
The Enterprise Engineering Series

Designing
Enterprise
Information
Systems

Boris Shishkov

Merging Enterprise Modeling
and Software Speci� cation

The Enterprise Engineering Series

Series Editors

Jan L. G. Dietz
Henderik A. Proper
José Tribolet

Editorial Board Member

David Aveiro
Terry Halpin
Jan A. P. Hoogervorst
Martin Op’t Land
Robert Pergl
Ronald G. Ross
Robert Winter

https://orcid.org/0000-0001-6453-3648

More information about this series at http://www.springer.com/series/8371

http://www.springer.com/series/8371

Boris Shishkov

Designing
Enterprise
Information
Systems
Merging Enterprise Modeling
and Software Specification

Boris Shishkov
Faculty of Information Sciences
University of Library Studies
and Information Technologies
Sofia, Bulgaria

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Sofia, Bulgaria

Interdisciplinary Institute for Collaboration
and Research on Enterprise Systems and Technology
Sofia, Bulgaria

ISSN 1867-8920 ISSN 1867-8939 (electronic)
The Enterprise Engineering Series
ISBN 978-3-030-22440-0 ISBN 978-3-030-22441-7 (eBook)
https://doi.org/10.1007/978-3-030-22441-7

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-22441-7

Prologue

We arrive at the truth not by the reason only but also by the heart
—Blaise Pascal

I have written this book for:

– Analysts who are interested in the construction and the operation of enterprises.
– Enterprise engineers who are challenged by the needs for adequate models to be

used either as a basis for enterprise engineerings/reengineerings and/or in support
of software specifications.

– IT architects who are inspired to improve the way in which they are specifying
enterprise information systems.

– Software engineers who are aware of the necessity for better establishing the
computation-independent models that concern the software system-to-be.

Even though delivering adequate enterprise models used to be a challenge, the
emerging enterprise engineering discipline and its underlying social theories seem to
be giving a good basis for modeling complex real-life (organizational) processes.
Next to that, software engineering and corresponding computing paradigms have
advanced and represent a good basis for developing software, starting from a
computation-independent model of the software system-to-be. Nevertheless, bring-
ing together enterprise modeling and software specification is still a challenge,
although the enterprise-software gap has been broadly discussed for more than
15 years already. For this reason, it is not surprising that currently many software
projects are reaching failure and/or going overbudget and/or bringing insufficient
satisfaction to users and so on. Hence, the modeling featuring enterprises and their
processes (on the one hand) and the software specifications (on the other hand) need
to be better aligned and considered as one integrated task. Otherwise, computation-
independent software models that lack adequate enterprise modeling background
would keep on leading to the development of software that would only partially fit its
real-life (enterprise) environment. I provide further elaboration and justification
concerning those claims in the following two paragraphs.

v

THE IMPORTANCE OF ENTERPRISE MODELING
For centuries already, business processes of different kinds have been part of our
societies. For decades already, global enterprises have been offering products and
services around the globe. Currently, organizations are experiencing increasing
needs for adequate ENTERPRISE MODELING because of the following:
(1) Often (distributed) organizational processes are becoming too complex to be
grasped intuitively. (2) Change impact analysis is often needed, but it requires
structured enterprise data as input. (3) Enterprise innovations are considered of
key importance for gaining competitive advantages, but this would often assume
enterprise reengineering activities that in turn “ask” for legacy models and
corresponding information. (4) Introducing new technology and/or accommodating
automations can only be really successful if the technology is well aligned with the
original business processes; this in turn can only be possible if we are able to
adequately describe and model those processes, such that we know the “design
restrictions” with regard to the introduced technology. Those are only four claims
justifying the importance of enterprise modeling; I can provide even more justifica-
tion in that direction. Nevertheless, we observe insufficient maturity as it concerns
enterprise modeling: (a) Many analysts conduct intuitive enterprise modeling that is
not scientifically justified—this often leads to modeling of low quality. (b) They
often fail to be exhaustive in their modeling—some of them would only focus on
modeling behavior and others would only focus on modeling data, and so
on. (c) Some analysts would mix up essential business things (e.g., John paid for
his service subscription) with information exchange that is not featuring essential
business things (e.g., John entered his PIN incorrectly while using an ATM).
(d) Other analysts would be unaware of the importance of communicative acts in
real-life communication, through which commitments are generated, that are in turn
crucially important with respect to the processes within an organization. (e) Many
analysts would overlook regulations and public values as key restrictors with regard
to the functioning of an organization. Hence, a sound and exhaustive conceptual
reference is needed and the emerging ENTERPRISE ENGINEERING discipline is
expected to be the solution.

USINGENTERPRISEMODELSASABASIS INGENERATINGSOFTWARE
SPECIFICATIONS
Businesses changed when computers first appeared on the scene and enterprises had
to accommodate (partial) automation of their business processes. Businesses
changed again when web services and cloud infrastructures appeared, and enter-
prises faced the challenge of making (some) internal business processes external.
Nothing was the same anymore—two “worlds” emerged: the domain experts,
“playing on the enterprise field,” and the technical experts, “playing on the software
field.” Nevertheless, more than 15 years of discussions (as mentioned above)
featuring the mismatch between enterprise modeling and software design did not
help—the two “worlds” are still separated. The hopes for changes are justified by the
rapid enterprise-technological developments (see the beginning of the current para-
graph) and it is expected that it will be those developments that would make the

vi Prologue

abovementioned mismatch socially unacceptable anymore. Said otherwise, the
abovementioned developments have been justifying more and more the necessity
for bringing together enterprise modeling and software specification since a domain
(enterprise) expert alone is insufficiently capable of grasping the technical complex-
ity of the enterprise’s IT system and its reach outside through software services,
while a software engineer would only have superficial enterprise-specific domain
knowledge. What complicates things further is that software engineering and the
emerging enterprise engineering discipline have developed separately. Most enter-
prise modelers would not “step in the shoes” of software designers, while most
software engineers would not “broaden their horizon” beyond the software artifact
being developed—even the computation-independent modeling of MDA (model-
driven architecture) is just about the software system-to-be. Anything outside it
would often be considered by software engineers as an “abstract environment,”
and the only thing to do about it is specifying “interfaces.”Many software engineers
would be insufficiently focused on questions, such as: What is the construction of the
broader enterprise environment? How can the software system under development
be adaptable with regard to possible environmental changes? How can the software
system-to-be achieve user-perceived effectiveness? How can the software system-to-
be be adequately aligned with the enterprise norms and broader societal regulations?
How can human responsibility and authority be aligned to what the software system-
to-be actually does? How can public values (such as privacy, accountability, and
transparency) be properly “translated” into (software) requirements? The lack of
adequate “answers” to those questions justifies the claim that the alignment between
enterprise modeling and software specification is still uncertain, and this in turn often
leads to enterprise information systems of low quality—software applications and
information systems are not as effective as they should be; this leads to software
failures as mentioned above. It is therefore not surprising that the latest technological
innovations (e.g., innovations concerning Internet-of-things and machine learning)
are only partially “brought” to enterprises via software applications. I argue that only
the ENTERPRISE-MODELING-DRIVEN SOFTWARE GENERATION could be
the solution as it concerns the mismatch between enterprise engineering and soft-
ware design.

Bridging that gap is thus considered important as it concerns enterprise informa-
tion systems, inspiring me to propose a modeling approach. For this reason, on the
one hand, the proposed approach steps on a conceptual invariance (embracing
concepts whose essence goes beyond the barriers between social and technical
disciplines), while, on the other hand, the approach builds upon that “common
ground” to accommodate a modeling duality featuring (1) technology-independent
enterprise modeling that is rooted in social theories and (2) software specifications
that are rooted in computing paradigms. On top of that, the approach’s guidelines
and related notations further grease such an enterprise-software modeling by facil-
itating modeling generations and transformations: starting from unstructured busi-
ness information, coming through enterprise models, and reaching as far as the
specification of software. The alignment between enterprise modeling and software
specification is realized in a component-based way, featuring a potential re-use of

Prologue vii

modeling constructs, such that the modeling effectiveness and efficiency are stimu-
lated. Finally, I provide a case study and illustrative examples for the sake of
“grounding” my studies and demonstrating some strengths and limitations of the
proposed modeling approach.

Nevertheless, this book is not about the approach itself. This book is about
bringing together enterprise modeling and software specification (maybe also by
using another approach and/or other notations) such that an enterprise-modeling-
driven software generation is achieved. Even though the book is supposed to be
telling you how to sort this out, it does not give you an “A to Z” recipe as in cooking.
Instead, it raises awareness and provides directions. I have stressed upon the
mismatch between enterprise modeling and software design, and I have proposed
solution directions accordingly, featuring on the one hand a conceptual invariance
and on the other hand a modeling duality (see above). I believe that reading this book
will inspire thoughts and ideas that are useful as it concerns YOUR way of analyzing
enterprises and/or YOUR way of specifying software. Hence, I have not only
presented social theories (Chap. 4) and computing paradigms (Chap. 5), but I have
also introduced a common conceptual background for them, touching upon sys-
temics (Chap. 2) on the one hand and context-awareness (Chap. 3) on the other hand.
Further, by introducing (in Chap. 6) an approach (see above), namely the SDBC
approach, and by considering accordingly a case study and illustrative examples, I
have brought forward some justification on the adequacy and feasibility of merging
enterprise engineering and software engineering. It is up to you to reflect those ideas,
guidelines, and examples in your work, such that you usefully enrich the approaches
you follow as it concerns enterprise modeling and/or software specification.

As it concerns readability, I have emphasized issues through various fonts
and styles, for example: <Courier New 9 Points, bold>emphasis</Courier
New 9 Points, bold>, <bold>emphasis</bold>, <underlined>emphasis</
underlined>, <uppercase>emphasis</uppercase>, and so on. This allows me to
emphasize in different “levels” distinguishing, for example, between different parts,
then between key issues concerning each of the parts, then between different
concepts considered accordingly, and so on.

This book is based on my previous book Enterprise Information Systems - A
Modeling Approach which was published in 2017 but has never been really distrib-
uted and is no longer available. Even though the current book is essentially based on
the 2017 book, it also contains new and reworked material, and is the only one that
now counts as a summary of my work over the last years.

Anyway, more effort is still needed as concerns the mismatch between enterprise
modeling and software design—this has been a challenge for many years already
(as mentioned above), and bridging that gap is not just a matter of innovative ideas
but also of changing attitudes. This challenge is of an interdisciplinary essence and it
needs bringing together enterprise engineers and software developers, inspiring them
to join interdisciplinary projects and discussions. I believe that the current book
represents a small contribution in that direction. Hopefully, such efforts would be
embraced by relevant communities and adequate solutions would be materialized. If
you want to join activities in that direction, visit the website www.is-bmsd.org

viii Prologue

http://www.is-bmsd.org

featuring BMSD—the international symposium on business modeling and software
design.

In carrying out those studies, I have been inspired by joint work and collabora-
tions with my colleagues from Delft University of Technology, the University of
Twente, the University of Reading, and IICREST, to whom I am happy and honored
to extend my gratitude and compliments. Further, I am privileged as well to be
leading for 9 years already (as General Chair + Program Chair) the prestigious
BMSD symposium (see above), whose community’s feedback is always so stimu-
lating. Finally, I dedicate this book to the memory of my father, Blagovest; it is really
special to me that it would have been my dad’s 82nd birthday today. He used to be a
wonderful father and a brilliant scientist, always inspiring!

I hope you will find the current book interesting and will consider it a helpful
reference with regard to enterprise information systems.

Sofia, Bulgaria Boris Shishkov
6 April 2019

Prologue ix

Contents

1 Introduction . 1
1.1 Retrospection . 3
1.2 Enterprise Engineering (EE), Software Engineering (SE) 6
1.3 Challenges . 8
1.4 Enterprise Information Systems (EIS) . 12
1.5 Essential Concepts . 17
1.6 The Modeling Approach . 19
1.7 Outlook . 22
References . 22

2 Systems . 27
2.1 The System Concept . 28
2.2 Enterprise Systems . 30
2.3 Enterprise Information Systems . 38
2.4 Ontological Systems and Function . 44

2.4.1 Construction vs. Function . 46
2.5 Normalized Systems . 48
References . 50

3 System Environment and Context-Awareness 53
3.1 System Behavior Perspectives . 54

3.1.1 Self-Managing Context-Aware Systems (SMCAS) 54
3.1.2 User-Driven Context-Aware Systems (UDCAS) 55
3.1.3 Value-Sensitive Context-Aware Systems (VSCAS) 57

3.2 Context-Awareness . 58
3.3 Context-Aware Applications . 60
3.4 Context Analysis, Context States, Occurrence Probabilities,

and Context Parameters . 68
3.5 Context-Awareness and Classification . 74
References . 77

xi

4 Social Theories . 79
4.1 Human Relativism and TOA . 81

4.1.1 Human Relativism . 82
4.1.2 TOA . 84

4.2 LAP and Enterprise Ontology . 85
4.2.1 LAP . 86
4.2.2 Enterprise Ontology . 90

4.3 Organizational Semiotics . 100
4.3.1 Semantic Analysis . 101
4.3.2 Norm Analysis . 102

References . 104

5 Computing Paradigms . 107
5.1 Component-Based Development . 113

5.1.1 Component Implementation Models 117
5.1.2 Component-Based Development Methods 119

5.2 Service-Oriented Architecture . 123
5.2.1 SOA Foundations . 124
5.2.2 Web Services . 130

5.3 Model-Driven Engineering . 132
5.3.1 Model-Driven Architecture . 134
5.3.2 Meta-Object Facility . 136

5.4 Cloud Computing . 137
5.5 Aspect-Oriented Software Development 139
References . 141

6 The SDBC Approach . 143
6.1 Outline and Concepts . 144
6.2 Elaboration . 148
6.3 The SDBC Design Process . 161
6.4 The SDBC Notations . 168
References . 172

7 Case Study and Examples . 175
7.1 Background . 176
7.2 Icomp . 178
7.3 Applying SDBC . 180

7.3.1 From the Case Information to Business CoMponents 180
7.3.2 Elaborating a Business CoMponent 196
7.3.3 Towards Software Specification 215

7.4 Enabling Service Orientation . 222
7.5 Other Examples . 227

7.5.1 The eVoting Example . 228
7.5.2 The Border Security Example . 231

References . 234

xii Contents

Chapter 1
Introduction

How did enterprises look 40–50 years ago today? What were then the rudimentary
business process automations [1] and how is this different from the current business
process automations that go beyond conventional data manipulation and record-
keeping activities [2]? How did enterprises exchange information then, not counting
on the global telecommunications and the digital multimedia [3] and what are the
differences now when a cell phone alone seems to be capable of supporting video
communication, answering complex questions, and providing satellite navigation
[4]? Was it possible then (without web services [5] and cloud infrastructures [6]) for
associations between different enterprises to combine manufacturing, assembly,
wholesale distribution, and retail sales in what is currently called business process
externalization [7]? Were software technologists able then to develop really adapt-
able information systems [8], not counting on sensor technology [9]? We argue that
answering those questions would bring us to the conclusion that over the past several
decades enterprises have been shifting to experience a growing dependency on ICT
(Information and Communication Technology) [10]. For this reason, it is
not surprising that SE (Software Engineering) [11] gets increasingly relevant
with regard to enterprise developments. Hence, even though EE (Enterprise
Engineering) [12] and SE have developed separately as disciplines, it is cur-
rently important to bring together enterprise modeling and software specification;
we argue that this would allow enterprises to adequately utilize current technology.

There have always been business activities—from ancient times [13] to the
present day [14]. Referring to the observations and conclusions presented above, it
is interesting to particularly consider those business activities whose realization
requires ICT, pointing to technical developments that had originated in the previous
century, when computers first appeared on the scene [15]. Hence, for around
50 years already, we have enjoyed business activities of another kind—business
activities that are supported by ICT (we call them ICT-supported business activities).
Finally, it is interesting to discuss how has technology (and ICT, in particular)
changed over the past 50 years when we have reached as far as business activities
that are essentially driven by ICT (we call them ICT-enabled business activities).

© Springer Nature Switzerland AG 2020
B. Shishkov, Designing Enterprise Information Systems, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-22441-7_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22441-7_1&domain=pdf

Hence, we call “traditional business activities” those business activities that are
neither ICT-supported nor ICT-enabled. For instance:

• Business activities such as paid consultancy (we mean the mere intellectual work
on delivering an advice) and haircut delivery (we mean the mere physical
trimming of the customer’s hair) are examples for traditional business activi-
ties—(i).

• Business activities such as the delivery of automated brokerage instructions and
the delivery of automatically generated documents are examples for ICT-
supported business activities—(ii).

• Business activities such as web trading and e-transportation (using unmanned
ground/aerial vehicles [16]) are examples for ICT-enabled business activities—
(iii).

As illustrated in Fig. 1.1, it is only for several decades that ICT-supported/enabled
business activities have been possible. Hence, this is a matter of emerging knowl-
edge, new disciplines, and ongoing technical and technological developments that
all concern what we label as EIS—Enterprise Information Systems
[17]. Further, the rectangles that are next to the labels “(ii)” and “(iii)” are colored
in gray to indicate that the current book’s EIS focus is dominated by the consider-
ation of ICT-supported business activities and ICT-enabled business activities.
Nevertheless, (i) should not be ignored because traditional business activities con-
cern the broader real-life environment in which enterprises and EIS are to operate.
Still, it is for sure that the EIS developments should assume bringing together past
and emerging knowledge and best practices. Finally, we argue that no matter if we
are considering (ii) or (iii), it is essential bringing together EE and SE. This is
obvious for (iii) when ICT (software)-driven activities would have to be given a
business realization and not so obvious for (ii) where it may seem that SE only would
be relevant to the process automation challenge; we claim however that automated
processes need to be perfectly aligned and integrated with the other business
processes (otherwise, the enterprise would not be a coherent whole), and this
could only be achieved if EE and SE are brought together.

time1919 20191519

(i)

(ii)

(iii)

Fig. 1.1 Business activities over time

2 1 Introduction

The remaining of the current chapter is organized as follows: In Sect. 1.1, we
provide an analysis of the technological progress over time, as a justification for the
importance of ICT as one of the foundations of the currently evolving EIS discipline.
In Sect. 1.2, we consider the public drive towards bringing together EE and SE for
the sake of an adequate utilization of current technology by enterprises. Several
identified important challenges relevant to the EE–SE merging are presented and
discussed in Sect. 1.3. The abovementioned EIS discipline is introduced and
discussed in Sect. 1.4, while corresponding essential concepts are presented in
Sect. 1.5. In Sect. 1.6, we bring forward a modeling perspective over EIS that is
dominant within the current book. Finally, Sect. 1.7 is featuring an outlook with
regard to the remainder of the book.

1.1 Retrospection

Even though more than 500 years back from now Leonardo da Vinci and Michel-
angelo have inspired amazing achievements in civil engineering, mechanical engi-
neering, and architectural engineering [18, 19], it is the eighteenth century that marks
the beginning of industrialization and corresponding enterprise developments
[20]. Crucial in this regard was the Industrial Revolution (IR) marked by key
inventions and developments, such as the spinning jenny, the power loom, the
steam engine, and the internal combustion engine [21]. The period up to the
twentieth century was also marked by other key developments: the invention of
the telegraph and the invention of the telephone [22]; also the electric power was
introduced [23]. Next to that, it was at the end of the nineteenth century when the first
automobile was created [24]; nevertheless, it was only at the beginning of the
twentieth century when cars had become widely popular (mainly in Europe and
USA), inspired by the affordable Ford Model T that was characterized by efficient
fabrication, including assembly line production instead of individual hand crafting
[25]. This was followed by impressive industrial developments in the USA, marked
by the “Rockefeller Era” when oil was used throughout the country as a light source
until the introduction of electricity and as a car fuel [26]. This has boosted the
railroad industry with trains transporting oil around the country. Both auto trans-
portation and rail transportation have inspired infrastructure developments that in
turn have opened up new horizons for enterprise developments [27]. In parallel, the
first radio has appeared, changing everything with intangible signals being trans-
mitted through the air over long distances, this giving birth to telecommunications
and electronics [28]. All those developments have led to an apogee—the first
television coming out in the 1920s [29]. This was the time when nothing was the
same anymore because businesses were no longer physically restricted in the
distribution of immaterial products, such as commercial music and movies—they
could instantly reach many audiences all around the globe; this has boosted market-
ing, advertising, and mass media [30]. Even though those huge developments were
“used” in the Second World War, they were also used in the postwar period,

1.1 Retrospection 3

inspiring the quick recovery of Europe [31]. Emblematic in this regard is The Beatles
phenomenon, demonstrating for the first time how talented musicians can de facto
“reach”millions of neighborhoods on the planet through television and radio (next to
the records distribution channel), challenging as “industry” any other form of
business established by then [32]. This power was mainly associated with the
television communication channel and with the essence of the product—songs: a
song is dominated by the power of creativity (no matter if it is authored by Mozart
[33] or John Lennon [34]); still, in the 1960s, The Beatles were empowered by
technology to transmit their songs as “information” in an effective and efficient
manner, such that millions of people would be able to hear The Beatles’ new song
minutes after its release. Nevertheless, even though amazing, that post-IR progress
was limited with its assuming only the production and distribution of material and
immaterial goods. What about virtual communities, remote activities, real-time
global collaborations, and artificial agents? They were impossible in the 1960s.
Mankind required new developments and the Digital Era began with advancement
of technology from analog electronic and mechanical devices to digital
electronics [35].

Hence, businesses changed when computers firstly appeared on the scene and
enterprises had the chance to accommodate (partial) automation of their business
processes; mainframe computers were used in enterprises, representing large-scale
systems designed for processing and storing huge amounts of data [1]. For example,
such computers could facilitate logistically warehouses and inventory, by controlling
supplies and orders. Being computationally powerful, mainframe computers were
used for data processing. Next to that, they were enabling trans-manipulators to
effectively realize automated warehouse operations [36]. Nevertheless, it was only
possible for larger enterprises to purchase and maintain mainframe machines, and it
was the appearance of smaller ones in the early 1970s that has made computers really
popular. It was firstly the office/bookkeeping computer the size of a table that has
brought real benefits to small and medium-sized enterprises; it was possible to easily
connect such a computer to a printer. This could be of much help to the administra-
tive facilitation of businesses. For example, using an invoicing program, one would
manually enter order header data, a customer number, and order line data (item
number—quantity—unit price) to produce a paper invoice. Master data for the
customers and items were retrieved from a mini-cassette tape. Saving administrative
work and reducing the risk of errors were among the benefits from using such
computers. Nevertheless, memory technologies were yet insufficiently mature and
this was a drawback, with such computers counting on a working memory of 6 kB or
less, with the option to use the mini-cassette drive for external memory (disk storage
was rarely an affordable option for those computers). Later, floppy disks (360 kB
storage capacity) were an affordable option for external data storage as well as hard
disks (up to 20 MB storage capacity); in the late 1980s, hard disks of much greater
storage capacity (of several hundred MB) were an affordable option. Still up to the
1980s, computers had a limited impact—they have only been facilitating data
processing and enabling rudimentary automations [15].

4 1 Introduction

It was during the 1980s when something crucially important has happened: The
Advanced Research Projects Agency Network (ARPANET) adopted TCP (Transmis-
sion Control Protocol)/IP (Internet Protocol) as a suite of communication protocols
used to interconnect network devices, and this has de facto introduced:

• Internet as a loose confederation of independent yet interconnected networks that
use the TCP/IP protocols for communications.

• The Client-Server Communication that enables client (computer) devices to
communicate via Internet with a server computer (examples of computer appli-
cations that use the client-server model are e-mail, network printing, and the
World Wide Web) [37].

That is how computers have become powerfully enriched from a networking
perspective. This has further increased the popularity of the computers of that time
(the desktop personal computer and the laptop) through which people were benefit-
ting from:

• The global telecommunications.
• The digital multimedia [10].

This has led to significant societal changes, as acknowledged by the Interdisci-
plinary Institute for Collaboration and Research on Enterprise Systems and Tech-
nology (IICREST) [38]:

• Enabling scientists to carry out remote experiments, accessing and manipulating
lab facilities from a distance.

• Making it possible for many workers to work from home, using connected
computers and exchanging work results via Internet.

• Allowing people who are not physically together to carry out virtual video
“meetings.”

Those changes have led to an increased importance of the service sector in
industrialized economies, with an emphasis on IT-enabled services. This brings us
to the current years.

Hence, businesses changed again when web services and cloud infrastructures
appeared and enterprises faced the challenge of making (some) internal business
processes external, as already mentioned.

Current web services with their underlying ICT components count on advanced
context-aware ICT applications that adapt their operation to context changes,
achieving accordingly (1) optimization of their internal processes, (2) maximization
of the user-perceived effectiveness, and (3) conformance to relevant public values
[39]. Nevertheless, the levels of trust are insufficient with regard to the
corresponding enabling environments and this has inspired solutions related to
blockchain technology that allows for trusted data exchange [40].

Our conclusion is that even though in the past it was possible to separate ICT
(software) activities from the other activities concerning an enterprise, this is not
possible anymore because many enterprise processes are already essentially enabled
by software. For this reason, at the beginning of the twenty-first century, it is demanded
that EE and SE are brought together; this will be the focus of the following section.

1.1 Retrospection 5

1.2 Enterprise Engineering (EE), Software Engineering (SE)

Numerous researchers and practitioners are currently inspired by the goal of pro-
posing innovative ideas and solutions about a better utilization of advanced ICT by
enterprises. That goal is reflected in the evolution of business processes: Considered
as an essential enterprise asset, business processes used to receive much attention,
for the sake of improving the enterprise performance, decreasing the enterprise costs,
increasing the satisfaction of customers, and so on. Hence, it was (and it is) widely
agreed that by improving business processes, enterprises could substantially increase
their value. Many years ago, improving business processes was a matter just of
enterprise engineering—then the big challenge was how to organize ordering,
accounting, shipping, etc., such that all the different tasks are in synch while the
business processes are as simple as possible, leading to effectiveness and efficiency
in serving the customer. Nevertheless, changes in business processes came when
computers first appeared on the scene and it was possible to replace paper streams
by databases, to re-use content, and to quickly find needed information, as discussed
already—then the big challenge already was how to make better use of computers
that are in turn heavily dependent on corresponding software: this was a matter also
of software engineering (next to enterprise engineering). Hence, enterprise engi-
neering and software engineering had to be brought together [41]. However, those
two disciplines had developed separately because the so-called “computerization”
was simply about automation—the same tasks realized by human entities had to be
“given” to computers. Automation indeed allowed many companies to tremendously
bring down their workforce but the quality of the IT support delivered to enterprises
used to be low exactly because of the mentioned “separation”: Enterprise engineers
would only superficially redesign their business processes (when bringing in com-
puters) because they lacked deep IT knowledge, while software engineers would
only partially respond to the original business requirements because they lacked
deep domain knowledge. This was labelled as a “mismatch (or gap) between
enterprise modeling and software design” [17]. Since the new millennium, we
have been witnessing more and more efforts directed towards bringing together
EE and SE, for the sake of bridging the abovementioned gap. This would mean de
facto bringing together:

(a) Social theories, such as enterprise ontology, organizational semiotics, theory of
organized activity, etc. (see Chap. 4).

(b) Computing paradigms, such as component-based software development, ser-
vice-oriented computing, model-driven engineering, etc. (see Chap. 5).

However, this appeared to be a nontrivial task because:

• Within the scope of enterprise engineering, as according to [12], used to be the
creation of enterprise models capable of usefully restricting the software system-
to-be, but this only reached the level of software functionality specification,

6 1 Introduction

leaving ambiguity with regard to the implementation choices, platform choices,
networking choices, and their impact with regard to the business processes.

• Within the scope of software engineering, as according to [42], used to be the
development of software, based on computation-independent models and/or the
composition of software services (considered at high level and pointing to
underlying technical complexity), but all those issues stemmed from a view on
the software itself, not assuming an enterprise-modeling-driven derivation of
software.

Hence, not bridging that gap has led and is currently leading to failures of many
software projects as well as to projects going over budget, and we often observe
evidence of low levels of customer satisfaction with regard to software applications
and/or (enterprise) information systems [17].

Further, the abovementioned gap is pointing not only at the creation of software
as a way of allowing enterprises to utilize advanced IT but also at the integration of
already created (legacy) IT systems in enterprises. We observe that many software
systems being developed need to be adequately integrated in a (new) enterprise
context and sometimes already running software applications are “part” of that
enterprise context. For this reason, it is essential to have alignment and traceability
between the enterprise level and the software level, and therefore it seems logical to
try to identify enterprise systems and software systems and bridge the two on that
basis [41]. As is well-known, when speaking of a system, we are interested in what
the system components are (composition), how they are related to each other
(structure), how they are related to the environment, and what the principles are
that guide the system evolution. We need an integrated view of the system under
consideration and for an enterprise this would point at a coherent whole of princi-
ples, methods, and models that are used in the design and realization of the
enterprise’s structure, processes, (possibly) information systems, and infrastructure.
Even though structure, processes, and data are essential for software development
as well, more complexities occur when developing software (coming through anal-
ysis, design, and implementation)—what lags behind is managing system complex-
ity expressed in terms of dependencies between system elements. Finally, current
enterprises and software applications both need to be adaptable because of the
constantly changing real-life environment to which they should conform [17].

This all inspires us to pose several research goals (see below) that are about
enabling developers both conceptually and methodologically:

• Identifying the enterprise system(s) and/or the software system(s) to be
considered.

• Building aspect models accordingly, including models that reflect structure,
processes, data, and so on.

• Establishing inter-model consistency.
• Capturing the granularity levels that feature the enterprise models and the

(corresponding) software models, acknowledging that it is possible that the
particular enterprise models and software models point at different levels of
granularity.

1.2 Enterprise Engineering (EE), Software Engineering (SE) 7

• Establishing alignment and traceability between enterprise models and
corresponding software models.

• Addressing possible dependencies between system elements.
• Allowing for ways to model adaptability.

In the following chapters, we address those goals, also acknowledging their
relevance to several essential challenges (presented in the following section) as
considered in [17].

1.3 Challenges

EE and SE would assume applying different viewpoints not only to each of them but
also to both of them; achieving an overall consistency is hence an important
challenge. Further, it is challenging to consider data accordingly since to date EE
and SE are both counting on data analytics as an important input. Finally, adapt-
ability is considered to be crucially important for any enterprise and also for any ICT
application because currently it is often that environments are much dynamic and
different environmental states require different enterprise/software behaviors.

Design-wise, we have identified two key challenges, namely, (1) achieving
re-use of modeling/design artifacts, as a way of stimulating engineering effective-
ness and efficiency and (2) sticking to service orientation as a design choice that is
considered adequate with regard to the current user demands for flexible,
composable, and service-driven enterprise/ICT solutions.

Fig. 1.2 EE-SE challenges

8 1 Introduction

Those five challenges (presented and discussed further in the current section) are
illustrated in Fig. 1.2, suggesting that each of them is important by itself but it is also
important that they are considered together in their interrelationship.

Modeling Viewpoints and Overall Consistency Applying a modeling approach in
closing the EE–SE gap would assume establishing a common enterprise-software
conceptual foundation; abstract models can essentially capture entities, processes,
and regulations, no matter if this concerns software or an enterprise (this would mean
emphasizing the similarities between enterprise systems and software systems,
despite their specific differences). Such a common foundation would be useful in
achieving enterprise-software alignment and traceability because enterprise models
and software models would be “written in the same language.” Nevertheless,
challenges would be popping up, related to the numerous enterprise-software-
modeling perspectives (viewpoints): (1) No matter if one would model an
enterprise or software, one would need to be able to model structure, dynamics,
and data and still keep all as a coherent whole; modeling structure with no grasp on
behavioral aspects or modeling behavior with no grasp on data issues (for example)
would be of limited use. (2) In considering enterprise information systems, one
would face the specific EE vs. SE viewpoints (even if enterprise models and software
models would be “written in the same language,” there would be issues that are
enterprise-specific and issues that are software-specific), needing nevertheless to
keep the software under development consistent with its surrounding enterprise
environment. (3) In modeling an enterprise/software system, one may take a
black-box (functional) or a white-box (operational) perspective (this will be
discussed further in the current chapter), but it is necessary to keep the white-box
models consistent with regard to the corresponding black-box models. (4) In spec-
ifying a context-aware enterprise information system, one should decide whether
this is about a context-driven optimization of system-internal processes or about a
context-driven maximization of the user-perceived effectiveness; hence, balancing
between the (software) system perspective and the user perspective is required.
(5) In specifying software, one may need to weave in public values (such as privacy,
transparency, accountability, and so on) that are essentially non-functional (hence,
assuming a non-functional perspective) but they need to be operationalized (hence,
assuming a functional perspective), in order to be actually reflected in the system’s
functionality. Thus, we have many MODELING VIEWPOINTS and we need an
OVERALL CONSISTENCY in order to be able to effectively bring together enter-
prise modeling (which is mainly rooted in social theories) and software specification
(which is mainly rooted in computing paradigms), such that the specification of
software is properly restricted by corresponding enterprise models. We argue that
only then it would be possible to develop software that adequately meets the original
business requirements. For this reason, consistency is to be aimed not only within a
system (among the different aspect models characterizing the system under study)
but also across systems (in our case—between the enterprise models and their
corresponding software models).

1.3 Challenges 9

Integrating Data Analytics in Enterprise Modeling and Software
Development Current information system development assumes an increasing
importance of data analytics. With regard to enterprise modeling and software
specification, data has always been important both functionally and
non-functionally: at design time, statistical data may help building “realistic”
models, while at run time, “incoming” environmental data may help adapting the
system behavior accordingly. Nevertheless, it is a question what makes difference
today, compared to several years ago. Why is data science so increasingly popular to
date? Is a reason for that the current abundance of (sensor) data showering us every
day, and if yes, how are we coping with this abundance—distinguishing between the
really useful data and the data that may be ignored? Further, it is important to know
how we translate low-level (sensor) data into higher-level information that is a basis
for reasoning and as well how we know which data to trust. Currently, those
questions are even more important than in the past [17]. The integration of data
analytics in enterprise modeling and software development is hence not only about
establishing the context situation or providing a statistical data modeling back-
ground, but it is also about other issues, such as quality of data, occurrence
probabilities, data formats, and so on. Hence, in aligning enterprise modeling and
software specification, it is important to take those issues into account.

Supporting Adaptability When developing an information system, we usually aim
at making it adaptable with regard to environmental changes. At the same time,
there are restrictions which are twofold: (1) the system behavior “patterns” through
which adaptability would be realized need to be foreseen and “prepared” at design
time and (2) environmental changes are not always trivial to “sense”; hence, it is
important to know to what and how an information system should adapt and also if
this is concerned with predefined (at design time) scenarios and/or with the run-time
(intelligent) behavior of the information system. Further, if we assume that adapting
means adjusting behavior to a changing environment, it would be interesting to also
consider how we capture those changes (probably through sensors) and how we
process and interpret this information (see above). Finally, all those issues point to
context-awareness, assuming that the system “switches” to a particular
behavior variant based on the appearance of a particular context state. Thus,
context-awareness (i.e., explicitly addressed in Chap. 3) is to be considered in the
enterprise perspective, in the software perspective, and also with regard to the
alignment between enterprise modeling and software specification.

Considering Re-use in Modeling It is widely agreed that if possible modeling
should be based on re-usable modeling building blocks, such that the
modeling itself is more effective and efficient [41]. For this reason, in aligning
enterprise modeling and software specification, it would be useful to identify
enterprise modeling building blocks and consider corresponding mappings towards
software models—this would allow for bridging the abovementioned gap in a

10 1 Introduction

component-based way. Nevertheless, it is a question how to methodologically
identify enterprise modeling building blocks and reflect them in corresponding
software components, as it will be further discussed in the current book. Also,
exhaustive guidelines are needed on how to realize this, taking into account gran-
ularity concerns, traceability concerns, and re-use concerns. Further, a shift to
service-based systems (to be explicitly addressed in the following paragraph) is
often the case since currently more and more ICT applications provide support to
their users through web services (running software instances), as will be discussed in
Chap. 5. This in turn leads to questions because developers are often with limited or
no control over the software components that are “underlying” with regard to the
web services that are used (composed); but still developers should keep the ICT
applications (that may be (partially) based on such web services) aligned with
corresponding enterprise models. Hence, those concerns need to be reflected in the
way we look at the enterprise-software relationship: enterprise modeling building
blocks would be related to corresponding models featuring software components
that may in turn be related to corresponding web service models. Thus we argue that
aligning enterprise modeling and software specification in a component-based way
is a key challenge with regard to the goal of effective software development.

Enabling Service Orientation As mentioned above, it is often that customers
utilize Information Technology—IT / software, by composing web services
(or services, for short)—this allows for letting the users consider services at
high level, not being burdened by their underlying technical complexity, while at the
same time, developers consider the corresponding software components (which are
running the services). That is how services relate to both enterprise engineering and
software specification. For this reason, in aligning enterprise modeling and software
specification, it is important to assume the possibility that the resulting software
would be service-oriented and if necessary carry out redesigns accordingly.

As studied in [17], those five challenges are of key relevance to the goals
presented at the end of the previous section. Nevertheless, just formulating and
discussing those challenges would be of limited use without more thorough theoret-
ical studies and corresponding methodological proposals. For this reason, further on
in this book, we will consider concepts and theories, and we will also propose
methodological solutions.

Finally, those goals, the five challenges and the two above considered disciplines
(EE and SE), are all “intersecting” somewhere “on the territory” of an emerging
discipline, labelled “EIS—Enterprise Information Systems” (Fig. 1.3); see the fol-
lowing section.

1.3 Challenges 11

1.4 Enterprise Information Systems (EIS)

As it is seen from Fig. 1.3, there are labels pointing at different relevant disciplines or
areas—some more widely accepted than others. Still, questions arise in this regard:

– Is “computer science” covering only software-development-related issues or also
enterprise modeling that may be relevant to the software development?

– What is the difference between “computer science” and “data science,” and is
“computer science” not covering data analytics or is “data science” focused on
data aspects only, not touching upon other related issues [43]?

– Should we consider “requirements engineering” as a part of “enterprise engineer-
ing” if we stress upon the original business requirements or should we consider
“requirements engineering” as a part of “software engineering” if we stress upon
the user-defined technical requirements that straightforwardly concern the spec-
ification of software [44]?

– Is “cloud computing” only about the utilization of cloud resources or is it also
about the software-related issues concerning this [45]?

– Is the label “management information system” referring to the management of
information systems, assuming a technical-independent view [35]?

Those are just some of the questions concerning those labels and inspiring a
discussion on how to position and label our work whose focus is on enterprises and
the software support they are utilizing. We realize that there are two disciplines
essentially underlying the issues discussed above:

• ENTERPRISE ENGINEERING.
• SOFTWARE ENGINEERING.

Enterprise engineering: It is about analyzing, modeling, and (re)designing
an enterprise without considering anything in a technology-specific perspective.
Said otherwise, we are interested in the entities (observed within the enterprise
under study), their relations, and corresponding processes, no matter if the entities
are human beings or technical devices (we may consider technical devices but we
abstract from their internal technical complexity).

12 1 Introduction

Software engineering: Firstly, it should have a focus—there may be software
developed for cars or software developed for hospital equipment or software
embedded in devices and so on; we particularly focus on enterprise software.
Further, the software engineering scope is the software system-to-be. Finally, with
regard to the software system-to-be, we take a technology-specific perspective.
Said otherwise, we are interested in the technical complexity inside the software
system-to-be.

