral norms. Those norms prescribe what people must, may, 

and must not do, which are equivalent to three deontic operators: ‘is obliged’, ‘is 

permitted’, and ‘is prohibited’. Hence, the following format is considered suitable for 

specification of behavioral norms. 

 
whenever <condition> 

if <state> 

then <agent> 

is <deontic operator> 

to <action> 

 

It is essential to recognize that norms are not as rigid as logical conditions. If a person 

does not drink water for certain duration of time he cannot survive. But an individual 

who breaks the working pattern of a group does not have to be punished in any way. 

For those actions that are permitted, whether the agent will take an action or not is 

seldom deterministic. This elasticity characterizes business processes, therefore is of 

particularly value to understand the corresponding enterprise(s).  

A norm analysis is normally carried out on the basis of the results of a semantic 

analysis (for information on semantic analysis interested readers are referred to [43]). 

The semantic model delineates the area of concern of an enterprise. The patterns of 

behavior specified in the semantic model are part of the fundamental norms that retain 

the ontologically determined relationships between agents and actions without 

imposing any further constraints. Nevertheless, norm analysis could be successfully 

related also to other modeling tools, as studied by Shishkov [54]. 

In general, a complete norm analysis can be performed in four steps: 

 First step: Responsibility Analysis; 

 Second step: Proto-norm Analysis; 

 Third step: Trigger Analysis; 

 Fourth step: Detailed Norm Specification. 
 

Responsibility analysis enables one to identify and assign responsible entities (or 

‘agents’ as according to the OS terminology) to each action. The analysis focuses on 

the types of agents and types of actions. In an enterprise, responsibilities may be 

determined by the organizational constitution or by common agreements in the 

enterprise. 

Proto-norm analysis helps one to identify relevant types of information for making 

decisions concerning a certain type of behavior. After the relevant types of information 

are identified, they can be used as a checklist by the responsible agent to take necessary 

factors into account when a decision is to be made. The objective of this analysis is to 

facilitate the human decisions without overlooking any necessary factors or types of 

information. 
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Trigger analysis is to consider the actions to be taken in relation to the absolute and 

relative time. The absolute time means the calendar time, while the relative time makes 

use of references to other events. The results of trigger analysis are specifications of the 

schedule of the actions. 

The detailed norm specification concerns the specification of norms in two versions, 

a natural language and a formal language. The purposes of that are (1) to capture the 

norms as references for human decision, and (2) to perform actions in the automated 

system by executing the norms in the formal language. 

For those norms identified in the business processes, some refers to the major 

authorities and responsibilities of the major figures in the enterprises. Those norms 

govern some trivial, relatively less important norms or those of lower priorities, from 

the perspective of organizational functionalities [54]. This strongly suggests the 

possible hierarchies exist not only in the enterprise structure, but also in the norms. 

The terms ‘framing norm’ and ‘contractual norm’ are used to express such kinds of 

hierarchies [69]. 

 

Hence, among the EIS-relevant strengths of OS are the following: 

 Semantic analysis is powerful in situations in which it is necessary to put some 

unstructured information in order. This is an unavoidable task in any software 

project. 

 Norm analysis is powerful in situations in which it is necessary to specify rules 

and also to relate a number of rules to each other. Hence, semiotic norms could 

be much useful in both business process modeling and software specification – 

both tasks include consideration of rules. 

 Semantic analysis and norm analysis are founded in the OS theory; it is a well-

established theory relevant to both business process modeling and software 

specification. 

Nevertheless, as studied by Shishkov [54], those semiotic methods alone are not 

capable of soundly and completely aligning enterprise modeling and software 

specification; those methods need to be incorporated in an approach that would not only 

combine them adequately with other relevant social theories (besides OS) but would 

also relate them to appropriate computing paradigms.  

 

IN SUMMARY, in the current chapter, we presented and discussed social theories, 

including human relativism, the theory of organized activity, the language/action 

perspective, enterprise ontology, and organizational semiotics, justifying their 

relevance to different aspects concerning enterprise systems and EIS. In the following 

chapter, we will consider in turn computing paradigms that are currently actual and also 

well-combinable with the mentioned social theories and consistent with the concepts 

and views introduced in Chapter 2. 
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Chapter 4 

 

COMPUTING PARADIGMS 
 

 

 

 

 

 

As a starting point with regard to what will be presented in the current chapter, we take 

the distinction between procedure-oriented programming and object-oriented 

programming [54,80]: 

 Procedure-oriented programming (or procedural programming) uses a list of 

instructions to tell the computer what to do step-by-step. Procedural 

programming relies on PROCEDURES - a procedure contains a series of 

computational steps to be carried out. Procedural programming is intuitive in 

the sense that it is very similar to how a person would expect a program to work: 

if one wants a computer to do something, one should provide step-by-step 

instructions on how this is to be done. Examples of procedural languages 

include the early programming languages, such as Fortran and COBOL, and 

later on – Pascal and C, which have been around in the 1960s, 70s, 80s, and 90s. 

 Object-oriented programming is an approach to problem-solving where all 

computations are carried out using objects. An object is a component of a 

program that ‘knows’ how to perform certain actions and how to interact with 

other elements of the program. Objects are the basic units of object-oriented 

programming. A simple example of an object would be a person. Logically, one 

would expect a person to have a name. This would be considered a property of 

the person. One would also expect a person to be able to do something, such as 

walking, for example. This would be considered a method of the person. A 

method in object-oriented programming is like a procedure in procedural 

programming (the key difference is that the method is part of an object). Hence, 

in object-oriented programming, the code is to be organized by creating objects, 

giving those objects properties, and so on. A key aspect of object-oriented 

programming is the use of classes. A class is a blueprint of an object: a class 

can be considered as a concept and an object - as an embodiment of that concept. 

For example, if a person is to be considered in a program, then one should be 

able to describe the person and have the person do something. A class called 

'person' would provide a blueprint for what a person looks like and what a person 

can do. Examples of object-oriented languages include C++, Java, and so on. 
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A key difference between the two is that in procedural programming, procedures 

operate on data and those two concepts, namely ‘procedure’ and ‘data’, are two separate 

concepts while in object-oriented programming those two concepts are bundled into 

objects. This makes it possible to create complicated behavior with less code. The use 

of objects also makes it possible to re-use code. Once one has created an object with 

more complex behavior, one could use it anywhere in the code. 

A further move to component-oriented programming has been inspired by those 

advantages [73]: With object-oriented programming focusing on the relationships 

between classes that are combined into one large binary executable, component-

oriented programming focuses on interchangeable code modules that work 

independently and don't require you to be familiar with their inner workings to use 

them. 

Thus, we observe an evolution 

 

 from procedure-oriented programming 

through object-oriented programming 

to component-oriented programming. 

 

 

That evolution in programming has not only been useful as a stimulus to more 

effectively and efficiently producing code but it has also influenced the broader process 

of software engineering comprising requirements analysis, system analysis, system 

design, coding, testing, and implementation, with justifying an evolution from 

monolithic software engineering through component-based software engineering to 

service-oriented software engineering [54,72]: 

 Developing a monolithic application assumes result that is monolithic binary 

code. It may be that one even applies object-oriented programming and still the bottom-

line is monolithic development – one may factor the business logic into many fine-

grained classes, once those classes are compiled, if the final application is viewed that 

way (to be monolithic), then the result is monolithic binary code: all the classes share 

the same physical deployment unit (typically an EXE), process, address space, security 

privileges, and so on. Hence, if multiple developers work on the same code base, they 

have to share source files. Thus, in such an application, a change made to one class can 

trigger a massive re-linking of the entire application and necessitate retesting and 

redeployment of all the other classes. 

In contrast, a component-based application comprises a collection of 

interacting binary application modules —that is, its components and the calls that bind 

them. The motivation for breaking down a monolithic application into multiple binary 

components is analogous to that for placing the code for different classes into different 

files. By placing the code for each class in an application into its own file, one would 

loosen the coupling between the classes and the developers responsible for them. If one 

would make a change to one class, although one would have to re-link the entire 

application, one would only need to recompile the source file for that class. Further, 

because a component-based application is a collection of binary building blocks, one 

can treat its components like LEGO bricks – simply ‘adding’ and ‘removing’ them. If 

one would need to modify a component implementation, changes are contained to that 

component only. No existing client of the component requires recompilation or 

redeployment. Components can even be updated while a client application is running, 
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as long as the components are not currently being used. Improvements, enhancements, 

and fixes made to a component would immediately be available to all applications that 

use that component, whether on the same machine or across a network. Finally, when 

one has new requirements to implement, one can provide them in new components, 

without having to touch existing components not affected by the new requirements. All 

those advantages have contributed to the increasing popularity of component-based 

applications, compared to monolithic applications. 

The next step in those developments was marked by the appearance of service-

oriented software: component-based software is about how one would build and 

implement a system – taking the whole system and dividing it into smaller better 

manageable components, and so on, while service-orientation is about how different 

systems communicate with each other, based on defined various standards for message 

formats, transport security, and so on. Hence, that is about allowing users to compose 

services at high-level, which services are realized by underlying software components. 

The advantages here are two-fold: (i) the technical complexity, characterizing software 

components, remains ‘hidden’ from the user who is composing services at ‘higher 

level’; (ii) a user can bring together services whose underlying software components 

may be created by different developers, running on different servers, and so on. 

Thus, we observe an evolution 

 
 from monolithic software engineering 

through component-based software engineering 

to service-oriented software engineering. 

 
That software engineering evolution has not only been useful as a stimulus to more 

effectively and efficiently producing and utilizing software but it has also influenced in 

a broader perspective the way of developing, justifying an evolution from code-centric 

development through model-driven development to agile development [66]: 

The code-centric development (considered in the past) would not support the 

analysis and design activities by modeling while the idea to use models for improving 

software development practices was gaining increasing popularity. 

That led to the emergence of model-driven development that is not only about 

helping developers to reason at ‘higher level’ supported by models but is also about 

distinguishing between computation-independent and technology-specific issues being 

reflected in corresponding model types. This is considered as a viable ‘bridge’ between 

the ‘Software World’ and the ‘Real-life World’ in a sense that firstly, domain-related 

specifications are defined and secondly, those domain-related specifications are 

reflected, by means of model transformations, in corresponding platform-specific 

models, envisioning platforms, such as CORBA, J2EE, .Net, and so on. Model-driven 

development is hence attractive for its capability of bringing together domain-specific 

issues and technology-specific issues, by allowing for model transformations, as above 

mentioned. Nevertheless, the lack of sufficient development flexibility and 

collaborativeness as well as the insufficient capability to conveniently adapt modeling 

to changes, has justified the need for new development paradigms. 

That has inspired the emergence of agile development that is based on iterative 

development, where requirements and solutions evolve via collaboration between self- 
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organizing cross-functional teams. Agile processes fundamentally incorporate iteration 

and the continuous feedback that it provides to successively refine and deliver a 

software system. Hence, agile development is people-centric, in contrast to model-

driven development that is model-centric and also in contrast to code-centric 

development. 

Thus, we observe an evolution 

 

 from code-centric development 

through model-driven development 

to agile development. 

 

 

With regard to what was stated in the above paragraphs, it is to be noted that some 

of the paradigms discussed assume distributed computing environments (for example: 

service-oriented software engineering would envision the composition of services 

realized by components running on different computing environments) while others 

implicitly assume mobility (for example: agile development would often envision 

dynamic user feedback, possibly generated through applications running on mobile 

devices). This has justified an evolution from mainframe infrastructures, through 

client/server infrastructures, to cloud infrastructures [6,12]: 

A mainframe infrastructure is based on a mainframe and terminals. A mainframe 

can be looked upon as a ‘giant server’ since only it serves ‘dumb’ terminals. Such a 

terminal has no drives, no independent operating system, and so on – it has just a screen 

and a keyboard. All data of any type is contained in the mainframe. Any info changed 

or added from a terminal would change the data in the mainframe. 

In contrast, a client/server infrastructure assumes the partitioning of tasks or 

workloads between the providers of a resource or service, called servers, and service 

requesters, called clients. Hence, those principles are underlying with regard to current 

distributed computing environments. What such distributed computing environments 

lack as capability nevertheless is enabling ‘outside’ stakeholders to be served, possibly 

through their portable devices connected to the Internet. 

This has inspired the emergence of cloud infrastructures assuming the provision 

of shared computer processing resources and data to computers and other devices on 

demand. Cloud infrastructures have hence become underlying with regard to current 

mobile computing environments. 

Thus, we observe an evolution 

 

 from mainframe infrastructures 

through client/server infrastructures 

to cloud infrastructures. 

 

 

With respect to the paradigms considered above, most challenges mainly relate to 

functional issues. Nevertheless, there are non-functional crosscutting 

concerns, such as security, privacy, recoverability, logging, performance 

monitoring, and so on. In the past, this was considered as part of the requirements 

elicitation, then the label ‘crosscutting concerns’ was dominant, and currently we speak 

of aspect-oriented software development considering crosscutting concerns (called 

‘aspects’) at all stages of the software development life cycle [8]. 
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The computing paradigms discussed above (except for aspect-oriented software 

development) are presented in Figure 4.1, reflecting their evolution over time. 
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Fig. 4.1. Computing paradigms – evolution over time. 
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As it is seen on the figure and as discussed already, over time: programming’s 

evolution comes through procedure-orientation, object-orientation, and component-

orientation; software engineering’s evolution comes through monolithicity, 

component-centricity, and service-orientation; development’s evolution comes through 

code-centricity, model-centricity, and agility; infrastructure’s evolution comes through 

mainframe solutions, client/server solutions, and cloud solutions. As it is seen as well 

on the figure: time-wise, the ‘evolution patterns’ differ from category to category, for 

example, the step forward from monolithic software engineering to component-based 

software engineering is preceded by the step forward from procedure-oriented 

programming to object-oriented programming. Nonetheless, those representations in 

Figure 4.1 are schematic and not numerically precise. Further, those ‘transitions’ are 

claimed to be viewed differently by different members of the Software Community and 

hence, there is no wide agreement on when exactly object-oriented programming has 

become ‘predominant’ compared to procedure-oriented programming, when exactly 

service-oriented engineering ‘replaced’ component-based software engineering as the 

preferred software engineering paradigm in the Software Community, and so on. 