Our bringing together enterprise engineering and software engineering would point
at what we label as:

Fig. 1.3 Labels of disciplines and areas (©2017, The Author, reprinted with permission)

1.4 Enterprise Information Systems (EIS) 13

E N T E R P R I S E I N F O R M A T I O N S Y S T E M S.

We therefore make a clear distinction between issues that concern the enterprise-
engineering aspects of Enterprise Information Systems (EIS) and issues that concern
the software-engineering aspects of such systems. For this reason, any relevant
discipline or area of interest, as the ones presented in Fig. 1.3, is to be “positioned”
with regard to either enterprise engineering or software engineering. Bridging the
two is a matter of a dedicated approach, as it will be studied in the current book.

Further, enterprise engineering concerns enterprise systems, while software engi-
neering concerns software systems:

• The former we consider as SOCIAL SYSTEMS.
• The latter we consider as TECHNICAL SYSTEMS.

This inspires our viewing enterprise information systems as socio-technical
systems [45] (as illustrated in Fig. 1.4) and taking an abstract perspective
accordingly.

Fig. 1.4 Viewing an enterprise information system as a socio-technical system

14 1 Introduction

In line with this and as suggested by the figure, we may distinguish between
social issues and technical issues:

• The social issues are all about PEOPLE who initiate business processes individ-
ually and/or through organizations and corresponding organizational structures,
being restricted by rules and regulations [46] and also being addressed by societal
expectations for sticking to particular public values [47]; for this, a business
infrastructure is needed, including a legal environment [48], accounting adjust-
ments [49], financial/credit instruments [50], logistics channels [51], marketing
options [30], and so on.

• The technical issues concern TECHNICAL ARTEFACTS that are used through
ICT applications [41]—they in turn trigger IT processes that are restricted by the
application designs [17]; for this, an IT infrastructure is needed, including a
networking facilitation [37], middleware [52], cloud facilities [45], and so on.

As also suggested by Fig. 1.4, social issues and technical issues should not be
considered separately. We argue that this is especially valid for most current
complex enterprise systems where business processes, IT processes, people, and
technical artifacts are all mixed together. The rules that concern business processes
have also indirect impact on the technically enabled actions related to those pro-
cesses. Organizational structures are facilitated by ICT. Many legal, accounting, and
other actions that concern a business infrastructure are implemented electronically.
Many design restrictions over technical artifacts and ICT applications straightfor-
wardly stem from corresponding societal regulations. Thus, all those social issues
and technical issues are to be brought together as part of a SOCIO-TECHNICAL
SYSTEM, and we consider enterprise information systems as socio-technical
systems.

Hence, all those issues must be balanced and “work together” such that the
information processing functionalities required by an enterprise to fulfill its infor-
mation needs are adequately delivered. And the corresponding “driving forces,” as
already discussed, are:

• The HUMAN ELEMENT of an enterprise information system, concerning the
people and corresponding (organizational) structures.

• The TECHNICAL ELEMENT of an enterprise information system, concerning
the IT resources + services as well as corresponding IT (software) processes.

Thus, IT services and technical processes are supporting not only particular
human entities but also organizational units as such. At the same time the human
entities are functioning within corresponding organizational units. Further, IT ser-
vices and technical processes are essentially “fueled” by actions realized by partic-
ular human entities and also by collective actions realized by particular
organizational units; in this the IT services and the corresponding technical pro-
cesses are to be in synch.

Since the application area concerning enterprise information systems is the area
of enterprises [53] and enterprises in turn represent ORGANIZATIONS [54], we

1.4 Enterprise Information Systems (EIS) 15

need to have a good overall organizational perception, and inspired by [17, 45], we
consider accordingly three essential perspectives, as depicted in Fig. 1.5:

• The HIERARCHICAL PERSPECTIVE (assuming a centralized organization)
features three primary levels in an organization where specific to each level of
activity and decision-making events take place: (1)At the operational level, short-
term, highly structured activities are performed and the objective is efficient
processes under a limited degree of uncertainty (hence, recurring operations
allow to be conveniently automated, assuring in this way speed, accuracy, and
precision in their execution). (2) At the management level, semi-structured
(decision-making) activities are performed, mainly related to functional areas,
and focused on the execution and control over processes, based on adopted
patterns and proven models (hence, the typical IT support in this context would
come through decision-support systems that are founded on enterprise-internal
operations and resources). (3) The executive level handles all strategic planning
and ad hoc circumstances, prioritizing long-term and wide-range decisions
(hence, their typical IT support in this context would come through executive
information systems that are capable of collecting, analyzing, and synthesizing
organizational and external trend data).

• The FUNCTIONAL PERSPECTIVE (assuming a decentralized organization)
features business entities based on distinct functional areas such as marketing
[30], operations, human resources [55], finance [50], accounting [49], and so on.

• The PROCESSES PERSPECTIVE utilizes top-down methodology to achieve
internal business integration, activities rationalization, and duplications elimi-
nation across functional areas and managerial levels.

executive
level

operational
level

management
level

hierarchical perspective functional perspective processes perspective

m
ar

ke
tin

g
op

er
at

io
ns

HR

finance
accounting

pr
oc

es
se

s processesprocesses

processes

Fig. 1.5 Hierarchical, functional, and process organizational perspectives

16 1 Introduction

Also, the two left-to-right arrows in the figure suggest an evolution over time
from hierarchical organizations through functional organizations to process-ori-
ented organizations, each of which has advantages and limitations. Still, we consider
the processes perspective as most appropriate with regard to enterprise information
systems because structures of processes are considered proper as a basis for utilizing
software support.

1.5 Essential Concepts

Furthering the discussion from the previous sections, we come to the point of
introducing the basic EIS concepts considered in the current book, inspired by
Shishkov et al. [39]; they are presented in Fig. 1.6, using the MOF/UML (Class
Diagram) notations [56, 57], noting nevertheless that in this section, we are only
briefly introducing the concepts. They will be addressed in more detail in the
following chapters.

As the figure suggests, we always consider a system of some kind and what
does not belong to the system belongs to the system environment (see Chap. 2).
Therefore, there should be an explicit boundary delimiting the two—anything that is
“inside” with regard to the boundary belongs to the system and anything that is
“outside” with regard to the boundary belongs to the environment. For example, if a

Fig. 1.6 Basic EIS concepts (inspired by: [39], p. 197; ©2018, Springer, reprinted with
permission)

1.5 Essential Concepts 17

university is considered in general and its Computer Science department, in partic-
ular, then anything that is internal with regard to the department is part of the system
and anything else is part of the environment. With regard to both (system and
environment), their composition elements are entities that in turn can be either
components, part of the whole ((software) components will be extensively
discussed in Chaps. 2 and 5), or agents—unlike components that are just parts
of the system/environment and can be “triggered” through their interfaces, agents are
mobile, proactive, and autonomous [58]; nevertheless, considering agents is left
beyond the scope of the current book. Entities can fulfill different roles and from
the perspective of their positioning with regard to the system under consideration
those could be user (the one using what the system is delivering, e.g., the customer
in a shop), actuator (the one acting on behalf of the system, e.g., the pizza
deliverer at a pizza restaurant), sensor (the one capturing contextual data, e.g., the
event officer who is monitoring the incoming cars, prior to a rock concert, such that
the acquired information is used by the arena car park operators to decide which
parking sectors to close and to which ones to keep on directing cars), and pro-
cessor (the one processing information, e.g., the receptionist at a sport center who
is calculating the available training “slots” at a moment, in order to decide how many
more persons to let in). Further, as it can be seen from the figure, sensor and
processor are dashed-line-outlined. This indicates that sensing and processing are
not only about realized essential business actions (for example: service delivery), but
those roles might also be just about the data manipulation itself, therefore dealing
with informative “conversations” that are only reproducing known facts and not
changing the state of the object world; hence, sensing and processing are character-
ized by a “duality” with regard to essential activities vs. informational activities, as
distinguished by Dietz [12]. Finally, the user-actuator-sensor-processor perspective
is just one of the possible abstraction perspectives concerning roles (actually, it is
considered of general conceptual relevance and that is why we have reflected it in
the figure); another perspective could be featuring particular responsibilities, for
instance, the role secretary, the role cook, the role chauffeur, and so on; as it will be
discussed further in the current book, it is often more straightforward modeling roles
rather than entities (e.g., if at a university a professor is sending a fax, then she/he is
fulfilling the role “secretary”) because most business rules concern the responsibil-
ities associated with a role (e.g., a secretary should answer phone calls, introduce
new employees to the team, and so on).

Hence, rules are de facto restricting behavior-wise the entities fulfilling partic-
ular roles; for example: If Sandra is the secretary of the Computer Science depart-
ment of a university, then she is allowed to book appointments in the agenda of her
boss but she is not allowed to approve business trips of employees. Thus, the
behavior concerning one role is restricted by one or more rules, as Fig. 1.6 suggests.
Further, it is often that several rules in combination are governing a particular
behavior type—this we refer to as regulation [46]. As represented in the figure,
the composition elements of a regulation are rules; also, one or more roles (or even
one or many systems) may be subject of a particular regulation, and this is
established through the behavior restrictions discussed above.

18 1 Introduction

As already mentioned, those are just the basic EIS concepts that we consider in
the current book and they will be further discussed and elaborated in the following
chapters.

1.6 The Modeling Approach

Even though we acknowledge the socio-technical issues and corresponding driving
forces (as featured in Fig. 1.4) and the organizational perspectives (as featured in
Fig. 1.5), we claim (inspired by [17]) that a sound approach to enterprise information
systems should assume a reference to the underlying disciplines (namely, enterprise
engineering and software engineering) and corresponding theories/paradigms
(namely, social theories and computing paradigms), as exhibited in Fig. 1.7.

As it is seen from the figure, we observe both human entities and technical entities
not only within any enterprise information system but also within its environment.
Further, human entities as well as their relations and behavior are to be addressed
through social theories (as it will be discussed in Chap. 4); technical entities and
their operation are to be addressed through computing paradigms (as it will be
discussed in Chap. 5).

Inspired by [41] and acknowledging the gap between enterprise modeling and
software specification (as discussed already in the current chapter), we consider a
modeling approach towards enterprise information systems, grounding it in the
disciplines and corresponding theories/paradigms, as mentioned above and adding
further elaboration in terms of modeling viewpoints, as follows:

• Enterprise engineering is instrumental with regard to real-life enterprise processes
while software engineering is instrumental with regard to related technical
(IT) issues; requirements engineering concerns both since there are not only
(original) business requirements but also technical (user-defined) requirements.

• Especially (social) theories are to be considered, touching upon human entities
and corresponding real-life behavior and in particular:

– Human relativism (featuring human centricity in enterprise modeling).
– Theory of organized activity (useful in modeling human behavior).
– Language-action perspective (useful in modeling language-driven communi-

cative acts).
– Enterprise ontology (useful in modeling coordination and production).
– Organizational semiotics (useful in modeling signs and business rules).
– Probabilities and statistics (useful in modeling surrounding context).

• Especially computing paradigms are to be considered, touching upon technical
entities and their operation and in particular:

– Component-based development (useful in specifying component-based soft-
ware applications).

– Service-oriented architecture (useful in specifying web services).

1.6 The Modeling Approach 19

– Model-driven engineering (useful in abstractions-based modeling).
– Cloud computing (useful in modeling utilization of distant resources).
– Aspect-oriented software development (useful in modeling crosscutting

non-functional concerns).

Fig. 1.7 Enterprise information systems—a modeling approach (©2017, The Author, reprinted
with permission)

20 1 Introduction

• Several modeling perspectives are to be considered, regarding enterprise/software
engineering, namely:

– Structure (how different entities are related to each other).
– Dynamics:

What the overall behavior of the considered entities is
What the states an entity comes through are

– Data.

• Depending on the purpose of modeling:

– A functional (black-box) view would be appropriate if establishing what the
system should do.

– A constructional (white-box) view would be appropriate if establishing how
the system should realize its functioning.

• In considering all this, a systemics approach is to be followed (see Chap. 2), such
that the modeling focus is put on either of the following:

– The system itself.
– The system environment.

• The concepts to be considered in this regard (in line with what was already
discussed in Sect. 1.5 and also with the study presented in Chap. 2) are:

– Concepts relevant to the system scope:

System:

Enterprise system.
Enterprise Information System (EIS).

Regulations.
Business rules (also labelled “norms”).

– Concepts relevant to the environment scope:

Context-awareness.
Occurrence probabilities.
Data analysis.

– Concepts relevant to both:

Entity.
Object.
Sign.
Component.
Service.
Role.

1.6 The Modeling Approach 21

Hence, taking amodeling approachwith regard to enterprise information systems
requires interdisciplinary efforts and multiple perspectives that are to be applied in
synch.

This book tells you how to bring together enterprise modeling and software
specification, such that an enterprise-modeling-driven software generation is
achieved—this is considered crucial with regard to the development of enterprise
information systems.

1.7 Outlook

The remainder of the current book is structured as follows:

Chapter 2 will introduce our systemics views, touching upon systems and their
composition.

Chapter 3 will consider the system environment and context of users, extending this
to enterprise systems and enterprise information systems and introducing a
number of concepts accordingly, also touching upon public values and their
operationalization often needed by the user and/or environmental third parties.

Chapter 4 will present relevant social theories (as according to Fig. 1.7), including
human relativism, theory of organized activity, language-action perspective,
enterprise ontology, and organizational semiotics.

Chapter 5 will present relevant computing paradigms (as according to Fig. 1.7),
including component-based development, service-oriented architecture, model-
driven engineering, cloud computing, and aspect-oriented software development.

Chapter 6 will introduce the SDBC approach, presenting its foundations, outline,
and notations, driven by the goal of proposing a way to bring together enterprise
modeling and software specification for the sake of bridging the enterprise-
software gap (as discussed already in the current chapter).

Chapter 7 will feature one case study and two illustrative examples, in order to
demonstrate how (1) enterprise engineering and software engineering can be
brought together, supported by SDBC and enriched by an explicit consideration
of user-defined requirements, and also how (2) this can be extended to accom-
modate service orientation and middle-out modeling.

References

1. Ammons JC, Govindaraj T, Mitchell CM (1988, Sep/Oct) Decision models for aiding FMS
scheduling and control. IEEE Trans Syst Man Cybernet 18(5):744–756

2. Javaid S, Sufian A, Pervaiz S, Tanveer M (2018) Smart traffic management system using
internet of things. In: 20th International conference on advanced communication technology
(ICACT), Chuncheon-si Gangwon-do, Korea (South), 2018, pp 393–398

22 1 Introduction

3. Zerbiec TG (1992, March) Considering the past and anticipating the future for private data
networks. IEEE Commun Mag 30(3):36–46

4. Wang Q, Pan W, Li M (2012) Robot’s remote real-time navigation controlled by smart phone.
In: IEEE international conference on robotics and biomimetics (ROBIO), Guangzhou, pp
2351–2356

5. Papazoglou M (2008) Web services: principles and technology. Prentice Hall, Upper Saddle
River, NJ

6. Colman-Meixner C, Develder C, Tornatore M, Mukherjee B (2016) A survey on resiliency
techniques in cloud computing infrastructures and applications. IEEE Commun Surv Tutor 18
(3):2244–2281. thirdquarter

7. O’Hara B (2012) Approach to information management in an externalized business environ-
ment. In: 2012 IEEE international conference on bioinformatics and biomedicine, Philadelphia,
PA, pp 1–2

8. AWARENESS (2008) Freeband AWARENESS project. http://www.freeband.nl/project.cfm?
id¼494&language¼en

9. Kopják J, Sebestyén G (2018) Comparison of data collecting methods in wireless mesh sensor
networks. In: IEEE 16th world symposium on applied machine intelligence and informatics
(SAMI), Kosice and Herlany, Slovakia, 2018, pp 000155–000160

10. Wu J, Guo S, Huang H, Liu W, Xiang Y (2018) Information and communications technologies
for sustainable development goals: state-of-the-art, needs and perspectives. IEEE Commun
Surv Tutor 20(3):2389–2406. thirdquarter

11. Brambilla M, Cabot J, Wimmer M (2012) Model-driven software engineering in practice.
Morgan & Claypool, New York, NY

12. Dietz JLG (2006) Enterprise ontology, theory and methodology. Springer, Heidelberg
13. Manning JG (2018) The open sea: the economic life of the ancient Mediterranean world from

the iron age to the rise of Rome. Princeton University Press, Princeton, NJ
14. Urien P (2018) Towards secure elements for trusted transactions in blockchain and blockchain

IoT (BIoT) Platforms. Invited paper. In: 4th International conference on mobile and secure
services (MobiSecServ), Miami Beach, FL, USA, 2018, pp 1–5

15. Suurmond C (2018) IT systems in business: model or reality? In: Shishkov B (ed) Business
modeling and software design. BMSD 2017. Lecture notes in business information processing,
vol 309. Springer, Cham

16. Shi C, Lan X, Wang Y (2017) Motion planning for unmanned vehicle based on hybrid deep
learning. In: International conference on security, pattern analysis, and cybernetics (SPAC),
Shenzhen, 2017, pp 473–478

17. Shishkov B (2017) Enterprise information systems, a modeling approach. IICREST Press, Sofia
18. Laurenza D (2006) Leonardo’s machines: secrets and inventions in the Da Vinci Codices.

Giunti, Florence-Milan
19. Ackerman J (1961) The architecture of Michelangelo. University of Chicago Press, Chicago
20. Bloom RL et al (1958) The beginnings of industrialization in England. Pt XIV: The industrial

revolution, classical economics, and economic liberalism. Ideas and Institutions of Western
Man, Gettysburg College, pp 1–5

21. Landes DS (2003) The unbound prometheus: technical change and industrial development in
Western Europe from 1750 to the present. Cambridge University Press, Cambridge

22. Flood JE (1976, December) Alexander Graham Bell and the invention of the telephone. Proc
Inst Electr Eng 123(12):1387–1388

23. Parker S (1992) Electricity. Dorling Kindersley, London
24. Parissien S (2014) The life of the automobile: the complete history of the motor car. St. Martin’s

Press, New York, NY
25. Ford (2018) The website of the Ford Motor Company. http://www.corporate.ford.com
26. Knowles JC (1973) The Rockefeller financial group. Warner Modular Publications, Andover,

MA

References 23

http://www.freeband.nl/project.cfm?id=494&language=en
http://www.freeband.nl/project.cfm?id=494&language=en
http://www.freeband.nl/project.cfm?id=494&language=en
http://www.freeband.nl/project.cfm?id=494&language=en
http://www.corporate.ford.com

27. Petroski H (2016) The road taken: the history and future of America’s infrastructure. Blooms-
bury Publishing, London

28. Pierce J (1977) Electronics: past, present, and future. Science 195(4283):1092–1095
29. Greenfield J (1977) Television: the first fifty years. Harry N. Abrams, New York, NY
30. Kotler P, Turner R (1995) Marketing management: analysis, planning, and control. Pearson,

New York, NY
31. Lowe K (2013) Savage continent: Europe in the aftermath of world war II. St. Martin’s Press,

New York, NY
32. Millard A (2012) Beatlemania: technology, business, and teen culture in cold War America

(Johns Hopkins introductory studies in the history of technology). John Hopkins University
Press, Baltimore, MD

33. Johnson P (2014) Mozart: a life. Penguin Books, London
34. Norman P (2009) John Lennon: the life. Ecco Press, New York, NY
35. Laudon K, Laudon J (2017) Management information systems: managing the digital firm.

Pearson, New York, NY
36. Shishkova T (1986) Exploring the possibilities for creating and implementing high-level

programming languages specific to the domain of warehouse management, PhD thesis. Tech-
nical University Press, Sofia

37. Tanenbaum AS (1996) Computer networks. Prentice Hall, New Jersey, NJ
38. IICREST (2019) The website of the International Institute for Collaboration and Research on

enterprise systems and technology. http://www.iicrest.org
39. Shishkov B, Larsen JB, Warnier M, Janssen M (2018) Three categories of context-aware

systems. In: Shishkov B (ed) Business modeling and software design. BMSD 2018. Lecture
notes in business information processing, vol 319. Springer, Cham

40. Huang Z, Su X, Zhang Y, Shi C, Zhang H, Xie L (2017) A decentralized solution for IoT data
trusted exchange based-on blockchain. In: 3rd IEEE international conference on computer and
communications (ICCC), Chengdu, China, 2017, pp 1180–1184

41. Shishkov B (2005) Software specification based on re-usable business components. Delft
University Press, Delft

42. Stahl T, Völter M, Bettin J, Haase A, Helsen S (2006) Model-driven software development—
technology, engineering, management. Wiley, Heidelberg

43. Hirschheim R, Klein H, Lyytinen K (1995) Information systems development and data model-
ing—conceptual and philosophical foundations. Cambridge University Press, Cambridge

44. Kotonya G, Sommerville I (1998) Requirements engineering. Wiley, New York, NY
45. Ivanov I (2012) Cloud computing in education: the intersection of challenges and opportunities.

In: Filipe J, Cordeiro J (eds) Web information systems and technologies 2011. LNBIP, vol 101.
Springer, Heidelberg, pp 3–16

46. Lang J, Pigozzi G, Slavkovik M, van der Torre L (2011) Judgment aggregation rules based on
minimization. In: Proceedings of the 13th international conference on theoretical aspects of
rationality and knowledge, ACM

47. Friedman B, Hendry DG, Borning A (2017) A survey of value sensitive design methods. In: A
survey of value sensitive design methods, vol 1. Now Foundations and Trends, Hanover, MA, p
76

48. Avgousti AA (2007) Regulating convergence in Europe. In: ITI 5th International conference on
information and communications technology. Cairo, Egypt, pp 325–325

49. Eisen PJ (2013) Accounting. Barron’s Educational Series Inc, New York, NY
50. Nikbakht E, Groppelli AA (2012) Finance. Barron’s Educational Series Inc, New York, NY
51. Versteegt C, Verbraeck A (2002) Holonic control of large-scale automated logistic systems. In:

Proceedings of the IEEE 5th international conference on intelligent transportation systems, pp
898–903

52. Caminha J, Perkusich A, Perkusich M (2018) A smart middleware to detect on-off trust attacks
in the Internet of things. In: 2018 IEEE international conference on consumer electronics
(ICCE), Las Vegas, NV, USA, pp 1–2

24 1 Introduction

http://www.iicrest.org

53. Ross JW, Weill P (2006) Enterprise architecture as strategy: creating a foundation for business
execution. Harvard Business Press, Boston, MA

54. Sousa HPdS, Leite JCdP (2017) Requirement patterns for organizational modeling. In: IEEE
25th international requirements engineering conference workshops (REW), Lisbon, 2017, pp
252–259

55. Mathis RL, Jackson JH (2016) Human resource management. Cengage Learning, Boston, MA
56. MOF (2018) The website of the meta-object facility. http://www.omg.org/mof
57. UML (2018) The website of the unified modeling language. http://www.uml.org
58. Wooldridge M (2009) An introduction to multiagent systems. Wiley, New York, NY

References 25

http://www.omg.org/mof
http://www.uml.org

Chapter 2
Systems

There are numerous scientific disciplines: some are purely scientific, such as math-
ematics, physics, and biology, while others are applied, such as computer science and
engineering [1]. In considering any discipline nevertheless, the notion of system is
an important one [2]; in physics, they study physical systems; in biology, they study
biosystems; in sociology, they study social systems; and so on. Hence, the develop-
ment of the General Systems Theory has been inspired [3, 4], referred to as
systemics. Systemics focuses on the characteristics of systems across the barriers
between scientific disciplines. Such a perspective is considered important with
regard to EIS since in approaching EIS, one would have to deal with social systems
(because there are human entities, human behavior, and so on, in any enterprise) and
also with technical systems (because there are technical devices, software applica-
tions, and so on, in any information system). Hence, both social systems and
technical systems would not only need to be studies in isolation but it is also
necessary to understand their interrelationship.

For this reason, firstly in the current chapter, we will clarify what we mean by
“system” and then we will touch upon enterprise systems and (enterprise) informa-
tion systems—all considered essential with regard to the focus of this book. Sec-
ondly, we will explicitly discuss not only the construction of any system, by
considering ontological systems, but also its function, emphasizing as well on the
distinction between the two, reflected in two essential perspectives on system
behavior: (a) the black-box perspective considering what the system is delivering
to its environment (functionally) and (b) the white-box perspective considering how
the system is delivering this. Finally, we will touch upon the evolvability of any
technical (software-intensive) (sub-)system, part of an EIS, by considering combi-
natorial effects, in general, and the Normalized Systems Theory, in particular.

© Springer Nature Switzerland AG 2020
B. Shishkov, Designing Enterprise Information Systems, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-22441-7_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22441-7_2&domain=pdf

2.1 The System Concept

The General Systems Theory (already mentioned) proposes a unified approach in
considering a system, based on the (justified) claims that there are some:

• Concepts and structural principles that seem to hold for systems of many kinds.
• Modeling strategies that seem to hold everywhere.

That has inspired Bunge [5] to consider theories that focus on the structural
characteristics of systems and can therefore cross the “largely artificial” barriers
between disciplines. Such efforts have triggered interest to discover similarities
among systems of many kinds despite their specific differences, such that studying
current (complex) enterprises would become easier [6]—this often assumes
de-emphasizing the aspects concerning the particular scientific discipline, focusing
instead on the structure and the behavior of the system as such. This even goes
beyond systemics and points to the broader notion of system analysis, as
defined by Bunge: the essential goal behind system analysis is to enable one
understand how a system operates.

Since those views are considered relevant to our focus on systems in general and
enterprise systems (and EIS), in particular, we have adopted the system definition
proposed by Bunge [5]:

Definition 1 Let T be a nonempty set. Then the ordered triple σ ¼ hC,E, Si is
system over T if and only if C (standing for Composition) and E (standing for
Environment) are mutually disjoint subsets of T (i.e., C \ E¼∅) and S (standing for
Structure) is a nonempty set of active relations on the union of C and E. The system
is conceptual if T is a set of conceptual items and concrete (or material) if T � Θ is a
set of concrete entities, i.e., things.

The system definition of Dietz [2] is consistent with the above definition,
acknowledging that among the properties of a system are:

• Composition: a set of elements of some category (physical, social, biological,
etc.).

• Environment: a set of elements of the same category; the composition and the
environment are disjoint.

• Structure: a set of influence bonds among the elements in the composition and
between the elements in the environment.

Nevertheless, Dietz considers one more property, namely, production, pointing
that:

• The elements in the composition produce things, such as goods, services, and so
on, that are delivered to elements in the environment.

For us, the composition–environment–structure system view is appropriate
because even though production characterizes most systems, we claim that it is

28 2 Systems

also possible that the composition elements of a system stay inactive (for a period of
time or forever), still being part of the system.

Next to that, in line with the systemics views, we would consider further system
categorizations depending on the (research) area of interest; some examples of such
categories are:

• Legislative system—a system concerning legal norms and acts.
• Planet system—a system concerning planets.
• Political system—a system concerning political subjects.

Since our focus is on enterprises and information systems supporting enterprises,
we are interested in two system categories, namely:

• Enterprise system.
• EIS.

As for the enterprise system concept, it should correspond to a view on business,
in general, and for this we refer to [6]: by “business thing”, it is not meant only things
concerning trade/commerce but also all things that refer to any organized activity
which is driven by a particular goal. Next to that, businesses are envisioned as
human-driven since humans are those through whom businesses operate. Hence,
inspired by the views of Shishkov and Dietz [7], we propose the following
definition:

Definition 2 A system should be considered being an enterprise system if
and only if it is composed of human entities collaborating among each other through
actions which are driven by the goal of delivering products to entities belonging to
the environment of the system.

By “product” we mean anything that is or can be delivered to a customer, no
matter if it is a material thing (often called product or goods) or an immaterial thing
(often called service), and this is referred to as a production fact.

In the same spirit and inspired by [6], we propose the following EIS definition
where “ICT” stands for “Information and Communication Technology”:

Definition 3 A system should be considered being an EIS if and only if it is
composed of human entities (often facilitated by ICT applications as well as by
technical and technological facilities) collaborating among each other driven by the
goal of supporting informationally a corresponding enterprise system.

Definitions 2 and 3 both reflect the ontological (constructional) essence of the
addressed system categories. This is claimed to be insufficient nevertheless with
regard to EIS because an enterprise information system is not only about structurally
bringing together different human and technical entities, but it is also about enabling
technical entities, such as devices, ICT applications, and so on, to support
corresponding human entities accordingly. We argue that in order to achieve deep
understanding on this, one would also need a functional view as well, such that one
could “step in the shoes” of a particular human entity and understand the way this
human entity is supported functionally by a device and/or ICT application. For this

2.1 The System Concept 29

reason, we propose also another EIS definition (also inspired by [6]) that assumes a
functional perspective:

Definition 4 Concerning its functional characteristics, an EIS is a system which
manipulates data and normally serves to collect, store, process, and exchange
(or distribute) data among users within or between enterprises, or among people
within wider society.

In the following two sections, we will subsequently consider enterprise systems
and EIS.

2.2 Enterprise Systems

In considering enterprise systems, we stick to Definition 2, according to which the
goal of delivering products to the environment is essential and for this reason we take
this as an important criterion for determining whether or not a particular entity
belongs to an enterprise system. Only entities driven by the same goal would be
considered belonging to the same enterprise system. If a consultancy company is
also dealing with property rental, for example, then the human entities and activities
about property management should not be considered belonging to the consultancy
enterprise system since they are irrelevant with respect to the consultancy goal, and
similarly, the human entities and activities about consultancy should not be consid-
ered belonging to the property renting enterprise system. Hence, this is all about the
role and behavior that a particular human entity takes, not about the formal belong-
ing of the entity to one organization or another. Further, this goal-driven criterion is
not in conflict with our adopting a composition-environment-structure system view
(as discussed already) since the goal itself (e.g., delivering consultancy) may be
existing and entities in relevant roles may be existing but this does not mean that
those entities are active.

Actionij (Goal <G>)

Actor-rolei

Actor-rolej

ENTERPRISE SYSTEM <E>

Fig. 2.1 A simplified view
on an enterprise system
(Source: [6], p. 21) (©2005,
The Author, reprinted with
permission)

30 2 Systems

Hence, although it does not directly concern the composition and structure of an
enterprise system, the goal driving it has to be taken into account when considering
such a system.

Further, in identifying an enterprise system, it is important being aware of the
actions and human entities (as well as the roles in which they appear) that are
relevant to the system.

As for actions that may take place in an enterprise system, we distinguish
between two action types, namely, production and communicative (coordination)
ones: Production actions (or acts) concern a particular output in the form of a
material product or an immaterial product while communicative (coordination)
actions (or acts) concern the collaboration within the enterprise system; this collab-
oration is in support of the realization of (corresponding) production actions [6].

As for human entities and the roles in which they appear, we consider just
the actor-roles: the roles being fulfilled by corresponding human entities; this we
consider adequate for enterprise analyses because otherwise it would be confusing
considering some entities who may appear in different roles, including nontypical
ones (e.g., a professor sending a fax, thus fulfilling the role secretary). Hence, we are
interested in the role and not in the particular (human) entity fulfilling it.

We thus view an enterprise system (inspired by [6]) as a collection of actions and
corresponding actor-roles: the actor-roles are the composition elements of the
system, while the actions concern its structure, as depicted in Fig. 2.1.

As seen from the figure, within an enterprise system, one could identify actions
whose realization relates to corresponding actor-roles.

In order to bring a deeper clarification regarding enterprise systems, we need to
further elaborate on the notion of action (as mentioned already, we distinguish
between production actions (or acts) and communicative (coordination) actions
(or acts), and this also needs to be considered). We reflect this in the transaction
concept [2] because of its capabilities to grasp those two aspects, namely, production
and coordination. Further, this concept is well aligned with the actor-role notion,
assuming the possibility that not only a particular human entity could fulfill more
than one actor-role but that a particular actor-role could be fulfilled by more than one
human entity. If nevertheless one particular actor-role is being fulfilled by one
particular human entity, then the combination of the human entity and the actor-
role is called actor. Hence, we consider the following definition [6, 8]:

Definition 5 A transaction is a finite sequence of coordination acts between
two actors, concerning the same production fact. The actor who starts the transaction
is called the initiator. The general objective of the initiator of a transaction is to have
something done by the other actor, who therefore is called the executor.

Hence, transactions should be considered as the elementary building blocks of an
enterprise system. As studied by Dietz [9], transactions are related to each other in a
tree structure. The top of the tree is called the starting transaction [10]—it is a
transaction that is not caused directly by another transaction (from the particular tree)
but triggers the execution of other transactions (within the tree).

2.2 Enterprise Systems 31

Considering transaction trees (as a level of granularity) rather than transactions is
more appropriate to be done in modeling enterprise systems because at the granu-
larity level of transactions, the complexity is often rather big: even a simple
enterprise system would contain a great number of transactions, making it difficult
for modelers to grasp precisely and describe those transactions [6]. Thus, the
consideration of transaction trees would help partitioning somehow the multitude
of transactions, grouping them into segments. We hence introduce the business
process concept in this regard [10]:

Definition 6 A business process is a structure of (connected) transactions
that are executed in order to fulfill a starting transaction.

Thus, in our view, the operation of enterprise systems concerns business pro-
cesses (which are driven by the goal characterizing the system). Each business
process consists of transactions, including a starting transaction [6]—as exhibited
in Fig. 2.2. Transactions in turn relate to initiators and executors.

The figure exhibits a particular example of an enterprise system operation,
featuring many business processes; four of them are depicted in the figure, namely,
bpi, bpj, bpk, and bpl. As seen from the figure, each of the business processes
(generally driven by the goal hGi) consists of transactions (with a starting transaction
on top). The transactions are presented by white diamonds while the starting trans-
actions are presented by black diamonds. A starting transaction could be activated
in any of the following three ways: outside cause (activation from a customer),
periodic activation (usually concerning payment activities), and activation resulting
from a waiting relation (a transaction could start only after another one is
completed) [11].

ENTERPRISE SYSTEM <E>

bpi (Goal <G>)

bpj (Goal <G>)

bpk (Goal <G>)

bpl (Goal <G>)

bp = Business Process

…

Fig. 2.2 Visualizing the operation of an enterprise system (Source: [6], p. 23) (©2005, The Author,
reprinted with permission)

32 2 Systems

Summarizing so far, we have presented our viewing the operation of enterprise
systems as concerning a number of business processes driven by a common general
goal. We have also elaborated on our defining a business process.

A further consideration of enterprise systems should touch upon decomposition:
firstly because as it is well known, decomposition reduces complexity in considering
any system and secondly because addressing particular parts of an enterprise system
could allow for treating them separately and also for re-using them. Hence, we will
consider the notion of enterprise sub-system, by putting forward the fol-
lowing definition inspired by [6]:

Definition 7 An enterprise sub-system is a system which is a part of an
enterprise system.

Based on Definition 7, it becomes clear that if W is the set containing all the
transactions and actors included in an enterprise system, any sub-set Wi �W which
satisfies the system definition would represent an enterprise sub-system.

Nevertheless, considering the enterprise sub-system concept without any other
restrictions makes little use because of the non-determinism of the concept: any
combination of transactions and actors could be an enterprise sub-system. Hence, we
argue that making use of the mentioned concept should assume the application of
clear criteria when deciding what enterprise sub-systems to use, and here the re-use
potential is claimed to be of importance—this includes a clear granularity position-
ing of the enterprise sub-systems which an analyst is to consider [6].

A possible and logical way of defining an enterprise sub-system is to consider
corresponding business processes, because:

• The issues related to a particular business process are distinguishable from all
other issues that belong to the corresponding enterprise system.

• Business processes relate to a useful granularity level (between the transaction
level and the enterprise system level).

Hence, we will consider such enterprise sub-systems that relate to particular
business processes. We will call such enterprise sub-systems business compo-
nents, bringing forward the following definition [7]:

Definition 8 A business component is an enterprise sub-system that com-
prises exactly one business process.

If more business processes are to be considered, for example, three, then this
would point to three corresponding business components. If it would then be
necessary to bring two of them together (for example), this would mean just bringing
together two business components, ending up in a component of components. This is
certainly possible if: (1) the interrelations concerning those components (two in our
example) are well-defined, (2) the relations with the environment are well-defined
also, since this would not necessarily mean just “putting together” the relations of
one of the components with its environment and the relations of the other one with its
environment—possible conflicts, redundancy, and so on should be avoided.

2.2 Enterprise Systems 33

We have now introduced and clarified some basic EIS-relevant notions, paying
special attention to the concept of business component. Definition 8 positions this
concept within the enterprise engineering area unlike other definitions according to
which business component is a software engineering concept [12, 13].

Still, the consideration of the notion of component vs. the notion of system
requires further discussion because in our view touching upon those issues is not
only a matter of granularity but also a more general thing pointing to basic
terminology currently used in systems engineering, software engineering, and so
on. It would often be the case that our system of consideration is pointing to a
particular enterprise but this may also depend on the viewpoint, as discussed already.
Business processes are identified within the enterprise and on that basis we identify
business components. Hence, it might be (although not necessarily) that an enter-
prise system is decomposed in terms of business components which are nevertheless
not the atomic entities within the enterprise—the business components could be
decomposed themselves.

In programming, components are decomposed in terms of objects [12], but what
is object in enterprise engineering? According to Dietz [2], an object is an
observable and identifiable individual thing, for example, a person or a car.
Hence, we observe different ways of defining object in different disciplines—
software engineering and enterprise engineering in this case. Since EIS relates to
both of those disciplines, we need to go deeper in discussing that notion, such that
we position it correctly among the other concepts we are considering in the current
chapter. To do this, we note the word observable from the definition of Dietz, and
this brings us to organizational semiotics [14] where sign is defined as something
that stands for something else in some respect or capacity. Organizational semiotics
brings useful value to enterprise engineering, by its theoretically relating the notions
of object and sign through the so-called meaning triangle, as depicted in Fig. 2.3.

concept

denotation

de
si
gn
at
io
n reference

sign object objective

subjective

Fig. 2.3 The meaning triangle (Source: [2], p. 36; ©2006, Springer-Verlag Berlin Heidelberg;
reprinted with permission)

34 2 Systems

As the figure suggests, people use signs as representations of objects in order to
be able to communicate about those objects, and here the notion of concept is to be
considered as well—this notion is subjective (unlike the notions of object and
sign which are objective). Hence, a sign is an object that is used as a represen-
tation of something else. A well-known class of signs are the symbolic signs, as used
in all natural languages, for example, the name “John Atkinson”—we may write this
name many times without the corresponding person named John Atkinson to be
present, and we use this sign in support of our communicating about the mentioned
person. When it comes to the object “John Atkinson,” this assumes our being
physically able to perceive John, his face, and so on. This corresponds to the notion
of concrete object—observable by human beings, unlike objects that are not observ-
able by human beings, for example, “number three”, called abstract objects.
Further, the properties of an object collectively constitute the “form” of the object
[2]. Objects may be composite: an aggregation of two or more objects is also an
object; for example, a car as a whole is an object but also the back seat of the car
(or any other (composite) detail) is an object by itself.

What about business components and how does the notion of business component
relate to the notion of object, as above presented? Let us take as an example a tourist
enterprise, dealing with vacations’ organization, accommodation bookings, flight
bookings, and so on, and let us consider different business processes there, such as
the accommodation booking business process and the flight booking business
process. Hence, those two business processes would point to corresponding business
components, namely, accommodation booking and flight booking. As it is clearly
seen from the example, we may consider those business components as:

• Abstract objects since they are not observable by human beings.
• Composite objects because we can go to finer granularity, for example, splitting

the accommodation booking into the booking itself and the payment that goes as
part of the booking.

Even though many examples one could think of point to abstract composite
objects, it would not be justified claiming that all business components represent
abstract composite objects. Still, being considered as an object, a business compo-
nent represents a useful enterprise modeling unit, yet not the atomic modeling unit
because, as discussed above, most business components could undergo further
decomposition. This is logical because a business component points to a
corresponding business process and the business process in turn represents a
structure of transactions, as according to Definition 6. For this reason, we consider
transactions as the atomic enterprise modeling units.

Still, at a higher level (with regard to elaboration), one could consider business
components that give the right perspective for grasping the enterprise while at a
lower level, where a more elaborated view is needed, considering transactions
would be better.

Furthermore, when considering actor-roles, transactions, business components,
and so on, it is necessary to establish what governs their (complex) interrelationships
and behavior. For this reason, we consider as well regulations in general, as

2.2 Enterprise Systems 35

important with regard to behavior orchestration, and in particular (aggregation)
rules that help introducing behavior restrictions [15]. We find organizational
semiotics useful in this regard and particularly its norm analysis method reflected in
the widely popular rule (norm) pattern [14]:

whenever <condition>
if <state>
then <agent>
is <deontic operator>
to <action>

We will not go discussing the norm pattern in more detail in this chapter—we
only justify the need for regulations and rules in analyzing and/or modeling an
enterprise system.

Finally, valid challenges in the context of what has been presented so far in the
current chapter could hence be (1) realizing an enterprise model that may help in
better understanding the enterprise under consideration and/or reengineering the
enterprise, and/or engineering a new enterprise, and so on and (2) delivering an
enterprise model to be used as basis for software specification that may help if
automation is to be introduced within the enterprise, running software is to be
updated, and so on. Thus, (2) is especially relevant with regard to EIS. As studied
by Shishkov [6], the enterprise-modeling-driven software specifi-
cation is a complex task that could usefully be accomplished in a component-
based way, such that re-use, traceability, and evolvability are possible.

Hence, an enterprise-modeling-driven software specificationwould assume using
business components (and possibly transactions and corresponding rules) as basis
for specifying software. This represents therefore a model-driven enterprise-
software alignment, and elaborating on what we mean by model is necessary in this
regard.

As considered by Shishkov [6] and Dietz [2], amodel of system A is a system used
to acquire knowledge about system A. Those views are consistent with the definition
of Apostel [16], which we use:

Definition 9 Any subject using a system A that is neither directly or indirectly
interacting with a system B to obtain information about the system B is using A as a
model for B.

Moreover, realizing that a model of anything gives usually a “partial picture,” we
need to define what should be considered as a complete model, and for this we firstly
consider the notions composition and structure of an (enterprise) system; those
notions are essential. They both concern two things: one of them is how the entities
belonging to the system are positioned among each other and the other one is what
are the (business) processes realized accordingly; the former is referred to as
structure and the latter is referred to as behavior (or dynamics). We secondly
consider data because any system (possibly an enterprise system, an EIS, or any
other one) holds the need for storing, processing, and communicating data (it is
always that things are counted, (statistical) data analysis is applied) and so on, no

36 2 Systems

matter if this concerns biology, politics, or enterprises, to give just three examples of
system domains. On that basis, we define complete model as follows:

Definition 10 A complete model is a model that is elaborated at least in three
perspectives, namely, structural perspective, dynamic perspective, and data
perspective.

We will also present (below) the business coMponent concept denoting a
complete model of a business component where the word “component” is with a
capital “M” to indicate the relation to the word “model” [6]:

Definition 11 A business coMponent is a complete model of a business
component.

Hence, if we know the structure of an enterprise unit, the processes over this
structure, and the related data flows, we claim to have a somehow “complete”
perception of the enterprise unit, but is this always the case? What about situations
in which complicated human-to-human communication goes beyond the mere
business processes and data flows? We may consider two examples: (1) A holder
of a debit card tries several times unsuccessfully to withdraw money from a cash
machine, entering wrong personal identification number) we observe a process
and data flows but nothing actually happens between the bank and its customer.
(2) As a result of a simple conversation between a pizza restaurant waiter and a
customer, a commitment appears for delivering a pizza to the customer) even
though this is just a simple conversation, it brings in an obligation that has actual
business sense. Thus, EIS as systems consisting of human entities, technical entities,
and so on are often characterized by human-to-human communications,
and those are to be considered as part of the enterprise modeling since such
communications bring in promises, commitments, negotiations, and so on, and
those issues may have impact on particular business processes and corresponding
enterprise (information) systems. For this reason, in [6] this has especially been
labelled as communication perspective. We have not considered such a
perspective explicitly because according to Definition 6, business processes are
considered as structures of transactions and transactions in turn are not only about
the production acts but also about the communicative (coordination) acts—we
believe that this already gives good reference to human-to-human communication
and represents a guarantee that when considering business processes from a dynamic
perspective, such communications would be adequately reflected.

And in the end, in Fig. 2.4, we outline (inspired by [6]) our view on how to use
those concepts for modeling.

2.2 Enterprise Systems 37

As seen from the figure, we view an enterprise system as composed of business
components. We could represent such components in terms of business coMponents
via modeling. Those coMponents could be used either as enterprise modeling units
or as input for further software specification tasks.

2.3 Enterprise Information Systems

As mentioned at the beginning of the current chapter, after discussing systems and
enterprise systems, we are addressing (in this section) particularly EIS, noting
nevertheless that (1) enterprise systems are a well-known class of systems and
(2) enterprise information systems are a class of enterprise systems. Thus, all
characteristics of systems and enterprise systems, as discussed already, are to
conform to EIS as well. For this reason, we will only focus on the distinctive features
of EIS in this regard. Further, we make the assumption that ICT in general and ICT
applications in particular represent an important part of any EIS—by “ICT
application” we mean a software application that is nevertheless operating in a
distributed networked environment and may thus benefit from current mobile and
cloud technologies [17]. Still, no matter if we consider a software application or
(more broadly) an ICT application, the software specification task is
claimed to play a crucial role [6]. For this reason, we outline two important
challenges, namely:

• The software specification task and its role in the creation of EIS.
• The relation between business coMponents and software specification.

Business
Component A Business

Component B
Business

CoMponent B

modeling

ENTERPRISE SYSTEM <E>

...

Business
Component C

Fig. 2.4 The component-coMponent relation (Source: [6], p. 24) (©2005, The Author, reprinted
with permission)

38 2 Systems

Further, being an enterprise system itself, an EIS has the following properties:

• Its compositional elements are human entities.
• Human entities fulfill particular actor-roles in realizing activities within the EIS.
• The EIS structure concerns inter-role relations which are in turn driven by goals.

However, with regard to enterprise systems, the goal is the delivery of business
products and/or services to entities belonging to the system environment, while
with regard to EIS, the goal is the informational support to a
corresponding enterprise system. As for environments, the environment
of an enterprise system consists of actor-roles (those actor-roles may be fulfilled by
human entities, but they may also be fulfilled by technical entities) and actions, and
those are external with regard to the enterprise of consideration; the actor-roles and
actions that belong to the environment of an EIS, in contrast, are usually internal with
regard to the enterprise of consideration, and the reason for this is the role of an EIS
as supporting a corresponding enterprise system [6].

Thus, an enterprise system exploits an EIS, benefitting from corresponding EIS
services. Said otherwise, an EIS supports a corresponding enterprise system, by
providing services to it.

As mentioned already, such kind of support is usually realized by means of ICT
applications which allow enterprise systems to utilize current possibilities that are
related to ICT. With regard to this, we consider the following definition for “ICT
application”, adapted from [6], that is consistent with the definitions and assump-
tions put forward in the current chapter:

Definition 12 An ICT application is an implemented software product real-
izing a particular functionality for the benefit of entities that are part of the compo-
sition of an enterprise system and/or a (corresponding) EIS.

ENTERPRISE SYSTEM <E> EIS <I>

Business
Component A

Business
CoMponent T

ICT application Z
support

support

specification support

modeling

Fig. 2.5 Business coMponents supporting the applications’ specification (Source: [6], p. 26)
(©2005, The Author, reprinted with permission)

2.3 Enterprise Information Systems 39

Hence, ICT applications are largely instrumental with regard to the way in which
enterprise systems are supported informationally, and in many cases, this is about the
(1) automation of business processes belonging to an enterprise system (e.g., part of
what human insurance brokers are doing is being automated, such that this same
work is realized in an automated way, by means of software) and (2) enrichment of
existing business processes for the sake of utilizing new technological possibilities
(e.g., moving storage to the Cloud would assume additional efforts on coping with
information security, possible latency, and so on, to mention just two possible
implications in such a context). Therefore, an ICT application is to be “covering”
either a whole enterprise system (this is obviously rare because as above suggested,
the delivered ICT support is most often focused on a particular issue(s) within the
enterprise under consideration) or part(s) of it corresponding to particular business
processes—this makes ICT applications straightforwardly aligned to business com-
ponents or components consisting of business components. Since this is a matter of
granularity, we would not distinguish between the cases when an ICT application
points to one particular business component and the cases when an ICT application
points to a group of (several) interrelated business components (which we called
component of business components)—we will speak of an ICT application pointing
to a business component and mean both. Such a relationship should (logically)
assume that the business component would have to be precisely reflected in the
specification of the corresponding ICT application; otherwise, the ICT appli-
cation support would be inconsistent with regard to the enterprise context. For this
reason, we propose using business coMponents as source for the derivation of ICT
applications’ specification, as shown in Fig. 2.5 (inspired by [6]).

As seen from the figure, the support (indicated by the dashed line) that an EIS
realizes to an enterprise system is facilitated (actually driven) by ICT applications.
As it is also seen from the figure, a business coMponent might support the specifi-
cation of a corresponding ICT application (Business Component A is reflected
in Business CoMponent T in the figure, to indicate that it is possible that the
Business CoMponent supporting the application’s specification is a component of
CoMponents). Hence, of particular interest are the relations:

business component � business coMponent � ICT application:

Said otherwise, we are interested to know how a (re-usable) business coMponent
could be identified and also how it could be reflected in the specification of an ICT
application.

Thus, we would need to discuss the role of specification in the design and
development of ICT applications and also possibilities for decomposing the speci-
fication model.

We will hence firstly position the specification task, considering the three-phase
software creation process, following Atkinson and Muthig [18]:

• Specification, addressing the functionality of the software artifact-to-be.
• Realization, addressing the specification’s (further) refinement and also techno-

logical aspects.

40 2 Systems

• Implementation, addressing the model-based coding bringing about the final
software application output.

Hence, according to [6], the modeling support that is provided by a business
coMponent affects the specification phase as depicted in Fig. 2.6:

As far as ICT applications are concerned, we take also into account the current
software development standards, as discussed at the Panel of BMSD’14—the
international symposium on Business Modeling and Software Design (BMSD)
[19]—according to which the component-based software specification
and development are largely recognized.

Usually, within the software community, the term software component is associ-
ated with the component-based development of ICT applications, which is charac-
terized by assembling re-usable software components [6]. They represent
prefabricated, configurable, and independently evolving building blocks which
provide some functionality that can be used separately or in composition with the
functionality provided by other software components.

According to the middleware perspective [20], which does not necessarily envi-
sion a software component in the context of the development of an ICT application,
software components are blocks of code ready to be deployed on top of a suitable
execution environment (often called container) which provides a number of generic
services for the execution of components, such as event notification, authentication,
and so on.

We hence conclude about several essential characteristics of software compo-
nents, also referring to MDA (see Chap. 5) [21], relevant to the software engineering
domain:

• Any software component is characterized by a particular functionality and is
driven by the goal of providing service(s) to its environment.

• In its providing service(s), a software component could collaborate with other
software components.

• The environment of a software component may consist of other software compo-
nents, ICT applications, supporting platforms, and so on.

Business
CoMponent T

ICT application Z

specification

realization

implementation

support

Fig. 2.6 A business
coMponent supporting an
application’s specification
(Source: [6], p. 26) (©2005,
The Author, reprinted with
permission)

2.3 Enterprise Information Systems 41

Hence, in addressing software components, we consider it necessary paying
attention to the interface specification, component dependencies, deployment, and
granularity—those issues are briefly discussed below. This is in tune with related
studies reported in [20].

An interface specification can be seen as a contract which is established between
a software component providing (implementing) a service and the component’s
environment using (invoking) it.

The component dependencies comprise the events that can be either produced or
consumed by a software component, in its providing service(s).

Given its binary representation, a software component is a self-contained building
block which could be independently deployed in a variety of environments.

Noting composability, a software component should not necessarily be a com-
plete ICT application; it may be a part of the whole. It is well known, nevertheless,
that there are examples of large software components that could be envisioned either
as components or as applications. Thus, considering the granularity of a software
component under development is of significant importance. In our view, in specify-
ing the size of a software component, the modeler should take into account the
fundamental requirement that a software component should be general enough to be
re-usable in a number of ICT applications [22].

Hence, on the basis of the above analysis, we consider a relevant software
component ontological definition [10]:

Definition 13 Software components are implemented pieces of software,
which represent parts of an ICT application and which collaborate among each
other driven by the goal of realizing the functionality of the application.

Since the software component concept concerns the implementation phase, we
would need to propose also a functional definition, inspired by Szyperski [23]:

Definition 14 A software component is functionally a part of an ICT appli-
cation, which is self-contained, customizable, and composable, possessing a clearly
defined function and interfaces to the other parts of the application, and which can
also be deployed independently.

Thus, by creating an instance of a software component, we do actually deploy
it. We could view, therefore, such a component instance as an object. However, there
is little agreement on the differences between software components and objects
[20]. For this reason, we will not enter this discussion within the current chapter.

Since any support from a business coMponent would concern the specification
phase, we should consider another relevant concept referring to the logical building
blocks of an ICT application (in contrast to software components representing the
physical application building blocks, in the sense of physical component technolo-
gies, such as CORBA [24], .NET [13], EJB [25], and so on). We hence introduce the
term software coMponent to reflect the abovementioned logical aspects:

Definition 15 A software coMponent is a conceptual specification model of a
software component.

42 2 Systems

Summarizing our views and referring to Shishkov [6]:

• An enterprise system consists of business components.
• An ICT application consists of software components.
• The creation of a software component is supported conceptually by a

corresponding software coMponent.
• The identification of the software coMponents is supported conceptually by a

corresponding business coMponent.

Figure 2.7 illustrates this:

As seen from the figure and as already stated, a business coMponent supports
conceptually the identification of at least one software coMponent. A software
coMponent in turn supports conceptually the creation of a corresponding software
component.

We hence claim that the concepts introduced so far in the current chapter allow
for deriving a (component-based) software specification model on the basis of a
corresponding enterprise model, realizing in this way a (component-based) busi-
ness-IT alignment.

Construction is crosscutting with regard to all this—by construction we mean the
ontological dependencies and relations among system elements, relevant to the
question: How is the system realizing its functionality? (as opposed to the question
What is the system realizing as functionality?). And this will be considered in the
following section. Still, it is to be noted that we have been consistent with such an
ontological perspective in this chapter so far—what we will do in the following
section is to consider those issues more explicitly.

Software CoMponent K1

Software CoMponent K2

…

Software CoMponent Kn

Software Component K1

Software Component K2

…

Software Component Kn

Business
CoMponent K

n ≥ 1

Fig. 2.7 Business coMponent, software coMponent, and software component (Source: [6], p. 28)
(©2005, The Author, reprinted with permission)

2.3 Enterprise Information Systems 43

2.4 Ontological Systems and Function

Referring to the notions addressed in the previous sections, we consider a system and
its environment, and we may like to also be explicit about the system bound-
ary—the system boundary separates the system from its environment. Let us then
consider together the system, the system boundary, and the system environment,
calling this collectively Universe of Discourse or UoD, for short. Then,
according to Dietz [2], the system composition, the system, the environment, and
the structure (spanning over them) are collectively called the UoD construction. The
UoD construction can thus be described by enumerating the entities within the
system, the entities of the environment, as well as the relationships in the struc-
ture—this is illustrated in Fig. 2.8:

On the figure: the composition of the system consists of the gray-colored ele-
ments; the environment consists of the white-colored elements; as for the black-
colored elements, since they do not have influencing bonds with elements of the
system, they are considered UoD external; the black line separating the system
elements and the environment elements represents the boundary; and the lines
represent the structural bonds between elements. Thus, only the bonds among the
system-internal elements and the bonds between system elements and environment
elements belong to the UoD structure. Finally, the UoD composition together with
the UoD structural bonds is called the UoD kernel.

An identical but more precise formal definition of the UoD construction,
following Bunge [5], is presented below, using two special symbols, namely,
(1) ≺ meaning is part of and (2) ▻ meaning acts upon, and particularly acts

Fig. 2.8 TheUoD
construction (©2017, The
Author, reprinted with
permission)

44 2 Systems

upon if and only if influences the behavior of ; if both ▻ and ▻ hold, we
say that and interact.

Let represent our consideredUoD and a class of things, called the category of
. Then, the composition of is defined as:

C σð Þ ¼ x 2 Γjx � σf g,

the environment of is defined as:

E σð Þ ¼ x 2 Γjx=2C σð Þ ^ ∃y : y 2 C σð Þ ^ x⊲y _ y⊲xð Þf g

and the structure of is defined as:

S σð Þ ¼ x; yh ij x⊲y _ y⊲xð Þ ^ x; y 2 C σð Þ _ x 2 C σð Þ ^ y 2 E σð Þð Þð Þf g:

As for the notion of sub-system that has been already considered in this chapter,
we are now revisiting this notion, providing below a precise definition from an
ontological perspective [2].

Let there be a system with the construction:

and a system with the construction:

Then system is a sub-system of system if and only if:

C σ2ð Þ � C σ1ð Þ
E σ2ð Þ � C σ1ð Þ\C σ2ð Þ [E σ1ð Þð Þ
S σ2ð Þ � S σ1ð Þ

Further, with regard to a UoD, the collective activity of the system elements and
the environment elements is called operation. Even though this concerns not
only the system but the whole UoD, the operation is essentially initiated and driven
by the system (and possible contribution from elements that belong to the system
environment is triggered by system elements). For this reason, we may say that the
operation of a system is the manifestation of its construction in the course of time—
this encompasses both the production actions and the related coordination actions,
preformed accordingly [2].

And in the end, heterogeneous systems (e.g., a car where one could identify (1) a
mechanical system, (2) an electrical system, and so on) are more complex than
homogenous systems (just the mechanical system, for instance, if we take the above
example), and the above definitions and discussion apply straightforwardly to
homogenous systems. When one would address a heterogeneous system,

2.4 Ontological Systems and Function 45

nonetheless, one would have to reflect such a system in a number of homogenous
systems which are related to each other in a layered nesting [5]. The way in which a
collection of homogenous systems constitutes a heterogeneous system is nontrivial,
and this holds particularly for enterprises since enterprise systems are heterogeneous
systems [2].

However, we will not go deeper in this discussion in the current chapter. Instead,
we will touch upon another important perspective over a system, namely, the
functional perspective (as opposed to the constructional perspective considered
above). Below, we will explicitly discuss each of those two perspectives and will
emphasize on the distinction between them.

2.4.1 Construction vs. Function

When modeling a system, one could take a white-box perspective that is closest to
the ontological view considered above—this is about capturing the construction and
the operation of the system while abstracting from implementation details which are
assumed to be irrelevant; the white-box model is hence adequate for building or
changing a system. Contrary to this, taking a black-box perspective is about
capturing the interactions between the system composition and the environment—
this conveys the functional perspective on a system and a black-box model hence has
no direct relation with the construction and operation of the system under
consideration [2].

To illustrate this, inspired by Dietz [2], we consider, for example, a car, and we
take a white-box view over the car as well as a black-box view, as shown in Fig. 2.9.

As seen from the figure, the white-box view is close to the mechanic’s perspec-
tive—the mechanic being interested in HOW the components of the engine, the
components of the suspension, the components of the electric system, and so on
work (each one and in combination among each other), such that the desired
performance is realized. In contrast, the black-box view is close to the driver’s
perspective—the driver being interested in WHAT the car can do for him/her in
terms of an input triggering corresponding output—whether or not pressing the
inside lamp button would lead to illumination inside the coupe, whether or not
turning on the car key would lead to noise from the engine, whether or not pressing
the brake pedal (while the car is moving) would stop the car, and so on.

Hence, taking a white-box perspective would lead to a constructional decompo-
sition into engine, wheels, exhaust, and so on, while taking a black-box perspective
would lead to a functional decomposition into the power system, the brake system,
the audio system, and so on, as suggested by the figure.

After having discussed the construction and function of a system, we will turn to
another important issue concerning systems, namely, evolvability. In the following
section, we will consider combinatorial effects, as strongly relevant to the mentioned
concern, addressing this from the perspective of the Normalized Systems Theory.

46 2 Systems

Fig. 2.9 White-box view vs. black-box view (©2017, The Author, reprinted with permission)

2.4 Ontological Systems and Function 47

2.5 Normalized Systems

We consider the Normalized Systems Theory, referring to [26], acknowledging that
EIS should be able to evolve over time; said otherwise, an EIS should be designed in
such a way that it is capable of accommodating change. Hence, such kind of
evolution concerns the maintenance of the software “part” of an EIS. Software
maintenance is not only expensive but it also leads to (1) increased architectural
complexity and (2) decreased software quality [27]. This is also recognized by the
Lehman’s Law of Increasing Complexity, indicating for a degradation of the struc-
ture of an EIS over time [28]. Thus, the impact of a single change would increase
over time.

In order to avoid such quality degradation, it is suggested aiming at theoretic
stability [29], referring to the fact that bounded input to a function results in bounded
output values, even as t ! 1. This means that a specific change to an EIS should
require the same effort, irrespective of the size of the EIS or the point in time when
being applied. Each change that is applied to an EIS requires a certain amount of
effort. This effort can be measured in, for example, the amount of time or the lines of
code needed to apply the change. This effort would nevertheless increase if on top of
this intrinsic amount of effort, additional software components need to be adapted.
How such effort increases over time is illustrated in Fig. 2.10:

When an “ideal” system is considered, the effort required to apply a specific
change does not increase over time. However (as the figure suggests), this effort will
actually increase over time (as mentioned above and as according to Lehman’s Law)
in a “real” system, leading to deteriorating effects (over time) resulting from the
applied changes and this concerns the combinatorial effects [30].

Combinatorial effects occur when the impact of a change is dependent on the size
of the EIS and avoiding combinatorial effects would lead to avoiding the software
quality deterioration as explained already. The identification of such combinatorial
effects assumes that software is considered as a modular structure.

Huysmans [26] considers the inter-module EIS dependencies as causing combi-
natorial effects, claiming that in such cases, realizing a change in a specific module
would lead to impact on other modules that are (in principle) unrelated to the original

Fig. 2.10 Visualizing the impact of combinatorial effects

48 2 Systems

change. Such dependencies can be introduced at design time while the vision on
stability requires that not a single dependency is introduced, even when an unlimited
amount of modules would be added—this is called the assumption of unlimited
systems evolution [31]: thus, only when no combinatorial effects occur while the EIS
grows, it is considered to be evolvable.

An EIS would be considered as a normalized system, if exhibiting stability
with respect to a defined set of changes and the Normalized Systems Theory deduces
a set of four design theorems that act as design rules to identify and circumvent most
combinatorial effects [31], claiming that any failure to adhere to one of those
theorems would result in the introduction of combinatorial effects.

With regard to this, considering modular structures, taking a basic view, assumes
the consideration of action modules and data modules only, called “entities”. Hence,
our simplified view assumes considering action entities which perform certain
operations on data entities (action entities also receive input in the form of data
entities). A data entity thus contains attributes—concrete values or links to other
data entities. An action entity in turn represents an operation at a given modular
level and this would concern (several) tasks—a task is a set of instructions
performing a certain functionality. Such a conceptualization is consistent with
Definition 10 where structure, behavior, and data are considered essential with
regard to an EIS.

The first theorem, separation of concerns, implies that every change driver or
concern should be separated from other concerns. The theorem allows for the
isolation of the impact of each change driver; this means that each module can
contain only one sub-modular task (which is defined as a change driver) but also that
workflow should be separated from functional sub-modular tasks.

The second theorem, data version transparency, implies that data should be
communicated in version-transparent ways between components. This requires
that introducing the data change (e.g., sending additional data between two compo-
nents) should take place without having an impact on the components and their
interfaces.

The third theorem, action version transparency, implies that a component can be
upgraded without impacting the calling component(s).

The fourth theorem, separation of states, implies that actions or steps in a
workflow should be separated from each other in time, by keeping state after
every action or step. This suggests an asynchronous and stateful way of calling
other components.

Hence, those theorems show at which point in the modular structure of an EIS
combinatorial effects occur and that the only modular structures free from combi-
natorial effects are the fine-grained structures. Especially the principles of separa-
tion of concerns and separation of state indicate that modules have to be separated
both functionally and in time.

We are not going in more detail on discussing those four theorems and we are also
not elaborating further on the Normalized Systems Theory because our goal in this
section is to only consider the impact of combinatorial effect with regard to the
evolution of an EIS.

2.5 Normalized Systems 49

In the following chapter, we will shift focus from the system to the environment—
considering the challenge of adapting the behavior of an EIS to the surrounding
context.

* * *
IN SUMMARY, in the current chapter, we introduced our systemics views,

touching upon systems and their composition, extending this to enterprise systems
and EIS. In the following chapter, we will explicitly focus on the system environ-
ment and context of users.

References

1. Wikipedia. The free encyclopedia. http://en.wikipedia.org
2. Dietz JLG (2006) Enterprise ontology, theory and methodology. Springer, Heidelberg
3. von Bertalanffy L (1968) General systems theory. Braziller, New York
4. Weinberg GM (1975) An introduction to general systems thinking. Wiley, New York
5. Bunge MA (1979) Treatise on basic philosophy, vol 4, A world of systems. D. Reidel

Publishing, Dordrecht
6. Shishkov B (2005) Software specification based on re-usable business components. Delft

University Press, Delft
7. Shishkov B, Dietz JLG (2005) Applying component-based UML-driven conceptual modeling

in SDBC. In: Proceedings of the 7th international conference on enterprise information systems
(ICEIS), 24–28 May 2005. SCITEPRESS, Miami, FL, USA

8. Dietz JLG (2003) The atoms, molecules and fibers of organizations. Data Knowl Eng
47:301–325

9. Dietz JLG (2004) Basic notions regarding business processes and supporting information
systems. In: Proceedings of the CAiSE’04 workshops in connection with the 16th international
conference on advanced information systems engineering, Riga, Latvia, 7–11 June 2004

10. Shishkov B, Dietz JLG (2004) Design of software applications using generic business compo-
nents. In: Proceedings of the 37th Hawaii international conference on system sciences (HICSS),
IEEE, Big Island, Hawaii, USA, 5–8 Jan 2004

11. Dietz JLG (2003) Generic recurrent patterns in business processes.In: Proceedings of the
international conference on business process management (BPM), Springer—LNCS, Eindho-
ven, The Netherlands, 26–27 June 2003

12. Abolhassani M (2003) Business objects: from definition to application. Delft University Press,
Delft

13. Atkinson C, Bayer J, Bunse C, Kamsties E, Laitenberger O, Laqua R, Muthig D, Paech B,
Wust Z, Zettel J (2001) Component-based product line engineering with UML. Addison-
Wesley, Boston, MA

14. Liu K (2000) Semiotics in information systems engineering. Cambridge University Press,
Cambridge

15. Lang J, Pigozzi G, Slavkovik M, van der Torre L (2011) Judgment aggregation rules based on
minimization. In: Proceedings of the 13th international conference on theoretical aspects of
rationality and knowledge, ACM

16. Apostel L (1960) Towards the formal study of models in the non-formal sciences. Synthese 12
(2–3):125–161. https://doi.org/10.1007/BF00485092

17. CLOSER. The international conference on cloud computing and service science. http://closer.
scitevents.org

50 2 Systems

http://en.wikipedia.org
https://doi.org/10.1007/BF00485092
http://closer.scitevents.org
http://closer.scitevents.org

18. Atkinson C, (1960) Towards the formal study of models in the non-formal sciences. Synthese
12(2–3):125–161. https://doi.org/10.1007/BF00485092

19. Panel Discussion of BMSD’14. In: The international symposium on business modeling and
software design. http://www.is-bmsd.org/Panel_2014.htm

20. de Farias CRG (2002) Architectural design of groupware systems: a component-based
approach. University of Twente, Enschede

21. MDA. The OMG model driven architecture. http://www.omg.org/mda
22. Shishkov B (2002) Business engineering building blocks. In: Proceedings of the 9th doctoral

consortium of CAiSE—international conference on advanced information systems engineering,
Toronto, ON, Canada, 27–28 May 2002

23. Szyperski C (1998) Component software, beyond object-oriented programming. Addison-
Wesley, Boston, MA

24. CCM. The OMG CORBA component model. http://www.omg.org/spec/CCM/
25. EJB. The ORACLE enterprise JavaBeans technology. http://www.oracle.com/technetwork/

java/javaee/ejb/index.html
26. Huysmans P (2011) On the feasibility of normalized enterprises: applying normalized systems

theory to the high-level design of enterprises, PhD thesis. University of Antwerp
27. Eick SG, Graves TL, Karr AF, Marron J, Mockus A (2001) Does code decay? Assessing the

evidence from change management data. IEEE Trans Softw Eng 27(1):1–12
28. Lehman MM, Ramil JF (2001) Rules and tools for software evolution planning and manage-

ment. Ann Softw Eng 11(1):15–44
29. Mannaert H, Verelst J, Ven K (2011) The transformation of requirements into software

primitives: studying evolvabilitybased on systems theoretic stability. Sci Comput Program 76
(12):1210–1222

30. Mannaert H, Verelst J, Ven K (2011) Towards evolvable software architectures based on
systems theoretic stability. Softw Pract Exp 42(1):89–116

31. Mannaert H, Verelst J (2009) Normalized systems—re-creating information technology based
on laws for software evolvability. Koppa, Kermt

References 51

https://doi.org/10.1007/BF00485092
http://www.is-bmsd.org/Panel_2014.htm
http://www.omg.org/mda
http://www.omg.org/spec/CCM/
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html

Chapter 3
System Environment
and Context-Awareness

Referring to the previous chapter, whenever a group of entities (actor-roles) collec-
tively realize a goal, we consider them to belong to a system. What has not been
discussed in the mentioned chapter nevertheless is adaptability—we observe
that in their behavior, humans are adapting every minute and every second to what is
happening around (a human would often do this intuitively), and for this reason it
makes sense considering this issue with regard to systems and especially enterprise
systems (and EIS) which are human-driven. An adaptable system has the
ability to adjust to new conditions [1]. An essential feature of adaptable systems is
context-awareness [2]—this is adjusting the system behavior depending on
the situation at hand (context state) [3]. As studied in [2], context-aware
systems are all about adjusting “something” to the context state; however, what is
adjusted differs: (1) Some context-aware systems optimize system-internal processes
based on the context state at hand [4, 5], for example, regulating the electro-
consumption of home appliances for the sake of keeping the overall building
consumption within some boundaries. (2) Other context-aware systems maximize
the user-perceived effectiveness of delivered services, by providing different service
variants depending on the situation of the user [6], for example, treating a distantly
monitored patient in one way when his/her condition is normal and in another way
in case of emergency. (3) Still other context-aware systems are about offering value
sensitivity when the society demands so [7], for example, in the case of supporting
judiciary processes, different levels of transparency are to be provided to different
categories of stakeholders. We do not claim exhaustiveness with regard to those
three context-awareness perspectives. At the same time, as studied in [2], those three
perspectives “cover” a broad range of currently relevant applications, especially as it
concerns real-life (business) processes. For this reason, we will elaborate and discuss
those perspectives in the first section of the current chapter. Then in Sect. 3.2 we will
conceptualize context-awareness (considering it in general). In Sect. 3.3, we will
consider the operationalization of context-awareness—by means of context-aware
applications. In Sect. 3.4, we will address the potentials of (statistical) data analysis
[8] with regard to context-aware applications. Finally, in Sect. 3.5 we will briefly

© Springer Nature Switzerland AG 2020
B. Shishkov, Designing Enterprise Information Systems, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-22441-7_3

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22441-7_3&domain=pdf

discuss the relevance of classification (and decision trees, in particular) as a predic-
tion “instrument” [9] in the cases when sensing technology [10] is inapplicable.

3.1 System Behavior Perspectives

Referring to the notions considered above and also referring to [2], we will firstly
elaborate on the context-driven optimization of system-internal processes, secondly
on the context-driven maximization of the user-perceived effectiveness, and finally
on the context-driven value sensitivity. It is often that context-awareness is enabled
by sensor technology [11] allowing us to “know” what is happening around;
alternatively, there should be other ways of “sensing” the environment [6] or
“predicting” the environment [9]. As it concerns (1), (2), and (3)—see above—this
counts for all of them. Further, considering the essence of their underlying system
behaviors, we use the following labels: SELF-MANAGING CONTEXT-AWARE
SYSTEM for (1), USER-DRIVEN CONTEXT-AWARE SYSTEM for (2), and
VALUE-SENSITIVE CONTEXT-AWARE SYSTEM for (3). Finally, even though
most often context-aware systems are “sensitive” to changes in the system environ-
ment, it is also possible that the “sensitivity” is towards internal issues (things
happening inside the system (not in the environment) may trigger either internal
optimizations, or changes in the services delivered to the user, or a reconsideration of
the “covered” values). Especially in the current section, we are not restrictive with
regard to “sensitivity” (whether it concerns the system or the environment).

3.1.1 Self-Managing Context-Aware Systems (SMCAS)

SMCAS’ context-awareness is directed towards internal (system) optimi-
zation purposes [12]. Such autonomic solutions [5] are proposed as a way
to reduce the cost of maintaining complex systems and to increase the human ability
to manage these systems properly, by automating (part of) their working. In essence,
self-managing systems can be characterized by a feedback loop mecha-
nism that allows them to optimize their working based on input from the environ-
ment. For the basic feedback loop, the system receives input from the environment
(monitor) and can change its behavior which in turn has an effect on the environment
(effector). In Autonomic Computing [13] this basic loop is extended into four
components, resulting in the MAPE Cycle; see Fig. 3.1 (left). Next to the “monitor”
and “effector” phases, the system internally has an analyze phase that processes
environmental input and a plan phase that changes the internal and external working
of the system.

54 3 System Environment and Context-Awareness

Taking this one step further, an autonomic system can manage another
system (the managed system) by placing it in the MAPE cycle as shown in
Fig. 3.1 (right). Placed in such a configuration, the autonomic and managed systems
together form a SELF-MANAGING SYSTEM or self-adaptive system [14].

Internally, self-managing systems optimize their behavior based on inputs to and
outputs from the managed system. Such state updates can range from simple if-then
rules (e.g., if the temperature is below zero degrees, then preheat the car) to more
sophisticated approaches such as those based on machine learning techniques [9]
(e.g., neural networks or inference engines that determine the best action based on a
large internal knowledge base). Thus, the main objective of self-managing
systems is to optimize their internal working based on inputs from the environments.

3.1.2 User-Driven Context-Aware Systems (UDCAS)

The UDCAS’ context-awareness is directed towards the maximization of the
external (user) satisfaction [6]. Hence, such systems should be able to
(1) identify the situation of the user (possibly through sensors or predictions) and
(2) deliver a service to the user that is suited for the particular situation, as illustrated
in Fig. 3.2 (left).

system

analyze plan

environment

monitor effector

autonomic system

analyze plan

managed system

monitor effector

SELF-MANAGING SYSTEM

Fig. 3.1 Monitor-Analyze-Plan-Effect (MAPE) cycle (left). A managed system and an autonomic
system that together form a self-managing system (right) (Source: [2], p. 188; ©2018, Springer,
reprinted with permission)

user within
context

service
delivery UDCAS

sensor context management

USER-DRIVEN SYSTEM

user situations (context states)

system behavior variants

Fig. 3.2 The UDCAS vision (inspired by [3, 15]): a schematic representation (left); context-states-
driven system behavior variants (right) (Source: [2], p. 189; ©2018, Springer, reprinted with
permission)

3.1 System Behavior Perspectives 55

As it is seen from the figure, a service is delivered to the user and the user is
considered within his or her context, such that the service is adapted on the basis of
the context state (or situation) the user finds himself/herself in. That state is to be
somehow sensed (often technical devices, such as sensors, are used for this purpose)
or predicted (in the figure, we have only visualized the sensing “option”). UDCAS
actually deliver services to the user by means of ICT (Information and Communi-
cation Technology) applications [16] (applications, for short). Hence, unlike
“traditional” applications assuming that users would have common requirements
independent of their context, user-driven context-aware applications are capable
of adapting their behavior to the situation of the user (this is
especially relevant to services delivered via mobile devices). Hence, such applica-
tions are, to a greater or lesser extent, aware of the user context situa-
tion (e.g., user is at home, user is traveling) and provide the desirable
services corresponding to the situation at hand. This quality
points also to another related characteristic, namely, that user-driven context-
aware applications must be able to capture or be informed about information on
the context of users, preferably without effort and conscious acts
from the user part [15]. Hence, a basic assumption underlying the develop-
ment of user-driven context-aware applications is that user needs are not
static, however partially dependent on the particular situation the user finds
himself/herself in, as already mentioned. For example, depending on his/her current
location, time, activity, social environment, environmental properties, or physiolog-
ical properties, the user may have different interests, preferences, or needs with
respect to the services that can be provided by applications.

User-driven context-aware applications are thus primarily motivated by their
potential to increase the user-perceived effectiveness, i.e.,
to provide services that better suit the needs of the user, by taking account of the user
situation. We refer to the collection of parameters that determine the situation of a
user and which are relevant for the application in pursuit of user-perceived effec-
tiveness, as user context, or context for short, in accordance to definitions found
in literature [17]. We will discuss context-aware applications in more detail in Sect.
3.3.

Finally, UDCAS are hence about delivering behavior variants to
corresponding user situations (context states), as illustrated in Fig. 3.2
(right). The idea is that for each context state, the system has a behavior variant.
Nevertheless, this would not be always realistic because if the possible context states
are too many (e.g., tens or hundreds), the effort for “preparing” (at design time)
behavior variants would be huge. For this reason, statistical data analysis and
probability studies are needed, as studied in [16], for establishing the context
states of high occurrence probability (e.g., during a normal working
day, an employee would most probably be either at work or at home, or traveling,
and it is not very likely that the employee is somewhere else, especially during day
hours). Hence all other (possibly hundreds) low probability context states would not
need to be addressed at design time; instead, a “collecting” context state (e.g.,
labelled OTHER) may be considered at design time, assuming a more generic

56 3 System Environment and Context-Awareness

behavior algorithm, such that the behavior is “tuned” at real time (possibly in a rule-
based way). This would of course lead to lower quality of service which is never-
theless justified since it would be very rare that the OTHER behavior variant is
triggered. Thus, this is a matter of “trade-off” between quality of service and
resources. Those issues will be further elaborated in Sect. 3.4.