Finally, we claim that most often one would observe overlaps and/or mixtures among 

paradigms, for example: why not claiming that both component-based and service-

oriented solutions were predominant in a particular period, or why not claiming that 

some software applications have modules implemented using object-oriented 

languages and also modules implemented procedure-oriented languages? Hence, that 

representation mainly reflects the subjective views of the authors and is not claimed to 

be exhaustive. 

Next to that, due to the limited scope of the current chapter, we are unable to consider 

all mentioned paradigms in more detail. Still, we have selected several of them for 

further consideration – the ones whose labels are underlined in the figure: component-

based software engineering, service-oriented software engineering, and cloud 

infrastructures, and we will use more ‘popular’ labels for them, respectively: 

 component-based development (meaning ‘software development’); 

 service-oriented architecture (meaning reference to ‘software 

engineering’); 

 model-driven engineering (meaning ‘development’); 

 mobility (meaning based on a cloud infrastructure), 

plus the one not reflected in the figure, namely: 

 aspect-oriented software development. 

 

Thus, all those terms: engineering, development, architecture, are de facto largely 

overlapping, and we are not entering such a terminology discussion in the current paper. 

The terms used in Figure 4.1 reflect our desire to be maximum clear in mentioning 

different paradigms that belong to the same category. The corresponding terms to be 

used in the sections below reflect the popular labels that would be recognized by the 

wide audience. 

And in the end, why exactly those paradigms and not other ones reflected in the 

figure will be elaborated? The bottom line is the relevance to EIS in general and the 

enterprise-modeling-driven software generation, in particular. Business 

coMponents have been considered in the previous chapters as a desired basis for 
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specifying software. For this reason, in our computing paradigms consideration, we 

would emphasize those paradigms that are relevant to the component-based 

enterprise-software alignment. This brings us to components 

(component-based development) and services (service-oriented architecture) that 

are claimed to be useful relevant units of re-use. Further, we would emphasize on 

model-driven engineering because we believe that only way to bring those two 

Worlds together (enterprises and software) is through corresponding models. Finally, 

we would emphasize on mobility and non-functional crosscutting 

concerns because we claim that they have essential importance for any current EIS 

and thus have to be explicitly considered and reflected in the specification of software. 

For this reason, in the sections that follow we will consider: component-based 

development, service-oriented architecture, model-driven engineering, mobility 

(emphasizing on cloud computing), and aspect-oriented software development. 
 

4.1   Component-Based Development 

The Component-Based Development (CBD) is considered to be a promising 

paradigm that addresses the design and development of ICT applications, and is 

founded on the principles of object-orientation [54] – object orientation (characterized 

by the fundamental concepts of encapsulation, classification, inheritance, and 

polymorphism) that was briefly discussed already, is widely recognized as a special 

approach to the construction of models of complex systems, in which a system consists 

of a large number of objects. Hence, components are essential with regard to CBD – 

if re-usable components are identified, they can be used many times for designing 

different applications. Next to that, CBD seems beneficial for the application design 

itself. By basing application development on encapsulated, individually definable, re-

usable, replaceable, interoperable and testable (software) components, developers can 

build applications which possess durable configuration and a high degree of flexibility 

and maintainability. The process of application development would also be improved 

because building new applications would include using already developed components. 

This reduces development time and improves reliability. The performance and 

maintenance of developed applications would be enhanced because changes could 

occur in the implementation of any component without affecting the entire application. 

All this makes CBD reliable and effective. 

All this justifies further the claim that business coMponents can be useful as basis 

for specifying component-based applications (see Chapter 2). By basing the design of 

applications on software components derived in turn from business coMponents, the 

application support to business processes can be improved considerably [54]. 

Hence, CBD has strengths reaching beyond the application development itself – the 

component-based application development can as well usefully support the enterprise-

modeling-driven generation of software. 

The idea of constructing modular software systems dates back to 1968, as according 

to Stojanovic [72], and referring to two complexity-avoidance approaches of that time 

is important, they are: ‘buy before build’ and ‘re-use before buy’. This way of thinking  
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is considered to be an essential bottom line with regard to current CBD and this was 

even before the ideas of object-orientation (see above) appeared. Hence, during the 

1990’s, CBD has established itself as a natural extension and an evolution of object-

orientation. Components have first been introduced at the implementation level for fast 

building a graphical interface using visual basic eXtensions controls and then there have 

been the Component Object Model of Microsoft, the CORBA components, and 

Enterprise Java Beans components – all of them proposed as standard component-

based implementation solutions. This has contributed to a shift of emphasis from 

developing small, centralized, monolithic systems to developing complex systems 

consisting of functional units deployed over nodes of the Web and two key concepts 

have emerged, namely: (i) components as large-grain building blocks of a system and 

(ii) architectures and frameworks as blueprints of the system describing its main 

building blocks and the way of composing them into a coherent whole [72]. That 

conceptual evolution has been reflected in several widely popular component 

definitions: 

 According to Szyperski [73], a software component is a unit of composition with 

contractually specified interfaces and explicit context dependencies; a software 

component can be deployed independently and is subject to composition by a 

third party. 

 According to Lewandowski [41], a component is defined as the smallest self-

managing, independent, and useful part of a system that works in multiple 

environments. 

 According to Stahl et al. [66], a component is a self-contained piece of software 

with clearly defined interfaces and explicitly declared context dependencies. 
 

We argue that those definitions further justify Definition 13 and Definition 14 (see 

Chapter 2), and also the way of looking at a software component from two perspectives, 

namely taking a constructional view and taking a functional view: 

- CONSTRUCTIONALLY, software components are implemented pieces of 

software, which represent parts of an ICT application, and which collaborate 

among each other driven by the goal of realizing the functionality of the 

application. 

- FUNCTIONALLY, a software component is a part of an ICT application, 

which is self-contained, customizable, and composable, possessing a clearly 

defined function and interfaces to the other parts of the application, and which 

also can be deployed independently. 

 

It is to be noted however that even though all above definitions suggest essentially 

the same view on software components, they differ with regard to the perspective taken. 

What is to be taken into account in the current chapter is the explicit EIS focus we are 

following, and this assumes that: (i) software is specified based on business 

coMponents (see Chapter 2); (ii) software is delivered mainly in terms of ICT 

applications. 

Hence, we summarize what we consider essential with regard to software 

components, taking into account the above-stated perspective: 
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 a software component is an implemented piece of 

software; 

 a software component is a part of an ICT application; 

 a software component is self-contained; 

 a software component possesses a clearly defined 

function and goal (in context); 

 a software component possesses clearly defined 

interfaces to the other parts of the ICT application; 

 a software component can be deployed independently; 

 a software component can work in multiple ICT 

applications and in multiple environments. 
 

Hence, establishing the way the component notion and the object notion relate to 

each other is important, and for that we refer to the studies of Stojanovic [72] where 

components are considered as larger-grained objects that are deployed and as such they 

would ‘reveal’ one or more classes ‘inside’. It is thus concluded that granularity 

is the main issue in distinguishing components and objects. Further, if objects are 

identifiable instances of classes, then component instances (representing programming 

language objects) are instances of component types. Hence, components have much in 

common with classes. Nevertheless, there are some significant differences: 

 classes represent logical abstractions while components represent physical 

things; 

 components represent the physical packaging of otherwise logical elements and 

are at a different level of abstraction than classes; 

 classes may have attributes and operations accessible directly, in general, 

components have operations that are reachable only through component 

interfaces. 
 

Therefore, a component is a physical thing that conforms to and realizes a set of 

interfaces. Internally, a component may be implemented by a single class, by multiple 

classes, or even by traditional procedures in a procedure-oriented programming 

language. 

For this reason, an explicit discussion is necessary on component interfaces: 

As already suggested, a component is an encapsulated unit with a completely hidden 

behavior behind an interface. As studied by Stojanovic [72], the interface provides and 

explicit separation between the outside and the inside of a component, by: 

 answering the question WHAT – What useful services are provided by the 

component to the context of its existence? 

 not answering the question HOW – How are those service actually realized? 
 

We relate that to the black-box and white-box perspectives, respectively, as discussed 

already (see Figure 2.9). A precisely defined interface allows for using the behavior 

(services) delivered by the component without knowing how that behavior is actually 

realized. Said otherwise, the component ‘interior’ remains hidden (and not important) 

for the component’s environment as long as the component provides services, following 

the constraints defined by its contractual interface – it is often that the interface reflects 

the only information that shows the component’s ‘user’ that the component actually 

does. 
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An interface is defined by Szyperski [73] as a named collection of operations that 

are used to specify a service of a class or a component, hence defining a component 

interface as a specification of the component’s access point. 

Thus, if a component has multiple access points, each of which represents a different 

service offered by the component, then the component would be expected to have 

multiple interfaces. 

Further, an interface offers no implementation of any of its operations; instead, it 

merely names a collection of operations and provides their descriptions – it is hence 

possible to replace the implementation part without changing the interface [72]. 

Following Stojanovic further: 

 a PROVIDED interface points to the services and operations that the component 

provides to its environment, in realizing its function; 

 a REQUIRED interface specifies the services and operations that the component 

requires from its environment, in order to realize its function. 
 

According to [80], any interface would have four attributes: 

 name (each component interface is to have a unique name); 

 keys (they are based on the search record definition of the component); 

 properties (they relate to the record fields of the component); 

 methods (a method is like a function that can perform a specific task according 

to corresponding requirements). 
 

Finally, we claim the following: FIRSTLY, in order to make an interoperable 

component feasible, it is necessary to consider a corresponding component 

implementation model and in Sub-section 4.1.1, we present three popular and 

widely accepted component implementation models, namely the Microsoft Component 

Model, the Enterprise Java Beans Model, and the CORBA Component Model, as 

according to Stojanovic [72]. SECONDLY, with implementation technology not being 

sufficient by itself for adequately developing component-based applications, methods 

and approaches are needed for establishing how to reflect business requirements in the 

design and development of such applications – this we refer to as component-

based development methods and in Sub-section 4.1.2, we present three popular 

and widely considered component-based development methods, namely the Rational 

Unified Process, KobrA, and Catalysis, as according to Shishkov [54]. 

4.1.1   Component Implementation Models 

In the current sub-section, we will consider firstly the Microsoft Component Model, 

secondly – the Enterprise Java Beans Model, and thirdly – the CORBA Component 

Model. 

  

 

Microsoft Component Model 

The Component Object Model or COM for short, is a language-independent, 

binary component standard [81] whose core concepts include: 
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 a binary standard for function calling between components; 

 the typed grouping of functions into interfaces; 

 a base interface providing mechanism for (i) other components to dynamically 

discover the interfaces implemented by a component and (ii) a reference 

counter, allowing components to track their own ‘lifetime’ and delete 

themselves when appropriate; 

 a globally unique identifier mechanism for components and their interfaces; 

 a component loader to set up and manage component interactions. 
 

COM provides as well mechanisms for shared memory management between 

components and also error and status reporting. In COM, an interface is represented as 

a pointer to an interface node and in turn, the interface node contains a pointer to a table 

of operation variables and those variables in turn point to the actual implementation of 

the operations. 

 

 

Enterprise Java Beans Component Model 

The Enterprise Java Beans Component Model or EJB for short, is a 

server-side component model for the development of applications in the programing 

language Java [26], where a component is called an enterprise bean. Further, there are 

two kinds of enterprise beans: 

 session enterprise beans (those are transient components that exist only during 

a single client/server session); 

 entity enterprise beans (those are persistent components that control permanent 

data kept in permanent data stores, such as databases). 
 

Moreover, an enterprise bean resides inside a container with a container in turn 

consisting of a deployment environment for enterprise beans. Next to that, the 

container provides a number of services for each enterprise bean, such as lifecycle 

management, state management, transaction management, and so on. Finally, an EJB 

server provides a runtime environment for one or more containers. 

Finally, the client application interacts with the enterprise bean, by using two 

interface types that are generated by the container, namely: (i) home interface (it can 

be used by clients to create, destroy or find an existing enterprise bean instance); (ii) 

object interface (it provides access to the application methods of the enterprise bean). 

 

 

CORBA Component Model 

The CORBA Component Model or CCM for short, is a server-side component model 

extending the CORBA core object model with a deployment model; CCM is as well 

providing a higher level of abstraction for CORBA and object services; the two major 

advances introduced by the CCM are a component model and a runtime environment 

model; a component is an extension and specialization of a CORBA object [11]. As for 

the model of a CORBA component type: 

 Any CORBA component is denoted by a component reference. 

 CORBA components support a variety of surface features, called ports, through 

which clients and other elements of an application environment may interact 

with those components. 
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This is presented on Figure 4.2: 
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Fig. 4.2. CORBA component. 

 

As seen from the figure, there are five different kinds of ports: 

 facets – they are interfaces provided by the component for client interaction; 

 receptacles – they are connection points that describe the interfaces used by the 

component; 

 event sources – they are connection points that emit events of a specified type 

to interested event consumers; 

 event sinks – they are connection points into which events of a specified type 

are announced; 

 attributes – they are named values primarily used for component configuration. 
 

Further, a component may have multiple facets, receptacles, event sources, event 

sinks, and attributes. 

Finally, there are four categories of components, as studied by Stojanovic [72]: 

 service components – they are stateless, have no identity, and support a single 

invocation per instance; 

 session components – they have a transient state, have no persistent identity, and 

support more than one invocations per instance; 

 process components – they have an explicitly declared state that is managed by 

the runtime environment, have an identity managed by the client, and have a 

behavior that may be transactional; 

 entity components – they are similar to process components, except for their 

identity which is visible to the client but managed by the runtime environment. 

 

In summary, in the current sub-section we have briefly presented three popular 

component implementation models; in the following sub-section, we will consider three 

popular component-based development methods, as already mentioned. 



93 

 

4.1.2   Component-Based Development Methods 

In the current sub-section, we will consider firstly the Rational Unified Process, 

secondly – KobrA, and thirdly – Catalysis. 

  

 

Rational Unified Process 

The Rational Unified Process or RUP for short, is not only the development 

process usually applied with UML (the Unified Modeling Language) but also a useful 

development method (process) as far as component-based development is concerned, 

which method covers the entire software development life-cycle [38]. 

The key RUP concept is the definition of activities, called workflows, throughout the 

development life-cycle, such as requirements elicitation, analysis, design, 

implementation, and testing. Unlike the classical waterfall process, those activities can 

be overlapping and performed in parallel [72]. Within each of the activities, there are 

well-defined stages of inception, elaboration, and transition. A support to component-

based development is encouraged even though that support is just declarative and 

implicit, being directed towards physical packaging, as it can be seen from the RUP’s 

defining a component as ‘a non-trivial, nearly independent, and replaceable part of a 

system that fulfils a clear function in the context of a well-defined architecture, and that 

conforms to and provides the physical realization of a set of interfaces’. Finally, one of 

the main advantages of RUP is that it provides an opportunity for iterative and 

incremental system development, which is seen as the best development practice [72]. 

 

 

KobrA 

Our analysis on KobrA has been supported mainly by the following two sources: [4,5]. 

Interested readers could find there information about all concepts related to KobrA, 

which have not been considered in the current sub-section. 

The KobrA method is a state-of-the-art approach to component-based product-line 

engineering with UML. Among the key characteristics of KobrA are: architecture-

centricity; systematic COTS component re-use; integrated quality assurance. The major 

strengths of KobrA are its overall consistency, the embracement of the component 

concept in all phases of the software life-cycle, and the UML-based graphical 

specification of components. The main limitation is that there are no clear guidelines 

how to relate the specification of software to a prior enterprise analysis and modeling. 

A complementary workbench has been developed to support the use of the KobrA 

method in conjunction with commercial CASE tools. A test bed for the approach has 

been provided in the domain of enterprise resource planning. 

KobrA is conceptually based on the foundation of product-line engineering. Hence, 

before proceeding further, we would briefly introduce it. Product-line engineering is 

an inherent part of the KobrA method. When pursuing a product-line approach in 

KobrA, the overall software life cycle consists of two basic product line engineering 

activities: 
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 Framework engineering. It applies the komponent (komponent means 

component as seen from the perspective of the method KobrA) modeling and 

implementation activities, accompanied by additional sub-activities for 

handling variabilities and decision models, to support a family of similar 

applications (i.e. development for reuse). A framework therefore contains a 

generic komponent tree that captures the common and variable characteristics 

of a product-line. 

 Application engineering. It uses the framework developed during framework 

engineering to build particular applications. Since one of the goals of 

application engineering is to remove the variabilities in the framework, and 

resolve the decisions in the decision model, komponent containment trees for 

applications are very similar to those for a single system. The only difference is 

that komponents are accompanied by a decision model instance, which captures 

the decisions made in resolving the decision model for a particular komponent. 
 

Based on the (above outlined) brief information about KobrA, we will come (below) 

through some basic principles and issues characterizing the method. 

A core principle of KobrA is the strict and systematic separation of concerns, so that 

at all times during a development project developers are aware of what they should be 

attempting to do and what concern they are working on. A manifestation of this 

principle in KobrA is in the separation of the product from the process (contrary to 

methods which arbitrarily mix the description of what engineers should be trying to 

produce with the definition of how they should produce). Another fundamental 

separation of concerns in KobrA is the organization of the method in terms of three 

orthogonal dimensions of development: one dealing with the level of abstraction, one 

dealing with the level of genericity, and one dealing with composition. 

At the largest level of granularity, the product-line paradigm takes precedence in 

KobrA. This splits the overall development cycle into two parts: (i) one dealing with 

the development of a framework – a re-usable set of software artefacts whose core is 

embedded within all products developed by the enterprise; (ii) another one concerned 

with the development of an application – a concrete instance of the framework, adapted 

and extended to meet the needs of a specific customer. 

At the intermediate level of granularity, KobrA is driven by the component 

paradigm. KobrA frameworks and applications are all organized in terms of hierarchies 

of components. However, the components in KobrA represent the logical building 

blocks of a software system (not physical components, as in CORBA – see above). 

A central goal of KobrA is to enable the full expressive power of the UML to be used 

in the modeling of components. To this end, the use of the UML in KobrA is driven by 

four basic principles: 

 Uniformity. Every behavior-rich entity is treated as a komponent, and every 

komponent is treated uniformly, regardless of its granularity or location in the 

containment tree. 

 Encapsulation. The description of what a software unit does is separated from 

the description of how it does it. 

 Locality. All descriptive artifacts represent the properties of a komponent from 

a local perspective rather than a global perspective. 
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 Parsimony. Every descriptive artifact should have ‘just enough’ information, no 

more and no less. 
 

As for the life-cycle of a KobrA, at the highest level of granularity, this life-cycle is 

composed of a sequence of phases in which new versions of the central framework are 

developed and new applications are instantiated from it to meet the expectations of new 

customers. 

In summary, the strict separation of concerns makes KobrA compatible with a large 

number of practical implementation and middleware technologies. Its embracing the 

component paradigm allows for adequately benefiting from re-use possibilities. Its 

being soundly founded on the principles of the product-line engineering provides a 

good theoretical foundation. Its consistency with UML results in a specification of 

software, which is fully in tune with the current software design standards. 

We outline as limitation nonetheless, the way KobrA is addressing the very early 

software specification tasks and in particular - the relation to the original enterprise 

system that is to be supported by the software-to-be. As mentioned before, there are no 

clear guidelines how to relate the specification of software to a prior enterprise 

analysis and modeling. This could be improved either by extending KobrA backwards 

(towards a consideration of very early enterprise modeling activities) or by a 

combination with a business process modeling tool. 

 

 

Catalysis 

Our analysis on Catalysis has been supported mainly by the following two source: 

[24]. Interested readers could find there information about all concepts related to 

Catalysis, which have not been considered in this sub-section. 

Catalysis is a method for component-based and object-oriented software 

development, which provides a strongly coherent set of techniques for enterprise 

analysis (characterized by unambiguity about requirements) and system development 

using UML as well as a coherent method for object-oriented analysis and design. 

Catalysis provides also well-defined consistency rules across models and powerful 

mechanisms for composing different views to describe complex systems. 

Catalysis is specifically targeted as a method for component-based development, in 

which families of products are assembled from kits of components. The method also 

allows for re-use of other artefacts of the design process, such as frameworks of 

collaboration between objects. 

Catalysis includes techniques to map between (UML-based) system design and an 

analysis model. The gap and inconsistencies are reduced by: 

 unambiguous interface specification; 

 techniques to define powerful component ‘connectors’ abstracting above the 

level of object-oriented messages; 

 ‘retrieval’ techniques for relating the differing models that different components 

(especially bought-in or legacy components) usually have (this might include, 

for example, different notions of what a customer is). 
 

Use-cases [54] have a central role in Catalysis; they are applied at different abstract 

levels. With each decomposition, the objects interact to fulfil the goals of the more 

abstract use cases. 
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The Catalysis method basically comes through the following phases: 

 A model of the domain is produced, specifying first, what objects are there and 

second, the goals which are associated with the major use-cases. 

 Scenarios are drawn on how (certain) component could help realizing the major 

use-cases, breaking them down into individual steps. 

 Viewing a component as a specification (this would be possible because at this 

stage it is to be known what a component is supposed to do). The component 

has some defined responsibilities, and defined collaborations with the actors 

around it. 

 Component’s responsibilities are distributed between objects inside it and also, 

interactions between components are defined (use cases are used for that goal). 

It is possible (if necessary) defining generic interactions between components, 

so that they are made ‘pluggable’. This is done through template models. 
 

Thus, essential characteristics of the Catalysis method are: 

 Usability of generic chunks of software with robust, well-defined interfaces. 

Dynamic coupling of components is just one form of re-use. Other forms include 

the import of a generic chunk of design into many other designs. In this sense, 

a ‘component’ can include any piece of development work (code, models, rules, 

design patterns, and so on). 

 Issues which concern the inter-component connections - ‘connectors’ play a 

significant role in this task. They are specified independently on the 

specification on (relevant) components. Just like objects, connectors are 

encapsulated: the specification of what one achieves is independent of its 

implementation. 

 Software development evolving firstly through the rapid assembly of end 

products from components and secondly – through the development of high-

quality components. 
 

In Catalysis, there are particular validation mechanisms. The validation suite is a set 

of ancillary components for two purposes: (i) some of them test a component once it is 

installed in a particular context, to ensure it is running properly; (ii) others are test 

versions of components, exercising the components they are connected to, to make sure 

they behave as required. 

According to Shishkov [54], Catalysis has certain limitations, particularly as it 

concerns the proper alignment between enterprise modeling and software specification 

since: 

 the method does not offer a solid mechanism for the reflection of the original 

business requirements in the specification of the software functionality - that is 

because Catalysis is not rooted in any way in any social theory, that would have 

allowed for a better grasp of real-life aspects; 

 Catalysis is insufficiently focused as it concerns re-use, considering for re-use 

not only components but also pieces of code, rules, and so on – this would 

assume thorough multi-perspective re-use guidelines and such guidelines are 

not available; 

 Catalysis is insufficiently capable of grasping human-to-human 

communication, similarly to KobrA. 
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In summary, we have considered CBD, touching upon its main characteristics, the 

component notion, component implementation models, and component-based 

development methods. In the following section, we will consider service-orientation. 

4.2   Service-Oriented Architecture 

The Service-Oriented Architecture (SOA) is considered to be a promising 

paradigm building upon CBD, which shifts the focus from the operation of a software 

component to the service the component is delivering to its user(s) [64]. 

Our analysis on SOA has been supported mainly by the following source: [76]. 

SOA was originally motivated by the need of enterprises to better match information 

systems with their business goals, combined with the market trend of more and more 

flexible cross-organizational collaboration between enterprises [49]. Vertical 

integration (business-IT alignment) and horizontal integration (IT supported cross-

organizational collaboration) are considered crucial for modern enterprises, but 

traditional IT architectures have serious integration deficiencies. Architectures often 

comprise monolithic (silo) applications that are effective for the specific purpose they 

were created, but which do not allow integration without custom coded connections. 

Architectures with component-based applications provide units of business logic, 

which ease the definition of connections, but still require that the flow of control and 

the transformation of data formats are bound into the business logic. 

SOA is an IT architectural style that tries to achieve integration by way of 
defining composite applications as an orchestration of 

services, with services potentially offered by different organizations. A service 

externalizes public functions of an application that implements a repeatable business 

task. Since a composite application can also be offered as a service, integration may 

involve multiple levels of composition, and a service can be internal to an organization 

or cross-organizational. 

Those issues will be addressed in this section, by: (i) surveying (in Sub-section 4.2.1) 

the concepts and architectural elements of SOA; (ii) briefly discussing (in Sub-section 

4.2.2) web services that constitute one of the widely adopted technologies to implement 

SOA. 

4.2.1   SOA Foundations 

The central concept of SOA – the service concept, has several interpretations, partly due 

to the fact that SOA addresses two distinct disciplines, namely enterprise engineering 

and software engineering, and each of those two disciplines has been considering the 

service notion in its own perspective: 

 in an enterprise context, a service involves the exchange of some action, 

performance or promise for value between a client and a provider [64]. 

Examples are transportation services, health services, education services, 

outsourcing services, and helpdesk services; 
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 in an IT context, a service refers to the external behavior of an IT system, as can 

be observed and experienced by the users of that system [77]. Examples are data 

communication services and application services. 
 

For convenience, we will use the terms business service and IT service to distinguish 

between the enterprise view and the IT view on services. 

SOA holds the promise to bring business and IT together, by repeated aggregation of 

IT services into composite applications supporting business services that in turn are 

aggregated into business processes [75]. Figure 4.3 shows the basic 

architectural pattern that underlies SOA. In this pattern, three roles 

are distinguished: service provider, service broker and service requestor [50]. A service 

provider offers one or more services, which may be implemented using arbitrary 

technologies and involving backend systems protected by a firewall. Each service has 

well-defined interfaces referred to in a service description. Service descriptions may be 

published with a service broker, thus opening the possibility for service requestors to 

find services by providing required service properties to the service broker. The service 

broker searches for service descriptions that satisfy the required service properties, and 

the service requestor can select from the result of this search. Based on the 

location/access details in the service description, the service requestor can then bind to 

a service provider that offers the selected service. After a successful binding, the service 

requestor can invoke the service, according to the interface details in the service 

description. 

 

Fig. 4.3. The basic SOA pattern. 

 

Using this pattern, vertical integration is tackled by presenting a service as a virtual 

component that can be implemented by alternative concrete components using different 

technologies. The service requestor is therefore decoupled from the implementation 

concerns of the service provider. Using SOA for application design and proving a 

service wrapping for legacy applications thus presents a viable approach to enterprise 

application integration. 