3.1.3 Value-Sensitive Context-Aware Systems (VSCAS)

VSCAS’ context-awareness is directed towards a sensitivity to public
values [7]. Public values (values for short) like privacy and data protection,
security, accountability, integrity and provenance, and sustainable data storage
often need to be incorporated in the functionalities of information systems. Hence,
the first question to be answered is: How do values relate to requirements [18]
(we mean particularly non-functional requirements because values are essentially
non-functional)? In answering this question, we refer to Shishkov and Mendling
who argue that values are desires of the general public (or public institutions/
organizations that claim to represent the general public) that are about properties
considered societally valuable, such as respecting the privacy of citizens or
prohibiting polluting activities [19]. Even though values are to be broadly accepted
(that is why they are public), they may concern individuals (e.g., considering
privacy). Hence, put broadly and referring to [19], values concern the societal
expectations with regard to the way services should be delivered and with regard
to the above question: values are desires or goals, not requirements. Values are
abstract and not directly related to an enterprise or software system, as opposed to
requirements. Moreover, values are a construct by and for society and not by and for
the enterprise domain in which a specific system will be used. Those domains may
overlap but are not the same. Values that are adopted as goals by an enterprise would
therefore affect the requirements on a system that the enterprise wants to introduce in
order to realize its goals. For this reason, the impact of values cannot be limited to
non-functional requirements. It is therefore considered important to clearly distin-
guish values from requirements and acknowledge the limitations of requirements
engineering with regard to the development of value-sensitive (software) systems.

Hence, the development of systems should take into account the objective, the
user needs, but also the operating and societal context. In this way values can be used
as a guidance for making choices when developing systems; looking at possible
tensions among values is an issue as well. Thus, we consider challenges in several
directions, as identified by Shishkov et al. [2].

Firstly, values are normative by nature and different stakeholders might prefer
different values; also, values might differ among countries and cultures.

Secondly, even though different societies may agree on a value at high level, their
cultural and other differences may “push” for different value “realizations.” This
may result in different operationalizations and implementations of the same value.

3.1 System Behavior Perspectives 57

Thirdly, values may be conflicting to each other (e.g., fulfilling two values at the
same time may be impossible); searching for criminals might lead to violating the
privacy of innocent people, for example.

Thus, in considering VSCAS, it is important to be aware that different
context states may assume the consideration of different
values, which in turn would mean different system functionality
variants. Nevertheless, this goes beyond a mapping just between values and non-
functional requirements and would assume a broader consideration of the software
functionalities specification.

Overall, computing power becomes larger, wireless telecommunications are
advancing, and sensor technology is developing fast [16]; this allows for ubiquitous
network connectivity and numerous capabilities of smart devices, as a basis for
developments in at least two directions: (a) Systems that are tradition-
ally designed for one specific situation and task can be aug-
mented to become “smarter,” being able to operate in complex
environments. (b) Systems are empowered to “sense” what is
going on inside them and also what is going on with the
end-user while she/he is utilizing corresponding services.
This concerns the system-internal processes, the way services are delivered to
users, and the way values are considered.

3.2 Context-Awareness

Let us consider again the constructional UoD view presented in Fig. 2.8, elaborating
the view on the environment and also on those entities using the system products
and/or services (called users); in Fig. 3.3, we have explicitly depicted the user(s).
The following is visualized on the figure:

• A system comprising entities and corresponding relationships.
• An environment comprising other entities and their corresponding relationships.
• A boundary separating the two (the system and its environment).
• A user comprising some entities (e.g., in the figure they are two) and their

corresponding relationships.
• The broader universe where the UoD (the system and its environment) belongs.

58 3 System Environment and Context-Awareness

We would avoid discussing whether the user belongs to the system or to the
environment: from one point of view, the system is driven by the goal of delivering
something to the user and hence, the user is to be considered part of the system;
nevertheless, from another point of view, the user is not among the entities who are
delivering the product/service because the user is consuming it and hence the user is
not to be considered part of the system (and is thus part of the environment). We
therefore observe lack of consensus about how the user is to be considered. For this
reason, we clearly distinguish between what belongs to the system, what belongs to
the environment, and the user.

As it concerns the environment, it may look as if we are “establishing” limits on
it—see Fig. 3.3. This is certainly not true because we engineer enterprises/EIS, and
in doing that, we are certainly limiting the system, establishing what is to belong to
the system but we are not engineering the environment and thus we are not in a
position to say what belongs to the environment and what does not belong to the
environment. It is, for this reason, more straightforward to consider as environment
anything that is outside the system. Still, this would be an obstacle to distinguish
between those entities (outside the system) that are somehow interacting with the
system and those entities (outside the system) that are not interacting with the system.
Said otherwise, we position as belonging to the environment anything that is not only
system-external but is also concerned with interaction(s) with the system, and this
goes beyond our control—the designer cannot establish who and how may happen to

Fig. 3.3 Modeling the user

3.2 Context-Awareness 59

be interacting with the system. For this reason, the separation between what belongs
and what does not belong to the system environment remains abstract.

Going back to discussing the user, as the figure suggests, there is always a user—
no matter what a system delivers, it is delivered to a user (otherwise, the functioning
of the system would be unjustified). Further, the system user may comprise one or
more entities—each of them [or they both (e.g., if they are two)] could consume
different services (or one service together). Finally, it might be that the system needs
to collaborate with entities from the environment, such that it is capable of delivering
a particular product/service to the user.

Hence, a user perspective is needed in order to capture such a delivery of products
and/or services (we call this service, for short). Further, it is often that the service
delivered to the user is to be adapted to the situation of the user (see Sect. 3.1.2). For
example, a person wearing a body-area network [6] through which body vital signs
are captured, may appear to be at “normal state” and then, for example, vital signs are
captured and recorded as archival information or the person may appear to be in an
“emergency state” and then help would need to be urgently arranged. Thus, one kind
of service would be needed at normal state and another kind of service would be
needed at emergency state. This is illustrated in Fig. 3.2 (left).

It is important to note that even though the current discussion and example seem
“closer” to UDCAS (compared to SMCAS and VSCAS), all of them (SMCAS,
UDCAS, and VSCAS) are about CONTEXT-AWARENESS, only the perspectives
are different, and in the current section we are addressing context-awareness in
general.

Hence, we summarize that as it concerns service delivery, currently it is often the
case that context-awareness is desired. This means that whenever a service is being
delivered to the user, the service delivery is to be adjusted to the situation at hand - if
this is the case, then adaptability is achieved.

3.3 Context-Aware Applications

As mentioned in Sect. 3.1, traditional ICT application development methods do not
consider the context of individual users of applications, assuming that end-users
would have common requirements independent of their context. This may be a valid
assumption for applications running on and accessed at desktop computers but
would be less appropriate for applications whose services are delivered via mobile
devices. Ignoring the dynamic context of users may lead to suboptimal applications,
at least for a subset of the context situations the end-user may find himself/herself
in. Hence, context-aware applications (discussed already in Sect. 3.1) have emerged,
driven by the successful uptake of mobile telephony and wireless telecommunica-
tions [20]. Such applications are, to a greater or lesser extent, aware of the end-user
context situation (e.g., user is at home, user is traveling) and provide the desirable
services corresponding to the situation at hand [21]. As mentioned already, this
quality points also to another related characteristic, namely, that context-aware

60 3 System Environment and Context-Awareness

applicationsmust be able to capture or be informed about information on the context
of end-users, preferably without effort and conscious acts from the user part [3].

Developing context-aware applications is hence a nontrivial task; inspired by the
above discussion, we suggest considering the following related challenges: (1) Prop-
erly deciding what physical context to sense and what high-level context information
to pass to an application and also bridging the gap between raw context data and
high-level context information, (2) deciding which potential end-user context situa-
tions to consider and which ones to ignore, and (3) modeling context-aware
behavior variants including switching between alternative ones [21].

Context-aware applications can be particularly effective if the end-user is mobile
and uses a personal handheld device for the delivery of services. The mobile case is
characterized by dynamic context situations often dominated by changing location
(however not necessarily restricted to this). Different locations may imply different
social environments and different network access options, which offer opportunities
for the provision of adaptive or value-added services based on context sensitivity.
Especially in the mobile case, context changes are continuous, and a context-aware
application may exploit this by providing near real-time context-based adaptation
during a service delivery session with its end-user. The adaptation is near real-time
because context information is an approximation (not exact representation) of the
real-life context and thus there may be a time delay [20].

Hence, through context-awareness, applications can be proactive with respect to
service delivery, in addition to being just reactive, by detecting certain context
situations that require or invite the delivery of useful services which are then initiated
by the application instead of by a user request. Said otherwise, traditional applica-
tions provide services in reaction to user requests (reactive), whereas context-aware
applications have also the possibility of initiating a service when a particular context
situation is detected, without a user input (proactive).

In summary, context-awareness concerns the possibility of delivering effective
personalized services to the end-user, taking into account his/her particular situation
(it can also be labeled “context state”). Technological advances enable better and
richer context-awareness, beyond mere location sensitivity.

With regard to the design implications concerning context-aware applications,
those applications require knowledge on context and exploit this knowledge to
provide the best possible service, as mentioned above. This concerns, for example,
the end-user context, i.e., the situation of a person who is the potential user of
services offered by an application. Examples of end-user context are the location of
the user, the user’s activity, the availability of the user, and the user’s access to
certain devices or facilities. The assumption we make is that the end-user is in
different context situations over time, and as a consequence, she/he has changing
preferences or needs with regard to services.

This corresponds to what is exhibited in Fig. 3.2 (left), limited to the UDCAS
perspective and assuming sensing (not prediction): the application is informed by
sensors of the context (or of context changes), where the sensing is done as
unobtrusively (and invisibly) for the end-user as possible. Sensors sample the
user’s environment and produce (primitive) context data, which is an approximation

3.3 Context-Aware Applications 61

of the actual context, suitable for computer interpretation and processing. Higher-
level context information may be derived through inference and aggregation (using
input from multiple sensors) before it is presented to applications which in turn can
decide on the current context of the end-user and the corresponding service(s) that
must be offered. Further, according to Shishkov and Van Sinderen [21], the design,
implementation, deployment, and operation of context-aware applications have
many interesting concerns, including:

• Social / economical: how to determine useful context-aware serviceswhere useful
can be defined in terms of functional and monetary value?

• Methodological: how to determine and model the context of the end-user that is
relevant to the application; how to relate the context to the service of the
application and how to model this service; and how to design the application
such that the service is correctly implemented?

• Technical: how to represent context in the technical domain; how to manage
context information such that it is useful to the application; and how to use
context information in the provisioning of context-aware services?

Addressing the last two concerns (especially the last one) starts with considering
possible IT architectures and according to Shishkov and Van Sinderen [21], two
principle architectures could be appropriate, namely:

• Context-aware selection: end-user request(s) and end-user-related context
information are used to discover a matching service (or service composition).
Discovery is supported by a repository of context-enhanced service descriptions.
A context-enhanced service description not only specifies the functional proper-
ties (goals, interactions, input, output) and non-functional properties (perfor-
mance, security, availability) but also the context properties of the service.
Context properties indicate what context situations the service is targeting. For
example, a service could provide information which is region-specific (such as a
sightseeing tour), and therefore the context properties could indicate the relevance
for a particular geographical area.

• Context-aware execution: after the end-user request(s) has been processed and a
matching service(s) has been found (possibly in the same way as described
above), the service delivery itself would adapt to changing context during the
service session with the end-user. When the context of the end-user changes in a
relevant (to the application) way, the service provided is adapted to the situation
at hand. For example, the user may move from one location to another while
using a service that offers information on objects of interest, which are close by
(e.g., such as historic buildings within a radius of 5 km).

In both context-aware selection and context-aware execution, a new role is
introduced, namely, the role of context provider. A context provider is an infor-
mation service provider where the information is context information. A context
provider captures raw context data and/or processes context information with the
purpose of producing richer context information which is of (commercial) interest.
Interested parties could be other context providers or application providers. Further,

62 3 System Environment and Context-Awareness

a context-aware application obviously requires an adaptive service provisioning
component and a context information provisioning component.

As far as the design of context-aware applications is concerned, we follow an
approach that is a partial refinement of an existing one considered in [22] that
concerns a general design life cycle comprising among other phases:

• Enterprise modeling: during that phase, the end-user is considered in relation to
processes that either support him/her directly or the goal(s) of related business
(es). Those processes have to be identified, modeled, and analyzed with respect to
their ability to (collectively) achieve a stated goal(s). Modeling in this way
processes and their relationships represents actually enterprise modeling.

• Application modeling: during that phase, the attention is shifted from the
business to the IT domain. The purpose is to derive a model of the application,
which can be used as a blueprint for the software implementation based on a
target technological platform. A model of the application, whether as an inte-
grated whole or as a composition of application components, is called an appli-
cation model. Enterprise models and application models should certainly be
aligned, in order to achieve that the application properly contributes to the
realization of the business/user goals. As a starting point for achieving proper
alignment, one could delineate in the final enterprise model which (parts of)
processes are subject to automation (i.e., are considered for replacement by
software applications). The most abstract representation of the delineated behav-
ior would be a service specification of the application (as an integrated whole),
which can be considered as the initial application model.

• Requirements elicitation: both the enterprise model and the application model
have to meet certain requirements, which are captured and made explicit during
the phase called requirements elicitation. Application requirements can be seen as
a refinement of part of the business requirements, as a consequence of the
proposition that the initial application model can be derived considering (parts
of) the business processes (within the final enterprise model), especially those
processes selected for automation.

• Context elicitation: an important part of the design of a context-aware applica-
tion is the process of finding out the relevant end-user context from the applica-
tion point of view; we will refer to that phase as context elicitation. End-user
context is relevant to the application if a context change would also change the
preferences or needs of the end-user, regarding the service of the application.
Context elicitation can therefore be seen also as the process of determining an
end-user context state space, where each context state corresponds to an alter-
native desirable service behavior variant. Since relevant end-user context poten-
tially has many attributes (location, activity, availability, and so on), a context
state can relate to a complex end-user situation, composed of (statements on)
several context attributes. Moreover, context elicitation relates to requirements
elicitation in the sense that each context state is associated with requirements
(i.e., preferences and needs of the end-user) on desirable application behavior.
Context elicitation can best be done in the final phase of enterprise modeling and
the initial phase of application modeling, when the role and responsibility of the

3.3 Context-Aware Applications 63

end-user and the role and responsibility of the application in their respective
environments are considered.

Figure 3.4 depicts those different phases and activities:
Following [3], we assume that an end-user context space can be defined and that

each context state within this space corresponds to an alternative application
service behavior variant. In other words, the application service consists of several
sub-behaviors or variants of some basic behavior, each corresponding to a different
context state. Any service behavior model would have to express the context state
dependent transitions from one sub-behavior (or behavior variant) to another one.

With respect to those issues, the following challenges have been identified:

• Properly deciding what to sense and how to interpret it in adapting application
behavior can be problematic since the interpreted sensed information must be a
valid indication for a change in the situation of the end-user, and it is not always
trivial to know how context information is to correspond to a user situation.

• Deciding which potential end-user context situations to consider and which ones
to ignore is challenging because there may be tens or even hundreds of possible
end-user situations, with only several of them with high probability to occur, and
therefore considering the others at design time is not sensible (if an adequate
resources expenditure is to be observed).

• Modeling the application behavior including the switching between alternative desir-
able application behavior variants can be complicated because alternative behavior
variants are behaviors themselves which also are to be considered in an integrated
way, allowing for modeling the switching between them, driven possibly by rules.

Those challenges will be discussed below.

With regard to deriving context information, an adequate decision about what
should be sensed and how it is to be interpreted concerns the extraction of context
information from raw data, which relates broadly to context reasoning [6].

refine

Business Requirements
refine

constrain constrain

Application Requirements

Application ModelingEnterprise Modeling

Context Requirements

Fig. 3.4 Application design life cycle (Source: [21], p. 26; ©2008, SCITEPRESS, reprinted with
permission)

64 3 System Environment and Context-Awareness

Context reasoning is concerned with inferring context information from
raw sensor data and deriving higher-level context information from lower-level
context information. As for the extraction of context information from raw data,
related algorithms are needed to support it, and two main concerns are to be taken
into account:

• The ability of specific target applications, e.g., in domains such as healthcare or
finance (for example), to use the output of the algorithms.

• The availability of sensors providing input to the algorithms.

Current standard mobile devices can already operate as sensors, e.g., they can
gather GPS info, Wi-Fi info, cellular network info, Bluetooth info, voice call info,
and so on. In addition, dedicated sensors (e.g., which measure vital signs) can be
integrated with existing mobile networked devices. Next to that, future standard
mobile devices may even include other types of sensors, e.g., measuring
temperature.

Hence, it is considered crucial developing efficient context reasoning algorithms,
by investigating whether it is possible to derive certain specific context information
from certain specific sensor data. In order to adequately refine such algorithms,
additional restrictions would need to be taken into account: (1) restrictions
concerning the (specific) processing environments of mobile devices; (2) restrictions
on memory usage, processing power, battery consumption, and wireless network
usage; and (3) restrictions that concern real-time versus delayed availability of
extracted context.

In order to develop adequate algorithms that extract context from raw sensor data,
it is therefore important to appropriately consider gathering raw sensor data which is
augmented with user input. Concerning the sensor data, it should be preprocessed
and filtered, in order to be properly structured as input for the context reasoning
algorithms which in turn would be expected to automatically yield the desired
output. The (delivered) context information must be of certain (minimal) quality in
order to be useful; said otherwise, certain quality-of-context levels should be
maintained.

Finally, some issues that have indirect impact need also to be taken into account:

(a) The delivered context information would often be applied in real-time environ-
ments where failures, performance requirements, available interfaces, and oper-
ational environments are to be taken into careful consideration.

(b) In order new applications to be enabled, it is important to investigate how the
algorithms could be integrated in the “infrastructure” for context-awareness.

With regard to context situations, it may be the case that there are many (tens,
hundreds, and even more) possible end-user situations, for example, user is at home,
user is driving, user is busy, user is out of battery, user is on holiday, user is in
emergency, and so on. Situations are situations but which situations are relevant,
how many of them have high occurrence probability, and which situation corre-
sponds to the so-called main success scenario? Those questions points to the
following claims:

3.3 Context-Aware Applications 65

• The application designers should only consider relevant context situations (also
labeled “context states,” as already mentioned). For example, if a phone call with
John is being arranged, then “John is at home” or “John is driving,” or “John is in a
meeting,” and so on are relevant context states, but “John is insured” is irrelevant.

• Out of all possible relevant context states, there should be several ones that are of
high occurrence probability and thus all other ones are of lower occurrence
probability (see Sect. 3.4).

– The high-probability context states could be reflected at design time; this
makes sense because the applications developers are preparing a “solution
box,” such that upon identifying a particular high-probability context state, the
application “takes” a system behavior variant out of the box—a behavior
variant that matches the context state; this would lead to adequate system
behavior, carefully “prepared” at design time.

– The low-probability context states, in contrast, may be ignored at design time
because spending time and resources for specifying system behavior variants
that are not expected to occur is considered inappropriate. Still, it is possible
(even though not very probable) that such context states occur. For this reason,
we argue that even though not considered at design time, such context states
are to be addressable at run time, through intelligent algorithms.

• There should always be a default behavior because in our view, the application
behavior modeling needs a main success scenario to serve as the “behavior back”
for the system—then, any possible deviations from the main success scenario
could be modeled as extensions [23].

This is illustrated in Fig. 3.5.

As seen from the figure, from the perspective of developing a context-aware
application, one is to distinguish between context states of high occurrence proba-
bility and context states of low occurrence probability, and the default context state
is certainly one of the context states of high occurrence probability.

Switching between application behavior variants is important as well: Even if
context states are identified properly and also matched to corresponding desired
behavior variants (or addressed by intelligent algorithms), it is a challenge to handle
the mere switching between one (current) desired behavior (behavior variant) of the
application and another one (upcoming). Let us take, for example, the case of
supporting a person wearing a body-area network, by means of a context-aware
e-health application [6]; let us take for simplicity just two of the possible context

context state of high occurrence probability

context state

default context state ...

context state of low occurrence probability

Fig. 3.5 Classification of context states (©2017, The Author, reprinted with permission)

66 3 System Environment and Context-Awareness

states, namely, “normal” (the person is being just monitored, by transmitting (to a
hospital) data that concerns vital signs) and “emergency” (the person urgently needs
medical help, and the goal is that the person sees a medical specialist as soon as
possible, no matter who the medical specialist is or which the hospital is where the
medical specialist stays, or if this would be arranged by an ambulance reaching the
person). Then, if there is a context state change, for example, from “normal” to
“emergency”, how would this be realized? If the application would stop the data
transmission and start searching for the closest medical specialist, would the data
(featuring vital signs) still be recorded such that it is possibly used by the medical
specialist? In the opposite case, if there is a context state change, from “emergency”
to “normal” (e.g., if the person feels better and indicates that (s)he would not need
emergency treatment any more) and the application would hence have to stop
dealing with the emergency help arrangement and would have to go back to just
transmitting data, then what would happen if, for example, an ambulance is traveling
to the location of the person? Should the application also take care of informing the
approaching medical specialist(s) that the emergency situation has been cancelled?
Those examples show that switching between application behavior variants is not
trivial, and this challenge needs to be adequately addressed at design time.

Summarizing the above, a context-aware system can be seen as concerning a
sequence of actions that achieve (sensing and capturing), (interpretation and
state derivation), (switching), and (provisioning), as shown in Fig. 3.6.

With regard to : the system should be able to sense context and capture this
context as context data.

With regard to : the system should be able to interpret the captured context data
and derive from it “meaningful” higher-level context information, such that (for
example) a context state change is identified; this, in turn, is supposed to trigger
another application behavior variant.

With regard to : the system should be able to handle the switching between its
alternative behavior variants.

With regard to : the system should be able to provide services (delivered through
application behavior variants) covering all possible context states; it is to be emphasized

S Legend:
S: Sensing
I: Interpretation
w: Switching
P: Provisioning

= action
= dependency

I

w

P

Fig. 3.6 A simplified view
on a context-aware system
(Source: [3], p. 228; ©2008,
Springer, reprinted with
permission)

3.3 Context-Aware Applications 67

that this counts not only for those application behavior variants that have been
“prepared” at design time but also for those variants assuming run time “configuration.”

This is obviously a simplified model, since each of those actions represents a
potentially complex process, and the dependencies between those normally involve
multiple instances of information exchange and triggering. Anyway, we are not
discussing this in more detail in the current section because we find the above
discussion sufficient, especially as it concerns enterprise information systems and
the need to properly consider environmental issues. At the same time, we find it
necessary to explicitly address the (probabilities driven) context analysis challenge
because, in our view, knowing which context states are most likely to occur would
be of great help to those designing an enterprise information system. Hence, this will
be considered further in the next section.

3.4 Context Analysis, Context States, Occurrence
Probabilities, and Context Parameters

In conducting context analysis, the designers of context-aware applications should
approach the possible context states and corresponding desired application behaviors
(behavior variants) [3]; in this, designers should study the context states and their
occurrence probabilities, discovering as well useful context parameters whose values
indicate the occurrence of particular states.

As far as occurrence probabilities are concerned, we note that in
deciding about the context states, the designer is sometimes inevitably driven by
subjective judgments that are hardly supportable by rules: How is a situation
perceived? What behaviors can be expected? Further, the designer must often
make pragmatic decisions—ignoring, for example, states that usually do not occur
(although they might occur). In our view, besides such subjective decisions, there are
steps which in general help to adequately approach the context analysis challenge.
Those steps concern the consideration of random variables. Exploring their
probabilities allows us to apply statistical analysis, including hypotheses
testing and parameters estimation [24].

Considering just possible outcomes is sometimes not enough in approaching a
phenomenon; we might need to refer to an outcome in general. This is possible if
we have a random variable and we study the outcomes’ occurrence probabilities.

Let us consider, for example, land border security and particularly the activities
of border police officers on preventing illegal border crossings, supported by
technical infrastructure and devices [11]. Further, let us focus on the case of distant
monitoring, referring to the example: there is a video camera transmitting in real time
and a border police officer (who is away from the camera) is considering the visual
information being received; essential in this case is whether the camera is transmit-
ting or not (if the camera is not transmitting, this would be alarming and there may be
numerous reasons for that, such as illegal human intervention, outage, natural cause,
and so on).

68 3 System Environment and Context-Awareness

We can consider here the random variable with respect to those outcomes,
namely, camera transmitting and camera not transmitting, would be a discrete
random variable [24] since it may take on only a countable number of distinct
values—two in our case. Provided the number of possible distinct values is exactly
two, we have the case of a priori probabilities of each of the alternative
outcomes (one of those probabilities can be calculated by deducting the other one
from).

Hence, if (for example) statistical information from the border authorities indi-
cates that within a certain time frame, in 80% of the time a particular camera was
transmitting, we would conclude that the a priori probability of the first of the
mentioned possible outcomes (namely, “camera transmitting”) is . The a priori
probability of the second alternative outcome is thus .

Hence, our context states represent the “camera transmitting” and “camera not
transmitting” alternatives, with a priori probabilities and , respectively—
Fig. 3.7:

It is to be noted, with regard to the current example, that even though we observe
whether a camera is transmitting or not, it is not the camera that is the end-user of
what a context-aware application is delivering because the context-aware applica-
tion is not supporting the camera but the border police officer who is using the
camera’s output. Hence, those alternative outcomes point to two alternative situa-
tions concerning the border police officer, namely, (1) the border police officer is
counting on the camera and (2) the border police officer is not counting on the
camera. Depending on the situation of the border police officer, the context-aware
application would deliver one kind of support or another.

Therefore, knowing the occurrence probability of each outcome helps in deciding
about the de fault system behavior variant, about the optimal allocation of resources,
about risks, and so on.

Further, in order to prescribe how to recognize each of the states (two in our case),
we assume that the state at a particular moment is recognizable through observing
the values of appropriate parameters. If we have parameters appropriate to our
scenario and if each of them has certain possible values, then each value combination
would point to a particular state.

Then, by considering the value combinations, we can know the context state, by
simply observing the values at any moment [3].

camera not transmittingco
nt

ex
t camera transmitting

alternative outcomes a priori probabilities

0.8

0.2

Fig. 3.7 Two context state alternatives (©2017, The Author, reprinted with permission)

3.4 Context Analysis, Context States, Occurrence Probabilities, and. . . 69

It is also necessary to analyze potential context states, such that the ones of high
occurrence probability are identified. We argue that this may be done intuitively or
on the basis of statistical information. We are hence interested in considering the
latter in more detail.

With regard to this, we consider statistics, data analysis, and probability theory,
and for this we refer to Freund [8].

Although descriptive statistics is an important branch of statistics and it continues
to be widely used, statistical information usually arises from samples (from
observations made on only part of a large set of items), and this means that its
analysis requires generalizations which go beyond the data—this is an observed
shift in emphasis from descriptive statistics to the methods of statistical inference.
As for probability theory, it provides the basis for the methods which are used when
generalizations are made from observed data, namely, when the methods of statis-
tical inference are used.

Let us take an example featuring the delivery of support by a context-aware
application to workers: The application supports a worker, by informing him/her of
the environmental conditions, in general, and the concentration (in the air) of sulfur
oxides, in particular, such that the worker knows if it is safe to be out or not. It is
hence necessary knowing the concentration levels of sulfur oxides, which are of high
occurrence probability. This would allow for better designing the application and for
being able as well to establish a realistic work plan, knowing (approximately) how
many working days to plan for the worker to work outside the factory.

In our example (taken from [8]), we have made 80 observations—one sample per
one day, hence 80 days in total; let us consider the following example results (sulfur
oxides in tons):

Since the smallest value is 6.2 (put on gray background) and the largest value is
31.8 (put on gray background as well), we make a choice for the following
classification assuming seven classes:

• 5.0 – 8.9: first class.
• 9.0 – 12.9: second class.
• 13.0 – 16.9: third class.
• .
• 21.0 – 24.9: fifth class.
• 25.0 – 28.9: sixth class.
• 29.0 – 32.9: seventh class.

70 3 System Environment and Context-Awareness

It is now necessary to establish how many items fall into each class (those are
called “class frequencies”) and what is the corresponding percentage and the
cumulative percentage:

This is graphically presented as histogram in Fig. 3.8:

As it is seen from the figure, most items (25) fall into the fourth class:

• 31.25% of all sample items show between 17.0 and 20.9 tons of sulfur oxides.
• 33.75% of all sample items show less than 17.00 tons of sulfur oxides.
• Therefore, 65.00% of all sample items show less than 21.00 tons of sulfur oxides.

Further, let us calculate the mean by summing up the 80 numbers (15.8 + . . . +
28.5) and dividing the resulting number by 80: 1511.7/80 ¼ 18.9. In this case, we
can trust that number because each of the 80 days has equal importance weight in
contrast to cases when this is not the case, as, for example, observations summarized
in big London against observations summarized in small Delft.

In order to avoid the possibility of getting misled using the mean (as above
mentioned), it is recommended to consider the median—see Fig. 3.9:

5.0 – 8.9 9.0 – 12.9 13.0 – 16.9 17.0 – 20.9 21.0 – 24.9 25.0 – 28.9 29.0 – 32.9

tons of sulfur oxides

0

10

20

fr
e
q

u
e
n

c
y

Fig. 3.8 Histogram of the distribution of the sulfur oxides emission data

3.4 Context Analysis, Context States, Occurrence Probabilities, and. . . 71

The median should “split” the sample items, such that 50% of them have values
smaller than the value the median points to and hence 50% of them have values
greater than the value the median points to. In the considered example, we need to
find this number that fulfills the following: 50% of the sample sulfur oxides values
are smaller than the number and 50% are greater. On the figure, the median is
displayed in dashed line.

We find the median of the distribution of the sulfur oxides emission data in the
following way:

1. We note that 33.75% of the sample items have values lower than 17.00 (this can
be seen from the numbers presented above); we note also that 50.00% of the
sample items have values lower than the so-called “median value” (pointed by the
median as shown in Fig. 3.9). The difference between the two is
50.00% � 33.75% ¼ 16.25%. We note also that the mentioned 33.75% corre-
sponds to first class + second class + third class, while at the same time 31.25%
corresponds to the fourth class only (those are values greater than 17.0 and
smaller than 20.9). Thus the median value corresponds to the fourth class
(because 16.25% is smaller than 31.25%). For this reason, we state that the
median value equals to 17 + z, which means that the “distance” between the
median value and 21 (where the fifth class “begins”) equals to 4 � z, because we
have class intervals of 4 (9.0 � 5.0 ¼ 4, 13.0 � 9.0 ¼ 4, and so on).

2. We then split the fourth class into two sub-classes, namely, fourth-L and fourth-
H, such that (1) the items belonging to the fourth-L sub-class have values that are
greater than 17 and smaller than the median value and (2) the items belonging to
the fourth-H sub-class have values that are greater than the median value and
smaller than 21. Thus (a) 31.25% of all sample items belong to fourth-L sub-class
+ fourth-H sub-class; (b) 16.25% of all sample items belong to the fourth-L
sub-class (50.00% � 33.75% ¼ 16.25%; see above); (c) thus, 15.00% of all
sample items belong to the fourth-H sub-class (31.25% � 16.25% ¼ 15.00%);

5.0 – 8.9 9.0 – 12.9 13.0 – 16.9 17.0 – 20.9 21.0 – 24.9 25.0 – 28.9 29.0 – 32.9

tons of sulfur oxides

0

10

20

fre
qu

en
cy

z 4-z

= 19.03x~

Fig. 3.9 The median of the distribution of the sulfur oxides emission data

72 3 System Environment and Context-Awareness

and (d) 52.00% of the sample items belonging to the fourth class belong to the
fourth-L class ((16.25/31.25) � 100).

3. We assume that the values in each class are evenly distributed (spread evenly
throughout the class); this would mean that if 52.00% of all values belonging to
the fourth class belong to the fourth-L class, then 52.00% of the whole class
interval (i.e., 4) corresponds to z (Fig. 3.9) which is the “sub-class interval”
corresponding to the fourth-L sub-class. This would mean z ¼ 52% � 4 ¼ 2.08.

4. The way amounts have actually been grouped in the considered example is
precise to the point of the nearest tenth of a ton (5.0, 8.9, 9.0, and so on), and
this is to assume refinement to some extent—for example, considering that 5.0
includes everything from 4.95 to 5.05, the class 5.0–8.9 includes everything from
4.95 to 8.95, and so on. Such a desired level of precision points to the so-called
“class boundaries”—if we assume such level of precision for the example, this
would mean that the lower boundary of the fourth class is 16.95.

5. Hence, in order to find the median value, we should add the corresponding
sub-class interval (2.08) to the lower boundary of the class (16.95): 16.95 +
2.08 ¼ 19.03, as also seen from Fig. 3.9.

Hence, half of the sample items have values that are smaller than 19.03 and the
other half of the sample items have values that are greater than 19.03.

In summary, in the current example:

• The MEAN equals to 18.90.
• The MEDIAN equals to 19.03.

In the example, as explained already, both values are very close and we could
round this to 19.00, hence claiming that for the period in which the sample values
were taken, it may be expected that the amount of sulfur oxides (in tons) in the air
would be around 19. If this is acceptable, according to the regulations, then this
would mean that it is to be planned that in most days workers would be able to work
out; otherwise, it is to be planned that in most days workers are to be kept inside the
factory, for example.

Let us assume that 19.00 points to possibility to work out. In this case, the default
application behavior variant would assume that the end-user is working out and
only if the situation of the end-user changes—the amount of sulfur oxides in the air
goes above the norm, the application would switch to another behavior variant that
assumes instructing the end-user to get inside, and so on.

Thus, in developing context-aware applications, it is helpful conducting data
analysis as above-suggested, such that the default application behavior variant is
adequately determined—with regard to this, the data distribution is to be considered,
as well as themean and/or themedian values; still, with regard to those issues, we are
not going in more detail in the current section, noting nevertheless that what
statistics and probability theory offer can be even more instrumental (through
other concepts and approaches as well) with regard to context analysis.

3.4 Context Analysis, Context States, Occurrence Probabilities, and. . . 73

As mentioned at the beginning of the current chapter, in the following section, we
will briefly discuss the relevance of classification (and decision trees, in particular)
as a prediction “instrument” in the cases when sensing technology is inapplicable.

3.5 Context-Awareness and Classification

As discussed already in the current chapter, it is essential being able to “capture”
changes in the (environmental) situation, if any, such that the system behavior is
adapted accordingly. As discussed as well, sensors are often used for that purpose.
For example, it is easy to establish if a person is at home or in his/her car, using
sensors. Nevertheless, it is not always possible/affordable to use sensors, especially
when the (environmental) situation concerns behavior patterns/attitudes of persons.
Imagine that an online platform is to distinguish between “devoted users” and
“hesitating users,” such that it would address devoted users in one way and hesitating
users in another way. Obviously, there are no sensors that would help establishing
whether John Hudson (e.g., who would be a “new” person approaching the platform)
is a devoted user or a hesitating user. It seems thus logical to expect that in such cases
the platform would have to count on some kind of artificial intelligence to “decide”
about John Hudson.

This brings us to the area of data analytics, for which we refer to [9]. It is
hence challenging to bridge our studies (that are related to enterprise engineering and
software engineering) to another discipline. Here we build upon the previous section
that has already introduced relevant concepts, from the perspective of statistics. Still,
we should introduce and comment several other essential concepts and we note that
some label nuances may differ between data analytics and enterprise engineering
(or software engineering).

Firstly, it is important to mention that all this is about ANALYZING DATA for
descriptive and/or predictive purposes—in our example, we need to know
whether John Hudson is / would be a devoted user or a hesitating user, such that we
address him in the appropriate way. Said otherwise, we need to know which the
current context state is—is it “dealing with a devoted user” or “dealing with a
hesitating user.” Here we have no sensors and we only count on DATA. How do
we get data then? We get it from any data entries that may have relevance to the
situation at hand. In the example, probably John Hudson has registered to use the
platform, and in doing this, he has provided some information. Then, the data
entries can be associated with classes or concepts. For example, through
the abovementioned platform, a company may deal with classes of items for sale,
such as computers, books, souvenirs, and so on, and concepts of customers may
include devoted users and hesitating users. Sometimes it would be useful to describe
individual classes and concepts in summarized, concise, and yet precise terms; such
descriptions of a class or a concept are called class/concept descriptions.

Classification in the data analytics context is the process of finding a model
(or function) that describes and distinguishes data classes and concepts. This is

74 3 System Environment and Context-Awareness

derived based on analyzing training data—data objects for which the class
labels are known. Hence, such a model is used to predict the class label of
objects for which the class label is unknown. An effective technique
in this regard that is also claimed to be easily combinable with context-aware system
models is the decision tree technique.

In decision tree learning, a new example is classified by submitting it to a series
of tests that determine the class label of the example. These tests are organized in a
hierarchical structure called a decision tree.

Let’s consider a simple example: Alice is doubtful about whether or not to take an
umbrella with her when leaving her flat. There are three things here, namely, (1) the
decision: whether or not to bring the umbrella; (2) the uncertainty: whether
it’s going to rain; and (3) the payoff is Alice’s satisfaction.

We build a decision tree featuring the example, visualizing this in Fig. 3.10. As it
is seen from the figure, the square in the left visualizes the main decision reflected in
the question: BRING UMBRELLA? Further, the disks in the middle visualize the
uncertainty reflected in the question: RAIN? Finally, the leaves in the right visualize
Alice’s satisfaction, “measured” accordingly.

Explaining things further, we put the main question (Bring Umbrella?) and “see”
what “happens”:

Yes

Bring
Umbrella?

No

Yes

No

-3

1

Yes

No

1

-2

Rain?

Rain?

Fig. 3.10 Building a decision tree

3.5 Context-Awareness and Classification 75

• If Alice would bring an umbrella with her (the YES branch), then we have two
possibilities:

– It would rain (YesYes).
– It would not rain (YesNo).

• If Alice would not bring an umbrella with her (the NO branch), then we have two
possibilities as well:

– It would rain (NoYes).
– It would not rain (NoNo).

Hence, we have to “measure” payoff (Alice’s satisfaction) for all four possible
“outcomes,” and this can be, for example:

• +1 YesYes: If Alice would take an umbrella and it would rain, then her “satis-
faction” is 1.

• �2 YesNo: If Alice would take an umbrella and it would not rain, then her
“satisfaction” is �2 (it is lower because Alice would have carried the umbrella
with her but not using it).

• �3 NoYes: If Alice would not take an umbrella and it would rain, then her
“satisfaction” is �3 (because Alice would have gotten wet).

• +1 NoNo: If Alice would not take an umbrella and it would not rain, then her
“satisfaction” is 1.

This is just a simple example that is helpful in introducing and explaining
decision trees. On that basis, one could certainly think of more complex examples,
such as the case in which we need to know whether a person is motivated to wait in
line at a restaurant or not. In this, we may consider many attributes/questions: Is the
person hungry? Are there persons inside the restaurant? What kind of food is served
in the restaurant? This would be a complex decision tree. In the end nevertheless,
such a decision tree would help us decide what CONTEXT STATE to expect—and
in this example, the context states are just two: “the person is motivated to wait in
line” and “the person is not motivated to wait in line.”