Vertical integration, or business-to-business integration, requires that each potential 

business partner defines a public view on its private process, with corresponding 
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services and associated incoming and outgoing message exchanges that allow linking 

to external partners. The previously presented basic SOA pattern only shows a single 

service provider and a single service requestor role. In a business-to-business 

collaboration scenario, business partners may play either role for any number of 

supported services. An individual partner coordinates the services used and provided 

through its private process. Since this in general does not determine the overall 

coordination involving all partners, a coordination protocol can be defined that 

concerns the public view on how the partners should work together. Such a 

coordination protocol does not provide a concrete and executable process for the 

coordination of a service. It only defines the order in which messages should be 

exchanged, where messages are used to invoke a service or return a service result in 

accordance to a service provided by one of the partners. A definition at this level of 

abstraction is also referred to as service choreography, see Figure 4.4 (up): 

 

Fig. 4.4. Service choreography and service orchestration. 
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Said otherwise, the choreography reflects the collaboration among different 

services. Services participating in the choreography may belong to different providers; 

the aim is that the participating services collaborate to implement a business process 

[30]. In Figure 4.4 (up), the business process consists (for example) of three different 

services. The service user triggers the business process, by invoking Service A with a 

request. Service A processes the user request and then invokes Service B. Service B 

processes the request from Service A and then invokes Service C. Service C processes 

the request from Service B and then sends the result to the service user. 

 It is to be noted that we use the term SERVICE REQUESTOR in Figure 4.3 and we 

use the term SERVICE USER in Figure 4.4. Those terms are not conflicting and we 

use different terms because both figures mentioned above reflect a simplified view on 

reality. In Figure 4.3, we recognize a service requestor, emphasizing on the role of 

formulating a request, searching for candidate services, making a selection, and binding 

to a corresponding service provider. We abstract from the fact that the same entity 

requesting the service is then the service user. In Figure 4.4, we abstract from the 

request formulation, service discovery, and so on, emphasizing on the role of using the 

selected service(s). 

It is to be noted also that in Chapter 2, a business process is defined as ‘a structure 

of (connected) transactions that are executed in order to fulfil a starting transaction’ 

(Definition 6) while what we discuss above concerns a structure of (connected) services 

that are executed in order to fulfill a ‘starting’ service. How would then the transaction 

and service concepts relate to each other and how would the business process and 

choreography concepts relate to each other? Answering this question is considered 

challenging because of the following reasons: 

 The notion of transaction is not only grounded in enterprise engineering but is 

also reflected in a pattern (Figure 3.4) while the notion of service addresses two 

distinct disciplines – enterprise engineering and software engineering, as 

mentioned above, leading to different interpretations. 

 Within a business process as in line with Definition 6, a starting transaction is 

triggered and possibly, in order for it to be executed, it is necessary that another 

transaction is triggered, and this is done by the executor (producer) of the 

starting transaction – it is the executor who initiates the second transaction, and 

the executor of the second transaction (in turn) might need to initiate a third 

transaction, and so on. Then, each result is delivered to the corresponding 

transaction initiator which means that the result of the second transaction 

would be delivered to the executor of the starting transaction who in turn would 

deliver the final result to the customer (user). In contrast, the collaboration 

among services, as presented above, is not that elaborate as the collaboration 

among transactions since we go as far as establishing that the starting service 

invokes another service which in turn invokes yet another service, and so on. 

Further, when we consider a collaboration among transactions part of a business 

process, it is the starting transaction that delivers the result to the customer 

while in the service choreography, it is the last service being invoked that 

delivers the result to the customer, as illustrated above. 
 

For this reason, we allow ourselves to use the term business process in the service 

choreography context only under the condition that we make it explicit that even 
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though similarities can be found, a ‘choreography of services’ is not the same as a 

‘business process of transactions’. 

What we consider conceptually closer to transactions-driven business processes is 

service orchestration – see Figure 4.4 (down), assuming that the overall 

coordination (concerning the collaborative behavior of different services) is assigned 

to and executed in a centralized way by some computing node [76]. 

As in service choreography, also in service orchestration, the services (participating 

in the orchestration) may belong to different providers. The difference is nonetheless 

that in an orchestration, those services are coordinated from a central entity, the 

orchestrator; the orchestrator invokes each service according to a given strategy. We 

considered a choreography example featuring three services (see Figure 4.4 (up)) and 

we now consider an orchestration example featuring the same three services (see Figure 

4.4 (down)). As it is seen from the figure, in the orchestration case, services are 

coordinated by another service, the composite service (called ‘orchestrator’) – this 

service defines the composition of the services participating in the business process. 

The service user triggers the business process, by invoking the orchestrator. Once the 

orchestrator receives the user request, the first action it takes is to invoke Service A and 

Service A would respond in turn with a message. Then (based on this response) the 

orchestrator would invoke Service B and Service B would respond in turn with a 

message. Then (based on this response) the orchestrator would invoke Service C and 

Service C would respond in turn with a message. Then (based on this response) the 

orchestrator would deliver the result to the service user. It was stated above that service 

orchestration is conceptually closer to transactions-driven business processes 

(compared to service choreography) because similarly to how a customer approaches 

the executor of a starting transaction and in the end the executor of the starting 

transaction would deliver the result to the customer (no matter how many other 

transactions the executor of the starting transaction would have (directly or indirectly) 

triggered in order to be able to execute the starting transaction), the service user 

approaches the orchestrator and in the end the orchestrator would deliver the result to 

the service user (no matter how many services the orchestrator would have triggered 

in order to be able to respond to the request of the service user). 

In order to illustrate the patterns discussed above (the basic SOA pattern – Figure 

4.3, the choreography pattern – Figure 4.4 (up), and the orchestration pattern – Figure 

4.4 (down)), we use the following simple real-life examples: 

[Example 1]: Jamall Caribbean Custom Tailors (service provider) are active in the 

Toronto area in Canada; they have advertised their services at 

http://www.yellowpages.ca. John lives in Toronto; he has ripped his trousers (service 

user) and discovers Jamall Caribbean Custom Tailors’ services in Yellowpages – 

Canada. Then John would contact Jamall Caribbean Tailors, discussing the problem 

and negotiating the conditions about their fixing his trousers. Once they reach an 

agreement, John would bring his ripped trousers to the nearest collection desk of Jamall 

Caribbean Custom Tailors whose rules on handling orders would be dominant and John 

would have to adapt to the conditions of their services (for example: for how many days 

this order would be handled, are week-end days counted, what is the extra pay for a 

priority order, what are the compensations for damage on the clothing, and so on), 

which conditions John must have discussed with them during the above-mentioned 

negotiations. This example points to the basic SOA pattern. 
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[Example 2] Hristo is Bulgarian living in Sofia, Bulgaria, who has a PhD degree 

from Delft University of Technology in The Netherlands. Hristo is appointed as 

Assistant Professor at the Bulgarian Academy of Sciences and for this he needs a 

legalization of his PhD degree. He applies for this to Delft University of Technology, 

by: (i) submitting via e-mail a scanned copy of a filled in and signed form, and (ii) 

transferring a corresponding fee. Then: 

-  A representative of Delft University of Technology (Delft) would issue a duplicate of 

the diploma, send it to the DUO Agency of the Dutch Ministry of Education 

(Groningen), and pay on behalf of the university a processing fee to DUO. 

=> SERVICE 1. 

-  A representative of DUO (Groningen) would match the information in the document 

to corresponding information in their databases and if all is OK, the person would apply 

on behalf of DUO a sticker at the back of the document, send the document to the 

Courthouse in Groningen, and then pay on behalf of DUO a processing fee to the Court. 

=> SERVICE 2. 

-  A representative of the Court (Groningen) would check the details in the document 

and the details of the diploma holder in the Dutch registries, and if all is OK, the person 

would apply an apostille on the document and send the document to Hristo. 

=> SERVICE 3. 

This example points to service choreography because the coordination is realized 

among the services themselves: Hristo is triggering Service 1 and then those who are 

executing Service 1 know what to do and how to deliver it to and trigger Service 2 and 

then those who are executing Service 2 know what to do and how to deliver it and 

trigger Service 3 that in turn delivers the result to Hristo. 

[Example 3] Jimmy is the leading manager of a small company in Sofia and Alice is 

his business assistant who is authorizes to sign for Jimmy declarations, application 

forms, to order payments on behalf of the company, and so on. Jimmy needs a 

certificate of good standing concerning the company, and he asks Alice to get it for him. 

Then: 

-  Alice would visit a solicitor, asking him or her to prepare the application letter, and 

Alice would pay the solicitor for the service, on behalf of the company. 

=> SERVICE 1. 

- Having the application letter (for reference), Alice would go to the bank and transfer 

a corresponding fee to the Court. 

=> SERVICE 2. 

-  Having the application letter and the proof of payment, Alice would go to the Court, 

submit those documents and immediately collect the certificate of good standing, if 

everything is OK with regard to the company. 

=> SERVICE 3. 

Then Alice would go back to Jimmy, giving him the certificate of good standing. 

This example points to service orchestration because the coordination is realized 

through Alice who is just like the ‘orchestrator’ in Figure 4.4 (down): Jimmy is 

triggering Alice who knows what and how to do, and in what order – Alice would firstly 

sort things out with the solicitor, then she would do the fee payment, and finally, she 

would go and collect the certificate of good standing at the Court. Based on this all, 

Alice would go back to Jimmy and deliver the certificate to him. 
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Even though those examples illustrate the corresponding SOA patterns in terms of 

underlying internal logic, the examples are not to be considered straightforwardly 

because they are reflecting real-life situations while SOA is an IT architectural style, as 

already mentioned. 

Finally, after outlining the basic SOA pattern and touching upon service 

coordination, it is necessary to discuss service composition since often the user 

needs cannot be satisfied by simply using one particular service and composite services 

are to be considered. According to Eduardo Goncalves da Silva [30], the service 

composition is initiated by the specification of a service request where the service 

requestor / user indicates requirements and preferences for the composite service to be 

created. Following that, candidate services for the service composition are discovered 

in the service registry. In case no services are discovered, the requirements for the 

service may need to be re-formulated and/or refined. Following that, the discovered 

services are composed to meet the specified requirements and this may be accompanied 

by further interactions with the service registry, in case other services are necessary to 

complement the already discovered services; once the specified service requirements 

can be fulfilled by the created service composition, the resulting service can be 

executed, such that the service requestor / user makes use of it. It is also possible that 

the service developer is driving the service composition process – in such a case, the 

resulting service composition may be published in the service registry so that it can be 

used by other users or service developers in the future. 

As it concerns the implementation of SOA, we mentioned at the beginning of 

the current section that we will consider (in the following sub-section) web services that 

constitute one of the widely adopted technologies to implement SOA. 

4.2.2   Web Services 

Web Services (WS) are a collection of emerging standards, which are widely 

accepted as the technology of choice for implementing SOA [50]. WS to a large extent 

support the concepts, patterns and principles mentioned in the previous sub-section. An 

application designed and implemented according to WS standards is self-contained and 

modular, has a description which can be published, can be found on basis of its 

description, and can be located and invoked over networks. 

The core WS standards are the following: 

 Simple Object Access Protocol (SOAP): this is an Internet protocol 

for web (service requestor and service provider) applications to communicate 

on top of other standard Internet protocols, including HTTP. SOAP defines how 

messages are structured and processed in a platform-independent way. It 

comprises two message exchange patterns, viz. one-way and request-response. 

 Web Service Description Language (WSDL): this is the language 

for specifying the WS interfaces. It is used to provide a description of the service 

for the (potential) service requestors. Such a description includes information 

on which messages are related to each operation that is supported by the service, 

how these messages are related (e.g., operation input and output), and how 

SOAP messages are exchanged. 
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 Universal Description, Discovery and Integration 

(UDDI): this standard is defined to enable the storage of information for 

organizing and discovering WS. UDDI consists of data structures and APIs for 

publishing and querying WS. The UDDI APIs are themselves WS, and thus are 

described and can be invoked as any other WS. 
 

In addition, all WS standards rely on the Extensible Markup Language (XML) to 

represent structured data. XML documents and schemas are defined to standardize the 

format and typing of data communicated by WS. The basic SOA pattern (see Figure 4.3) 

can be supported with SOAP, WSDL and UDDI. Those standards are, nevertheless, 

insufficient to correlate messages exchanged between a service requestor and a service 

provider, to distinguish between multiple instances of the same service, or to coordinate 

the use of different services. Also they do not address policies that govern the use of 

WS, non-functional aspects of WS such as reliability, security and atomicity. For this 

purpose, several other WS standards have been developed. Figure 4.5 shows an 

overview of standards supporting different aspects of SOA, as according to Van 

Sinderen [76]. 
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Fig. 4.5. WS and some other standards supporting SOA. 
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We argue that those standards have reached a certain level of technical maturity and 

thus represent an adequate WS basis with regard to the implementation of SOA. This in 

turn reflects promising, in our view, developments based on CBD (see the previous 

section), such that COMPONENTS are considered useful UNITS OF 

DEVELOPMENT while SERVICES are considered useful UNITS OF UTILIZATION 

with regard to developing (distributed) software and making it available to users. 

Complementing this, we will consider (in the following section) model-driven 

engineering, featuring the development process itself, no matter if this concerns 

component-based development of software applications or composition of services for 

the sake of generating software-based solutions. 