?

training

new example classification

Fig. 3.11 Training a decision tree

76 3 System Environment and Context-Awareness

Then the question is HOW are we TRAINING and USING the decision tree?
Actually, we firstly use a number of “instances” to train the decision tree (in the
above example this may be, for instance, 200 persons or 2000 persons) and we then
identify “splitting attribute(s),” applying the concepts of Entropy and Informa-
tion Gain. Then we use those identified “best splitting” attributes to decide about
a new instance popping up; and we classify this new instance accordingly. We are
not going in more detail here and we only visualize the overall process of training +
using a decision tree—see Fig. 3.11. As it is seen on the figure, we may need to
distinguish among several classes of objects—for example, among vehicles, ani-
mals, and buildings or as it is in the figure, among rectangles, diamonds, triangles,
and pentagons. We should train the decision tree, by providing a set of many
rectangles, diamonds, triangles, and pentagons. And we refer to considered attributes
and corresponding questions. In the end we know that, for example, if a new instance
“responds” in a particular way to the questions, then it is a triangle (as in the example
visualized in Fig. 3.11).

Similarly, we may use a decision tree to establish in which context state we are
and trigger accordingly the system behavior.

* * *
IN SUMMARY, in the current chapter, we have addressed the challenge of

system behavior adaptation driven by (environmental) changes, referred to as
context-awareness. We have introduced three system behavior perspectives relevant
to context-awareness and we have conceptually elaborated on context-awareness.
We have also considered context-aware applications. Finally, we have studied some
relevant potentials of statistics and data analytics. In the following two chapters, we
will present relevant social theories (Chap. 4) and computing paradigms (Chap. 5),
elaborating on how the concepts and views considered in the current and the
previous chapters can be rooted both enterprise-wise and technology-wise.

References

1. Google Dictionary (2018) The website of Google Dictionary. http://www.google.com
2. Shishkov B, Larsen JB, Warnier M, Janssen M (2018) Three categories of context-aware

systems. In: Shishkov B (ed) Business modeling and software design. BMSD 2018. Lecture
notes in business information processing, vol 319. Springer, Cham

3. Shishkov B, van Sinderen M (2008) From user context states to context-aware applications. In:
Filipe J, Cordeiro J, Cardoso J (eds) Enterprise information systems. ICEIS 2007. Lecture notes
in business information processing, vol 12. Springer, Berlin

4. Brun Y et al (2009) Engineering self-adaptive systems through feedback loops. In: Cheng BHC,
de Lemos R, Giese H, Inverardi P, Magee J (eds) Software engineering for self-adaptive
systems. Lecture notes in computer science, vol 5525. Springer, Berlin

5. Kephart JO, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50
6. AWARENESS (2008) Freeband AWARENESS project. http://www.freeband.nl
7. Friedman B, Hendry DG, Borning A (2017) A survey of value sensitive design methods. Found

Trends Hum-Comput Interact 1:76

References 77

http://www.google.com
http://www.freeband.nl

8. Freud JE (1988) Modern elementary statistics. Prentice-Hall International Editions, Upper
Saddle River, NJ

9. Han J, Kamber M, Pei J (2012) Data mining, concepts and techniques. Elsevier, Waltham
10. LandBorderSurveillance (2012) The website of the EBF LandBorderSurveillance Project.

http://ec.europa.eu/dgs/homeaffairs/financing/fundings/projects
11. Shishkov B, Mitrakos D (2016) Towards context-aware border security control. In: 6th inter-

national symposium on business modeling and software design (BMSD’16). SCITEPRESS,
Rhodes

12. Muehl G, Werner M, Jaeger MA, Herrmann K, Parzyjegla H (2007) On the definitions of self-
managing and self-organizing systems. In: Communication in distributed systems—15. ITG/GI
symposium, Bern, Switzerland, 2007, pp 1–11

13. Huebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and
applications. ACM Comp Surv 40(3):7

14. Mahdavi-Hezavehi S, Avgeriou P, Weyns D (2016) A classification framework of uncertainty
in architecture-based self-adaptive systems with multiple quality requirements. In: Mistrik I,
Ali N, Kazman R, Grundy J, Schmerl B (eds) Managing trade-offs in adaptable software
architectures, 1st edn. Elsevier, Amsterdam

15. Shishkov B, Janssen M (2018) Enforcing context-awareness and privacy-by-design in the
specification of information systems. In: Shishkov B (ed) Business modeling and software
design. BMSD 2017. Lecture notes in business information processing, vol 309. Springer,
Cham

16. Shishkov B (2017) Enterprise information systems, a modeling approach. IICREST, Sofia
17. Dey AK (2001) Understanding and using context. Pers Ubiquitous Comput 5(1):4–7
18. Akkermans H, Gordijn J (2006)What is this science called requirements engineering? In: 14th

IEEE international requirements engineering conference (RE’06), Minneapolis/St. Paul, MN,
2006, pp 273–278

19. Shishkov B, Mendling J (2018) Business process variability and public values. In: Shishkov B
(ed) Business modeling and software design. BMSD 2018. Lecture notes in business informa-
tion processing, vol 319. Springer, Cham

20. CLOSER. The international conference on cloud computing and service science. http://closer.
scitevents.org

21. Shishkov B, Van Sinderen MJ (2008) On the design of context-aware applications. In: 2nd
international workshop on enterprise systems and technology (I-WEST’08). SCITEPRESS,
Enschede

22. Shishkov B, Van Sinderen MJ, Quartel D (2006) SOA-driven business-software alignment. In:
IEEE international conference on e-business engineering (ICEBE’06), Shanghai, 2006, pp
86–94

23. Shishkov B (2005) Software specification based on re-usable business components. Delft
University Press, Delft

24. Levin RI, Rubin DS (1997) Statistics for management. Prentice Hall, New York

78 3 System Environment and Context-Awareness

http://ec.europa.eu/dgs/homeaffairs/financing/fundings/projects
http://closer.scitevents.org
http://closer.scitevents.org

Chapter 4
Social Theories

In this chapter, we are considering social theories. They are relevant to the human
aspects concerning enterprise systems and EIS. As mentioned already, this is
important for “grounding” our modeling views: in line with what was discussed in
the previous chapters, we argue that human behavior, human decisions, human
communication, human failures, and so on are all about the functioning of any
enterprise system or EIS. For this reason, we need to be explicit in considering the
human aspects when modeling/designing such systems. Further, we argue that just
referring to a theory would be insufficiently useful because firstly, aligning in an
abstract way concepts and views to a particular theory is not trivial and secondly, we
cannot know in advance how appropriate a theory would be as it concerns the
bottom-line goal of bringing together enterprise modeling and software specifica-
tion; for this reason, we claim that effectiveness could only be achieved if concepts
(and views) are bridged to theories, driven by particular concerns (this could
adequately justify the selection of particular theories). For this reason, we firstly
present several important concerns (inspired by [1]), in line with discussions carried
out in the previous two chapters:

• Intuitive Behavior: There are human entities in any enterprise system/EIS
and often their behavior is driven by interpretations, knowledge, judgments,
beliefs, values, and so on—those are not always easy to objectively observe and
identify. For this reason, it is claimed that intuitive human behavior is an essential
concern that needs to be addressed explicitly in the analysis and design of such
systems.

• TheHumanElement: In linewith the above paragraph, it is to be noted that human
entities differ from any other nonhuman entities, such as devices, applications, and
so on, because all processes in society are human-driven—it is only humans who
have rights, it is only humans who benefit from social prosperity, it is only humans
who can be kept responsible, and so on. For this reason, nomatter what is happening
(e.g., a drone is in the air, monitoring a land border), it should be possible to “trace”
this to corresponding human AUTHORITY and RESPONSIBILITY.

© Springer Nature Switzerland AG 2020
B. Shishkov, Designing Enterprise Information Systems, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-22441-7_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22441-7_4&domain=pdf

• Language: Human entities, being part of any enterprise system/EIS, communi-
cate among each other, using language—this goes beyond what is just driven by
rules, since through language, human entities give promises, express disagree-
ment, lead negotiations, and so on. Such issues have impact on the functioning of
such a system and need to be adequately modeled.

• Role: Human entities are more sophisticated in their behavior than technical
entities—unlike a technical entity which follows “embedded” rules only, a person
would often think, make decisions (especially in exceptional situations), and so
on, and this may result in conflicts with the rules; hence, it may happen that a
human entity realizes activities that are not part of his/her “job profile” (e.g., a
professor faxing, with this being part of the secretary’s responsibilities); for this
reason, we argue that it is appropriate modeling roles, not just the (human) entities
fulfilling those roles, as discussed in the previous chapters.

• Affordance: There are many different objects that need to be considered when
modeling an enterprise system/EIS and what is important in this regard is
reflecting their FEATURES and CAPABILITIES; for example, in a library, a
book affords to be borrowed; thus, we consider the “affordance” concept useful as
it concerns the modeling of (enterprise) systems.

intuitive behavior
human element

language
role

affordance
sign, rule

Human
Relativism

Theory of
Organized Activity

Language / Action
Perspective

Enterprise
Ontology

Semantic
Analysis Method

Norm
Analysis MethodO

rg
an

iz
at

io
na

l
S

em
io

tic
s

CONCERNS THEORIES

Fig. 4.1 Concerns and theories (©2017, The Author, reprinted with permission)

80 4 Social Theories

• Sign: In an enterprise context, often something stands for something else, for the
sake of properly conveying semantics to corresponding entities; for example, in
case of fire within a building, if a person is not sure which direction to follow in
order to leave the building and in case a green light can be seen from somewhere,
the person would take this direction because it is widely accepted that “Exit”
signs are colored green and illuminated; hence, the green light helps the person
make the right decision how to proceed in a complex situation—this is thus a sign
(we have discussed the “sign” concept in Chap. 2) and we argue that this notion
should be adequately reflected in the modeling of enterprise systems/EIS.

• Rule: Any (enterprise) system is essentially governed by REGULATIONS and
rules (NORMS), and for this reason, it is essential that we adequately reflect rules
in modeling enterprise systems/EIS.

Following Shishkov [1] and considering recent studies [2], we have established
that (1) human relativism and the Theory of Organized Activity
(TOA)well cover the human element and intuitive human behavior; (2) the Lan-
guage-Action Perspective (LAP)and enterprise ontology well
cover the (language-based) human communication and corresponding roles that
human entities can fulfill; (3) organizational semiotics, in general, and
the semantic analysis method as well as the norm analysis method, in
particular, well cover the concepts of affordance, sign, and norm (rule), as suggested
by Fig. 4.1.

For this reason, in the remaining of the current chapter, we will firstly consider
human relativism and TOA, secondly LAP and enterprise ontology, and thirdly
organizational semiotics.

We consider those social theories as underlying with regard to our concepts,
views, and way of modeling, as it concerns enterprise systems and EIS, in general,
and the modeling of human aspects in this context, in particular. As mentioned
before, social theories are insufficient when it also comes to ICT and software—for
this we need as well computing paradigms, such that the social theories applied and
the computing paradigms followed are complementary with regard to each other.
Social theories are addressed in the current chapter and computing paradigms are
addressed in the following chapter.

4.1 Human Relativism and TOA

In order to provide theoretical principles with respect to the necessity of properly
taking into account the human element and its behavior, in [3], a new philosophical
stance—human relativism—was proposed, together with an analysis of human
actions seen as the kernel element of any approach following that stance. The same
perspective characterizes TOA where organized activity is the key concept. Those
theories will be addressed further on in the current section.

4.1 Human Relativism and TOA 81

4.1.1 Human Relativism

Human relativism, as considered in [3] takes a world perspective consistent with
functionalism, social relativism, radical structuralism, and neo-humanism, as
presented in [4], also establishing the possibility of complementary using formal
methods and theories, for the sake of overcoming the limitations of most objectivist
stances, related mainly to cases of unpredictable behavior usually concerning the
human element—this including most intersubjective experiences, such as interpre-
tation, knowledge, beliefs, intentions, values, and so on, which often remain hidden
from our senses. It is claimed that scientific methods and objectivism are unable to
deal with human behavior in general since it is impossible (from such a perspective)
to reproduce or predict things like interpretation or understanding or to regulate
mechanically human actions [3].

To tackle this from the perspective of human relativism assumes acknowledging
the human centeredness and the unpredictable behavior of human entities. Human
relativism recognizes this human centrality in all human activities, by acknowledg-
ing an objective reality as human relative. We argue that there are evidences of this
human relative view even in objectivism. The visible images transformed from
infrareds into the visible spectrum, for example, allow us to experience a different
reality where human bodies cannot be easily separated from the environment,
because there are no clear boundaries. However, this reality is in fact seen and
experienced by some animal species as science proofs. In this sense we may question
ourselves: Which is the real reality, the reality we observe with our vision or the
reality observed using, for instance, the infrared spectrum? Are they different views
of the same reality? There is no claim in human relativism that the reality we see is
the “real” reality, neither an explanation nor sense of what a real reality is. The
solution is more a practical one—this is the reality we have, we experience, and we
share. By assuming the human in the center, we also assume and accept his/her view
as bounded, focused, and particular.

Further, information is human-related as well—information is extracted by
humans from the reality using perception and interpretation processes. The distinc-
tion between perceptions, the process of acknowledging the external reality through
our senses, and interpretation, the meaning-making process, is a useful way to help
understanding the nature of information and its acquisition process. Only informa-
tion goes through an interpretation process; the other elements of the (human) reality
are just perceived. In fact, perception filters are part of the human reality accessible to
a particular individual.

To perceive does not mean to interpret, and this separation allows us to under-
stand what observable is. Usually, observability concerns what we think a human
being is able to percept or acquire through his/her senses. This excludes the
interpretation process and information as well. Usually information is not observ-
able, but it can be extracted from observable things. Observable things can be
viewed as material or physical things from the objectivist view, for example, a
smile (which is an observable thing) may express happiness (which is not an

82 4 Social Theories

observable thing). At the same time nonetheless, observing a smile on the face of a
person does not guarantee happiness—this is a matter of interpretation and also
different persons may express themselves differently. To solve this ambiguity or
meaning problem, the abovementioned observability concept is the first step and
with regard to this, human relativism has the following assumption:

Assumption Anything that is observable will be more consensual, precise, and
therefore more appropriate to be used by scientific methods.

Further, in considering the notion of “observability,” it is necessary to consider a
related notion as well, namely, the notion of precision.

According to [5], to have a high degree of precisionmeans to have a reduced level
of ambiguity and different meanings in some term or element making it generally
accepted, recognized, and shared. One way of achieving precision, for example, is to
use physical measurements.

This leads to stating an important human relativistic hypothesis:

Hypothesis By adopting observable elements or high precision elements
under a human relativistic view, it is possible to derive a scientific and theoretical
well-founded approach to EIS.

Those basic human relativistic ideas are claimed to be aligned with social
constructivism and objectivism, making a proper connection between them.

Since most enterprise systems/EIS are “challenged” by issues related to the
human element, such as unpredictability (and this prevents the use of scientific and
objective methods), human relativism identifies and highlights this point, by
recognizing human behavior as an essential challenge with respect to those
issues.

Those thoughts point to another important human relativistic hypothesis:

Hypothesis As it concerns human behavior, we may freely apply technical
approaches if there is no unpredictable behavior present.

Hence, human relativism points a way to overcome the difficulty in dealing with
unpredictable behavior, in particular human behavior. When approaching human
behavior, one would realize that what is “seen” is just the observable part of the
behavior—the observable human actions. One should then acknowledge the impor-
tance of the unpredictable aspects of human behavior, for building adequate models
of enterprise systems/EIS. Still, besides just acknowledging those issues, human
relativism proposes ways to cope with ambiguities resulting from unpredictable
human behavior:

• To reduce the dependability of enterprise systems/EIS on human behavior.
• To better use the power of human behavior, through support coming from tools

that are not only facilitating humans but are also stimulating them to generate
feedback that in turn could help to better capture the different aspects of human
behavior.

4.1 Human Relativism and TOA 83

Thus, building upon other philosophical stances, human relativism is essentially
focusing on human behavior with recognition of the fact that even though precision
can be achieved, observable behavior is just a part of the complex human behavior,
and in order to cope with this complexity, one could either make systems less
dependent on human behavior or introduce tools that not only support humans
with regard to their actions but also help the system better capture the different
aspects of human behavior.

As already mentioned, in the following sub-section, we will further the discussion
on human behavior, by addressing the Theory of Organized Activity—TOA.

4.1.2 TOA

The Theory of Organized Activity (TOA) proposed by Anatol Holt [6] considers a
concept relevant to human behavior, namely, the concept of Organized Activ-
ity, or OA for short, and Anatol Holt states the following with regard to that
concept:

“I intend the expression “organized activity” to mean a human universal. Like language,
organized activity exists wherever and whenever people exist. It will be found in social
groups of a dozen or in social groups of millions—in the jungle and in New York City, in
every culture, and at every stage of cultural/technological history. It is manifest in every
form of enterprise, whether catching big game, coping with a fire, or running a modern
corporation—even acquiring and communicating by language.”

This is how Anatol Holt positions the OA concept. He acknowledges that TOA
emphasizes the following issues that concern any OA:

• A common communication language—expressed not only by words, but by
actions and things as well, known as units and recognized by people sharing or
involved in the same activity. Behind this idea, there is an essential and associated
meta-theory called the Theory of Units.

• Actions—which directly affect, involve or act on things or materials. Actions are
related to a temporal dimension.

• Bodies—representing things or materials, related to a material dimension.
• Action Performers—always persons and/or organizational entities.

TOA is thus mainly considering actions, bodies, and action performers as well as
their interrelationships.

As far as actions are concerned, TOA emphasizes especially the human actions,
acknowledging that responsibility can only be attributed to humans, which would
mean that computers and other tools cannot perform actions.

As for action performers, human actions are motivated and driven by them (in the
interest of the action performers).

Figure 4.2 [6] defines the OA kernel. The figure is presenting two dichotomies,
namely, persons $ organizational entities and actions $ bodies, suggesting that
(as according to Anatol Holt) any OA, no matter how complex and subtle, can be
usefully represented in those terms.

84 4 Social Theories

Besides the action and body concepts, TOA also defines the concepts of state and
information. A state in TOA only applies to bodies and is only understood within
specific domains of action. This notion makes a TOA state different from the usual
technical description of a state. Regarding information, in TOA it has the exclusive
end use of making decisions, which determines the following course of actions:
Information in TOA is carried in lumps by bodies, with the lumps being exclusive
properties of those bodies. Information contents of a body depend on the context of
information’s use and on the particular actors performing the actions. The same
information can be used differently by different actors or in different contexts.

Anatol Holt claims that it is only TOA that:

• Relates information to human decision.
• Has the potential to define measures consistent with those of Claude Shannon.
• Makes explicit all real-world operations performed on real-world information.

Thus, we claim that both human relativism and TOA provide a useful perspective
on enterprise systems/EIS, emphasizing on human behavior. In the following
section, we are going to consider the (language-driven) communication among
(human) entities.

4.2 LAP and Enterprise Ontology

According to Definition 10: “A complete model is a model that is elaborated at least
in three perspectives, namely, structural perspective, dynamic perspective, and data
perspective,” and as suggested in Chap. 2, if one would be considering an enterprise

ACTIONS

PERSONS ORGANIZATIONAL
ENTITIES

BODIES

perform

possess

perform

possess

take

take

are

are

space

time

material lumps

effort lumps

involve are involved in

Fig. 4.2 The OA kernel (Source: [6], p. 56; ©1997, Kluwer Academic Publishers, reprinted with
permission)

4.2 LAP and Enterprise Ontology 85

system or an EIS, one would be interested in capturing the structure of the system,
the system’s behavior, and the corresponding data flows. Nevertheless, as it is also
suggested in the mentioned chapter, the human-to-human communication (charac-
terizing enterprise systems and EIS) needs to be considered as well—actually, the
communicative actions (related to human-to-human communication) are related to
the transaction concept (Definition 5) and transactions are considered as the ele-
mentary building blocks of enterprise systems. For this reason, besides addressing
structural issues, behavioral issues, and data (or factual) issues, we need to take as
well a communicative perspective concerning human-to-human communi-
cation. This perspective is addressed in the current section and in particular LAP and
enterprise ontology.

4.2.1 LAP

Taking a communicative perspective in approaching an enterprise system is moti-
vated by the importance of grasping not only the structural, factual, and behavioral
(dynamic) enterprise system aspects but also the communicative aspect [7], and one
of the most sound and popular theories behind that issue is the Language-Action
Perspective—LAP [8]. LAP is a theoretical orientation towards approaching the
modeling of business processes, by emphasizing the importance of interaction and
communication. The theory recognizes that language is not only used for exchang-
ing information, as in reports (for example), but that language is used also to
perform ACTIONS, as in promises or orders (for example). Such actions are claimed
to represent the foundation of communities and organizations and must be under-
stood to create effective EIS. For this reason, it is claimed that adequately capturing
the communicative aspects, characterizing the considered enterprise system(s),
would contribute to the creation of sound and complete business process models
[1]. Further, referring to the white-box vs. black-box enterprise systems modeling,
reflecting construction vs. function (Fig. 2.9), it is to be noted that applying LAP
allows for revealing the construction and operation of an enterprise, not just
capturing the enterprise dynamics. Such a direction corresponds to the consideration
of transactions as enterprise modeling elements (Definition 5).

Hence, taking a white-box perspective and considering the notions of
actor, production, and coordination (as explained in Chap. 2), LAP suggests that the
functional behavior of an enterprise is brought about by the collective working of its
constructional components [1]. The construction and the working of a system are
most near to what a system really is, to its ontological description [9]. Acknowledg-
ing Bunge’s vision, Dietz takes a LAP perspective in considering enterprises,
claiming that an enterprise is a discrete dynamic system in the category of social
systems, having social individuals or actors, each of them having a particular
authority to perform production acts (P-acts) and a corresponding responsibility
to do that in an appropriate and accountable way; the structure of an enterprise
consists of coordination acts (C-acts), i.e., the actors enter into and comply with
commitments regarding the performance of P-acts [10]—that all points to the

86 4 Social Theories

generic white-box model of an enterprise, consisting of the actors, the P-world, and
the C-world [1], as presented in Fig. 4.3:

C-acts concern human-to-human communications. An instance of such kind of
communication consists of two human processes:

• A sender (role 1) expressing something (a message).
• A receiver (role 2) interpreting the message.

What can be communicated between a sender and a receiver? Elementary com-
municative acts, such as request, promise, state, accept, and so on, are
considered from the LAP perspective. This is consistent with Definition 5 according
to which “a transaction is a finite sequence of coordination (communicative) acts
between two actors concerning the same production fact.” Hence, production
acts and coordination(communicative)acts appear to be performed in
particular sequences or chains that can be viewed as paths through a generic
pattern pointing to a transaction [10], and also, in the enterprise context Role 1
(see above) would correspond to customer while Role 2 to producer.

Hence, a more elaborated (and LAP-driven) view on transactions suggests that a
transaction is a finite sequence of C-acts between two actor-roles,
the customer and the producer. It takes place in three phases: the order phase
(O-phase), the execution phase (E-phase), and the result phase (R-phase).
O-phase is a conversation that starts with a request by the customer and that, if
successful, ends with a promise by the producer. E-phase basically consists of the
performance of the P-act by the producer. R-phase starts with a statement by the
producer that the requested act is performed and ends, if successful, with an
acceptance by the customer. All this is reflected in the generic transaction pattern,
proposed by Dietz, depicted in Fig. 4.4.

Fig. 4.3 The white-box
model of an enterprise
(Source: [11], p. 3)

4.2 LAP and Enterprise Ontology 87

As it is seen on the figure, besides the three phases, O-phase, E-phase, and
R-phase, there are as well three layers, namely, success layer, discussion layer,
and failure layer; further, the considered elementary communicative acts and their
abbreviations are as follows:

– rq: request.
– pm: promise.
– st: state.
– ac: accept.
– dc: decline.
– rj: reject.

and as well two “factual” acts are considered, namely, sp (stop) and gu (give up).
The generic transaction pattern needs to be further explained, and for this we will use
a toy example reflecting the situation in which a customer enters a small pizza shop.

Let us firstly consider the success layer:
The customer (John) enters the shop and requests a pizza to be delivered to him,
assuming to pay for this according to the announced prices. The person at the desk
(Tim), realizing that the ingredients for the requested pizza (such as cheese, tomato
paste, and so on) are available, promises to deliver a pizza to John. Then Tim goes to
the kitchenette and prepares the pizza for John. Up to this point, we have two
elementary communicative acts, namely, request and promise (as it can be seen
from the figure, communicative acts are presented as disks), and one production act:
the pizza preparation (as it can be seen from the figure, production act is presented as
diamond). Further, after having prepared the pizza, Tim comes back to John,
bringing the pizza to him, stating that the request was fulfilled. John takes the

O-phase E-phase R-phase

pmrq

rj

acst

dc

sp

gu

sprj

dc

sp

success layer

discussion layer

failure layer

request promise state accept

decline

resum
e

resum
e

decline

stop stop stop

reject reject

give up resume

Fig. 4.4 The transaction pattern (Sources: [1], p. 36, ©2005, The Author, reprinted with permis-
sion; [11], p. 10)

88 4 Social Theories

pizza and pays, implicitly meaning that he is satisfied with the result and accepts
what was delivered (a pizza in this case). It is only the acceptance that makes the
transaction completed. Said otherwise, if such an acceptance is not reached (and for
example John refuses to pay and goes out), then there is no transaction, no matter
how many communicative/production acts have taken place.

Let us secondly consider the discussion layer:
If after John asks for a pizza, Tim, realizing that not all pizza ingredients are
available, declines the request, this puts John and Tim into some kind of negotia-
tions. As part of such negotiations, Tim may announce that even though he cannot
deliver a pizza, he can deliver a sandwich instead, for example. Then, there are two
possibilities—John either agrees to have a sandwich or not. If John agrees to have a
sandwich, this means that John introduces a new request (instead of requesting a
pizza, John is already requesting a sandwich). To this Tim promises to deliver a
sandwich to John (new promise) and all goes back to the success layer. If neverthe-
less, John would decide that he would not go for a sandwich, then all goes to the
failure layer, as shown on the figure. Considering further the discussion layer: if
after having started the pizza/sandwich preparation, Tim unexpectedly experiences
an electricity outage, this would result in his impossibility to adequately finalize the
delivery—this puts John and Tim into negotiations. As part of such negotiations,
Tim may announce that due to an electricity outage, he cannot deliver the pizza/
sandwich within reasonable time but, based on information from the electricity
supplier, he expects all to be back to normal within one hour, for example, and
hence, he can deliver the pizza/sandwich with a 1-hour delay (for example), because
he had to temporarily give up the pizza/sandwich preparation, causing in this way
inconvenience to John, but this could be compensated by a lower price, for example.
If John would agree, this would mean that implicitly John has made a request
assuming the “new” conditions (new request) and Tim has promised to deliver
according to the “new” conditions (new promise), and Tim is in the process of
preparing the pizza/sandwich according to the “new” conditions (new production).
Then all goes back to the success layer. If nevertheless, John has no time to wait,
then all goes to the failure layer, as shown on the figure. And in the end, if the pizza/
sandwich is ready and Tim delivers it to John, stating that what was requested was
fulfilled, it is possible that instead of accepting the pizza/sandwich, John declines
accepting the delivered result, for example—if John finds the way the pizza/sand-
wich looks inadequate. This puts John and Tim into negotiations. Tim may offer a
lower price as compensation for the inadequate look of the pizza/sandwich, for
example. If John would agree, then all goes back to the success layer, and this
would mean that implicitly John has made a request (new request) and Tim has made
a promise (new promise) as according to the “new” conditions, the pizza/sandwich
was delivered (new production and new statement) and paid according to the new
conditions, the result is accepted, and this means that the transaction is completed.
If nevertheless John would not like to accept the delivered pizza/sandwich even at a
new (lower) price, then all goes to the failure layer.

4.2 LAP and Enterprise Ontology 89

Let us finally consider the failure layer:
No matter if the transaction has reached the failure layer because John would not like
to have a sandwich instead of a pizza (O-phase) or because John would not like to
wait more (E-phase), or because John would not like to accept a pizza/sandwich that
according to John has a look that is inadequate, even at a lower price (R-phase), as in
the considered example, the transaction is incomplete; this means that nothing
essential has objectively happened in reality.

Thus, by modeling an enterprise system/EIS in terms of actor-roles and trans-
actions, we assume the potential for anything to take place among actor-roles,
which is nevertheless not necessarily to happen.

Further, as mentioned in Chap. 2, we consider transactions as the atomic enter-
prise modeling units, and this does not contradict with the fact that transactions in
turn represent a sequence of C-acts (as mentioned above). What matters with regard
to the business processes is whether there is a completed transaction or not—the
C-acts alone are not enough to justify a business process. For example, if a person
would use a cash machine just to enter his/her personal identification number and
would then stop, this would leave no “business trace,” or if a person would just ask
(within a pizza shop) what the price of a pizza is and would then leave. In those
examples, we observe C-acts but no completed transactions.

Finally, our systemics concepts and views are claimed to be consistent with LAP
and for this reason, we especially emphasize the transaction concept that is
considered to have essential importance in this regard.

In the following sub-section, we consider the theory of enterprise ontology as
proposed by Dietz [12] not only because this theory is partially based on LAP but
also because some views of Dietz have influenced our previous work [1].

4.2.2 Enterprise Ontology

The DEMO methodology [13] has been developed on the basis of LAP and reflected
in the SDBC approach [1]. This has inspired Dietz [12] to consider LAP in
combination with philosophical ontology [9] and organizational semiotics [14] in
proposing the -theory, underlying Enterprise Ontology (EO). The overall
goal of the -theory/EO is to extract the essence of an enterprise
from its actual appearance, such that corresponding white-box models
could be adequately derived; this is the enterprise ontological modeling. The orga-
nization theorem has crucial importance with regard to the abovementioned
goal and the theorem in turn is essentially backed by four axioms, namely, the
operation axiom, the transaction axiom, the composition axiom,
and the distinction axiom, as shown in Fig. 4.5:

90 4 Social Theories

Hence, in the remaining of this sub-section, we will firstly consider the operation
axiom, secondly the transaction axiom, thirdly the composition axiom, fourthly the
distinction axiom, and finally the organization theorem.

Operation Axiom
The operation axiom states that the operation of an enterprise (see Fig. 2.9) is
constituted by actors (see Chap. 2) who perform two kinds of acts, namely, P-acts
and C-acts (see Fig. 4.3), as according to LAP.

By performing P-acts, actors contribute to bringing about the goods and/or
services that are delivered to the environment of the enterprise under consideration
(assuming that in the current sub-section we consider enterprise systems—see
Definition 2).

Further, in line with the discussion on material things and immaterial things (see
Chap. 2) related to the notion of “product” (see Definition 2), we note that P-acts
could be either material or immaterial:

• Examples of material P-acts are manufacturing acts, storage acts, transportation
acts, and so on.

• Examples of immaterial P-acts are judgment acts of a court (e.g., to sentence
someone), decision acts of an insurer (e.g., to grant an insurance claim), appoint-
ment acts (e.g., bringing someone to the presidency of a company), and so on.

By performing C-acts, actors enter into and comply with commitments towards
each other regarding the performance of P-acts.

OPERATION
AXIOM

TRANSACTION
AXIOM

COMPOSITION
AXIOM

ORGANIZATION THEOREM

DISTINCTION
AXIOM

ENTERPRISE
ONTOLOGY

Fig. 4.5 EO—background (©2017, The Author, reprinted with permission)

4.2 LAP and Enterprise Ontology 91

Transaction Axiom
Referring to the LAP-driven transaction pattern (see Fig. 4.4) and to the operation
axiom, we establish that:

• A C-act is performed by one actor (called “producer”) and directed to another
actor (called “customer”).

• C-acts are always, either directly or indirectly, about P-acts.

Thus, the notion of transaction refers to the question how P-acts and C-acts are
related to each other, and the transaction pattern is referred to as a generic coordi-
nation pattern in the above context.

Hence, the transaction axiom recognizes the LAP-driven transaction pattern
according to which transactions always involve two actor-roles and are
aimed at achieving a particular result.

Further, taking the perspective of EO, a conversation is defined as a
sequence of C-acts between two actor-roles that are aimed at achieving a well-
defined result concerning a P-act.

Thus, a transaction actually consists of two conversations, namely:

• An actagenic conversation (it is about the order).
• A factagenic conversation (it is about the result).

If we consider the transaction pattern (Fig. 4.4), we see that the actagenic
conversation points to the order phase and the factagenic conversation points to
the result phase, while between them is the execution of the P-act, which both
conversations are about.

What can also be seen from the pattern is that the INITIATOR of the transaction is
the customer while the EXECUTOR of the transaction is the producer (e.g., it is the
customer who would request a pizza and this would initiate the transaction, and also
with respect to the same example, it would be the producer who would prepare and
deliver the pizza, in this way executing what has been requested). Hence:

• In the order phase, the initiator and the executor work to reach an agreement
about the intended result of the transaction, i.e., the production fact that the
executor is going to create as well as the intended time of creation.

• In the execution phase, this production fact is actually brought about by the
executor.

• In the result phase, the initiator and the executor work to reach an agreement
about the production fact that has actually been produced, as well as the actual
time of creation (both of which may differ from what was originally requested).
Only if that agreement is reached will the production fact come into existence, as
discussed already.

Composition Axiom
The composition axiom concerns the business process notion (see Definition
6), considering a business process to be a structure of CAUSALLY related trans-
action types. All causally related transactions are executed in order to fulfill a
starting transaction—such a starting transaction is either activated from the

92 4 Social Theories

enterprise environment or is self-activated on the basis of some kind of self-activa-
tion condition.

Said otherwise, something is requested to be delivered but in order for it to be
delivered, the result of something else would be needed, and so on—we will
illustrate this by means of a hardware example:

– A Local Area Network—LAN [15] is requested to be installed in an office.
– Before configuring the LAN, the following is needed: a server, Personal Com-

puters (PCs), a switch, a router, printer(s), and so on.
– Before a PC is delivered, the following is needed for its assembly and configu-

ration: a motherboard, HDD(s), a monitor, speakers, and so on.

This is illustrated in Fig. 4.6 to be read from left to right, suggesting that in order
to configure a LAN (in the particular case), one would need 2–5 PCs, one switch, one
server, one router, 1–2 printer(s), and so on, for example, and in turn for a PC to be
configured, one would need one monitor, 1–2 hard drives (HDD), one motherboard,
2–4 speakers, and so on. Hence, one should firstly get the monitors, HDDs, moth-
erboards, speakers, and so on, such that the PCs are configured, and then the same for
the switch, the server, the router, and so on, and only after all of this has been
realized, the LAN would be ready to be installed—this is a good example for
causal relationships (which was discussed in the previous paragraph).
The same is with the transactions belonging to a business process in an enterprise
context: similarly to the need to configure a LAN (as in the above example), some
kind of starting transaction needs to be executed, and in order for it to be executed, it
is necessary that (before it gets executed) other transactions get executed, and they
may need in turn still other transactions to be executed, and so on. For this reason,

…

LAN

switch
1..1

server
1..1

router
1..1

printer
1..2

…
…

…

…

…

…

HDD
1..2

motherboard
1..1

speakers
2..4

…
…

2..5 monitor
1..1

PC
…

…

…

…

…

Fig. 4.6 A component structure of a LAN (©2017, The Author, reprinted with permission)

4.2 LAP and Enterprise Ontology 93

the way we have presented such causal relationships in Fig. 4.6 is considered helpful,
and we will stick to the same way of representation (one entity type depends on the
entity types to the “right”).

Let us consider a simple example from the enterprise domain: A student (John)
visits a property agency asking ADVICE in the form of recommendation—which is
the best available property for rent, matching his demands. The consultant (Steve)
from the agency is capable of delivering such kind of advice to John, assuming that
John would pay for the delivered consultancy. Nonetheless, in order to deliver the
advice, Steve would need (before delivering the advice) to realize some kind of
MATCH-MAKING “between” the demands of John and the characteristics of the
available properties. And in turn, in order for Steve to realize such kind of match-
making, he would have to do (before realizing the match-making) two things,
namely, (1) REQUEST PROCESSING, such that the demands of John are appro-
priately reflected in standardized forms such that their effective use is possible and
(2) DATA SEARCH, such that there is an actual list of all currently available
properties. Thus, Steve should firstly do the request processing and the data search,
and only on that base he would be able to realize the match-making, and it is the
match-making that is needed by Steve, such that he is able to deliver the requested
advice to John. This is illustrated in Fig. 4.7:

Thus, reading the figure from left to right suggests that ADVICE DELIVERY can
be realized but under the condition that MATCH-MAKING is realized first. What
the figure suggest as well is that MATCH-MAKING can be realized but under the
condition that REQUEST PROCESSING and DATA SEARCH are realized first.

This represents a business process that is driven by the goal of fulfilling the
ADVICE DELIVERY starting transaction.

Hence, after considering elementary acts (see the operation axiom) and trans-
actions (see the transaction axiom), we are considering the composition axiom that
addresses business processes.

MATCH-MAKING

REQUEST PROCESSING

DATA SEARCH

ADVICE DELIVERY

Fig. 4.7 Illustrating a causal relationship (©2017, The Author, reprinted with permission)

94 4 Social Theories

Distinction Axiom
The distinction axiom serves to separate the distinct human abilities playing a role
with regard to communication. In order to give a useful background (claimed to
be helpful in understanding the axiom), we refer to the so-called semiotic ladder [14]
that presents the (human-to-human) communication in terms of layers, in the
following way:

• PHYSICAL WORLD: If two persons would like to communicate, they need
physical conditions—this could be their closeness in terms of space, such that
they can hear each other or a telecommunications channel, such as telephone
connection, and so on.

• EMPIRICS: Even if the persons have physical conditions to communicate, the
communication channel itself is to also be adequate—for example, if the persons
are close to each other but there is too much noise, they would not be able to hear
each other or if they have established a telephone connection but the quality of
service is too low for them to hear each other well and without delays.

• SYNTAX: If the persons have adequate physical conditions and communication
channel, this is still not enough for a full value communication to take place
because they need to speak the same language or use the same communication
patterns.

• SEMANTICS: If the persons are adequately exchanging information using the
same language, for example, this is still not enough if they do not get the correct
meaning. For instance, if John is at a garage, needing his car to be repaired
urgently and he sees a queue of ten cars, and it looks obvious that the garage
would not be able to serve all those cars within the day, and if John asks the
receptionist whether it would be possible his car to be treated urgently, and the
receptionist answers, “Yes, as long as the cars from the queue get served,” this
actually means “no,” because it is obvious that the car of John would not be
served the same day. If the receptionist had wished to mean “yes,” he would have
answered, for example, “There are many cars in the queue but we will make an
exception and treat you with priority.” This example shows that the syntactic
“Yes, as long as the cars from the queue get served” has the meaning of “no.”
Hence, getting correctly the semantics is necessary in order to communicate of
full value.

• PRAGMATICS: Even if the persons are adequately handling the communication
both physically and also empirically, syntactically, and semantically, they also
need to adequately handle the context in which they are communicating—for
example, if John’s colleague says to John “I am freezing” and John is close to the
widely open window during winter time, it is not enough that John gets the right
meaning of what his colleague has said; what goes beyond the meaning is that
John should realize that by saying this, his colleague is trying to convince John to
close the window, and John is expected to “participate” in this negotiation (about
whether to close the window or not); hence, the idea of John’s colleague is not to
discuss the way he/she is feeling but to convince John to close the window.

4.2 LAP and Enterprise Ontology 95

• SOCIAL WORLD: Even if pragmatics, semantics, and so on are all handled
adequately, there are societal norms of behavior that need to be respected. In the
above example, it is expected that John would close the window even if John is
not feeling cold because it is societally adequate to respect (when possible) the
needs of the persons around. In this case, the colleague of John is not feeling
good, and John may like to help because closing the window would not imme-
diately hurt John’s comfort—still, this would help another person feel better and
this is to be considered good behavior from a societal point of view.

In order to align the above semiotic perspective to communication, we consider
the corresponding views of Habermas [16] who has identified three spheres of
human existence that play a role with respect to communication, namely, (1) objec-
tive world: those are the things that are outside the subject and to a large extend exist
on their own; (2) subjective world: unique for every distinct subject; and (3) social
world: what the subjects build and maintain in interaction. Then:

– With regard to (1), the (human-to-human) communication is aligning the concept
of TRUTH) Here we have the class of acts for which the validity
claim is the claim to truth, for example, assertions. (John asks Betty what time it
is, for instance, and then Betty would assert the current time.)

This is labelled as constativa.
– With regard to (3), the (human-to-human) communication is aligning the concept

of JUSTICE.) Here we have the class of acts for which the validity
claim is the claim to justice, for example, requests and promises. (If I request a
loaf from the baker, for instance, I primarily claim that I am in the social position
to do so and that the baker is in the social position to be addressed with the
request; I hence accept the authority and responsibility of the baker to respond to
the request, and the baker accepts my authority and responsibility to make a
request, as exemplified by Dietz [12]).

This is labelled as regulativa.
– With regard to (2), the (human-to-human) communication is aligning the concept

of SINCERITY.)Here we have the class of acts for which the validity
claim is the claim to sincerity, for example, praises and apologies. (If I bump into
somebody, for instance, my apologizing is to convey to the person information
that I am sincere, otherwise, an apology would not make sense.)

This is labelled as expressiva.

Next to that, “nondominant” claims are possible as well, mixing up the above
issues and several examples considered by Dietz [12] are brought forward in this
regard:

• If I appear to be near a head of state and I ask him/her what time it is, things about
truth and justice are mixed up because it is not considered adequate that one asks
the time to the head of state.

96 4 Social Theories

• If I ask from a baker 100 loaves at the same time, things about justice and truth are
mixed up because objectively, it is impossible for him to deliver at one
100 loaves.

• If John asks Richard what time it is and after hearing the answer, he asks Betty the
same question, things about truth and sincerity are mixed up because if John
knows the time already, is he sincere saying to Betty that he wants to know what
time it is?

In this respect, EO is primarily about regulativa since: (a) It is
assumed that the constativa issues are taken indirectly. (b) The expressiva issues
are disregarded and this is not because emotions are considered unimportant but
because they fall outside the ontological view on enterprises, as according to
Dietz [12].

Hence, in the pizza example from the previous sub-section, just one elementary
communicative (coordination) act (e.g., “the person at the desk promises to deliver a
pizza”), as we label it “C-act” for short, assumes communication conforming to the
semiotic ladder (see above) and in the regulativa perspective, and in this we bring
together the pragmatic and social considerations (as according to the semiotics
ladder) claiming that the following three layers bring together the above views,
taking a LAP perspective:

• PERFORMA: This is the actual act of evoking an attitude (e.g., the customer had
the person at the desk PROMISE to deliver a pizza or another example: a
conversation at a library had a person REQUEST membership, and so on).
)This brings together the behavioral pragmatics and the societal relevance, as
according to the semiotics ladder.

• INFORMA: This is about conveying semantics—for example, John may well
explain in a library that he would like to have them deliver a pizza to him and they
may get this correctly semantically but still this would not lead to a promise from
their side because the situational context and social relevance are inappropriate
with regard to what John is suggesting.)This corresponds to the semantics layer
of the semiotics ladder.

• FORMA: This is about conveying information of full value and using the same
language or communication pattern—for example, John may utter many
sentences at a pizza desk and what John is saying may be adequately heard and
syntactically understood, but still, it may not be the case that they understand that
John is asking a pizza to be delivered to him.)This brings together empirics and
syntactics, as according to the semiotics ladder.

• Finally, the physical conditions necessary for such kind of communication are
acknowledged by EO but not explicitly considered since they are claimed to fall
outside the ontological view on enterprises.

This is illustrated in Fig. 4.8, summarizing the distinction axiom.

4.2 LAP and Enterprise Ontology 97

As it is seen on the figure: (1) The forma ability (bringing together empirics and
syntactics) is about conveying information, as abovementioned, for example,
uttering and perceiving of sentences in some language. (2) The informa ability
(building upon the forma layer) is about conveying semantics, as abovementioned,
for example, interpreting what was said or written, getting the correct meaning.
(3) The performa ability (building upon the forma layer and the informa layer) is
about bringing in new original things, rightfully considering the context (pragmat-
ics) and the societal relevance, as abovementioned, for example, engaging into
commitments.

Hence, the distinction axiom states that there are three distinct human abilities
playing a role in the operation of actors, namely, performa, informa, and
forma, as explained and discussed already.

We consider the performa ability as the essential human ability for doing
business of any kind.

Organization Theorem
We have already introduced, explained, and discussed four EO axioms, namely,
the operation axiom, the transaction axiom, the composition
axiom, and the distinction axiom—this brought focus on the:

• Actor-roles as composition elements of enterprise systems as well as their poten-
tial to realize production acts and coordination acts.

performer’s perspective

COORDINATIONHUMAN ABILITYCOORDINATION

addressee’s perspective

exposing commitment

expressing thought
(formulating)

uttering information
(speaking, writing)

evoking commitment

educing thought
(interpreting)

perceiving information
(listening, reading)

PERFORMA

INFORMA

FORMA

Fig. 4.8 Summary of the distinction axiom (©2017, The Author, reprinted with permission)

98 4 Social Theories

• Three basic human communicative abilities (performa, informa, and forma) with
regard to the performance of production/coordination acts.

• Transactions as the atomic enterprise modeling units.
• Causal relationships among transactions, justifying business processes as struc-

tures of transactions.

Hence, the goal of the organization theorem is to establish, based on the
mentioned axioms, a concise, comprehensive, coherent, and con-
sistent enterprise notion corresponding to a white-box (constructional)
perspective.

The organization theorem states that an enterprise is a het-
erogeneous system that is constituted as the layered integra-
tion of three homogeneous systems: the B-organization (from
BUSINESS), the I-organization (from INTELLECT), and the D-organi-
zation (from DOMUMENT), related among each other in the following way
(as shown in Fig. 4.9):

• The D-organization supports the I-organization.
• The I-organization supports the B-organization.

All three homogeneous systems, as represented in the figure, are in the category of
social systems, which means that they are similar as far as coordination is concerned:
the elements are subjects that enter and comply with commitments to each other
regarding production acts (in line with LAP). They differ only in the kind of
production:

• The production in the B-organization is ONTOLOGICAL.
• The production in the I-organization is INFOLOGICAL.
• The production in the D-organization is DATALOGICAL.

D-organization

I-organization

B-organization

datalogical
production

infological
production

ontological
production

Fig. 4.9 Representation of
the organization theorem
(©2017, The Author,
reprinted with permission)

4.2 LAP and Enterprise Ontology 99

This is the reason for considering an enterprise to be a heterogeneous system and
hence the B-organization, the I-organization, and the D-organization represent
aspect systems of the (total) enterprise.

As acknowledged by Dietz [12], an enterprise is more than just a well-established
integration of those three aspect organizations. Firstly, human beings as biological
beings need a particular environment to live in, as well as specific facilities to make
their biological lives comfortable. Being a biological individual includes being a
physical thing. Hence, physical requirements must be met, like the need for work
space and mobility services. Moreover, a human being is an emotional being, a
psychological being, and so on. While it is recognized that those additional aspects
must be considered, they are irrelevant as far as EO is concerned since they do not
directly relate to the notion of enterprise. Still, we consider as precondition dealing
with those human aspects in a satisfactory way.

Thus, we argue that by considering LAP-EO, one could build enterprise models
that are adequately rooted in corresponding real-life processes. In the following
section, we are going to address semiotics, emphasizing on semantics and (business)
rules.

4.3 Organizational Semiotics

It is considered useful applying the Semiotics Theory [17], regarding issues
concerning the analysis and modeling of business processes and enterprise
systems. Actually, a branch of semiotics is considered, namely, Organizational
Semiotics (OS), and in particular twoOSmethods: the Semantic Analysis Method
and the Norm Analysis Method [14, 18, 19]. OS focuses on the nature, character-
istics, and behavior of signs. The term “organizational semiotics” was officially
coined in 1995 at an international workshop in Enschede, The Netherlands, after a
long time of research on organizational studies and information systems. This
section considers briefly some essential issues related to the OS theory.

Peirce founded semiotics as the “formal doctrine of signs” [20]. A sign is defined
as something that stands to someone for something else in some respect or capacity.
OS and the analytical methods [14, 18, 19] offer a theory to understand enterprises,
with or without the computerized information systems. Enterprises are deemed as
systems where signs are created, transmitted, and consumed for business purposes.

Stamper and his school of OS argue that in contrast to the concept of information,
signs offer a more rigorous and solid foundation to understand information systems.
For example, within a business context, a banknote is much more than a piece of
colored paper with digits on it. It stands for the banknote holder’s wealth and ability
to pay, as well as the issuing bank’s authority and credibility, and much more. Large
quantity of underlying social relationships and behavior possibilities are attached to
those business concepts; oversimplifying them into pure digits would be dangerous.
On one hand, computers can only process and manipulate such digits; on the other
hand, the underlying meanings and possibilities must be exposed to enable the

100 4 Social Theories

correct processing. Adopting the concept of sign enables us to study the enterprise in
a more balanced way, taking account of both the technological issues and the human
and social aspects of information resources, products, and functions.

OS adopts a subjectivist philosophical stance and an agent-in-action ontology.
This philosophical position states that, for all practical purposes, nothing exists
without a perceiving agent and the agent engaging in actions.

Stamper adopts the concept of affordance from the perceptual psychologist
James Gibson, who defined the affordances of the environment as “what it offers the
animal, what it provides or furnishes, either for good or ill. . .” [21]. Based on the OS
theory, since a person perceives things by recognizing what he/she can do with them
or to them, a thing can be defined as an invariant repertoire of behaviors, either
substantive affordances or social norms that are available to the responsible person
[18]. For example, in the context of a university library, a book affords to be
borrowed by a library user.

Borrowing a book is a potential ability, which may or may not be implemented in
reality. Nevertheless, once it is implemented, new possibilities may emerge. For
example, a borrowed book may be retained or returned to the library by the user.
Under certain circumstances, the library may also call it back. This shows that
affordances have dependency relationships among them. In OS such a relationship
is called ontological dependency.

We may schematically show this relationship as following, with the anteced-
ents on the left side and the dependencies on the right, and the solid line
denotes the ontological dependency:

book � borrow � return

Ontological dependency does not only show the logic relationship between the
concepts. What’s more important is that it shows the dependencies get their meaning
from the existence of the antecedents. Since the existence of dependencies would not
be possible without the existence of the antecedents, the life cycle of the dependen-
cies is always included by that of the antecedents. The existence of the antecedents
thus forms a context for the dependencies.

For example, talking about returning a book without referring to the fact that the
book was previously borrowed from the library would be off the topic.

Further, two essential OS methods considered (as it was mentioned already) are
the Semantic Analysis Method and the Norm Analysis Method. Those
methods will be briefly discussed below.

4.3.1 Semantic Analysis

The semantic analysis method is fundamentally based on the Semiotic Theory that
has been discussed above. This method is a method for elicitation and specification
of user requirements. It considers the signs created by members of an enterprise.

4.3 Organizational Semiotics 101

Semantic analysis is theoretically founded in OS [22] and the semiotic framework.
The method has been applied in many fields such as user requirements for enterprise
systems, organizational analysis, legal documents design, and analysis and design
of computer systems [1, 14]. The semantic analysis is conducted usually in four
steps, outlined below, and the final result is a semantic schema, called ontology
chart:

• Taking into account that semantic analysis is about analyzing documents and
conversations, the first step that is to be realized is to gather relevant data and
understand the problem. This can be called problem statement.

• The second step is to produce a list of semantic units such as verbs, nouns,
adjectives, and adverbs. Those semantic units may be used to describe human
agents and their respective patterns of behavior.

• The third step is to further analyze the semantic units by linking them together
according to their relationship in terms of generic-to-specific positioning.

• The fourth step should bring together all the linked semantic units into a coherent
whole, which produces a complete semantic model. The model is represented
graphically through an ontology chart.

4.3.2 Norm Analysis

When studying enterprises from the perspective of entities’ behavior, it is necessary
to specify the norms based on which this behavior is realized. Norms [23] are the
rules and patterns of behavior, either formal or informal, explicit or implicit,
existing within a society, an enterprise, or even a small group of people working
together to achieve a common goal.

Norms are determined by society or collective groups and serve as a standard for
the members to coordinate their actions. An individual member uses the knowledge
of norms to guide his or her actions. If the norms can be identified, the behaviors of
the individuals, hence their collective behaviors, are mostly predictable. From this
perspective, to specify an organization can be done by specifying the norms [24] and
this holds also for enterprises.

Four types of norms exist, namely, evaluative norms, perceptual norms, cognitive
norms, and behavioral norms. Each type of norms governs human behavior from
different aspects. In business process modeling, most rules and regulations fall into
the category of behavioral norms. Those norms prescribe what people must,
may, and must not do, which are equivalent to three deontic operators: “is obliged”,
“is permitted,” and “is prohibited.” Hence, the following format is considered
suitable for specifying behavioral norms.

whenever <condition>
if <state>
then <agent>
is <deontic operator>
to <action>

102 4 Social Theories

It is essential to recognize that norms are not as rigid as logical conditions. If a
person does not drink water for certain duration of time, he/she cannot survive. But
an individual who breaks the working pattern of a group does not have to be
punished in any way. For those actions that are permitted, whether the agent will
take an action or not is seldom deterministic. This elasticity characterizes business
processes, therefore it is of particularly value to understand the corresponding
enterprise(s).

A norm analysis is normally carried out on the basis of the results of a semantic
analysis (for more information on semantic analysis, interested readers are referred
to [14]). The semantic model delineates the area of concern of an enterprise. The
patterns of behavior specified in the semantic model are part of the fundamental
norms that retain the ontologically determined relationships between agents and
actions without imposing any further constraints. Nevertheless, norm analysis could
be successfully related also to other modeling tools, as studied by Shishkov [1].

In general, a complete norm analysis can be performed in four steps:

• First step: Responsibility analysis.
• Second step: Proto-norm analysis.
• Third step: Trigger analysis.
• Fourth step: Detailed norm specification.

Responsibility analysis enables one to identify and assign responsible entities
(or “agents” as according to the OS terminology) to each action. The analysis
focuses on the types of agents and types of actions. In an enterprise, responsibilities
may be determined by the organizational constitution or by common agreements in
the enterprise.

Proto-norm analysis helps one identify relevant types of information for making
decisions concerning a certain type of behavior. After the relevant types of infor-
mation are identified, they can be used as a checklist by the responsible agent to take
necessary factors into account when a decision is to be made. The objective of this
analysis is to facilitate the human decisions without overlooking any necessary
factors or types of information.

Trigger analysis is to consider the actions to be taken in relation to the absolute
and relative time. The absolute time means the calendar time, while the relative time
makes use of references to other events. The results of trigger analysis are specifi-
cations of the schedule of actions.

The detailed norm specification concerns the specification of norms in two
versions, a natural language and a formal language. The purposes of that are (a) to
capture the norms as references for human decision and (b) to perform actions in the
automated system, by executing the norms in the formal language.

For those norms identified in the business processes, some refer to the major
authorities and responsibilities of the major figures in the considered enterprise.
Those norms govern some trivial, relatively less important norms or those of lower
priorities, from the perspective of organizational functionalities [1]. This strongly
suggests that possible hierarchies exist not only in the enterprise structure but also

4.3 Organizational Semiotics 103

in the norms. The terms “framing norm” and “contractual norm” are used to
express such kinds of hierarchies [19].

Hence, among the EIS-relevant strengths of OS are the following:

• Semantic analysis is powerful if it is needed to put some unstructured information
in order (we argue that this is unavoidable in any software project).

• Norm analysis is powerful if it is necessary to specify rules and/or to relate a
number of rules to each other. Hence, semiotic norms could be much useful in
both business process modeling and software specification—both tasks include
consideration of rules.

• Semantic analysis and norm analysis are founded on the OS theory; it is a well-
established theory relevant to both enterprise modeling and software
specification.

Nevertheless, as studied by Shishkov [1], those semiotic methods alone are not
capable of soundly and completely aligning enterprise modeling and software
specification; those methods need to be incorporated in an approach that would
not only combine them adequately with other relevant social theories (besides OS)
but would also relate them to appropriate computing paradigms.

* * *
IN SUMMARY, in the current chapter, we have presented and discussed

social theories, including human relativism, the theory of organized activity, the
language-action perspective, enterprise ontology, and organizational semiotics,
justifying their relevance to different aspects concerning enterprise systems and
EIS. In the following chapter, we will consider in turn computing paradigms that
are currently actual and also well-combinable with the studied social theories and
consistent with the concepts and views introduced in the previous chapters.

References

1. Shishkov B (2005) Software specification based on re-usable business components. Delft
University Press, Delft

2. BMSD. In: The international symposium on business modeling and software design. http://
www.is-bmsd.org

3. Cordeiro J, Filipe J, Liu K (2009) Towards a human oriented approach to information systems
development. In: Proceedings of the 3rd international workshop on enterprise systems and
technology (I-WEST). SCITEPRESS, Sofia, Bulgaria

4. Hirschheim R, Klein H, Lyytinen K (1995) Information systems development and data model-
ing—conceptual and philosophical foundations. Cambridge University Press, Cambridge

5. Cordeiro J, Filipe J, Liu K (2010) NOMIS: a human centred modelling approach for information
systems. In: Proceedings of the 4th international workshop on enterprise systems and technol-
ogy (I-WEST). SCITEPRESS, Athens, Greece

6. Holt A (1997) Organized activity and its support by computer. Kluwer Academic, Dordrecht
7. Searle JR (1969) Speech acts: an essay in the philosophy of language. Cambridge University

Press, Cambridge

104 4 Social Theories

http://www.is-bmsd.org
http://www.is-bmsd.org

8. Winograd TA (1988) Language/action perspective on the design of cooperative work. In: Greif
I (ed) Computer supported cooperative work: a book of reading. Morgan Kaufmann, San Mateo

9. Bunge MA (1979) Treatise on basic philosophy, A world of systems, vol 4. D. Reidel Publish-
ing Company, Dordrecht

10. Dietz JLG (1999) Understanding and modeling business processes with DEMO. In: Proceed-
ings of the 18th international conference on conceptual modeling (ER), 15–18 Nov 1999.
Springer—LNCS, Paris

11. Dietz JLG (2003) The atoms, molecules and fibers of organizations. Data Knowl Eng 47:3
12. Dietz JLG (2006) Enterprise ontology, theory and methodology. Springer, Heidelberg
13. DEMO. The EEI DEMO methodology. http://www.ee-institute.org/en/demo
14. Liu K (2000) Semiotics in information systems engineering. Cambridge University Press,

Cambridge
15. CLOSER. In: The international conference on cloud computing and service science. http://

closer.scitevents.org
16. Habermas J (1981) Theorie des Kommunikatives Handelns. Erster Band, SuhrkampVerlag,

Frankfurt am Main
17. Cobley P, Jansz L (2001) Introducing semiotics. Icon Books, Cambridge
18. Stamper R (2000) Organizational semiotics—information without the computer? In: Liu K,

Clarke RJ, Andersen PB, Stamper RK (eds) Information, organization, and technology—studies
in organizational semiotics. Kluwer, Amsterdam

19. Stamper R (1996) Signs, information, norms and systems. In: Holmqvist B, Andersen PB (eds)
Signs of work: semiotics and information processing in organizations. Walter de Gruyter,
New York

20. Pierce CS (1998) Principles of philosophy. In: Hartshorne C, Weiss P (eds) Collected papers of
Charles Sanders Peirce. Thoemmes, Bristol

21. Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston
22. Stamper R (1997) Organizational semiotics. In: Mingers J, Stowell F (eds) Information systems:

an emerging discipline? McGraw-Hill, London
23. Stamper R, Liu K, Hafkamp M, Ades Y (1997) Signs plus norms—one paradigm for organi-

zational semiotics. In: Proceedings of the 1st international workshop on computational semiot-
ics, Paris, France, 26–27 May 1997

24. Stamper R (1992) Language and computer in organized behavior. In: van de Riet RP,
Meersman RA (eds) Linguistic instruments in knowledge engineering. Elsevier Science,
Amsterdam

References 105

http://www.ee-institute.org/en/demo
http://closer.scitevents.org
http://closer.scitevents.org

Chapter 5
Computing Paradigms

As a starting point with regard to what will be presented in the current chapter, we
consider the distinction between procedure-oriented programming and object-ori-
ented programming [1, 2]:

• Procedure-oriented programming (or procedural programming) uses a list of
instructions to tell the computer what to do step-by-step. Procedural program-
ming relies on PROCEDURES—a procedure contains a series of computational
steps to be carried out. Procedural programming is intuitive in the sense that it is
very similar to how a person would expect a program to work: if one wants a
computer to do something, one should provide step-by-step instructions on how
this is to be done. Examples of procedural languages include the early program-
ming languages, such as Fortran and COBOL, and later on—Pascal and C, which
have been around in the 1960s, 1970s, 1980s, and 1990s.

• Object-oriented programming is an approach to problem-solving where all com-
putations are carried out using objects. An object is a component of a program
that “knows” how to perform certain actions and how to interact with other
elements of the program. Objects are the basic units of object-oriented program-
ming. A simple example of an object would be a person. Logically, one would
expect a person to have a name. This would be considered a property of the person.
One would also expect a person to be able to do something, such as walking, for
example. This would be considered a method of the person. A method in object-
oriented programming is like a procedure in procedural programming (the key
difference is that the method is part of an object). Hence, in object-oriented
programming, the code is to be organized by creating objects, giving those objects
properties, and so on. A key aspect of object-oriented programming is the use of
classes. A class is a blueprint of an object: a class can be considered as a
concept and an object—as an embodiment of that concept. For example, if a person
is to be considered in a program, then one should be able to describe the person and
have the person do something. A class called “person” would provide a blueprint

© Springer Nature Switzerland AG 2020
B. Shishkov, Designing Enterprise Information Systems, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-22441-7_5

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22441-7_5&domain=pdf

for what a person looks like and what a person can do. Examples of object-oriented
languages include C++, Java, and so on.

A key difference between the two is that in procedural programming, procedures
operate ondata and the “procedure” and “data” concepts are two separate conceptswhile
inobject-oriented programming the corresponding concepts (“property” and “method”)
are bundled into objects. Thismakes it possible to create complicated behaviorwith less
code. The use of objects also makes it possible to re-use code. Once one has created an
object with complex behavior, one could use it anywhere in the code.

A further move to component-oriented programming has been inspired by those
advantages [3]: With object-oriented programming focusing on the relationships
between classes that are combined into one large binary executable, component-
oriented programming focuses on interchangeable code modules that work inde-
pendently and don’t require you to be familiar with their inner workings to use them.

Thus, we observe an evolution

from procedure-oriented programming
through object-oriented programming
to component-oriented programming.

That evolution in programming has not only been useful as a stimulus to more
effectively and efficiently producing code but it has also influenced the broader
process of software engineering comprising requirements analysis, system analysis,
system design, coding/implementation, and testing, with justifying an evolution
from monolithic software engineering through component-based software engineer-
ing to service-oriented software engineering [1, 4]:

Developing a monolithic application assumes as a result monolithic binary
code. It may be that one even applies object-oriented programming and still the
bottom line is monolithic development—one may factor the business logic into
many fine-grained classes; once those classes are compiled, if the final application
is viewed that way (to be monolithic), then the result is monolithic binary code: all
the classes share the same physical deployment unit (typically an EXE), process,
address space, security privileges, and so on. Hence, if multiple developers work on
the same code base, they have to share source files. Thus, in such an application, a
change made to one class can trigger a massive relinking of the entire application
and necessitate retesting and redeployment of all other classes.

In contrast, a component-based application comprises a collection of
interacting binary application modules—that is its components and the calls that bind
them. The motivation for breaking down a monolithic application into multiple binary
components is analogous to that for placing the code for different classes into different
files. By placing the code for each class in an application into its own file, one would
loosen the coupling between the classes and the developers responsible for them. If one
would make a change to one class, although one would have to relink the entire
application, one would only need to recompile the source file for that class. Further,
because a component-based application is a collection of binary building blocks, one

108 5 Computing Paradigms

can treat its components like LEGO bricks—simply “adding” and “removing” them. If
one would need to modify a component implementation, changes are contained to that
component only. No existing client of the component requires recompilation or rede-
ployment. Components can even be updated while a client application is running, as
long as the components are not currently being used. Improvements, enhancements,
and fixes made to a component would immediately be available to all applications that
use that component, whether on the same machine or across a network. Finally, when
one has new requirements to implement, one can provide them in new components,
without having to touch existing components not affected by the new requirements. All
those advantages have contributed to the increasing popularity of component-based
applications, compared to monolithic applications.

The next step in those developments was marked by the appearance of ser-
vice-oriented software: component-based software is about how one would
build and implement a system—taking the whole system and dividing it into smaller
better manageable components, and so on, while service orientation is about how
different systems communicate with each other, based on defined various standards
for message formats, transport security, and so on. Hence, that is about allowing
users to compose services at high level, which services are realized by underlying
software components. The advantages here are twofold: (1) the technical complex-
ity, characterizing software components, remains “hidden” from the user who is
composing services at “higher level” and (2) a user can bring together services
whose underlying software components may be created by different developers,
running on different servers, and so on.

Thus, we observe an evolution

from monolithic software engineering
through component-based software engineering
to service-oriented software engineering.

That software engineering evolution has not only been useful as a stimulus to more
effectively and efficiently producing and utilizing software but it has also influenced in
a broader perspective the way of developing and justifying an evolution from code-
centric development through model-driven development to agile development [5]:

The code-centric development (considered in the past) would not support
the analysis and design activities by means of modeling while the idea to use models
for improving software development practices was gaining increasing popularity.

That has led to the emergence of model-driven development—it is not only
about helping developers reason at “higher level” supported by models but is also
about distinguishing between computation-independent and technology-specific
issues being reflected in corresponding model types. This is considered to be a
viable “bridge” between the “Software World” and the “Real-life World” in the
sense that firstly, domain-related specifications are defined and secondly, those
domain-related specifications are reflected, by means of model transformations, in
corresponding platform-specific models, envisioning platforms, such as CORBA,

5 Computing Paradigms 109

J2EE, .Net, and so on. Model-driven development is hence attractive for its capa-
bility of bringing together domain-specific issues and technology-specific issues, by
allowing for model transformations, as abovementioned. Nevertheless, the lack of
sufficient development flexibility and collaborativeness as well as the insufficient
capability to conveniently adapt modeling to changes has justified the need for new
development paradigms.

That has inspired the emergence of agile development that is based on iterative
development, where requirements and solutions evolve via collaboration between
self-organizing cross-functional teams. Agile processes fundamentally incorporate
iteration and the continuous feedback that it provides to successively refine and
deliver a software system. Hence, agile development is people-centric, in contrast to
model-driven development that is model-centric and also in contrast to code-centric
development.

Thus, we observe an evolution

from code-centric development
through model-driven development
to agile development.

With regard to what was stated in the above paragraphs, it is to be noted that some
of the paradigms discussed assume distributed computing environments (e.g., ser-
vice-oriented software engineering would envision the composition of services
realized by components running in different computing environments) while others
implicitly assume mobility (e.g., agile development would often envision dynamic
user feedback, possibly generated through applications running on mobile devices).
This has justified an evolution from mainframe infrastructures, through client/server
infrastructures, to cloud infrastructures [6, 7]:

A mainframe infrastructure is based on a mainframe and terminals. A main-
frame can be looked upon as a “giant server” since only it serves “dumb” terminals; a
terminal has no drives, no independent operating system, and so on—it has just a
screen and a keyboard. All data of any type is contained in the mainframe. Any
information changed or added from a terminal would change the data in the
mainframe accordingly.

In contrast, a client/server infrastructure assumes the partitioning of tasks
or workloads between the providers of a resource or service, called servers, and
service requesters, called clients. Hence, those principles are underlying with regard
to current distributed computing environments. What such distributed computing
environments lack as capability nevertheless is enabling “outside” stakeholders to be
served, possibly through their portable devices connected to the Internet.

This has inspired the emergence of cloud infrastructures assuming the provision
of shared computer processing resources and data to computers and other devices on
demand. Cloud infrastructures have hence become underlying with regard to current
mobile computing environments.

Thus, we observe an evolution

110 5 Computing Paradigms

from mainframe infrastructures
through client/server infrastructures
to cloud infrastructures.

With respect to the paradigms considered above, most challenges mainly relate to
functional issues. Nevertheless, there are non-functional crosscutting con-
cerns, such as security, recoverability, logging, performance monitoring, and so
on. In the past, this was considered as part of the requirements elicitation, then the
label “crosscutting concerns” was dominant, and currently we speak of aspect-
oriented software development considering crosscutting concerns (called “aspects”)
at all stages of the software development life cycle [8].

The computing paradigms discussed above (except for aspect-oriented software
development) are presented in Fig. 5.1, reflecting their evolution over time.

pr
oc

ed
ur

e-
or

ie
nt

ed
pr

og
ra

m
m

in
g

programming software
engineering development infrastructure

m
on

ol
ith

ic
so

ftw
ar

e
en

gi
ne

er
in

g

co
de

-c
en

tri
c

de
ve

lo
pm

en
t

m
ai

nf
ra

m
e

in
fra

st
ru

ct
ur

e

… … … …

ob
je

ct
-o

rie
nt

ed
pr

og
ra

m
m

in
g

co
m

po
ne

nt
-b

as
ed

so
ftw

ar
e

en
gi

ne
er

in
g

m
od

el
-d

riv
en

de
ve

lo
pm

en
t

cl
ie

nt
 /

se
rv

er
in

fra
st

ru
ct

ur
e

co
m

po
ne

nt
-o

rie
nt

ed
pr

og
ra

m
m

in
g

se
rv

ic
e-

or
ie

nt
ed

so
ftw

ar
e

en
gi

ne
er

in
g

ag
ile

de
ve

lo
pm

en
t

cl
ou

d
in

fra
st

ru
ct

ur
e

… … … …

tFig. 5.1 Computing
paradigms—evolution over
time (©2017, The Author,
reprinted with permission)

5 Computing Paradigms 111

As it is seen on the figure and as discussed already, over time: programming’s
evolution comes through procedure orientation, object orientation, and component
orientation; software engineering’s evolution comes through monolithicity, compo-
nent centricity, and service orientation; development’s evolution comes through
code centricity, model centricity, and agility; and infrastructure’s evolution comes
through mainframe solutions, client/server solutions, and cloud solutions. As it is
seen as well on the figure, time-wise, the “evolution patterns” differ from category to
category; for example, the step forward from monolithic software engineering to
component-based software engineering is preceded by the step forward from
procedure-oriented programming to object-oriented programming. Nonetheless,
those representations in Fig. 5.1 are schematic and not numerically precise. Further,
those “transitions” are claimed to be viewed differently by different members of the
Software Community, and hence, there is no wide agreement on when exactly
object-oriented programming has become “predominant” compared to procedure-
oriented programming, when exactly service-oriented engineering has “replaced”
component-based software engineering as the preferred software engineering
paradigm, and so on. Finally, we claim that most often one would observe over-
laps and/or mixtures among paradigms, for example, why not claiming that both
component-based and service-oriented solutions were predominant in a particular
period or why not claiming that some software applications have modules
implemented using object-oriented languages and also modules implemented using
procedure-oriented languages? Hence, that representation mainly reflects the sub-
jective views of the author and is not claimed to be exhaustive.

Next to that, due to the limited scope of the current chapter, we are unable to
consider all mentioned paradigms in more detail. Still, we have selected several of
them for further consideration—the ones whose labels are underlined in the figure;
those paradigms are: component-based software engineering, service-oriented soft-
ware engineering, model-driven development, and cloud infrastructures. We will
consider as well aspect-oriented software development, mentioned above. In this
regard, we will use more “popular” labels as follows:

• Component-based development (meaning “software development”).
• Service-oriented architecture (meaning reference to “software

engineering”).
• Model-driven engineering (meaning “development”).
• Mobility (meaning based on a cloud infrastructure).

plus the one not reflected in the figure, namely:
• Aspect-oriented software development.

Actually, all those terms, engineering, development, architecture, are de facto
largely overlapping, and we are not entering such a terminology discussion in the
current chapter. The terms used in Fig. 5.1 reflect our desire to be maximum clear in
mentioning different paradigms that belong to the same category. The corresponding
“popular” terms (that will also be used in the sections belonging to the current
chapter) are supposed to be recognizable for the broad audience.

And in the end, why exactly those paradigms and not other ones reflected in the
figure will be elaborated? The bottom line is the relevance to EIS in general and to

112 5 Computing Paradigms

the enterprise-modeling-driven software generation, in particular. Business
coMponents have been considered in the previous chapters as a desired basis
for specifying software. For this reason, in our computing paradigms consideration,
we would emphasize those paradigms that are relevant to the component-based
enterprise-software alignment. This brings us to components (com-
ponent-based development) and services (service-oriented architecture) that are
claimed to be useful relevant units of re-use. Further, we would emphasize on
model-driven engineering because we believe that the only way to bring those
two worlds (enterprises and software) together is through corresponding models.
Finally, we would emphasize on mobility and non-functional cross-
cutting concerns because we claim that they have essential importance for any
current EIS and thus have to be explicitly considered and reflected in the specifica-
tion of software.

For this reason, in the sections that follow we will consider component-based
development, service-oriented architecture, model-driven engineering, mobility
(emphasizing on cloud computing), and aspect-oriented software development.

5.1 Component-Based Development

Component-Based Development (CBD) is considered to be a promising
paradigm that addresses the design and development of ICT applications and is
founded on the principles of object orientation [1]—object orientation (character-
ized by the fundamental concepts of encapsulation, classification, inheritance, and
polymorphism) that was briefly discussed already is widely recognized as a special
approach to the construction of models of complex systems, in which a system
consists of a large number of objects. Those principles are reflected in the component
concept. Hence, components are essential with regard to CBD—if re-usable
components are identified, they can be used many times for designing different
applications. Next to that, CBD seems beneficial for the application design itself. By
basing application development on encapsulated, individually definable, re-usable,
replaceable, interoperable, and testable (software) components, developers can build
applicationswhich possess durable configuration and a high degree of flexibility and
maintainability. The process of application development would also be improved
because building new applications would include using already developed compo-
nents. This reduces development time and improves reliability. The performance and
maintenance of developed applications would be enhanced because changes could
occur in the implementation of any component without affecting the entire applica-
tion. All this makes CBD reliable and effective.

All this further justifies the claim that business coMponents can be useful as basis
for specifying component-based applications (see Chap. 2). By basing the design of
applications on software components derived in turn from business coMponents, the
application support to business processes can be improved considerably [1].

5.1 Component-Based Development 113

Hence, CBD has strengths reaching beyond the application development itself—
the component-based application development can as well usefully support the
enterprise-modeling-driven generation of software.

The idea of constructing modular software systems dates back to 1968, as
according to Stojanovic [4], and referring to two complexity-avoidance approaches
of that time is important, they are “buy before build” and “re-use before buy”. This
way of thinking is considered to be an essential bottom line with regard to current
CBD and this was even before the ideas of object-orientation (see above) have
appeared. Anyway, during the 1990s, CBD has established itself as a natural
extension and an evolution of object orientation. Components have firstly been
introduced at the implementation level for fastly building graphical interfaces
using visual basic eXtension controls and then we have seen the Component Object
Model of Microsoft, the CORBA components, and Enterprise Java Beans
components—all of them proposed as “standard” component-based implementation
solutions. This has contributed to a shift of emphasis from developing small,
centralized, monolithic systems to developing complex systems consisting of func-
tional units deployed over nodes of the Web, and two key concepts have emerged,
namely, (1) components as large-grain building blocks of a system and (2) architec-
tures and frameworks as blueprints of the system describing its main building blocks
and the way of composing them into a coherent whole [4]. That conceptual evolution
has been reflected in several widely popular component definitions:

• According to Szyperski [3], a software component is a unit of composition with
contractually specified interfaces and explicit context dependencies; a software
component can be deployed independently and is subject to composition by a
third party.

• According to Lewandowski [9], a component is defined as the smallest self-
managing, independent, and useful part of a system that works in multiple
environments.

• According to Stahl et al. [5], a component is a self-contained piece of software
with clearly defined interfaces and explicitly declared context dependencies.

We argue that those definitions further justify Definitions 13 and 14 (see Chap. 2)
and also our way of looking at a software component from two perspectives, namely,
taking a constructional view and taking a functional view:

– CONSTRUCTIONALLY, software components are implemented pieces of soft-
ware, which represent parts of an ICT application and which collaborate among
each other driven by the goal of realizing the functionality of the application.

– FUNCTIONALLY, a software component is a part of an ICT application, which
is self-contained, customizable, and composable, possessing a clearly defined
function and interfaces to the other parts of the application and which also can be
deployed independently.

It is to be noted however that even though all above definitions suggest essentially
the same view on software components, they differ with regard to the perspective
taken. What is to be taken into account in the current chapter is the explicit EIS focus

114 5 Computing Paradigms

we are following, and this assumes that (1) software is specified based on business
coMponents (see Chap. 2) and (2) software is delivered mainly in terms of ICT
applications.

Hence, we summarize what we consider essential with regard to software com-
ponents, taking into account the above-stated perspective:

• A software component is an implemented piece of software.
• A software component is a part of an ICT application.
• A software component is self-contained.
• A software component possesses a clearly defined function

and goal (in context).
• A software component possesses clearly defined interfaces

to the other parts of the ICT application.
• A software component can be deployed independently.
• A software component can work in multiple ICT applications

and in multiple environments.

Hence, establishing the way the component notion and the object notion relate to
each other is important, and for that we refer to the studies of Stojanovic [4] where
components are considered as larger-grained objects that are deployed and as such
they would “reveal” one or more classes “inside.” It is thus concluded that gran-
ularity is the main issue in distinguishing components and objects. Further, if
objects are identifiable instances of classes, then component instances (representing
programming language objects) are instances of component types. Hence, compo-
nents have much in common with classes. Nevertheless, there are some significant
differences:

• Classes represent logical abstractions while components represent physical
things.

• Components represent the physical packaging of otherwise logical elements and
are at a different level of abstraction than classes.

• Classes may have attributes and operations accessible directly, in general, and
components have operations that are reachable only through component
interfaces.

Therefore, a component is a physical thing that conforms to and realizes a set of
interfaces. Internally, a component may be implemented by a single class, by
multiple classes, or even by traditional procedures in a procedure-oriented program-
ming language.

For this reason, an explicit discussion is necessary on component interfaces.
As already suggested, a component is an encapsulated unit with a completely

hidden behavior behind an interface. As studied by Stojanovic [4], the interface
provides an explicit separation between the outside and the inside of a component,
by:

• Answering the question WHAT—What useful services are provided by the
component to the context of its existence?