4.3   Model-Driven Engineering 

Any subject using a system A that is neither directly or indirectly interacting with a 

system B, to obtain information about the system B is using A as a model for B, 

according to Definition 9. In reflecting that definition in real life, we establish that the 

human mind would often ‘re-work’ reality, simplifying things, driven by an intuitive 

‘push’ to identify similarities among objects, emphasizing those similarities in 

perceiving different objects. For example, both the small Mitsubishi Colt and the big 

Cadillac Eldorado are intuitively matched to the ‘car’ model by a person, firstly, and 

the huge differences among those two objects go on second place. Said otherwise, upon 

perception, a person would firstly try to relate the observed object(s) to a category item 

already existing in his or her mind, abstracting from very many details. Abstraction 

(pointing to the capability of finding the commonality in many different observations) 

is hence essential with regard to how people perceive reality and reason about it – 

people often generalize specific features of real objects (generalization), classify 

the objects into coherent clusters (classification), and aggregate objects into 

more complex ones (aggregation). Thus abstraction reflects the natural human 

behavior in real life while in science, ABSTRACTION RELATES TO MODELING, 

as suggested by the above definition. Hence, a model is a simplified and/or partial 

representation of reality. Models are of importance in many scientific disciplines, such 

as physics and chemistry, for example, where through simplified models of natural 

phenomena, one would draw conclusions about the phenomena themselves. In this, one 

would aim either at reflecting (through modeling) just a selection of relevant properties, 

hence reducing complexity or at considering the features of an individual for the sake 

of generalization. Further, models can be used to describe reality, to determine the 

scope and details at which to study a problem, and so on. Through modeling, features 

of products can be analyzed and discussed before the corresponding products get 

produced. Finally, with us focusing on the development of software artefacts in this 

chapter, we would consider particularly model-driven engineering, by which 

we mean model-driven software development. According to [9], the need for model-

driven engineering is justified taking into account the following facts: 

 Software artefacts are becoming more and more complex, and therefore they 

need to be discussed at different abstraction levels, depending on the profile of 

the involved stakeholders, phase of development, and objectives of the work. 
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 Software is more and more pervasive in real life, and the expectation is that the 

need for new pieces of software or the evolution of existing ones will be 

continuously increasing. 

 Software development is not a self-standing activity: it often imposes 

interactions with non-developers (e.g., customers, managers, business 

stakeholders, and so on) which need some mediation in the description of the 

technical aspects of development. 
 

For this reason, it is not surprising that by applying model-driven engineering, 

software developers increase efficiency and effectiveness [9]. This nonetheless does 

not assume just using models and corresponding notations, for example UML; in model-

driven engineering, models do not constitute documentation but are considered equal 

to code, as their implementation is automated, for example: a car order that includes 

customer features is straightforwardly reflected into reality, in the context of a current 

advanced automotive production line. Hence, the domain is essential for models. 

Model-driven engineering thus aims at finding domain-specific abstractions and 

making them accessible through formal modeling, this leading to automation of 

software production, which in turn leads to increased productivity (since both the 

quality and maintainability of software systems increase) – models that are domain-

specific and computation-independent can be understood by domain experts and at the 

same time, those models are restricting accordingly the technology-specific models that 

are essential for the construction of the software system under development. To 

successfully apply this, three requirements must be met: (i) Domain-specific languages 

are required to allow the actual formulation of models. (ii) Languages that can express 

the necessary model-to-code transformations are needed. (iii) Compilers, generators, 

or transformers are required that can run the transformations to generate code 

executable on available platforms [66]. Said otherwise: 

 It is necessary to consider computation-independent models that capture 

adequately the domain features, abstracting from any computation and technical 

details; such models would ideally capture the as-is situation, describing the 

context in which the software system-to-be will be integrated. 

 It is necessary to consider technology-independent models of the software 

system-to-be, which models are already focused on the system-to-be (maybe 

both functionally and constructionally) but just conceptually, not imposing any 

technical restrictions whatsoever. 

 It is necessary to consider technology-specific models that capture adequately 

all technical features of the software system-to-be, which models are 

straightforwardly reflect-able to corresponding code. 
 

As studied by Shishkov [54], two modeling facilities are meeting those requirements, 

namely the Model-Driven Architecture (MDA) and the Open Distributed 

Processing Architecture (ODP), with MDA’s adopting influences from ODP. Further, 

meta-modeling is one of the most important aspects of model-driven engineering 

since so-called ‘meta-models’ are needed for describing the abstract syntax of domain-

specific modeling languages, and that in turn allows models to be validated against the 

constraints defined in the meta-model, and that allows also for mappings between two 

meta-models; this is all necessary with regard to the desired automated code generation. 

Hence, meta-models are models that make statements about modeling. Four meta-levels 
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being defined and considered widely, are reflected in MOF – the Meta-Object 

Facility [66]. For this reason, we will consider MDA and MOF in Sub-section 4.3.1 

and Sub-section 4.3.2, respectively. 

4.3.1   Model-Driven Architecture 

Model-Driven Architecture (MDA) is a software architecture framework consisting of 

a set of standards that assist in system creation, system implementation, system 

evolution, and system deployment [66]. The key MDA technologies are UML, MOF (to 

be considered in the following sub-section), and the XML Meta-data Interchange –XMI 

[84,83]. MDA emphasizes the importance of modeling for the software architecture 

design, suggesting a three-layered approach: 

 Computation-Independent Model – CIM, describing a system from 

the computation-independent point of view, to address structural aspects of the 

system; 

 Platform-Independent Model – PIM, defining a system in terms of a 

technology-neutral virtual machine or a computational abstraction; 

 Platform-Specific Model – PSM, capturing the technical platform 

concepts and geared towards implementation. 
 

A taxonomy of the models that play a central role in MDA is presented in Figure 

4.6: 

 

Fig. 4.6. Classification of models in the MDA context. 

 

Since resolving the mismatch between (user) requirements and software application 

functionality is an essential software development concern [54], MDA needs to address 

it and this regard, one would inevitably face the necessity of bridging different 

abstraction levels – a high-level business logic and a technology-driven application 
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functionality. A business function (corresponding to a unit of business logic) is specific 

for a particular business and necessarily abstracts from technological solutions that can 

be used to support it. A technology platform offers a generic engineering abstraction 

(hence hiding implementation details) that is nonetheless technology-oriented. 

According to [64], an adequate business – application alignment can only be achieved 

if the initial enterprise model is: (i) a valid reflection of the relevant real-life aspects 

and (ii) a suitable foundation for the generation of application models, preferably by 

using automated transformations. The alignment nevertheless cannot be accomplished 

only by prescribing how to define an enterprise model – an additional demand should 

be that: (iii) the ‘architectural style’ used for organizing the application modeling 

should facilitate the alignment; it cannot be obtained solely from top-down, but also 

requires a bottom-up ‘preparation’. 

Hence, we consider enterprise modeling to be computation-independent, with no 

focus on the (partial) automation of business processes – this corresponds to the CIM 

layer. Further, we consider we consider application modeling from a platform-

independent perspective, with no focus on the specific technological platform(s) on 

which the application components are (to be) implemented – this corresponds to the 

PIM layer. Thus: 

 
       the enterprise-modeling-driven 

       generation of software specification 

         corresponds to a CIM-to-PIM transformation. 

 
As for the PSM, it is specific with regard to J2EE, .NET, or other implementation 

platforms. A platform-specific model is created from a platform-independent model via 

a model transformation. Thus: 

 
       the application-modeling-driven 

       implementation of software 

         corresponds to a PIM-to-PSM transformation. 

 
In the following sub-section, we will consider meta-modeling and MOF, as already 

mentioned. 

4.3.2   Meta-Object Facility 

The Meta-Object Facility (MOF) provides an open and platform-independent meta-

data management framework and associated set of meta-data services to enable the 

development and interoperability of model and meta-data -driven systems. Examples of 

systems that use MOF include modeling and development tools, data warehouse 

systems, meta-data repositories, and so on [48]. The above-mentioned four meta-levels 

are of importance with regard to MOF [66] – they are: (i) M0 – Instance; (ii) M1 

– Model; (iii) M2 – Meta-model; (iv) M3 – Meta-meta-model. 

Between M0 and M1, we have typical classification/instantiation, at M1 we have 

the class level and at M0 we have the instance level, for example: a class is given the  
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name ‘Person’ and has a number of attributes, in the example – ‘sir name’ and ‘first 

name’; an instance of that class is created at level M0, in the example – ‘Person’ is 

instantiated to the persons with ‘ID 12345’, and we give corresponding values to the 

attributes ‘sir name’ and ‘first name’ – ‘Smith’ and ‘Michael’, respectively, in this case. 

Logically, a class can have more than one instance. As seen in the above example, 

during the instantiation of a class, values are assigned to attributes of the class. 

As for the M2 level, at this level, the constructs that are used at the M1 level are 

defined. The elements of the M1 model are hence instances of the elements of the 

meta-model at the M2 level; since in the above example we use classes in the M1 

model, the construct Class must be defined in the M2 meta-model. The construct Class 

in turn is to be considered as an instance of the meta-meta element MOF Classifier 

(MOF classes are hence defined at the M3 level. Said otherwise, the MOF serves to 

define modeling languages (such as UML, for example) at the M2 level. 

Further, besides meta-relationships in which meta-models define the concepts 

needed for creating corresponding models, it has to be acknowledged that models can 

be located on different abstraction levels even though they can be located on 

the same meta-level, for example: CIM, PIM, and PSM (see above). As already 

discussed, transformations are used to map models at a higher abstraction level to 

models at a lower abstraction level, and as mentioned before, each model is inevitably 

an instance of a meta-model. 

If we take the PIM-to-PSM transformation (where we reflect the higher abstraction 

level model, PIM to lower level, PSM), we stay at the M1 level because no matter the 

abstraction level, both PIM and PSM represent models. Each of those models thus has 

a corresponding meta-model (at the M2 level): the PIM is an instance of the PIM meta-

model and the PSM is an instance of the PSM meta-model. In turn, both meta-models 

are instances of MOF, MOF being positioned at the M3 level. This is illustrated in 

Figure 4.7: 

 

Fig. 4.7. Meta versus abstract. 
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In this section, we considered the model-driven software development, touching 

upon abstraction levels, meta-levels, and corresponding transformations. In the 

following section, we will consider the impact of mobility on the development and 

utilization of software systems, featured mainly by cloud computing and corresponding 

infrastructures. 

4.4   Cloud Computing 

Consolidated enterprise-IT solutions have proven to enhance business efficiency when 

significant fractions of local computing activities are migrating away from desktop PCs 

and departmental servers and are being integrated and packaged on the Web into the 

computing cloud, according to Ivanov [36]. Whether referred to as grid computing, 

utility computing, or cloud computing, the idea is basically the same: instead of 

investing in and maintaining expensive applications and systems, users access and 

utilize dynamic computing structures to meet their fluctuating demands on IT resources 

efficiently and pay a fixed subscription or an actual usage fee. The immense economic 

demands in the last several years, in conjunction with the immediate reduction of 

upfront capital and operational costs when cloud-based services are employed, increase 

the speed and the scale of cloud computing adoption both horizontally (across 

industries) and vertically (in organizations' technology stacks). All that poses the need 

for organizational changes – organizations would have to re-think and re-engineer (in 

some cases) their traditional IT resources, advancing them with cloud architectures and 

implementing services based on dynamic computing delivery models. The changes and 

business transformations are underway on a large scale, from providers and customers 

to vendors and developers. The key issues are not only in economics and management, 

but essentially how emerging IT models impact organizational structures, capabilities, 

business processes, and consequential opportunities. 

There are usually three cloud service models under consideration, namely: 

Software as a Service (SaaS), Platform as a Service (PaaS), and 

Infrastructure as a Service (IaaS), that relate to the cloud provider 

[12]: 

 SaaS moves the task of managing software and its deployment to third-party 

services, such as security services, caching services, networking services, and 

so on. 

 PaaS functions at a lower level than SaaS, typically providing a platform on 

which software can be developed and deployed, such as streaming platforms, 

application development platforms, web platforms, and so on. 

 IaaS in turn comprises highly automated and scalable compute resources, 

complemented by cloud storage and network capability which can be self-

provisioned, metered, and available on-demand, such as e-mail building blocks, 

ERP building blocks (‘ERP’ standing for ‘Enterprise Resource Planning’), 

CRM building blocks (‘CRM’ standing for ‘Customer Relationship 

Management’), and so on. 
 

The cloud provisioning is hence bottom-lined by a SaaS-PaaS-IaaS basis, and 

reaching out to customers via the Internet, such that the customer’s computers, servers, 
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databases, mobile devises and so on can actually benefit from corresponding cloud 

services that are in turn utilized by customers in the form of images, news, music, chat 

facilitations, ID management, TV, and so on, as illustrated in Figure 4.8: 

 

Fig. 4.8. Vision of cloud computing. 
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As the figure suggests, customers utilize cloud services at high level, in an intuitive 

and seamless way, such that the underlying SaaS-PaaS-IaaS-related technical 

complexity remains hidden and would only become explicit for the customer as 

reflections in corresponding (subscription) contracts. Thus, cloud computing brings 

together many technical, organizational, contractual, and other concerns which we will 

not discuss in more detail in the current chapter. Our goal was to present cloud 

computing as a natural ‘extension’ of service orientation (already discussed) where the 

utilization of services is combined with the utilization of resources, empowering 

mobility – it is only through cloud computing that it is possible to access distant 

resources / systems through a (portable) mobile device. 

All this reflects the move from components through services to cloud solutions, and 

we acknowledge the relevance of model-driven engineering (discussed already) to the 

challenge of developing such components-services-cloud-based systems. What remains 

uncovered nevertheless is the adequate consideration of non-functional issues, such as 

privacy, for example, which are crosscutting and have reflection in different 

components, at different development phases, and so on. We will discuss this in the 

following section. 