5.1 Component-Based Development 115

• Not answering the question HOW—How are those service actually realized?

We relate that to the black-box and white-box perspectives, respectively, as
discussed already (see Fig. 2.9). A precisely defined interface allows for using the
behavior (services) delivered by the component without knowing how that behavior
is actually realized. Said otherwise, the component “interior” remains hidden (and
not important) for the component’s environment as long as the component provides
services, following the constraints defined by its contractual interface—it is often
that the interface reflects the only information that shows the component’s “user”
what the component actually does.

An interface is defined by Szyperski [3] as a named collection of operations that
are used to specify a service of a class or a component, hence defining a component
interface as a specification of the component’s access point.

Thus, if a component has multiple access points, each of which represents a
different service offered by the component, then the component would be expected
to have multiple interfaces.

Further, an interface offers no implementation of any of its operations; instead, it
merely names a collection of operations and provides their descriptions—it is hence
possible to replace the implementation part without changing the interface [4]. Fol-
lowing Stojanovic further:

• A PROVIDED interface points to the services and operations that the component
provides to its environment, in realizing its function.

• A REQUIRED interface specifies the services and operations that the component
requires from its environment, in order to realize its function.

According to [2], any interface would have four attributes:

• Name (each component interface is to have a unique name).
• Keys (they are based on the search record definition of the component).
• Properties (they relate to the record fields of the component).
• Methods (a method is like a function that can perform a specific task according to

corresponding requirements).

Finally, we claim the following: FIRSTLY, in order to make an interoperable
component feasible, it is necessary to consider a corresponding component
implementation model, and in Sect. 5.1.1, we present three popular and
widely accepted component implementation models, namely, the Microsoft Compo-
nent Model, the Enterprise Java Beans Component Model, and the CORBA Com-
ponent Model, as according to Stojanovic [4]. SECONDLY, with an implementation
technology not being sufficient by itself for adequately developing component-based
applications, methods and approaches are needed for establishing how to reflect
business requirements in the design and development of such applications—this we
refer to as component-based development methods, and in Sect. 5.1.2, we
present three popular and widely considered component-based development
methods, namely, the Rational Unified Process, KobrA, and Catalysis, as according
to Shishkov [1].

116 5 Computing Paradigms

5.1.1 Component Implementation Models

In the current sub-section, we will consider firstly the Microsoft Component Model,
secondly the Enterprise Java Beans Component Model, and thirdly the CORBA
Component Model.

Microsoft Component Model
The Component Object Model, or COM for short, is a language-independent,
binary component standard [10] whose core concepts include:

• A binary standard for function calling between components.
• The typed grouping of functions into interfaces.
• A base interface providing mechanisms for (1) other components to dynamically

discover the interfaces implemented by a component and (2) a reference counter,
allowing components to track their own “lifetime” and delete themselves when
appropriate.

• A globally unique identifier mechanism for components and their interfaces.
• A component loader to set up and manage component interactions.

COM provides as well mechanisms for shared memory management between
components and also error and status reporting. In COM, an interface is represented
as a pointer to an interface node, and in turn, the interface node contains a pointer to
a table of operation variables and those variables in turn point to the actual imple-
mentation of the operations.

Enterprise Java Beans Component Model
The Enterprise Java Beans Component Model, or EJB for short, is a
server-side component model for the development of applications in the program-
ming language Java [11], where a component is called an enterprise bean. Further,
there are two kinds of enterprise beans:

• Session enterprise beans (those are transient components that exist only during a
single client/server session).

• Entity enterprise beans (those are persistent components that control permanent
data kept in permanent data stores, such as databases).

Moreover, an enterprise bean resides inside a container with a container in turn
consisting of a deployment environment for enterprise beans. Further, the container
provides a number of services for each enterprise bean, such as life-cycle manage-
ment, state management, transaction management, and so on. Next to that, an EJB
server provides a runtime environment for one or more containers.

Finally, the client application interacts with the enterprise bean, by using two
interface types that are generated by the container, namely, (1) home interface (it can
be used by clients to create, destroy, or find an existing enterprise bean instance) and
(2) object interface (it provides access to the application methods of the enterprise
bean).

5.1 Component-Based Development 117

CORBA Component Model
The CORBA Component Model, or CCM for short, is a server-side component
model extending the CORBA core object model with a deployment model; CCM is
as well providing a higher level of abstraction for CORBA and object services; the
two major advances introduced by the CCM are a component model and a runtime
environment model; and a component is an extension and specialization of a
CORBA object [12]. As for the model of a CORBA component type:

• Any CORBA component is denoted by a component reference.
• CORBA components support a variety of surface features, called ports, through

which clients and other elements of an application environmentmay interact with
those components.

This is presented on Fig. 5.2, inspired by Stojanovic [4]:

As seen from the figure, there are five different kinds of ports:

• Facets—they are interfaces provided by the component for client interactions.
• Receptacles—they are connection points that describe the interfaces used by the

component.
• Event sources—they are connection points that emit events of a specified type to

interested event consumers.
• Event sinks—they are connection points into which events of a specified type are

announced.
• Attributes—they are named values primarily used for component configurations.

Further, a component may have multiple facets, receptacles, event sources, event
sinks, and attributes.

Finally, there are four categories of components, as studied by Stojanovic [4]:

• Service components—they are stateless, have no identity, and support a single
invocation per instance.

• Session components—they have a transient state, have no persistent identity, and
support more than one invocations per instance.

CORBA
component

facets

attributes

receptacles

event sink

event source

Fig. 5.2 CORBA
component (©2017, The
Author, reprinted with
permission)

118 5 Computing Paradigms

• Process components—they have an explicitly declared state that is managed by
the runtime environment, have an identity managed by the client, and have a
behavior that may be transactional.

• Entity components—they are similar to process components, except for their
identity which is visible to the client but managed by the runtime environment.

In summary, in the current sub-section, we have briefly presented three popular
component implementation models; in the following sub-section, as already men-
tioned, we will consider three popular component-based development methods.

5.1.2 Component-Based Development Methods

In the current sub-section, we will consider firstly the Rational Unified Process,
secondly KobrA, and thirdly Catalysis.

Rational Unified Process
The Rational Unified Process, or RUP for short, is not only the development
process usually applied with UML (the Unified Modeling Language) but also a
useful development method (process) as far as component-based development is
concerned, which method covers the entire software development life cycle [13].

The key RUP concept is the definition of activities, called workflows, throughout
the development life cycle, such as requirements elicitation, analysis, design, imple-
mentation, and testing. Unlike the classical waterfall process, those activities can be
overlapping and performed in parallel [4]. Within each of the activities, there are
well-defined stages of inception, elaboration, and transition. A support to compo-
nent-based development is encouraged even though that support is just declarative
and implicit, being directed towards physical packaging, as it can be seen from the
RUP’s defining a component as a“nontrivial, nearly independent, and replaceable
part of a system that fulfils a clear function in the context of a well-defined
architecture and that conforms to and provides the physical realization of a set of
interfaces.” Finally, one of the main advantages of RUP is that it provides an
opportunity for iterative and incremental system development, which is seen as the
best development practice [4].

KobrA
Our analysis featuring KobrA has been supported mainly by the following two
sources: [14, 15]. Interested readers could find there information about all concepts
related to KobrA, which have not been considered in the current sub-section.

The KobrA method is a state-of-the-art approach to component-based product-
line engineering with UML. Among the key characteristics of KobrA are
architecture-centricity, systematic COTS component re-use, and integrated quality
assurance. The major strengths of KobrA are its overall consistency, the embrace-
ment of the component concept in all phases of the software life cycle, and the UML-
based graphical specification of components. The main limitation is that there are no

5.1 Component-Based Development 119

clear guidelines on how to relate the specification of software to a prior enterprise
analysis and modeling.

A complementary workbench has been developed to support the use of the KobrA
method in conjunction with commercial CASE tools. A test bed for the approach has
been provided in the domain of enterprise resource planning.

KobrA is conceptually based on the foundation of product-line engineering. Said
otherwise, product-line engineering is an inherent part of the KobrA method. When
pursuing a product-line approach in KobrA, the overall software life cycle consists of
two basic product line engineering activities (we would briefly introduce them,
before proceeding further):

• Framework engineering. It applies the komponent (komponent means component
as seen from the perspective of the method KobrA) modeling and implementation
activities, accompanied by additional sub-activities for handling variabilities and
decision models, to support a family of similar applications (i.e., development for
re-use). A framework therefore contains a generic komponent tree that captures
the common and variable characteristics of a product line.

• Application engineering. It uses the framework developed during framework
engineering to build particular applications. Since one of the goals of application
engineering is to remove the variabilities in the framework, and resolve the
decisions in the decision model, komponent containment trees for applications
are very similar to those for a single system. The only difference is that
komponents are accompanied by a decision model instance, which captures the
decisions made in resolving the decision model for a particular komponent.

Based on the (above outlined) brief information about KobrA, we will come
(below) through some basic principles and issues characterizing the method.

A core principle of KobrA is the strict and systematic separation of concerns, so
that at all times during a development project, developers are aware of what they
should be attempting to do and what concern they are working on. A manifestation
of this principle in KobrA is in the separation of the product from the process
(contrary to methods which arbitrarily mix the description of what engineers should
be trying to produce with the definition of how they should produce it). Another
fundamental separation of concerns in KobrA is the organization of the method in
terms of three orthogonal dimensions of development: one dealing with the level of
abstraction, one dealing with the level of genericity, and one dealing with
composition.

At the largest level of granularity, the product-line paradigm takes precedence in
KobrA. This splits the overall development cycle into two parts: (1) one dealing with
the development of a framework, a re-usable set of software artifacts whose core is
embedded within all products developed by the enterprise, and (2) the other one
concerned with the development of an application—a concrete instance of the
framework, adapted and extended to meet the needs of a specific customer.

At the intermediate level of granularity, KobrA is driven by the component
paradigm. KobrA frameworks and applications are all organized in terms of hierar-
chies of components. However, the components in KobrA represent the logical

120 5 Computing Paradigms

building blocks of a software system (not physical components, as in CORBA—see
above).

A central goal of KobrA is to enable the full expressive power of the UML to be
used in the modeling of components. To this end, the use of the UML in KobrA is
driven by four basic principles:

• Uniformity. Every behavior-rich entity is treated as a komponent, and every
komponent is treated uniformly, regardless of its granularity or location in the
containment tree.

• Encapsulation. The description of what a software unit does is separated from the
description of how it does it.

• Locality. All descriptive artifacts represent the properties of a komponent from a
local perspective rather than a global perspective.

• Parsimony. Every descriptive artifact should have “just enough” information, no
more and no less.

As for the KobrA life cycle, at the highest level of granularity, this life cycle is
composed of a sequence of phases in which new versions of the central framework
are developed and new applications are instantiated from it to meet the expectations
of new customers.

In summary, the strict separation of concerns makes KobrA compatible with a
large number of practical implementation and middleware technologies. Its embrac-
ing the component paradigm allows for adequately benefiting from re-use possibil-
ities. Its being soundly founded on the principles of the product-line engineering
provides a good theoretical foundation. Its consistency with UML results in a
specification of software, which is fully in tune with the current software design
standards.

We outline as a limitation nonetheless the way KobrA is addressing the very early
software specification tasks and in particular the relation to the original enterprise
system that is to be supported by the software-to-be. As mentioned before, there are
no clear guidelines how to relate the specification of software to a prior enterprise
analysis and modeling. This could be improved either by extending KobrA “back-
wards” (towards a consideration of enterprise modeling) or by combining it with an
enterprise modeling tool.

Catalysis
Our analysis featuring Catalysis has been supported mainly by the following
source: [16]. Interested readers could find there information about all concepts
related to Catalysis, which have not been considered in this sub-section.

Catalysis is a method for component-based and object-oriented software devel-
opment, which provides a strongly coherent set of techniques for enterprise analysis
(characterized by unambiguity about requirements) and system development using
UML as well as a coherent method for object-oriented analysis and design. Catalysis
provides also well-defined consistency rules across models and powerful mecha-
nisms for composing different views to describe complex systems.

5.1 Component-Based Development 121

Catalysis is specifically targeted as a method for component-based development,
in which families of products are assembled from kits of components. The method
also allows for re-use of other artifacts of the design process, such as frameworks of
collaboration between objects.

Catalysis includes techniques to map between (UML-based) system design arti-
facts and analysis models. The gap and inconsistencies are reduced by:

• Unambiguous interface specification.
• Techniques to define powerful component “connectors” abstracting above the

level of object-oriented messages.
• “Retrieval” techniques for relating the differing models that different components

(especially bought-in or legacy components) usually have (e.g., this might include
different notions of what a customer is).

Use cases [1] have a central role in Catalysis; they are applied at different
abstraction levels. With each decomposition, the objects interact to fulfill the goals
of the more abstract use cases.

The Catalysis method basically comes through the following phases:

• A model of the domain is produced, specifying firstly what objects are there and
secondly the goals which are associated with the major use cases.

• Scenarios are drawn up on how (certain) component could help realizing the
major use cases, breaking them down into individual steps.

• Viewing a component as a specification (that would be possible because at this
stage it is to be known what a component is supposed to do). The component has
some defined responsibilities and defined collaborations with the actors around it.

• Component’s responsibilities are distributed among objects inside it and also,
interactions between components are defined (use cases are used for that goal). It
is possible (if necessary) defining generic interactions among components, so that
they are made “pluggable.” This is done through template models.

Thus, essential characteristics of the Catalysis method are:

• Usability of generic chunks of software with robust, well-defined interfaces. The
dynamic coupling of components is just one form of re-use. Other forms include
the import of a generic chunk of design into many other designs. In this sense, a
“component” can include any piece of development work (code, models, rules,
design patterns, and so on).

• Issues which concern the inter-component connections—“connectors” play a
significant role in this task. They are specified independently of the specification
featuring (relevant) components. Like objects, connectors are encapsulated: the
specification of what one achieves is independent of its implementation.

• Software development evolving firstly through the rapid assembly of end prod-
ucts from components and secondly through the development of high-quality
components.

122 5 Computing Paradigms

In Catalysis, there are particular validation mechanisms. The validation suite is a
set of ancillary components for two purposes: (1) some of them test a component
once it is installed in a particular context, to ensure it is running properly, and
(2) others are test versions of components, exercising the components they are
connected to, to make sure they behave as required.

According to Shishkov [1], Catalysis has certain limitations, particularly as it
concerns the proper alignment between enterprise modeling and software specifica-
tion since:

• The method does not offer a solid mechanism for the reflection of the original
business requirements in the specification of the software functionality—that is
because Catalysis is not rooted in any way in any social theory that would have
allowed for a better grasp of real-life aspects.

• Catalysis is insufficiently focused as it concerns re-use, considering for re-use not
only components but also pieces of code, rules, and so on—this would assume
thorough multi-perspective re-use guidelines and such guidelines are not
available.

• Catalysis is insufficiently capable of grasping human-to-human communication,
similarly to KobrA.

In summary, we have considered CBD, touching upon its main characteristics, the
component notion, component implementation models, and component-based devel-
opment methods. In the following section, we will consider service orientation.

5.2 Service-Oriented Architecture

Service-Oriented Architecture (SOA) is considered to be a
promising paradigm building upon CBD, which shifts the focus from the
operation of a software component to the service the component is delivering
to its user(s) [17].

Our analysis on SOA has been supported mainly by the following source: [18].
SOA was originally motivated by the need of enterprises to better match infor-

mation systems to the enterprise goals, combined with the market trend towards
more and more flexible cross-organizational collaborations between enterprises
[19]. Vertical integration (business-IT alignment) and horizontal integration
(IT-supported cross-organizational collaboration) are considered crucial for current
enterprises, but traditional IT architectures have serious integration deficiencies.
Architectures often comprise monolithic (silo) applications that are effective as it
concerns the specific purpose they were created for but which do not allow integra-
tion without custom coded connections. Architectures with component-based appli-
cations provide units of business logic, which ease the definition of connections but

5.2 Service-Oriented Architecture 123

still require that the flow of control and the transformation of data formats are bound
into the business logic.

SOA is an IT architectural style that tries to achieve integration by way of
defining composite applications as an orchestration of ser-
vices, with services potentially offered by different organizations. A service
externalizes public functions of an application that implements a repeatable business
task. Since a composite application can also be offered as a service, integration may
involve multiple levels of composition, and a service can be internal to an organiza-
tion or cross-organizational.

Those issues will be addressed in the remaining of this section, by (1) surveying
(in Sect. 5.2.1) the concepts and architectural elements of SOA and (2) briefly
discussing (in Sect. 5.2.2) web services that constitute one of the widely adopted
technologies to implement SOA.

5.2.1 SOA Foundations

The central concept of SOA, the service concept, has several interpretations, partly
due to the fact that SOA addresses two distinct disciplines, namely, enterprise
engineering and software engineering, and each of those two disciplines has been
considering the service notion in its own perspective:

• In an enterprise context, a service involves the exchange of some action or
performance for value between a client and a provider [17]. Examples are
transportation services, health services, education services, outsourcing services,
and helpdesk services.

• In an IT context, a service refers to the external behavior of an IT system, as can be
observed and experienced by the users of that system [20]. Examples are data
communication services and application services.

For convenience, we will use the terms business service and IT service to
distinguish between the enterprise view and the IT view on services.

SOA holds the promise to bring business and IT together, by repeated
aggregation of IT services into composite applications supporting business ser-
vices that in turn are aggregated into business processes [21]. Figure 5.3 shows
the basic architectural pattern that underlies SOA. In this
pattern, three roles are distinguished: service provider, service broker, and service
requestor [22]. A service provider offers one or more services, which may be
implemented using arbitrary technologies and involving backend systems
protected by a firewall. Each service has well-defined interfaces referred to in a
service description. Service descriptions may be published with a service broker,
thus opening the possibility for service requestors to find services by providing

124 5 Computing Paradigms

required service properties to the service broker. The service broker searches for
service descriptions that satisfy the required service properties, and the service
requestor can select from the result of this search. Based on the location/access
details in the service description, the service requestor can then bind to a service
provider that offers the selected service. After a successful binding, the service
requestor can invoke the service, according to the interface details in the service
description.

Using this pattern, vertical integration is tackled by presenting a service as a
virtual component that can be implemented by alternative concrete components
using different technologies. The service requestor is therefore decoupled from the
implementation concerns of the service provider. Using SOA for application design
and providing a service wrapping for legacy applications thus presents a viable
approach to enterprise application integration.

The business-to-business integration requires that each potential business part-
ner defines a public view on its private process, with corresponding services and
associated incoming and outgoing message exchanges that allow linking to exter-
nal partners. The previously presented basic SOA pattern only shows a single
service provider and a single service requestor role. In a business-to-business
collaboration scenario, business partners may play either role for any number of
supported services. An individual partner coordinates the services used and pro-
vided through its private process. Since this in general does not determine the
overall coordination involving all partners, a coordination protocol can be
defined that concerns the public view on how the partners should work together.
Such a coordination protocol does not provide a concrete and executable process
for the coordination of a service. It only defines the order in which messages
should be exchanged, where messages are used to invoke a service or return a
service result in accordance to a service provided by one of the partners. A
definition at this level of abstraction is also referred to as service choreogra-
phy; see Fig. 5.4 (up):

Fig. 5.3 The basic SOA
pattern (Source: [18], p. 5;
©2009, SCITEPRESS,
reprinted with permission)

5.2 Service-Oriented Architecture 125

Said otherwise, the choreography reflects the collaboration among different
services. Services participating in the choreography may belong to different pro-
viders; the aim is that the participating services collaborate to implement a business
process [23]. In Fig. 5.4 (up), the business process consists (for example) of three
different services. The service user triggers the business process, by invoking
Service A with a request. Service A processes the user request and then invokes
Service B. Service B processes the request from Service A and then invokes Service
C. Service C processes the request from Service B and then sends the result to the
service user.

It is to be noted that we use the term SERVICE REQUESTOR in Fig. 5.3 and we
use the term SERVICE USER in Fig. 5.4. Those terms are not conflicting, and we
use different terms because both figures mentioned above reflect a simplified view
on reality. In Fig. 5.3, we recognize a service requestor, emphasizing on the role of
formulating a request, searching for candidate services, making a selection, and
binding to a corresponding service provider. We abstract from the fact that the same
entity requesting the service is then the service user. In Fig. 5.4, we abstract from the
request formulation, service discovery, and so on, emphasizing on the role of using
the selected service(s).

Fig. 5.4 Service
choreography and service
orchestration (©2017, The
Author, reprinted with
permission)

126 5 Computing Paradigms

It is to be noted also that in Chap. 2, a business process is defined as a “structure
of (connected) transactions that are executed in order to fulfill a starting transac-
tion” (Definition 6), while what we discuss above concerns a structure of
(connected) services that are executed in order to fulfill a “starting” service. How
would then the transaction and service concepts relate to each other and how would
the business process and choreography concepts relate to each other? Answering
those questions is considered challenging because of the following reasons:

• The notion of transaction is not only grounded in enterprise engineering but is
also reflected in a pattern (Fig. 4.4), while the notion of service addresses two
distinct disciplines—enterprise engineering and software engineering, as men-
tioned above, leading to different interpretations.

• Within a business process as in line with Definition 6, a starting transaction is
triggered and possibly, in order for it to be executed, it is necessary that another
transaction is triggered, and this is done by the executor (producer) of the
starting transaction—it is the executor who initiates the second transaction,
and the executor of the second transaction (in turn) might need to initiate a
third transaction, and so on. Then, each result is delivered to the corresponding
transaction initiator which means that the result of the second transaction would
be delivered to the executor of the starting transaction who in turn would deliver
the final result to the customer (user). In contrast, the collaboration among
services, as presented above, is not that elaborate as the collaboration among
transactions since we go as far as establishing that the starting service invokes
another service which in turn invokes yet another service, and so on. Further,
when we consider a collaboration among transactions part of a business process,
it is the starting transaction that delivers the result to the customer, while in the
service choreography, it is the last service being invoked that delivers the result to
the customer, as illustrated above.

For this reason, we allow ourselves to use the term business process in the service
choreography context only under the condition that we make it explicit that even
though similarities can be found, a “choreography of services” is not the same as a
“business process of transactions.”

What we consider conceptually closer to transactions-driven business processes
is service orchestration—see Fig. 5.4 (down)—assuming that the overall
coordination (concerning the collaborative behavior of different services) is assigned
to and executed in a centralized way by some computing node [18].

As in service choreography, also in service orchestration, the services (partici-
pating in the orchestration) may belong to different providers. The difference is
nonetheless that in an orchestration, those services are coordinated from a central
entity, the orchestrator; the orchestrator invokes each service according to a given
strategy. We considered a choreography example featuring three services (see
Fig. 5.4 (up)), and we now consider an orchestration example featuring the same
three services (see Fig. 5.4 (down)). As it is seen from the figure, in the orchestration
case, services are coordinated by another service, the composite service (called
“orchestrator”)—this service defines the composition of the services participating
in the business process. The service user triggers the business process, by invoking

5.2 Service-Oriented Architecture 127

the orchestrator. Once the orchestrator receives the user request, the first action it
takes is to invoke Service A, and Service A would respond in turn with a message.
Then (based on this response) the orchestrator would invoke Service B, and Service
B would respond in turn with a message. Then (based on this response) the
orchestrator would invoke Service C, and Service C would respond in turn with a
message. Then (based on this response) the orchestrator would deliver the result to
the service user. It was stated above that service orchestration is conceptually closer
to transactions-driven business processes (compared to service choreography)
because similarly to how a customer approaches the executor of a starting transac-
tion and in the end the executor of the starting transactionwould deliver the result to
the customer (no matter how many other transactions the executor of the starting
transaction would have (directly or indirectly) triggered in order to be able to
execute the starting transaction), the service user approaches the orchestrator, and
in the end the orchestrator would deliver the result to the service user (no matter
how many services the orchestrator would have triggered in order to be able to
respond to the request of the service user).

In order to illustrate the patterns discussed above (the basic SOA pattern, Fig. 5.3,
the choreography pattern, Fig. 5.4 (up), and the orchestration pattern, Fig. 5.4
(down)), we use the following simple real-life examples:

Example 1 Jamall Caribbean Custom Tailors (service provider) are active in the
Toronto area in Canada; they have advertised their services at http://www.
yellowpages.ca. John lives in Toronto; he has ripped his trousers (service user)
and discovers Jamall Caribbean Custom Tailors’ services in Yellowpages—Canada.
Then John would contact Jamall Caribbean Tailors, discussing the problem and
negotiating the conditions about their fixing his trousers. Once they reach an
agreement, John would bring his ripped trousers to the nearest collection desk of
Jamall Caribbean Custom Tailors whose rules on handling orders would be dom-
inant and John would have to adapt to the conditions of their services. Those
conditions concern questions, such as: For how many days this order would be
handled? Are weekend days counted? What is the extra pay for a priority order?
What are the compensations for damage on the clothing? and so on. Those condi-
tions John must have discussed with them during the abovementioned negotiations.
This example points to the basic SOA pattern.

Example 2 Hristo is Bulgarian; he lives in Sofia, Bulgaria; and he has a PhD degree
from Delft University of Technology in The Netherlands. Hristo is appointed as
assistant professor at the Bulgarian Academy of Sciences, and for this he needs a
legalization of his PhD degree. He applies for this at Delft University of Technology,
by (1) submitting via e-mail a scanned copy of a filled-out and signed form and
(2) transferring a corresponding fee. Then:

• SERVICE 1

– A representative of Delft University of Technology (Delft) would issue a
duplicate of the diploma, send it to the DUO Agency of the Dutch Ministry
of Education (Groningen), and pay on behalf of the university a processing fee
to DUO.

128 5 Computing Paradigms

http://www.yellowpages.ca
http://www.yellowpages.ca

• SERVICE 2

– A representative of DUO (Groningen) would match the information in the
document to corresponding information in their databases, and if all is OK, the
person would apply on behalf of DUO a sticker at the back of the document,
send the document to the courthouse in Groningen, and then pay on behalf of
DUO a processing fee to the court.

• SERVICE 3

– A representative of the court (Groningen) would check the details in the
document and the details of the diploma holder in the Dutch registries, and
if all is OK, the person would apply an apostille on the document and send the
document to Hristo.

This example points to service choreography because the coordination is realized
among the services themselves: Hristo is triggering Service 1 and then those who are
executing Service 1 know what to do and how to deliver it and trigger Service 2 and
then those who are executing Service 2 know what to do and how to deliver it and
trigger Service 3 that in turn delivers the result to Hristo.

Example 3 Jimmy is the leading manager of a small company in Sofia, and Alice is
his business assistant who is authorized to sign for Jimmy declarations and applica-
tion forms, to order payments on behalf of the company, and so on. Jimmy needs a
certificate of good standing concerning the company, and he asks Alice to get it for
him. Then:

• SERVICE 1

– Alicewould visit a solicitor, asking him or her to prepare the application letter,
and Alice would pay the solicitor for the service, on behalf of the company.

• SERVICE 2

– Having the application letter (for reference), Alice would go to the bank and
transfer a corresponding fee to the Court.

• SERVICE 3

– Having the application letter and the proof of payment, Alice would go to the
Court, submit those documents, and immediately collect the certificate of
good standing, if everything is OK with regard to the company.

Then Alice would go back to Jimmy, giving him the certificate of good
standing.
This example points to service orchestration because the coordination is realized

through Alice who is just like the “orchestrator” in Fig. 5.4 (down): Jimmy is
triggering Alice who knows what and how to do, and in what order, Alice would
firstly sort things out with the solicitor, then she would do the fee payment, and
finally, she would go and collect the certificate of good standing at the Court. Based
on this all, Alice would go back to Jimmy and deliver the certificate to him.

5.2 Service-Oriented Architecture 129

Even though those examples illustrate the corresponding SOA patterns in terms of
underlying internal logic, the examples are not to be considered straightforwardly
because they are reflecting real-life situations while SOA is an IT architectural style,
as already mentioned.

Finally, after outlining the basic SOA pattern and touching upon service coordina-
tion, it is necessary to discuss service composition since often the user needs
cannot be satisfied by simply using one particular service and composite services are to
be considered. According to Eduardo Goncalves da Silva [23], the service composition
is initiated by the specification of a service request where the service requestor/user
indicates requirements and preferences for the composite service to be created.
Following that, candidate services for the service composition are discovered in the
service registry. In case no services are discovered, the requirements for the service
may need to be refined and/or reformulated. Following that, the discovered services
are composed to meet the specified requirements, and this may be accompanied by
further interactions with the service registry, in case other services are necessary to
complement the already discovered services; once the specified service requirements
can be fulfilled by the created service composition, the resulting service can be
executed, such that the service requestor/user makes use of it. It is also possible that
the service developer is driving the service composition process—in such a case, the
resulting service compositionmay be published in the service registry so that it can be
used by other users or service developers in the future.

As it concerns the implementation of SOA, we mentioned at the beginning
of the current section that we will consider (in the following sub-section) web
services that constitute one of the widely adopted technologies to implement SOA.

5.2.2 Web Services

Web Services (WS) are a collection of standards, which are widely accepted as the
technology of choice for implementing SOA [22]. WS to a large extent support the
concepts, patterns, and principles mentioned in the previous sub-section. An applica-
tion designed and implemented according to the WS standards is self-contained and
modular, has a description which can be published, can be found on the basis of its
description, and can be located and invoked over networks.

The core WS standards are the following:

• Simple Object Access Protocol (SOAP): this is an Internet protocol
for web (service requestor and service provider) applications to communicate on
top of other standard Internet protocols, including HTTP. SOAP defines how
messages are structured and processed in a platform-independent way. It com-
prises two message exchange patterns, viz. one-way and request-response.

• Web Services Description Language (WSDL): this is the language for
specifying the WS interfaces. It is used to provide a description of the service for

130 5 Computing Paradigms

the (potential) service requestors. Such a description includes information on
which messages are related to each operation that is supported by the service, how
those messages are related (e.g., operation input and output), and how SOAP
messages are exchanged.

• Universal Description, Discovery, and Integration (UDDI):
this standard is defined to enable the storage of information for organizing and
discovering WS. UDDI consists of data structures and APIs (“API” stands for
“Application Programming Interface”) for publishing and querying WS. The
UDDI APIs are WS themselves; they are described / can be invoked as any
other WS.

In addition, all WS standards rely on the Extensible Markup Language (XML) to
represent structured data. XML documents and schemas are defined to standardize
the format and type of data communicated by WS. The basic SOA pattern (see
Fig. 5.3) can be supported with SOAP, WSDL, and UDDI. Those standards are,
nevertheless, insufficient to correlate messages exchanged between a service
requestor and a service provider, to distinguish between multiple instances of the
same service, or to coordinate the use of different services. Also, they do not address
policies that govern the use of WS and non-functional aspects of WS such as
reliability and security. For this purpose, several other WS standards have been
developed. Figure 5.5 shows an overview (inspired by Van Sinderen [18]) of
standards supporting different aspects of SOA.

di
sc

ov
er

y,
 n

eg
ot

ia
tio

n,
 a

nd
 a

gr
ee

m
en

t

data transport

composition and coordination stateful components

HTTP, TCP/IP, SMTP, FTP, …

XML messaging

SOAP, WS-Addressing

non-XML messaging

JMS, RMI, IIOP

interface and bindings

WSDL

policy

WS-Policy

reliability

WS-RM

security

WS-Security

atomicity

WS-Transaction

BPEL, CDL WS-Coordination WS-Resource Framework

U
D

D
I,

W
S

-A
dd

re
ss

in
g,

 …

Fig. 5.5 WS and some standards supporting SOA (Source: [18], p. 9; ©2009, SCITEPRESS,
reprinted with permission)

5.2 Service-Oriented Architecture 131

We argue that those standards have reached a certain level of technical maturity
and thus represent an adequate WS basis with regard to the implementation of SOA.
This in turn reflects promising, in our view, developments based on CBD (see the
previous section), such that COMPONENTS are considered useful UNITS OF
DEVELOPMENT while SERVICES are considered useful UNITS OF UTILIZA-
TION with regard to developing (distributed) software and making it available to
users. Complementing this, we will consider (in the following section) model-driven
engineering, featuring the development process itself, no matter if this concerns
component-based development of software applications or composition of services
for the sake of generating software-based solutions.

5.3 Model-Driven Engineering

Any subject using a system A that is neither directly or indirectly interacting with a
system B, to obtain information about the system B, is using A as a model for B,
according toDefinition 9. In reflecting that definition in real life, we establish that the
human mind would often “rework” reality, simplifying things, driven by an intuitive
“push” to identify similarities among objects, emphasizing those similarities in
perceiving different objects. For example, both the small Mitsubishi Colt and the
big Cadillac Eldorado are intuitively matched to the “car”model by a person, firstly,
and the huge differences between those two objects go on second place. Said
otherwise, upon perception, a person would firstly try to relate the observed object
(s) to a category item already existing in his or her mind, abstracting from very many
details. Abstraction (pointing to the capability of finding the commonality in
many different observations) is hence essential with regard to how people perceive
reality and reason about it—people often generalize specific features of real objects
(generalization), classify the objects accordingly (classification), and
aggregate objects into more complex ones (aggregation). Thus abstraction
reflects the natural human behavior in real life while in science, ABSTRACTION
RELATES TO MODELING, as suggested by the above definition. Hence, a model
is a simplified and/or partial representation of reality. Models are of importance in
many scientific disciplines, such as physics and chemistry, for example, where
through simplified models of natural phenomena, one would draw conclusions
about the phenomena themselves. In this, one would aim either at addressing
(through modeling) just a selection of relevant properties, hence reducing complex-
ity or at considering the features of an individual for the sake of generalization.
Further, models can be used to describe reality, to determine the scope and details at
which to study a problem, and so on. Through modeling, features of products can be
analyzed and discussed before the corresponding products get produced. Finally,
with us focusing on the development of software artifacts in this chapter, we would
consider particularly model-driven engineering, by which we mean model-
driven software development. According to [24], the need for model-driven engi-
neering is justified taking into account the following facts:

132 5 Computing Paradigms

• Software artifacts are becoming more and more complex, and therefore they need
to be discussed at different abstraction levels, depending on the profile of the
involved stakeholders, phase of development, and objectives of the work.

• Software is more and more pervasive in real life, and the expectation is that the
need for new pieces of software or the evolution of existing ones will be
continuously increasing.

• Software development is not a self-standing activity: it often imposes interactions
with non-developers (e.g., customers, managers, business stakeholders, and so on)
who need somemediation in the description of the technical aspects of development.

For this reason, it is not surprising that by applying model-driven engineering,
software developers increase efficiency and effectiveness [24]. This nonetheless does
not assume just using models and corresponding notations, for example, UML; in
model-driven engineering, models do not constitute just documentation but are con-
sidered equal to code, as their implementation is automated; for example, a car order
that includes customer features is straightforwardly reflected into reality, in the context
of a current advanced automotive production line. Hence, the domain is essential for
models. Model-driven engineering thus aims at finding domain-specific abstractions
and making them accessible through formal modeling, this leading to automation of
software production, which in turn leads to increased productivity (since both the
quality and maintainability of software systems increase)—models that are domain-
specific and computation-independent can be understood by domain experts and at the
same time, thosemodels are restricting accordingly the technology-specific models that
are essential for the construction of the software system under development. To
successfully apply this, three requirements must be met: (1) Domain-specific lan-
guages are required to allow the actual formulation of models. (2) Languages that can
express the necessary model-to-code transformations are needed. (3) Compilers,
generators, or transformers are required that can run the transformations to generate
code executable on available platforms [5]. Said otherwise:

• It is necessary to consider computation-independent models that capture ade-
quately the domain features, abstracting from any computation and technical
details; such models would ideally capture the as-is situation, featuring a black-
box view over the software system-to-be.

• It is necessary to consider technology-independentmodels of the software system-
to-be, which models are already focused on the system-to-be (maybe both func-
tionally and constructionally) but just conceptually, not imposing any technical
restrictions whatsoever.

• It is necessary to consider technology-specific models that capture adequately all
technical features of the software system-to-be, which models are straightfor-
wardly reflect-able to corresponding code.

As studied by Shishkov [1], two modeling facilities are meeting those require-
ments, namely, the Model-Driven Architecture (MDA) and the Open Dis-
tributed Processing Architecture (ODP), with MDA’s adopting influences from
ODP. Further, meta-modeling is one of the most important aspects of model-
driven engineering since so-called “meta-models” are needed for describing the

5.3 Model-Driven Engineering 133

abstract syntax of domain-specific modeling languages, and that in turn allows
models to be validated against the constraints defined in the meta-model, and that
allows also for mappings between two meta-models; this is all necessary with regard
to the desired automated code generation. Hence, meta-models are models that make
statements about modeling. Four meta-levels being defined and considered widely
are reflected in MOF—the Meta-Object Facility [5]. For this reason, we will
consider MDA and MOF in Sects. 5.3.1 and 5.3.2, respectively.

5.3.1 Model-Driven Architecture

Model-Driven Architecture (MDA) is a software architecture framework consisting
of a set of standards that assist in system creation, system implementation, system
evolution, and system deployment [5]. The key MDA technologies are UML, MOF
(to be considered in the following sub-section), and the XML Meta-data Interchange
–XMI [25, 26]. MDA emphasizes the importance of modeling for the software
architecture design, suggesting a three-layered approach:

• Computation-Independent Model (CIM) describing a system from the
computation-independent point of view, to address structural aspects of the system.

• Platform-Independent Model (PIM) defining a system in terms of a
technology-neutral virtual machine or a computational abstraction.

• Platform-Specific Model (PSM) capturing the technical platform concepts
and geared towards implementation.

A taxonomy of the models that play a central role in MDA is presented in Fig. 5.6.

model

enterprise
model

system
model

logical
model

physical model
(deployment)

computational
model

requirements
model

PIM PSM

Fig. 5.6 Classification of
models in the MDA context
(©2017, The Author,
reprinted with permission)

134 5 Computing Paradigms

Since resolving the mismatch between (user) requirements and software appli-
cation functionality is an essential software development concern [1],MDA needs to
address it and in this regard, one would inevitably face the necessity of bridging
different abstraction levels—a high-level business logic and a technology-driven
application functionality. A business function (corresponding to a unit of business
logic) is specific for a particular business and necessarily abstracts from technolog-
ical solutions that can be used to support it. A technology platform offers a generic
engineering abstraction (hence hiding implementation details) that is nonetheless
technology-oriented. According to [17], an adequate business-application alignment
can only be achieved if the initial enterprise model is (1) a valid reflection of the
relevant real-life aspects and (2) a suitable foundation for the generation of
application models, preferably by using automated transformations. The alignment
nevertheless cannot be accomplished only by prescribing how to define an enter-
prise model—an additional demand should be that (3) the “architectural style”
used for organizing the application modeling should facilitate the alignment; it
cannot be obtained solely from top-down, but also requires a bottom-up
“preparation.”

Hence, we consider enterprise modeling to be computation-independent, with no
focus on the (partial) automation of business processes—this corresponds to the CIM
layer. Further, we consider application modeling from a platform-independent
perspective, with no focus on the specific technological platform(s) on which the
application components are (to be) implemented—this corresponds to the PIM layer.
Thus and under the condition that CIM goes “broader” than MDA suggest, reaching
beyond just the software system-to-be:

the enterprise-modeling-driven
generation of software specifications
corresponds to a CIM-to-PIM transformation.