4.5   Aspect-Oriented Software Development 

Privacy, transparency, traceability, and so on are labelled as values that are to be 

weaved in the functioning of enterprise systems and EIS [2] and for this reason, they 

are considered as crosscutting concerns because: 

 Weaving them in the functioning of a system would not assume reflections in 

one particular component only, instead: multiple components would need to be 

‘re-factored’ as well as their interrelations, as well as their relations to other 

components. 

 Addressing such values in the software development context would come 

through all the phases of the software development life-cycle. 
 

Further, such values / crosscutting concerns have a non-functional essence because 

they do not have any particular purpose or function, instead: they represent something 

like ‘desired system qualities’. 

Finally, even though the values / crosscutting concerns are non-functional, we 

should find functional solutions for them, because we argue that a system could only 

functionally achieve effects with impact on its environment. 

This all (as above stated) concerns broadly enterprise systems touching upon both 

human issues and technical issues. Narrowing this further to software systems 

nevertheless brings us to such crosscutting concerns that are particularly touching upon 

software development issues, such as security, distribution, recoverability, logging, 

performance monitoring, and so on [8]. This is featuring the notion of aspect-

oriented software development whose foundations are separating concerns, 

filter technologies, improving modularity, integrating new features, and so on. [27]. We 

are not going in more detail in this direction. 

What we only like to emphasize is that addressing such non-functional concerns is 

to be functional which means that: 



113 

 

 We should ‘translate’ those concerns into system requirements. 

 System development should not go in any unusual way, it should just ensure 

that all requirements are properly reflected in the design and implementation. 

 Introducing metrics and/or performance indicators would be necessary for 

establishing how well the desired values have been reflected in the performance 

of the system and if it is necessary, the requirements may have to be re-factored. 
 

Aspect-orientation is thus necessary for properly weaving desired values in the 

functioning of the system-to-be. If is featuring non-functional issues that nevertheless 

have to be resolved functionally.  

 

IN SUMMARY, in Chapter 2 we have considered some essential the concepts and 

views; in Chapter 3 we have presented and discussed social theories, including human 

relativism, the theory of organized activity, the language/action perspective, enterprise 

ontology, and organizational semiotics, justifying their relevance to different aspects 

concerning enterprise systems and EIS; in Chapter 4 we have considered computing 

paradigms that are currently actual and also well-combinable with the social theories 

and concepts considered. In the following chapter, we will bring those issues together, 

featuring the SDBC approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



115 

 

Chapter 5 

 

THE SDBC APPROACH 
 

 

 

 

 

 

’SDBC’ stands for ‘Software Derived from Business Components’. SDBC is a software 

specification approach that covers the early phases of the software development life 

cycle and is particularly focused on the derivation of software specification models on 

the basis of corresponding (re-usable) enterprise models. SDBC is based on three key 

ideas: (i) The software system-to-be is considered in its enterprise context which not 

only means that (as mentioned above) the software specification models are to stem 

from corresponding enterprise models but means also that a deep understanding is 

needed on real-life (enterprise-level) processes, corresponding roles, behavior patterns, 

and so on. (ii) Bringing together two disciplines, namely enterprise engineering and 

software engineering, SDBC pushes for applying social theories in addressing 

enterprise-engineering-related tasks and for applying computing paradigms in 

addressing software-engineering-related tasks, and also for bridging the two, by means 

of sound methodological guidelines. (iii) Acknowledging the essential value of re-use 

in current software development, SDBC pushes for the identification of re-usable 

(generic) enterprise engineering building blocks whose models could be reflected 

accordingly in corresponding software specification models. 

The initial ideas behind SDBC have been proposed by Shishkov in 2005 [54] and 

since then the approach has been maturing slowly. Since no sound and widely 

recognized methodology has appeared to take the above focus and that lack is widely 

claimed to continue to cause numerous failures of software projects, we are inspired to 

work further on the SDBC project. Nevertheless, this has never been and is not a matter 

of any kind of commercialization whatsoever neither it is related to branding or product 

positioning. SDBC remains fundamentally driven by a scientific and research 

inspiration, and for this reason, it is not aligned with particular commercialized 

development tools. Hence, SDBC is positioned as an open modeling platform that may 

accommodate different tools, as far as the overall principles of the approach are met, 

and what stays essential about SDBC is the challenge of bringing together social 

theories (in an enterprise engineering context) and computing paradigms (in a software 

engineering context), aiming at the enterprise-modeling-driven specification of 

software. 
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Fig. 5.1. The SDBC foundations. 

 

As it concerns the modeling itself, SDBC assumes four modeling perspectives, 

namely: Structural perspective that reflects entities and their relationships; Dynamic 

perspective that reflects the overall business process and corresponding to this – the 

states of each entity, evolving accordingly; Data perspective that reflects the 

information flows across entities and within the business process; Language-action 

perspective that reflects real-life human communication and expression of promises, 

commitments, etc. as also relevant to soundly building an exhaustive enterprise model. 
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In this, SDBC is grounded, as Figure 5.1 shows, in the principles of systemics (see 

Chapter 2) and also in: 

 Enterprise engineering and in particular, enterprise ontology and 

organizational semiotics (see Chapter 3); 

 Software engineering and in particular, model-driven engineering and 

component-based development (see Chapter 4). 
 

As also suggested by the figure, software specification models derived by applying 

SDBC, can be further updated to accommodate features pointing to: (i) service-

orientation (and mobility utilization related to this), as studied in [63]; (ii) context-

awareness, as studied in [53]; (iii) autonomic system behavior, as studied in [65]. 

Further, with regard to concepts, among the main SDBC concepts are the following: 

 Component vs CoMponent: while components represent part of the whole, 

coMponents reflect a model of a component adequately elaborated in all four 

perspectives (see above), and we could thus have business components 

(business sub-systems) and software components (pieces of implemented 

software) as well as business coMponents and software coMponents, 

respectively; Refer to Definition 8, Definition 11, Definition 13, Definition 14, 

and Definition 15. 

 General vs Generic: those concepts are both about re-use, still – general is about 

re-using an abstract core (a general reservation engine, for example) while 

generic is about parameterizing something that is multi-specific (a car system 

to be adjusted to automatic or gear regime, for example). 

 Software Specification Model – this is a technology-independent functionality 

model of the software system-to-be. 
 

To summarize the SDBC outline, we use Figure 5.2. As seen from the figure, we 

consider an enterprise system from which a business component(s) is to be identified 

and then reflected in a relevant model – a business coMponent. Another way for arriving 

at a business coMponent is by applying re-use: either extending a general business 

coMponent or parameterizing a generic one. Then, the business coMponent should be 

elaborated with the domain-imposed requirements, in order to add elicitation on the 

particular context in which its corresponding business component exists within the 

enterprise system. Then, a mapping towards a software specification model should take 

place and the user-defined requirements are to be considered, since the derived 

software model should reflect not only the original business features but also the 

particular requirements towards the software system-to-be. The software specification 

model in turn needs a precise elaboration so that it provides sufficient elicitation in 

terms of structure, dynamics, data and language-action –related aspects. It needs also 

to be decomposed into a number of software coMponents reflecting functionality 

pieces. Those coMponents then are to undergo realization and implementation, being 

reflected in this way in a set of software components. Some software components could 

also be purchased. The software components are implemented using software 

component technologies, such as .NET or EJB, for instance. Finally, the (resulting) 

component-based ICT application would support informationally the target enterprise 

system, by automating anything that concerns the considered business component 

(identified from the mentioned system). 
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Abbreviations: 

 bc – Business Component  ssm – Software specification model 
 bk – Business CoMponent  sc – Software Component 
 glbk – General Business CoMponent sk – Software CoMponent 
 gcbk – Generic Business CoMponent 

 

Fig. 5.2. SDBC – outline [54]. 

 

In order to bring forward further elaboration with regard to the SDBC approach, it is 

necessary to consider the SDBC design trajectory: As suggested by Figure 5.3-a [54], 

one should firstly consider the initial descriptive information (provided by the future 

user(s) of the software system-to-be) which is a usual input in any software project, as 

it is well-known. Then a description of the approached business reality is derived. 

However, it might be necessary to conduct re-design (imagine that the original business 

reality consists of a local service provider and users; introducing mobility, we could 

rely on a number of service providers based in different locations; thus, before 

specifying software, we would need to describe the ‘future’ (desired) business reality 

accordingly). Then, we should delimit a relevant part of the business reality depending 

on our particular software goal (on what we are going to automate, according to the 

requirements of the users). Figure 5.3-b [54] summarizes those issues. 

enterprise system 
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Fig. 5.3. SDBC: design trajectory. 

 

Hence, having the description of the delimited part of the original (or eventually re-

designed) business reality, we could proceed towards the business process modeling 

task (Figure 5.3-a). As seen from the figure, another related input is to be the domain-

imposed requirements characterizing the original enterprise system. 

We build a business process model that in turn is to be mapped towards a software 

specification model. However, as it is depicted on the figure, besides the business 

process modeling input, the SDBC design trajectory envisions two other necessary 

inputs: 

 the user-defined requirements – the requirements which the future user(s) of the 

software system-to-be have stated concerning its functionality; 

 design constraints – the design limitations which should be followed as a result 

of software/hardware/netware (and other) project restrictions. 
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Thus, five basic tasks could be identified, namely description (plus eventually re-

design), delimitation, business process modeling, software specification as well as 

requirements elicitation. 

The figure shows as well that the requirements elicitation task would span not only 

over the software specification but also over the business process modeling. 

Concerning the items depicted on Figure 5.3-a: from left to right and from top to 

bottom they become smaller (in area) and more regular (in shape). This is to indicate 

that each following state relates to a smaller part of the original business reality (in the 

delimitation, we exclude issues from the original model, in the business process 

modeling, we further exclude issues from the delimited model, and so on) and is 

becoming more and more structured. 

We will now bring forward further insight on four of the above-mentioned tasks, 

since they require elaboration - those are: (i) delimitation; (ii) business process 

modeling; (iii) software specification; (iv) requirements elicitation. 
 

(i) Delimitation 

As seen from Figure 5.3-a, before the software specification and even before the 

business process modeling activities take place, it is necessary to conduct a sound 

business process study that thoroughly reflects the considered business reality, 

achieving in this way a precise delimitation. We consider this necessary because, as it 

is well-known, an adequate modeling should be conducted based on a proper 

description and understanding of the addressed reality as well as on a precise focus on 

the part of the reality to be considered in the modeling process [57]. In SDBC, we 

respond to this through ‘description+filtration’: 

 It is necessary to thoroughly describe the enterprise system being approached 

(the business reality under consideration, which might be (eventually) re-

designed) and the suggested starting point in this regard is the consideration of 

the original documentation of the studied system; however, it should be taken 

into account that such information is usually insufficient and often full of errors. 

Thus, it should be additionally analyzed and/or refined. The decision how 

detailed the description should be depends on the selected granularity level that 

in turn should be adequate to the characteristics of the software system-to-be. 

 Then, with regard to only those issues from the description, which are relevant 

to the software system-to-be, filtration needs to be applied. They are to be, 

however, soundly rooted in the broader context of the approached business 

reality. This link would contribute to building software that is well integrated in 

the target enterprise. 
 

In order to illustrate the above, we consider an example featuring a restaurant: to 

make a DESCRIPTION with regard to a restaurant means to cover a number of issues, 

such as location, opening hours, food details, price details, reservation procedure, 

service peculiarities, reputation, and so on. There would be much information collected 

along those lines which information would nevertheless remain unfocused. If we would 

be introducing some technology within the restaurant, for example – an electronic 

reservation system, then we would have to apply FILTRATION with regard to the 

description, such that we extract only those description elements that are relevant to the 

reservation functionality. 
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However, description and filtration are not to be always realized as two separate 

tasks, it is possible that they overlap. Returning back to the example: it might be obvious 

from the beginning that describing the porter (of the restaurant) is of no use since the 

‘functionality’ of the porter is irrelevant to the restaurant (electronic) reservations; 

irregardless of other circumstances, the Porter must stay by the restaurant’s entrance 

during the opening hours. 

It might be concluded that filtration concerns the alignment between business 

process modeling and software specification since it focuses the business study on 

particular part(s) of the studied business reality, which are to be automated through 

(software) technology [57]. 
 

(ii) Business Process Modeling 

Inspired by Definition 8, Definition 10, and Definition 11, we establish the need to 

conduct business process modeling with providing elaboration in three perspectives, 

namely: (i) Structural perspective; (ii) Dynamic perspective; (iii) Data perspective. 

Further, inspired by the notion of transaction (see Definition 5 and Figure 3.4) and LAP 

(see Chapter 3), we add another perspective, namely the communication perspective. 

All this is illustrated in Figure 5.4: 

 

business process modeling 

structural perspective dynamic perspective 

communication perspective 

data perspective 

 

Fig. 5.4. SDBC – business process modeling perspectives. 

 

As for the perspectives: the structural perspective is about the entities and their 

interrelations; the dynamic perspective is about the flow(s) of events; the data 

perspective is about the factual issues; the communication perspective is about the 

communicative acts exchanged during the business operation. 
 

(iii) Software Specification 

Since SDBC is to deliver a software specification model that is derived based on a 

corresponding enterprise model that features in turn (among other things) business 

processes to which four perspectives are applied, as discussed above, we need to reflect 

a multi-perspective business process model in corresponding software specification 

reflections. Further, if possible, such an alignment between business process modeling 

and software specification is to be component-based. Said otherwise, the software 

specification model is to be derived based on (re-usable) business coMponents. 
 

(iv) Requirements Elicitation 

Requirements relate directly to the specification of software [79]. They are descriptions 

of how the system-to-be should behave, application domain information, constraints on 

the system’s operation, or specifications of a system property or attribute [37]. Thus, a 
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proper consideration of the original business requirements in the specification of a 

software’s functionality is of significant importance in the process of aligning business 

process modeling and software specification. Our consideration of the requirements 

issue as illustrated in Figure 5.2 is in consistency with the SDBC design trajectory 

(Figure 5.3). 

Building a business process model should concern the discovery of a part of the 

system requirements, namely those requirements that characterize particularly the 

enterprise system under consideration, as discussed already. They are often called 

domain-imposed requirements, as already mentioned. It is to be mentioned in this 

regard that not only the domain-imposed requirements could affect the initial business 

process model, by causing some updates in it but also that the business process model 

affects the requirements elicitation, by stimulating the discovery (or specification) of 

additional requirements. 

As mentioned already, besides the domain-imposed requirements one should 

identify also the so-called user-defined requirements that are determined by the users 

of the system-to-be and are not directly related to the business process model. 

In summary: during the business process modeling, the domain-imposed 

requirements are to be discovered and considered in the mapping towards software 

specification; next to that, the user-defined requirements are to complement the 

business process model in providing the input for the derivation of the software 

specification model.  
 

Further, transactions (see Definition 5 and Figure 3.4) are considered as the 

fundamental enterprise modeling building block in the SDBC context. Still, there is a 

particular SDBC interpretation of the transaction concept. 

SDBC interprets the transaction concept as centered around a particular 

production fact (see Definition 5). The reason is that the actual output of any enterprise 

system represents a set of production facts related to each other. They actually bring 

about the useful value of the business operations to the outside world and the issues 

connected with their creation are to be properly modeled in terms of structure, 

dynamics, and data. 

However, the already justified necessity of considering also the corresponding 

communicative aspects is important. Although they are indirectly related to the 

production facts, they are to be positioned around them. As already stated, SDBC 

realizes this through its interpretation of the transaction concept, as depicted in Figure 

5.5; as seen from the figure, the transaction concept (as featured Definition 5 and Figure 

3.4) has been adopted, with a particular stress on the transaction’s output – the 

production fact. The order phase is looked upon as an input for the production act, 

while the result phase is considered to be the production act’s output. The dashed line 

shows that a transaction could be successful (which means that a production fact has 

been (successfully) created) only if the initiator (the one who is initiating the 

transaction, as presented in Figure 5.5) has accepted the production act of the other 

party (called executor). As for the (coordination) communicative acts, grasped by the 

SDBC transaction, they are also depicted in the figure. The initiator expresses a request 

attitude towards a proposition (any transaction should concern a proposition – for 

example, a shoe to be repaired by a particular date and at a particular price, and so on). 

Such a request might trigger either promise or decline - the executor might either 
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promise to produce the requested product (or service) or express a decline attitude 

towards the proposition. This expressed attitude actually triggers a discussion 

(negotiation), for example: ‘I cannot repair the shoe today, is tomorrow fine?... and so 

on’. The discussion might lead to a compromise (this means that the executor is going 

to express a promise attitude towards an updated version of the proposition) or might 

lead to the transaction’s cancellation (this means that no production fact will be 

created). If the executor has expressed a promise attitude regarding a proposition, then 

(s)he must bring about the realization of the production act. Then the result phase 

follows, which starts with a statement expression from the executor about the requested 

proposition that in his/her opinion has been successfully realized. The initiator could 

either accept this (expressing an accept attitude) or reject it (expressing a decline 

attitude). Expressing a decline attitude leads to a discussion which might lead to a 

compromise (this means that finally the initiator is going to express an accept towards 

the realized production act, resulting from negotiations that have taken place and 

compromise reached) or might lead to the transaction’s cancellation (this means that 

no production fact will be created). Once the realized production act is accepted the 

corresponding production fact is considered to have appeared in the (business) reality. 
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Fig. 5.5. The SDBC interpretation of the transaction concept. 

 

Further, the component based enterprise-software alignment is considered crucial 

with regard to SDBC and justified, inspired by the indisputable advantages of 

component-based development (see Chapter 4) and related to this – the power of re-

use. The component-based alignment between business process modeling and software 

specification is illustrated in Figure 5.6: 
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Fig. 5.6. From business coMponents to software specification. 

As depicted in the figure, the target business reality is to be reflected in a set of 

identified business coMponents (see Definition 11). Based on them, a component-based 

software model is to be specified, in terms of software coMponents (see Definition 15). 

The business coMponents and software coMponents are not to be necessarily mapped 

one-to-one (the former is a purely enterprise engineering concern while the latter 

should have the perspective of the software system-to-be). 

Still, that kind of alignment allows for: (i) ease of modifications (both at enterprise 

level and software level) that are ‘localized’ in a particular business / software 

coMponents; (ii) traceability – one could easily ‘trace’ between enterprise level and 

software level, being capable of analyzing, for example, what would be the software 

impact of a newly introduced enterprise–level feature (and vice versa); (iii) business 

coMponents and/or software coMponents could be conveniently re-used. 
 

As for re-use, three re-use levels are essential for SDBC, namely: 

 Re-use of software coMponents (lowest level) 

 Re-use of business coMponents; 

 Re-use of business processes (highest level). 
 

Re-using software coMponents is an option within the SDBC approach, 

acknowledging the power of re-using software components as according to component-

based development (see Chapter 4). Still, dealing with re-use at the software component 

level goes beyond the direct scope of SDBC that focuses at the derivation of 

SOFTWARE SPECIFICATION. Hence, dealing with software coMponents (see 

Definition 15) is well within that focus. At the same time, methodologically re-using 

software coMponents is a good basis for straightforwardly reflecting this in 

corresponding software components. As for the re-use itself (of software coMponents), 

we will discuss it only after explaining how software coMponents are to be identified 

within SDBC. This is illustrated in Figure 5.7. 

As it is seen from the figure, a business coMponent is to be methodologically 

reflected in the specification of software. As also seen, such a ‘business process input’ 

alone is insufficient for specifying a piece of software. One is to consider as well what 

do the (future) users of the system-to-be require, as discussed already. Said otherwise, 

this is about considering the user-defined requirements. 

One is to consider as well some technical (and technological) issues leading to design 

restrictions (since software systems are about the technological solutions of some 

‘problems’ in enterprise systems). 

Based on all that input, a business coMponent could find its reflection in a software 

specification model of the system-to-be. The model could be presented, for instance, in 

the use case notations. However, for the purpose of re-use, we might find it useful to 
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identify (by decomposing the model) some software coMponents. Hence, we arrive at 

the identification of a software coMponent(s). As shown in the figure, there is also 

another possibility, especially when we do not have the usual situations of a number of 

software coMponents corresponding to one business coMponent: the situation might be 

(because of the granularity of a business coMponent, for example) that a business 

coMponent is reflected in a software specification model which is not wise to undergo 

decomposition (because it is re-usable as it is, for example). In such cases we directly 

arrive at the identification of a software coMponent, on the basis of the business 

coMponent. Figure 5.7 (its right part) illustrates particularly how in the first situation 

(Situation ‘a’) we reflect a business coMponent in a number of software coMponents, 

and in the second situation (Situation ‘b’) we reflect a business coMponent in just one 

software coMponent. 
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Fig. 5.7. Deriving a software coMponent. 

 

Hence, re-use at the level of software coMponents is about re-using modeling 

patterns representing software specifications. 

Re-using business coMponents points to the enterprise modeling level where we 

identify BUSINESS ENGINEERING BUILDING BLOCKS. As it concerns re-use, we 

are hence interested in re-usable (business engineering) building blocks that in turn can 

be either GENERAL building blocks or GENERIC building blocks – see Figure 5.8-a: 
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Fig. 5.8-a. Re-usable building blocks. 

 

To illustrate this: 

 An analogy for general is a lorry platform – it can be ‘extended’ in one way if 

the lorry would be transporting flowers and in another way – if the lorry would 

be transporting cars, for example. 

 An analogy for generic is a universal plug adaptor – it can be ‘adjusted’ in one 

way if used in Japan and in another way – if used in UK, for example. 
 

Hence, with regard to the re-usability of business coMponents, if general or generic 

business coMponents are identified, they could be re-used in the specification of 

different software artefacts; this could be realized either by extending a general 

business coMponent or by parameterizing a generic business coMponent, as illustrated 

in Figure 5.8-b: 

 

… extending 
parameterizing 

bk 

 bk = business 
CoMponent 

 

Fig. 5.8-b. Extending a general business coMponent or parameterizing a generic one. 

 

General business coMponents are models that reflect core issues and can be extended 

in a number of directions. For example, a general brokerage model could be further 

developed – in one way for building an e-trade system and in another, for building a 

hotel reservation system, for example. Hence, the particular extension of a general 

business coMponent is motivated by the purpose of use. On the contrary, a generic 

business coMponent should contain in itself more than one optional functionalities. 

Through parameterization, such a coMponent can be adjusted depending on the desired 

purpose of use. 

In summary - within SDBC, it is possible to derive a business coMponent in three 

ways: either in the trivial way (by building a model corresponding to a business 

process), or by extending a general business coMponent, or by parameterizing 

(adjusting) a generic business coMponent (Figure 5.9): 
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Fig. 5.9. Deriving a business coMponent. 

 

Re-using a business process within SDBC is a matter of making a general business 

process description that is sufficiently abstract, such that re-use is possible. For 

example, an <arrangement of a service> IN GENERAL may be specified as coming 

through <registration> + <payment> + <reduction approval> + …, for example. Then, 

this abstract description can be extended in different ways: 

- One example could be a HOTEL RESERVATION ARRANGEMENT that in particular 

comes through: NO REGISTRATION + PAYMENT OF A DEPOSIT & PAYMENT OF 

ADMINISTRATIVE COSTS + EARLY BOOKING REDUCTION APPROVAL + …; 

- Another example could be an AUTO INSURANCE ARRANGEMENT that in 

particular comes through: REGISTRATION IN AN INSURANCE COMPANY + 

INSURANCE PAYMENT & PAYMENT OF ADMINISTRATIVE COSTS + NO-CLAIM 

REDUCTION APPROVAL + …; 

- and so on.  
 

Hence, a general business process could be reflected in different special business 

processes, by adding some particular content to the general business description. 

We have put forward the SDBC foundations and in the remaining of the current 

chapter, we will firstly present the SDBC outline (in Section 5.1) and then – the main 

SDBC notations (in Section 5.2). 

5.1   SDBC Outline 

Based on the essential SDBC fundaments presented already in the current chapter, this 

section briefly outlines the approach. Two graphical techniques have been developed 

for that purpose: the ACTIVITY MODEL and the INPUT/OUTPUT MODEL. The 

development of such techniques was considered necessary because neither of the 

popular ones (activity diagram, flow charts, petri net, IDEFo and so on [54]) proved to 

be sufficiently effective for thoroughly representing the SDBC steps, by providing 

information on both the dynamics of the activities to be realized and the inputs and 
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outputs of each of them. It is particularly useful not only that the activity model and the 

input/output model provide views respectively in those two essential directions but also 

that the two graphical techniques are completely consistent with each other. Hence, the 

dynamic aspect and the ‘input-output’ aspect are soundly matched between the two 

models [54]. The activity model itself (Figure 5.10) is sophisticated in terms of 

dynamics (it supports parallel processes, two types of synchronization, and so on) of 

the activities to be realized in applying SDBC; the input/output model in turn (Figure 

5.11) represents the inputs and outputs of each activity. The legend regarding the 

graphical representation of those tools is as follows: 
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ATTENTION: representing business coMponents in different figures in the current 

book, we use either the label ‘bk’ or ‘bc’. No matter if a business coMponent is labelled 

‘bk’ or ‘bc’, we mean the same. The difference in labelling is only due to 

‘convenience’ with regard to the particular figure, such that all used notations are easy 

to follow. 
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We will firstly consider the SDBC activity model, depicted in Figure 5.10. There are 

nine activities on the figure, and also four minor activities (they are not assigned a 

number; their names are backgrounded in grey). 

There are three decision points and a point to which a sufficient number of iterations 

have to be made before proceeding further. There are two OR synchronization bars: the 

first one is associated with the IN points ‘A’ and ‘B’ (the AB bar); the second one is 

associated with the IN points ‘E’, ‘F’, and ‘G’ (the EFG bar). There is an AND 

synchronization bar; it is associated with the IN points ‘C’ and ‘D’ (the CD bar). There 

is a trigger to the application of SDBC, pointing to Activity 1 (‘information structuring’). 

The last activity from the model is Activity 9 (‘integration’). Activity 1 and Activity 9 

are thus assigned ‘start’ and ‘end’ labels, respectively. 

The trigger is pointing to Activity 1. It is about the information structuring, 

concerning a focused structured description of the target business reality; this includes 

thus a delimitation step (see above in the chapter). Then we arrive at the first decision 

point (‘conduct business process generalization?’). There a decision is to be made on 

whether the mentioned structured business reality description should be used for the 

specification (modeling) of a particular business process (e.g. hotel reservation match-

making), as reflected in Activity 2 (‘identification of a business process’), or the 

description is to be used for achieving a generalized view (e.g. match-making), as 

reflected in Activity 3 (‘generalization of a business process’). This decision should be 

based on certain criteria discovered in the process of studying the particular domain. 

For example, it might be known that an issue is unique for a company and thus, there 

is no sense to develop a generalized model of it. As seen from Figure 5.10, such a 

business process generalization (Activity 3) could be realized not only based on a 

structured description of the studied enterprise system but also based on the 

specification of a particular business process (this should be done if a generalization of 

such a specification will be also needed further by the modeler). That is why both before 

and after Activity 2, it is allowed for reaching the ‘AB’ synchronization bar which leads 

to Activity 3. 

As also seen from Figure 5.10, a model of a particular business process (realized 

within Activity 2) might be used as well for building a generic business coMponent 

(Activity 5), as it is according to the second decision point (‘model a generic business 

coMponent?’), in particular if the process flows towards the ‘CD’ synchronization bar. 

Otherwise, the process would flow towards the minor activity ‘MODELING’, from 

where we arrive at Activity 6 (‘constructing a business coMponent’), through the ‘EFG’ 

synchronization bar. This reflects the situation in which no re-use is realized – we just 

specify a business process (Definition 6) and reflect it into a business coMponent 

(Definition 11).The re-use facilities of SDBC hence relate to Activities 3, 4, and 5. 

As for Activity 3, after it there follows the third decision point (‘model a general 

business coMponent?’). There a decision is to be made on whether a general business 

coMponent is going to be modeled; a general model of a business process is considered 

sufficient for building a general business coMponent. If Yes, Activity 4 (‘modeling a 

general business coMponent’) is reached, leading afterwards to the minor activity 

‘EXTENSION’, from where we arrive at Activity 6 (‘constructing a Business 

CoMponent’), through the ‘EFG’ synchronization bar. Otherwise the ‘CD’ 

synchronization bar is reached. It leads to Activity 5 (‘modeling of a generic Business 

coMponent’). 
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Fig. 5.10. SDBC – activity model. 

As seen from the figure, for modeling such a coMponent, the required input is a 

specification of at least two (seen from the “2” at IN point ‘D’) models of particular 

business processes AND a general business process specification (model). The reason 

is that the generic model would require not only a general specification which captures 

‘core issues’ (derived from a generalized business process model) but also at least two 

particular business process specifications to be related to (at least two) corresponding 

selection options (options to be selected by parameterizing the model); actually, the 

rationale behind using generic modeling patterns (that capture, as discussed already, 

several possible design outputs based on grasped core issues) is that the modeler would 

be able to easily adjust the generic pattern, arriving at either of the optional design 

outputs offered by the pattern. After Activity 5, the process flows towards the minor 
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activity ‘PARAMETERIZATION’, from where we arrive at Activity 6 (‘constructing a 

business coMponent’), through the ‘EFG’ synchronization bar. 

Thus, the ‘EFG’ synchronization bar reflects the three ways of deriving (within 

SDBC) a business coMponent: either without realizing re-use (by reflecting a business 

process model in a business coMponent), or by extending a general business 

coMponent, or by parameterizing a generic business coMponent (see Figure 5.9). 

A constructed business coMponent is then to be reflected in a software specification 

model; hence, we arrive at Activity 7 (‘deriving a software specification model’). A 

sound mapping is to be accomplished allowing for a precise reflection between the two. 

Both the business coMponent and the resulting software specification model should 

undergo at least structural and dynamic validation [54]. This is indicated by the label 

‘validation’, positioned along the line between Activity 6 and Activity 7. 

Regarding the software specification model, as mentioned before, depending on the 

granularity of the source business coMponent, the model could or could not refer to a 

particular software coMponent (Figure 5.7). The question of software granularity is to 

be addressed particularly from the perspective of the software system-to-be. Usually, a 

derived software specification model is to be reflected in more than one software 

coMponents. So, progressing from Activity 7 to Activity 8 (‘elaboration’) comes 

through the minor activity ‘DECOMPOSITION’ (indication of the need to decompose 

the software specification model into more than one software coMponents). However, 

in the cases in which no decomposition would be necessary, the software specification 

model is considered itself being a software coMponent. 

Once identified, a software coMponent needs to be specified in more detail – further 

elicitation should be provided concerning the coMponent’s entities and interactions. So, 

once identified and specified, a software coMponent should undergo elaboration 

(Activity 8). 

And in the end, after a sufficient (see below) number of software coMponents have 

been identified, specified, and elaborated, they should be integrated (Activity 9) in the 

process of specifying the functionality of the software system-to-be. Hence, there is a 

more special relation between Activity 8 and Activity 9; an indication for this is the 

symbol positioned on the line between those activities, showing that many software 

coMponents would be necessary that would represent together a sufficient input for 

specifying a complete model of the software system-to-be. However, it is often not easy 

to provide guidelines on how to decide what particular software coMponents represent 

a sufficient input for specifying the software system-to-be; this decision is often 

subjective and/or intuitive; anyway, we adopt in SDBC the relevant general guidelines 

provided in [5], related to the component-based product-line engineering [4]. 

So, after considering the SDBC activity model, we proceed to the SDBC input/output 

model. It is depicted in Figure 5.11. As seen from the figure, the starting input for 

applying SDBC is any (informal, unstructured) description of the enterprise system to 

be considered (Input 1.1), including domain-imposed requirements possibly 

representing norms [43]. The description might be textual or it might be a graphical 

model, a conversation or any other form. The first activity’s output (Output 1.1) should 

be a structured description of the studied system. This description should thoroughly 

reflect the considered business reality; next to that, the description must be precisely 

delimited, as mentioned before. As seen from the figure, such a structured and delimited 
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description might be stored in a bank (D bank) from where to be usable also in other 

relevant modeling tasks. 
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Fig. 5.11. SDBC – input/output model. 
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Such a description could be used as an input for either Activity 2 (Input 2.1) or 

Activity 3 (Input 3.1) (either for identifying a business process or for building a 

generalized business process model). Building a generalized business process model 

could be done as well based on an identified business process (Input 3.2). An indication 

for this is the line between Activity 2 and Activity 3. 

A generalized business process model could be stored in a bank (P bank) for 

multiple uses. It could also be used as an input for constructing (Activity 4) a general 

business coMponent (Input 4.1). As seen from the figure, general business coMponents 

could also be taken from an external bank (C1 bank) (Input 4.2). A constructed 

general business coMponent could be either stored in a bank – C1 bank (for use in other 

project(s)) or used as an input for the construction (Activity 6) of a business coMponent 

(Input 6.2). As seen from Figure 5.10, this comes through extending the general 

business coMponent. 

Regarding the modeling of a generic business coMponent, it should be based on a 

generalized business process model AND at least two (Figure 5.10) models of 

particular business processes; this concerns Input 5.1, Figure 5.11. Generic business 

coMponents could also be taken from an external bank (C2 bank). As seen from 

Figure 5.11, a constructed generic business coMponent could be either stored in a bank 

(C2 bank) (for use in other project(s)) or used as an input for the construction (Activity 

6) of a business coMponent (Input 6.3). As seen from Figure 5.10, this comes through 

parameterizing the generic business coMponent. And finally, as seen from Figure 5.11, 

the third possible input (Input 6.1) for the construction of a business coMponent is a 

business process model (Output 2.1). 

Deriving a software specification model (from which software coMponents could be 

identified, by applying decomposition, as already mentioned) is based either on a 

business coMponent constructed in the above proposed way (Input 7.1) or on import of 

software coMponents from an external bank (Input 7.2). 

Each of the derived software coMponents should be elaborated (Activity 8; Input 

8.1) in terms of structural, dynamic, and data aspects (in order to bring sufficient 

elicitation for the further software design activities, as already mentioned) and stored 

in a bank (S bank). From there, software coMponents will be taken (Input 9.1) and 

integrated for the purpose of specifying the software system-to-be. 

A specification model of a software system represents the final output (Output 9.1) 

of the SDBC approach. Hence, the end point is reached and this is indicated by labelling 

Activity 9 with ‘end’, as stated already. 

In summary, we have outlined the SDBC approach, by means of the SDBC activity 

model and the SDBC input/output, developed exclusively for that purpose. In the 

following section, we will present the notations to be used for the SDBC modeling itself. 

5.2   SDBC Notations 

SDBC is an approach that has its underlying theoretical roots and also its process 

outline elaborating on what and how to do in implementing the approach – all those 

have already been introduced. 
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Fig. 5.12. SDBC – enterprise modeling notations. 
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Hence, it should be possible to apply any (graphical) notations in realizing SDBC 

modeling as far as they conform to the approach’s underlying concepts. Still, we are 

proposing particular graphical notations for SDBC modeling, making sure (based on 

previous research [54]) that those notations are well aligned with SDBC’s underlying 

concepts and supportive theories. For this reason, we recommend using those notations 

although we do not claim that they are exclusive with regard to the implementation of 

SDBC. 

Since SDBC has two ‘grounding points’, namely enterprise engineering and 

software engineering (see Figure 5.1), we will firstly present in this section several most 

important enterprise-modeling-related notations (Figure 5.12) and then we will present 

several most important software-specification-related notations (Figure 5.13). 

Those notations will be featured in the following chapter, when the SDBC approach 

will be demonstrated by means of a case study and illustrative examples. 

With regards to the enterprise modeling notations, as it is seen from Figure 5.12: 

 The RR (‘RR’ standing for ‘Roles and Relations’) model (or chart) that is 

depicted up-left in the figure, reflects a RELATION between TWO roles 

(meaning role types), assuming that any MORE COMPLEX relation can be 

decomposed in a number of relations that are between two roles. In the chart, 

the two roles are put in boxes and the label of the corresponding relation is put 

in between, while the role pointing to the realization of the relation is underlined. 

For example, if the two roles are ‘expert’ and ‘customer’, and the relation is 

‘realize expertise’, then we should underline the role ‘expert’ because it is the 

expert who realizes the expertise. Finally, each role-to-role relation is given a 

unique code, as it can be seen from the right side of the RR model visualization. 

 The SCI (‘SCI’ standing for ‘Structuring the Customer Information’) model (or 

chart) that is depicted up-right in the figure, assumes an INSTANTIATION with 

regard to the addressed enterprise and elaboration with regard to its structure. In 

the chart, the addressed enterprise is modeled in a rounded rectangle with 

smaller rectangles inside, corresponding to the internal organizational units of 

the enterprise. Outside the rounded rectangle, there are rectangles that 

correspond to the roles (not instantiated) collaborating with the addressed 

enterprise, in general, and to its corresponding internal units – in particular. For 

example, ABO Supermarket in Sofia, has a number of Departments including 

Finance department, Sales department, Marketing department, and so on, while 

at the same time, there are a number of related ABO-external role types, such 

as Customer, Supplier, Insurer, and so on. 

 Those relations (see above) are to be reflected in the end in corresponding 

transactions (see Definition 5) that in turn are modeled using notations as 

presented middle-left in the figure: we have the initiator and the executor put in 

boxes while the transaction itself is modeled as a disk+diamond, conforming to 

enterprise ontology [19]; the small black box in the chart is to indicate who the 

executor is. Further, modeling self-activation is also possible, assuming that the 

initiator and the executor are the same ‘entity’. Finally, zooming-in with regard 

to a transaction is possible, such that all corresponding coordination acts are 

revealed (modeled as a disk+box) as well as the corresponding production act 

(modeled as a diamond+box), with ‘rq’, ‘pm’, ‘st’, and ‘ac’ meaning ‘request’, 

‘promise’, ‘state’, and ‘accept’, respectively. 
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Fig. 5.13. SDBC – software specification notations. 
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 With transactions making up corresponding business processes (see Definition 

6) which in turn are to be also modeled in terms of overall behavior, we need 

appropriate notations and we have opted for the Petri Net (PN) notations [54], 

depicted middle-right in the figure, and allowing for modeling sequential 

behavior, parallel behavior, decision points, and so on, as shown there. 

 Finally, with regard to factual (data) modeling, we have opted for ORM (the 

Object Role Modeling), as presented in [54], that is presented at the bottom of 

the figure. Using ORM notations, one could model (similarly to the RR 

notations) two TYPES of entities/roles and a relation between them. What is 

special about ORM is that it is about POPULATING the model in terms of data 

corresponding to instantiations. For example, if we have the types ‘Professor’ 

and ‘Department’, and the relation ‘works for’, populating the model would 

mean instantiating as follows: Professor John Smith works for the Computer 

Science department, Professor Ben Starkey works for the Physics department, 

Professor George Ashley works for the Chemistry department, and so on. 
 

With regards to the software specification notations, as it is seen from Figure 5.13, 

they are based on UML since the Unified Modeling Language is claimed to be a de 

facto a notation standard with regard to the specification of software [54,74], and in 

particular: 

 The use case diagram is appropriate for capturing the functionality of the 

software system-to be at high level, and for this reason, the system is represented 

as a number of use cases (ovals) in a rectangular area, surrounded by the primary 

actor (the system’s customer) and other stakeholders with related interests. 

There may be relations among use cases or between an actor and a use case – 

those are represented by lines (association symbol), as the figure shows. Finally, 

there are two stereotypes considered, namely ‘include’ and ‘extend’. 

 The UML class diagram is featuring classification and is capable of modeling 

classes (specifying attributes and operations accordingly), aggregation, 

generalization, and so on, as shown in the figure. 

 The UML activity diagram is capable of modeling overall system behaviors, 

having explicit notations that allow to model sequential behavior, parallel 

behavior, decision / join / split patterns, as shown in the figure. 
 

An in the end, it is to be noted that neither the enterprise modeling notations 

considered above (see Figure 5.12) nor the software specification notations considered 

above (see Figure 5.13) reflect exhaustive lists of notations since this is not considered 

necessary. The notations we have presented are possible notations of choice when 

applying SDBC and are expected to ‘cover’ most typical modeling situations. 
 

 

IN SUMMARY, in this chapter, we have presented the SDBC approach, elaborating 

its foundations, outline, and recommended notations. In this way, we have shared our 

ideas on how enterprise engineering and software engineering can be brought together, 

driven by the goal of specifying software. In the following chapter, we will demonstrate 

this, by means of a case study and illustrative examples. 

 

 

 



138 

 

 