As for the PSM, it is specific with regard to J2EE, .NET, or other implementation
platforms. A platform-specific model is created from a platform-independent model
via a model transformation. Thus:

the application-modeling-driven
implementation of software
corresponds to a PIM-to-PSM transformation.

In Sect. 5.3.2 we consider meta-modeling and MOF, as already mentioned.

5.3 Model-Driven Engineering 135

5.3.2 Meta-Object Facility

The Meta-Object Facility (MOF) provides an open and platform-independent
meta-data management framework and associated set of meta-data services to
enable the development and interoperability of model-driven and meta-data-driven
systems. Examples of systems that use MOF include modeling and development
tools, data warehouse systems, meta-data repositories, and so on [27]. The
abovementioned four meta-levels are of importance with regard to MOF [5]—
they are (1) —Instance; (2) —Model; (3) —Meta-model; and
(4) —Meta-meta-model.

Between and , we have typical classification/instantiation, at we have
the class level, and at we have the instance level; for example, a class is given
the name “Person” and has a number of attributes, in the example—“surname” and
“first name”; an instance of that class is created at level ; in the example, “Person”
is instantiated to the persons with “ID 12345,” and we give corresponding values
to the attributes “surname” and “first name,” “Smith” and “Michael,” respectively,
in this case. Logically, a class can have more than one instance. As seen in the
above example, during the instantiation of a class, values are assigned to its
attributes.

As for , at this level the constructs that are used at the level are
defined. The elements of the model are hence instances of the elements
of the meta-model at the level; since in the above example we use classes
in the model, the construct Class must be defined in the meta-model.
The construct Class in turn is to be considered as an instance of the meta-meta
element MOF Classifier (MOF classes are hence defined at the level). Said
otherwise, the MOF serves to define modeling languages (e.g., UML) at the
level.

Further, besides meta-relationships in which meta-models define the concepts
needed for creating corresponding models, it has to be acknowledged that models
can be located at different abstraction levels even though they can be
located at the same meta-level, for example, CIM, PIM, and PSM (see above). As
already discussed, transformations are used to map models at a higher abstraction
level to models at a lower abstraction level, and as mentioned before, each model is
inevitably an instance of a meta-model.

If we take the PIM-to-PSM transformation (where we reflect the higher abstrac-
tion level model PIM to lower level PSM), we stay at the level because no matter
the abstraction level, both PIM and PSM represent models. Each of those models
thus has a corresponding meta-model (at the level): the PIM is an instance of the
PIM meta-model and the PSM is an instance of the PSM meta-model. In turn, both
meta-models are instances of MOF, MOF being positioned at the level. This is
illustrated in Fig. 5.7:

136 5 Computing Paradigms

In this section, we have considered the model-driven software development,
touching upon abstraction levels, meta-levels, and corresponding transformations.
In the following section, we will consider the impact of mobility on the development
and utilization of software systems, featured mainly by cloud computing and
corresponding infrastructures.

5.4 Cloud Computing

Consolidated enterprise-IT solutions have proven to enhance business efficiency
when significant fractions of local computing activities are migrating away from
desktop PCs and departmental servers and are being integrated and packaged on the
Web into the computing cloud, according to Ivanov [28]. No matter which one of the
popular “labels”we use: grid computing, utility computing, or cloud computing,
the idea is basically the same. What is important is that instead of investing in and
maintaining expensive applications and systems, users access and utilize dynamic
computing structures to meet their fluctuating demands on IT resources efficiently
and pay a fixed subscription or an actual usage fee. The immense economic demands
in the last several years, in conjunction with the immediate reduction of upfront
capital and operational costs when cloud-based services are employed, increase the
speed and the scale of cloud computing adoption both horizontally (across indus-
tries) and vertically (in organizations’ technology stacks). All that poses the need for

MOF

PSMPIM

M3

M2

M1

<<instanceof>>

<<instanceof>>

transformation

<<instanceof>>“meta”

“abstract”

PIM-
meta model

PSM-
meta model

Fig. 5.7 Meta versus abstract (©2017, The Author, reprinted with permission)

5.4 Cloud Computing 137

organizational changes, organizations would have to re-think and re-engineer
(in some cases) their traditional IT resources, advancing them with cloud architec-
tures and implementing services based on dynamic computing delivery models. The
changes and business transformations are underway on a large scale, from providers
and customers to vendors and developers. The key issues are not only in economics
and management, but essentially how emerging IT models impact organizational
structures, capabilities, business processes, and consequential opportunities.

There are usually three cloud service models under consideration, namely,
Software as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS), that relate to the cloud provider
[7]:

• SaaS moves the task of managing software and its deployment to third-party
services, such as security services, caching services, networking services, and so on.

• PaaS functions at a lower level than SaaS, typically providing a platform on
which software can be developed and deployed, such as streaming platforms,
application development platforms, web platforms, and so on.

• IaaS in turn comprises highly automated and scalable computing resources,
complemented by cloud storage and network capability which can be self-
provisioned, metered, and available on-demand, such as e-mail building blocks,
ERP building blocks (“ERP” standing for “Enterprise Resource Planning”), CRM
building blocks (“CRM” standing for “Customer Relationship Management”),
and so on.

The cloud provisioning is hence bottom-lined by a SaaS-PaaS-IaaS basis and
reaching out to customers via the Internet, such that the customers’ computers, servers,
databases, mobile devises, and so on can actually benefit from corresponding cloud
services that are in turn utilized by customers in the form of images, news, music, chat
facilitations, ID management, TV, and so on, as illustrated in Fig. 5.8.

As the figure suggests, customers utilize cloud services at high level, in an
intuitive and seamless way, such that the underlying SaaS-PaaS-IaaS-related tech-
nical complexity remains hidden and would only become explicit for the customer as
reflections in corresponding (subscription) contracts. Thus, cloud computing brings
together many technical, organizational, contractual, and other concerns which we
will not discuss in more detail in the current chapter. Our goal was to present cloud
computing as a natural “extension” of service orientation (already discussed) where
the utilization of services is combined with the utilization of resources, empowering
mobility—it is only through cloud computing that it is possible to access distant
resources/systems through a (portable) mobile device.

All this reflects the move from components through services to cloud solutions,
and we acknowledge the relevance of model-driven engineering (discussed already)
to the challenge of developing such component-based, service-based, and/or
cloud-based systems. What remains uncovered nevertheless is the adequate consid-
eration of non-functional issues, such as privacy, for example, which are crosscut-
ting and have reflection in different components, at different development phases.
We will discuss this in the following section.

138 5 Computing Paradigms

5.5 Aspect-Oriented Software Development

Privacy, transparency, traceability, and so on are labelled values that are to be
weaved in the functioning of enterprise systems and EIS [29], and for this reason,
they are considered as crosscutting concerns because:

Fig. 5.8 Vision of cloud computing (©2017, The Author, reprinted with permission)

5.5 Aspect-Oriented Software Development 139

• Weaving them in the functioning of a system would not assume reflections in one
particular component only; instead multiple components would need to be
“refactored” as well as their interrelations, and also their relations to other
components.

• Addressing such values in the software development context would come through
all the phases of the software development life cycle.

Further, such values / crosscutting concerns have a non-functional essence
because they do not have any particular purpose or function; instead they represent
something like “desired system qualities.”

Finally, even though the values / crosscutting concerns are non-functional, we
should find functional solutions for them, because we argue that a system could only
functionally achieve effects with impact on its environment.

This all (as above stated) concerns broadly enterprise systems touching upon both
human issues and technical issues. Narrowing this further to software systems
nevertheless brings us to such crosscutting concerns that are particularly touching
upon software development issues, such as security, distribution, recoverability,
logging, performance monitoring, and so on [8]. This is featuring the notion of
aspect-oriented software development whose foundations concern
separation of concerns, filter technologies, improving modularity, integration of
new features, and so on [30]. We are not going in more detail in this direction.

What we would only like to emphasize is that addressing such non-functional
concerns is to be functional which means that:

• We should “translate” those concerns into system requirements.
• System development should not go in any unusual way; it should just ensure that

all requirements are properly reflected in the design and implementation.
• Introducing metrics and/or performance indicators would be necessary for

establishing how well the desired values have been reflected in the performance
of the system, and if it is necessary, the requirements may have to be refactored.

Aspect orientation is thus necessary for properly weaving desired values in the
functioning of the system-to-be. It is featuring non-functional issues that nevertheless
have to be resolved functionally.

* * *
IN SUMMARY, in Chaps. 2 and 3 we have considered some essential concepts

and views; in Chap. 4 we have presented and discussed social theories, including
human relativism, the theory of organized activity, the language-action perspective,
enterprise ontology, and organizational semiotics, justifying their relevance to
different aspects concerning enterprise systems and EIS; and in this chapter we
have considered computing paradigms that are currently actual and also well-
combinable with the addressed social theories and concepts. In the following
chapter, we will introduce the SDBC approach, bringing all those issues together.

140 5 Computing Paradigms

References

1. Shishkov B (2005) Software specification based on re-usable business components. Delft
University Press, Delft

2. Wikipedia, The free encyclopedia. http://en.wikipedia.org
3. Szyperski C (1998) Component software, beyond object-oriented programming. Addison-

Wesley, Harlow, England
4. Stojanovic Z (2005) A method for component-based and service-oriented software systems

engineering. Delft University Press, Delft
5. Stahl T, Völter M, Bettin J, Haase A, Helsen S (2006) Model-driven software development—

technology, engineering, management. Wiley, Heidelberg
6. AWARENESS (2008) Freeband AWARENESS project. http://www.freeband.nl/project.cfm?

id¼494&language¼en
7. CLOSER, The international conference on cloud computing and service science. http://closer.

scitevents.org
8. BMSD, The international symposium on business modeling and software design. http://www.

is-bmsd.org
9. Lewandowski SM (1998) Frameworks for component-based client/server computing. J ACM

Comput Surv 30(1):3–27
10. Williams S,Kindel C (1994) The component object model: a technical overview. Microsoft

Corporation White Paper, Microsoft
11. EJB, The ORACLE enterprise JavaBeans technology. http://www.oracle.com/technetwork/

java/javaee/ejb/index.html
12. CCM, The OMG CORBA component model. https://www.omg.org/spec/CCM/About-CCM
13. Kruchten P (2003) The rational unified process: an introduction. Addison-Wesley, Reading,

MA
14. Atkinson C, Bayer J, Bunse C, Kamsties E, Laitenberger O, Laqua R, Muthig D, Paech B,

Wust Z, Zettel J (2001) Component-based product line engineering with UML. Addison-
Wesley, Reading, MA

15. Atkinson C,Muthig D (2002) Enhancing component reusability through product line technol-
ogy. In: Proceedings of the 7th international conference on software reuse, Austin, TX, USA,
15–19 Apr 2002

16. D’Souza DF, Wills AC (1998) Objects, components, and frameworks with UML, The catalysis
approach. Addison-Wesley, Reading, MA

17. Shishkov B, Van Sinderen M, Quartel D (2006) SOA-driven business-software alignment. In:
Proceedings of the ICEBE’06 IEEE international conference on e-Business Engineering, IEEE

18. Van Sinderen MJ (2009) From service-oriented architecture to service-oriented enterprise. In:
Proceedings of the 3rd international workshop on enterprise systems and technology (I-WEST),
29–30 July 2009. SCITEPRESS, Sofia, Bulgaria

19. OASIS (2006) Reference model for service oriented architecture 1.0. OASIS Standard. http://
docs.oasis-open.org/soa-rm/v1.0 (12Oct 2006)

20. Van Sinderen MJ,Pires LF (1998) Protocols versus objects: can models for telecommunications
and distributed processing coexist? In: Proceedings of the 6th IEEE workshop on future trends
of distributed computing systems (FTDCS), IEEE

21. Unger T, Mietzner R, Leymann F (2009) Customer-defined service level agreements for
composite applications. J Enterp Inform Syst 3(3):369–391

22. Papazoglou M (2008) Web services: principles and technology. Prentice Hall, Upper Saddle
River, NJ

23. Goncalves da Silva EM (2011) User-centric service composition, towards personalised service
composition and delivery. University of Twente, Enschede

24. Brambilla M, Cabot J, Wimmer M (2012) Model-driven software engineering in practice.
Morgan & Claypool, San Rafael, CA

25. XML, The W3C extensible markup language. http://www.w3.org/XML

References 141

http://en.wikipedia.org
http://www.freeband.nl/project.cfm?id=494&language=en
http://www.freeband.nl/project.cfm?id=494&language=en
http://www.freeband.nl/project.cfm?id=494&language=en
http://www.freeband.nl/project.cfm?id=494&language=en
http://closer.scitevents.org
http://closer.scitevents.org
http://www.is-bmsd.org
http://www.is-bmsd.org
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
https://www.omg.org/spec/CCM/About-CCM
http://docs.oasis-open.org/soa-rm/v1.0
http://docs.oasis-open.org/soa-rm/v1.0
http://www.w3.org/XML

26. XMI, The OMG XML meta-data interchange. http://www.omg.org/spec/XMI
27. MOF (n.d.) The OMG meta-object facility. http://www.omg.org/mof
28. Ivanov I (2012) Cloud computing in education: the intersection of challenges and opportunities.

In: Filipe J, Cordeiro J (eds) Web information systems and technologies 2011. LNBIP, vol 101.
Springer, Heidelberg, pp 3–16

29. Ahmed MA, Janssen M, Van Den Hoven J (2012) Value sensitive transfer (VST) of systems
among countries: towards a framework. J Electr Gov Res 8(1):26–42

30. Filman R, Elrad T, Clarke S, Aksit M (2004) Aspect-oriented software development. Addison-
Wesley, Reading, MA

142 5 Computing Paradigms

http://www.omg.org/spec/XMI
http://www.omg.org/mof

Chapter 6
The SDBC Approach

We make a clear distinction between issues that concern the enterprise-engi-
neering aspects of Enterprise Information Systems (EIS) and issues that concern
the software-engineering aspects of such systems—see Chap. 1. At the
same time, we need to bring together enterprise modeling (driven by
social theories—see Chap. 4) and software specification (driven by
computing paradigms—see Chap. 5) for the sake of bridging the enter-
prise-software gap (as discussed in Chap. 1). We have put conceptual
foundations for this in Chap. 2 (by considering systemics) and we have
explicitly addressed the environmental and user perspectives with
regard to EIS (see Chap. 3). What is nevertheless missing so far is the
operationalization perspective—we need an approach and methodo-
logical guidelines on what to do and how to do it in order to actually realize an
enterprise-modeling-driven software generation; this is a chal-
lenge because most current approaches and methods are either rooted in social
theories or based on computing paradigms—this claim has been justified in the
previous chapters of the current book. For this reason, we consider previous works
of the Author [1] who has been studying and addressing the mentioned challenge
for more than 15 years already, reflecting innovative ideas in his SDBC
APPROACH—“SDBC” stands for “Software Derived from Business
Components.” Hence, the reasons for considering and developing further this
approach are the following:

• Its strengths in aligning enterprise modeling and software specification.
• Its component-orientation and support for re-use.
• Its previous use for specifying context-aware and privacy-sensitive systems [2, 3].

The remaining of the current chapter is hence organized as follows: In Sect. 6.1,
we will briefly introduce SDBC and outline its main concepts which are not only in
line with the meta-model, presented in Chap. 1 (see Fig. 1.6), but are also
consistent with the definitions presented in Chap. 2. In Sect. 6.2, we provide

© Springer Nature Switzerland AG 2020
B. Shishkov, Designing Enterprise Information Systems, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-22441-7_6

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22441-7_6&domain=pdf

further foundational and conceptual elaborations. In Sect. 6.3, we present the SDBC
process outline. Finally, in Sect. 6.4, we present the SDBC notations.

6.1 Outline and Concepts

SDBC is an approach (consistent with MDA—see the previous chapter) that is
focused on the derivation of software specification models on the basis of
corresponding (re-usable) enterprise models. SDBC is based on three key ideas:
(1) The software system-to-be is considered in its enterprise context, which means
that the software specification models are to stem from corresponding enterprise
models; this means in turn that a deep understanding is needed as it concerns real-life
(enterprise-level) processes, corresponding roles, behavior patterns, and so
on. (2) By bringing together two disciplines (enterprise engineering and software
engineering), SDBC pushes for applying social theories in addressing enterprise-
engineering-related tasks and for applying computing paradigms in addressing
software-engineering-related tasks, and also for integrating the two, by means of
sound methodological guidelines. (3) Acknowledging the value of re-use in current
software development, SDBC pushes for the identification of re-usable (generic)
enterprise engineering building blocks whose models could be reflected accordingly
in corresponding software specification models. We refer to [1, 2] for information on
SDBC and we are reflecting the SDBC outline in Fig. 6.1.

144 6 The SDBC Approach

As the figure suggests, there are two SDBC modeling milestones, namely,
enterprise modeling (first milestone) and software specification
(second milestone). The first milestone has as input a case briefing (the initial
(textual) information based on which the software development is to start) and the
so-called domain-imposed requirements (those are the domain regulations to which
the software system-to-be should conform). Based on such an input, an analysis
should follow, aiming at structuring the information, identifying missing informa-
tion, and so on. This is to be followed by the identification (supported by
corresponding social theories) of enterprise modeling entities and their interrelations.
Then, the causalities concerning those interrelations need to be modeled, such that
we know what is required in order for something else to happen [5]. On that basis,
the dynamics (the entities’ behavior) is to be considered, featured by transactions

The SDBC Approach (B.Shishkov)
i

n
p

u
t

o
t

u
p

u
t

case
briefing

domain-
imposed
requirem.

user-defined requirem.

software
specification
model

business
coMponents

so
ftw

are components

transactions

cla
ssification

behavior

causality

en
tit

ie
s

ela
bo

ra
tio

n

analysis

use cases

re
-e

ng
in.

re
-d

es
ign

enterprise
modeling

software
specification

Fig. 6.1 SDBC—a general outline (Source: [4], p. 48; ©2017, SCITEPRESS, reprinted with
permission)

6.1 Outline and Concepts 145

[1, 2]. This all leads to the creation of enterprise models that are elaborated in terms
of composition, structure, and dynamics (all this pointing also to corresponding data
aspects)—they could either “feed” further software specifications and/or be “stored”
for further use by enterprise engineers. Such enterprise models could possibly be
reflected in corresponding business coMponents (models of business compo-
nents—see Chap. 2). Next to that, revisiting such models could possibly inspire
enterprise redesign activities, as shown in Fig. 6.1.

Furthermore, the second milestone uses as input the enterprise model (see above)
and the so-called user-defined requirements (those requirements reflect the demands
of the (future) users of the software system-to-be towards its functioning).

That input “feeds” the derivation of a use case model featuring the software
system-to-be. Such a software specification starting point is not only consistent with
the Rational Unified Process (RUP) and the Unified Modeling Lan-
guage (UML) (considered in the previous chapter) but is also considered to be
broadly accepted beyond RUP-UML [2]. The use cases are then elaborated, inspired
by studies of Cockburn [6] and Shishkov [2], such that software behavior models
and classification can be derived accordingly. The output is a software specification
model adequately elaborated in terms of statics and dynamics. Applying decompo-
sition, such a model can be reflected in corresponding software components, as
shown in the figure. Such an output could be an inspiration for proposing in the
future software redesigns, possibly addressing new requirements.

Further, in bringing together the first milestone of SDBC and the second one, we
need to be aware of possible granularity mismatches. The enterprise modeling is
featuring business processes and corresponding business coMponents, but this is not
necessarily the level of granularity concerning the software components of the
system-to-be. Often an ICT application is considered as matching the granu-
larity level of a business component—an ICT application is an implemented soft-
ware product realizing a particular functionality for the benefit of entities that are part
of the composition of an enterprise (sub-)system and/or a (corresponding) enterprise
information (sub-)system (see Fig. 2.5). Hence the label software specifica-
tion model, as presented in Fig. 6.1, corresponds to a particular ICT application
being specified. Software components in turn are viewed as implemented
pieces of software, which represent parts of an ICT application and which collabo-
rate among each other driven by the goal of realizing the functionality of the
application (functionally, a software component is a part of an ICT application,
which is self-contained, customizable, and composable, possessing a clearly defined
function and interfaces to the other parts of the application and which can also be
deployed independently—see Chap. 2). As according to Definition 15, a software
coMponent is a conceptual specification model of a software component; the
second SDBC milestone is hence about the identification of software coMponents
and corresponding software components.

We now bring together the essential SDBC features (presented above), the
conceptual meta-model (see Fig. 1.6), and the relevant definitions presented in
Chap. 2, and we put forward (from an SDBC perspective) the following key
concepts [7]:

146 6 The SDBC Approach

Basic Concepts (General)

SYSTEM: A collection of elements possibly interacting with each other, driven by the
purpose of delivering a service to another entity or group of entities.

SUB-SYSTEM: A system part identified based on a functional decomposition with regard to
the system (hence, a system can optimize itself, by optimizing
corresponding sub-systems).

ENVIRONMENT: Anything not belonging to a system belongs to the system environment.

Part of the environment concerns those environmental entities that are
assumed to have some interaction with the system.

ENTITIES: Composition elements with regard to a system/environment.

– Human vs artificial entities

– Passive (a passive entity is an entity that only performs actions when
another entity interacts with it) vs autonomous (an autonomous entity is an
entity that performs actions on its own initiative) entities

– Sensing (capturing context data in support of the system’s service
delivery) vs actuator (causing changes in the environment on behalf of the
system) entities

ROLE: The state of carrying out certain objectives.

– The entity-role combination is labelled “actor-role.”

ACTOR: An (autonomous) entity that can enact a role.

USER: An actor that is serviced by the system.

ACTION: Something done by an entity.

– A sequence of actions, occurring between two entities that are collab-
orating in support of a service delivery, is labelled “interaction.”

OBJECTIVE: The motive behind a service delivery.

REGULATIONS: Reflection of the existing norms that have impact on a service delivery,
prescribing what is allowed in some situations, forbidden in others, and so
on.

VALUES: Reflection of the public perception towards what is important regarding the
service delivered by the systems.a

aWe address values that are shared among environmental human entities

Further, we address the desired adaptation of the system’s functioning with regard
to internal/environmental changes (see Chap. 3) and this inspires the consideration
of three more concepts as follows:

Basic Concepts (Featuring System Adaptation Dimensions)

SELF-MANAGING BEHAVIOR: Context-driven enforcement of system-internal optimizations

USER-DRIVEN BEHAVIOR: Context-driven service adaptation based on the user situation

VALUE SENSITIVITY: Service adaptation inspired by public values, delivered through the
operationalization of such values

In the following section, we elaborate further the issues presented above.

6.1 Outline and Concepts 147

6.2 Elaboration

As abovementioned, the initial ideas behind SDBC have been proposed by the author
in 2005 [1], and since then the approach has been maturing slowly. We argue that no
sound methodology driven by the above focus has emerged, which is also widely
recognized. This “vacuum” is claimed to continue “causing” numerous software
project failures. Hence, we are inspired to work further on the SDBC project.
Nevertheless, this has never been and is not a matter of any kind of commercializa-
tion whatsoever. Neither it is related to branding or product positioning. SDBC
remains fundamentally driven by a scientific and research inspiration, and for this
reason, it is not aligned with particular commercialized development tools. Hence,
SDBC is positioned as an open modeling platform that may accommodate different
tools, as far as the overall principles of the approach are met, and what stays essential
about SDBC is to address the challenge of bringing together social theories (in an

Fig. 6.2 The SDBC foundations (©2017, The Author, reprinted with permission)

148 6 The SDBC Approach

enterprise engineering context) and computing paradigms (in a software engineer-
ing context), aiming at the enterprise-modeling-driven specification of software.

As it concerns the modeling itself, SDBC assumes four modeling perspectives,
namely, Structural perspective (it reflects entities and their relationships), Dynamic
perspective (it reflects not only the overall business processes but also the
corresponding states of entities, evolving accordingly), Data perspective (it reflects
the information flows across entities and within business processes), and Language-
action perspective (it reflects real-life human communication and expression of
promises, commitments, etc.). They are considered relevant as it concerns the goal
of soundly building an exhaustive enterprise model.

In this, SDBC is grounded, as Fig. 6.2 shows, in the principles of systemics (see
Chap. 2) and also based on:

• Enterprise engineering and in particular enterprise ontology and organizational
semiotics (see Chap. 4).

• Software engineering and in particularmodel-driven engineering and component-
based development (see Chap. 5).

As also suggested by the figure, software specification models derived by apply-
ing SDBC, can be further updated to accommodate features pointing to (1) service-
orientation (and mobility utilization related to this), as studied in [8]; (2) context-
awareness (see Chap. 3), as studied in [9]; and (3) autonomic system behavior, as
studied in [10].

Further, in addition to the concepts presented in the previous section, we intro-
duce/elaborate also the following main SDBC concepts:

• Component vs CoMponent: while a component represents a part of the whole, a
coMponent is featuring a model of a component, adequately elaborated in all four
perspectives (see above), and we could thus have business components (enter-
prise sub-systems) and software components (pieces of implemented software) as
well as business coMponents and software coMponents, respectively. Refer to
Definition 8, Definition 11, Definition 13, Definition 14, and Definition 15.

• General vs Generic: those concepts are both about re-use; still general is about
re-using an abstract core (e.g., a general reservation engine), while generic is
about parameterizing something that is multi-specific (e.g., a car system to be
adjusted to automatic or gear regime).

• Software Specification Model—this is a technology-independent functionality
model of the software system-to-be.

To summarize the elaborated SDBC outline, we use Fig. 6.3. As seen from the
figure, we consider an enterprise system from which a business component(s) is to be
identified and then reflected in a relevant model—a business coMponent. Another
way for arriving at a business coMponent is by applying re-use: either extending a
general business coMponent or parameterizing a generic one. Then, the business
coMponent should be complemented with the domain-imposed require-
ments, in order to add elicitation on the particular context in which its
corresponding business component exists within the enterprise system. Then, a
mapping towards a software specification model should take place and the

6.2 Elaboration 149

user-defined requirements are to be considered, since the derived software
model should reflect not only the original business features but also the particular
requirements towards the software system-to-be. The software specification model in
turn needs a precise elaboration so that it provides sufficient elicitation in terms of
structure, dynamics, data, and language-action-related aspects. It needs also to be
decomposed into a number of software coMponents reflecting functionality pieces.
Those coMponents then are to undergo realization and implementation, being
reflected in this way in a set of software components. Some software components
could also be purchased. The software components are implemented using software
component technologies, such as .NET or EJB (see the previous chapter), for
instance. Finally, the (resulting) component-based ICT application would support

enterprise system

Abbreviations:

bc – Business Component ssm – Software specification model
bk – Business CoMponent sc – Software Component
glbk – General Business CoMponent sk – Software CoMponent
gcbk – Generic Business CoMponent

Fig. 6.3 SDBC—an elaborated outline (Source: [1], p. 173; ©2005, The Author, reprinted with
permission)

150 6 The SDBC Approach

informationally the target enterprise system, by automating anything that concerns
the considered business component (identified from the mentioned system).

In order to bring forward further elaboration with regard to the SDBC approach, it
is necessary to consider the SDBC design trajectory: As suggested by Fig. 6.4a [1],
one should firstly consider the initial descriptive information (provided by the future
user(s) of the software system-to-be) which is a usual input in any software project,
as it is well known. Then a description of the approached business reality is derived.
However, it might be necessary to conduct redesign (imagine that the original
business reality consists of a local service provider and users; with introducing
mobility, we could rely on a number of service providers based in different locations;
thus, before specifying the software, we would need to describe the “future”
(desired) business reality accordingly). Then, we should delimit a relevant part of
the business reality dependent on our particular software goal (what exactly are we

BRD

DV

B P M

S S M

delimitation

business process modeling

software specification

requirements elicitation

BRD = Business Reality Description
DV = Business Reality Description - Delimited View
BPM = Business Process Model
SSM = Software Specification Model

user-defined requirements

domain-imposed requirements

re-design

design constraints

descriptive business
information

description

current
(original)

enterprise system

desired
(designed)

enterprise system

delimited (annotated)
enterprise system

a)

b)

Fig. 6.4 SDBC—design trajectory (Source: [1], p. 64; ©2005, The Author, reprinted with
permission)

6.2 Elaboration 151

going to automate, according to the requirements of the users). Figure 6.4b [1]
summarizes those issues.

Hence, having the description of the delimited part of the original (or eventually
redesigned) business reality, we could proceed towards the business process model-
ing task (Fig. 6.4a). As seen from the figure, another related input is the domain-
imposed requirements (already mentioned) characterizing the original enterprise
system.

We build a business process model that in turn is to be mapped towards a software
specificationmodel. However, as it is depicted on thefigure, besides the business process
modeling input, the SDBC design trajectory envisions two other necessary inputs:

• The user-defined requirements (already mentioned)—the requirements which the
future user(s) of the software system-to-be have stated concerning its functionality.

• Design constraints—the design limitations which should be followed as a result
of software/hardware/netware (and other) project restrictions.

Thus, five basic tasks could be identified, namely, description (plus eventually
re-design), delimitation, business process modeling, software specification, as well
as requirements elicitation.

The figure shows as well that the requirements elicitation task would span not
only over the software specification but also over the business process modeling.

Concerning the items depicted on Fig. 6.4a, from left to right and from top to
bottom, they become smaller (in area) and more regular (in shape). This is to indicate
that each following state relates to a smaller part of the original business reality (e.g.,
in the delimitation, we exclude issues from the originalmodel) and is becoming more
and more structured.

We will now bring forward further insight on four of the abovementioned tasks,
since they require elaboration—those are (1) delimitation, (2) business process
modeling, (3) software specification, and (4) requirements elicitation.

(1) Delimitation
As seen from Fig. 6.4a, before the software specification and even before the
business process modeling activities take place, it is necessary to conduct a sound
business process study that thoroughly reflects the considered business reality,
achieving in this way a precise delimitation. We consider this necessary because,
as it is well known, an adequate modeling should be conducted based on a proper
description and understanding of the addressed reality as well as on a precise focus
on the part of the reality to be considered in the modeling process [11]. In SDBC, we
respond to this through “description + filtration”:

• It is necessary to thoroughly describe the enterprise system being approached (the
business reality under consideration, which might be (eventually) redesigned) and
the suggested starting point in this regard is the consideration of the original
documentation of the studied system; however, it should be taken into account
that such information is often insufficient and/or full of errors. Thus, it should be
additionally analyzed and/or refined. The decision how detailed the description
should be depends on the selected granularity level that in turn should correspond
to the characteristics of the software system-to-be.

152 6 The SDBC Approach

• Then filtration needs to be applied, featuring only those issues from the descrip-
tion, which are relevant to the software system-to-be. They are to be, however,
soundly rooted in the broader context of the approached business reality, such that
in the end the specified software is well integrated in its enterprise environment.

In order to illustrate the above, we consider an example featuring a restaurant: to
make a DESCRIPTION with regard to a restaurant means to cover a number of
issues, such as location, opening hours, food details, price details, reservation pro-
cedures, service peculiarities, reputation, and so on. There would be much informa-
tion collected along those lines which information would nevertheless remain
unfocused. If we would be introducing some technology within the restaurant, for
example, an electronic reservation system, then we would have to apply FILTRA-
TION with regard to the description, such that we extract only those description
elements that are relevant to the reservation procedures.

However, description and filtration are not to be always realized as two separate
tasks since it is possible that they overlap. Returning back to the example, it might be
obvious from the beginning that describing the porter (concierge) of the restaurant is
of no use since the “functionality” of the porter is irrelevant as it concerns the
restaurant (electronic) reservations; regardless of other circumstances, the porter is
just supposed to stay by the restaurant’s entrance during opening hours.

It might be concluded that filtration concerns the alignment between business
process modeling and software specification since it focuses the business study on
particular part(s) of the studied business reality, which are to be automated through
(software) technology [11].

(2) Business Process Modeling
Inspired by Definition 8, Definition 10, and Definition 11, we establish the need to
conduct business process modeling with providing elaboration in three perspectives,
namely, (1) structural perspective, (2) dynamic perspective, and (3) data perspec-
tive. Further, inspired by the notion of transaction (see Definition 5 and Fig. 4.4) and
LAP (see Chap. 4), we add another perspective, namely, the communication per-
spective. All this is illustrated in Fig. 6.5:

business process modeling

structural perspective dynamic perspective

communication perspective

data perspective

Fig. 6.5 SDBC—business
process modeling
perspectives (Source: [1],
p. 67; ©2005, The Author,
reprinted with permission)

6.2 Elaboration 153

As it was explained already at the beginning of the current section, the structural
perspective is about the entities and their interrelations; the dynamic perspective is
about the flow(s) of events; the data perspective is about the factual issues; and the
communication perspective is about the communicative acts exchanged during the
business operation.

(3) Software Specification
Actually, SDBC is to deliver a software specification model that is derived based on a
corresponding enterprise model that features in turn (among other things) business
processes to which four perspectives are applied, as discussed above. Hence we need
to reflect multi-perspective enterprise models (featuring business processes) in
corresponding software specifications. Further, if possible, such an alignment
between business process modeling and software specification is to be component-
based. Said otherwise, the software specification model is to be derived based on
(re-usable) business coMponents.

(4) Requirements Elicitation
Requirements relate directly to the specification of software [12]. They are descrip-
tions of how the system-to-be should behave, application domain information,
constraints on the system’s operation, or specifications of a system property or
attribute [13]. Thus, a proper consideration of the original business requirements
in the specification of a software’s functionality is of significant importance; this
concerns the process of aligning enterprise modeling and software specification. Our
consideration of the requirements issue, as illustrated in Fig. 6.3, is in concert with
the SDBC design trajectory (Fig. 6.4).

Building a business process model should concern the discovery of a part of the
system requirements, namely, those requirements that characterize particularly the
enterprise system under consideration, as discussed already. They are often called
domain-imposed requirements, as mentioned before. It is to be noted in this regard
that not only the domain-imposed requirements could affect the initial business
process model by causing some updates in it but also that the business process
model affects the requirements elicitation, by stimulating the discovery
(or specification) of additional requirements.

As stated already, besides the domain-imposed requirements, one should identify
also the so-called user-defined requirements that are determined by the users of the
system-to-be and are not directly related to the business process model.

In summary, during the business process modeling, the domain-imposed require-
ments are to be discovered and considered in the mapping towards software specifica-
tions; next to that, theuser-defined requirements are to complement the business process
model in providing the input for the derivation of the software specification model.

Further, transactions (see Definition 5 and Fig. 4.4) are considered as the
fundamental enterprise modeling building blocks in the SDBC context. Still, there
is a particular SDBC interpretation of the transaction concept.

SDBC interprets the transaction concept as centered around a particular pro-
duction fact (see Definition 5). The reason is that the actual output of any enterprise

154 6 The SDBC Approach

system represents a set of production facts related to each other. They actually bring
about the useful value of the business operations to the outside world and the issues
connected with their creation are to be properly modeled in terms of structure,
dynamics, and data.

However, the already justified necessity of considering also the corresponding
communicative aspects is important. Although they are indirectly related to the
production facts, they are to be positioned around them. As already stated, SDBC
addresses this through its interpretation of the transaction concept, as depicted in
Fig. 6.6; as seen from the figure, the transaction concept (as featured by Definition 5
and reflected in Fig. 4.4) has been adopted, with a particular stress on the trans-
action’s output—the production fact. The order phase is looked upon as an input for
the production act, while the result phase is considered to be the production act’s
output. The dashed line shows that a transaction could be successful (which means
that a production fact has been successfully created) only if the initiator (the one
who is initiating the transaction, as presented in Fig. 6.6) has accepted the produc-
tion act of the other party (called executor). As for the (coordination) communicative
acts, grasped by the SDBC transaction, they are also depicted in the figure. The
initiator expresses a request attitude towards a proposition (any transaction should
concern a proposition—e.g., a shoe to be repaired by a particular date and at a
particular price, and so on). Such a requestmight trigger either promise or decline—
the executor might either promise to produce the requested product (or service) or
express a decline attitude towards the proposition. Such a decline attitude actually
triggers a discussion (negotiation), for example, “I cannot repair the shoe today, is
tomorrow fine?”. The discussion might lead to a compromise (this means that the
executor is going to express a promise attitude towards an updated version of the
proposition) or might lead to the transaction’s cancellation (this means that no
production fact will be created). If the executor has expressed a promise attitude
regarding a proposition, then she/he must bring about the realization of the produc-
tion act. Then the result phase follows, which starts with a statement expression
from the executor about the requested proposition that in his/her opinion has been
successfully realized. The initiator could either accept this (expressing an accept
attitude) or reject it (expressing a decline attitude). Expressing a decline attitude
leads to a discussion which might lead to a compromise (this means that finally the
initiator is going to express an accept towards the realized production act, resulting
from negotiations that have taken place, leading to a compromise) or might lead to
the transaction’s cancellation (this means that no production fact will be created).
Once the realized production act is accepted the corresponding production fact is
considered to have appeared in the (business) reality.

6.2 Elaboration 155

Further, the component-based enterprise-software alignment is considered
crucial with regard to SDBC and justified by the indisputable advantages of
component-based development (see Chap. 5); those advantages include (among
other things) the “power” of re-use. The component-based alignment between
business process modeling and software specification is illustrated in Fig. 6.7.

As depicted in the figure, the target business reality is to be reflected in a set of
identified business coMponents (seeDefinition 11). Based on them, a component-based
software model is to be specified, in terms of software coMponents (see Definition 15).
As discussed in the previous section, the business coMponents and software coMponents
are not to be necessarily mapped one-to-one (the former is a purely enterprise engineer-
ing concern while the latter should have the perspective of the software system-to-be).

Still, that kind of alignment allows for (1) ease of modifications (both at enter-
prise level and at software level) that are “localized” in particular business/software
coMponents; (2) traceability—one could easily “trace” between enterprise level and

P-actinput output

r(I) p(E)

d(E)

compromise
found?

s(E) a(I)

d(I)

compromise
found?

P-fact

Legend
r: request I: Initiator
p: promise E: executor
s: state
a: accept
d: decline

cancel

Yes Yes

Fig. 6.6 The SDBC interpretation of the transaction concept (Source: [1], p. 70; ©2005,
The Author, reprinted with permission)

Business CoMponents (bk)

bk

bk bk

bk
bkbk

…

Software CoMponents (sk)

sk

sk

sk

sk

sk

…
Business

Reality

Fig. 6.7 From business coMponents to software specification (Source: [1], p. 72; ©2005,
The Author, reprinted with permission)

156 6 The SDBC Approach

software level, being capable of analyzing, for example, what would be the impact in
the enterprise from a newly introduced software-level feature (and vice versa); and
(3) business coMponents and/or software coMponents could be conveniently
re-used.

As for re-use, three re-use levels are essential for SDBC, namely:

• Re-use of software coMponents (lowest level).
• Re-use of business coMponents.
• Re-use of business processes (highest level).

Re-using software coMponents is an option within the SDBC approach. Actually,
we also acknowledge the power of re-using software components as according to the
principles of component-based development (see the previous chapter). Still, dealing
with re-use at such a level goes beyond our direct scope in the current chapter because
SDBC focuses on the derivation of SOFTWARESPECIFICATIONS.Hence, dealing
with software coMponents (see Definition 15) is well within that focus. At the same
time, a methodological re-use of software coMponents could be a good basis for
corresponding reflections towards the software components level. As for the re-use
itself (of software coMponents), we will discuss it only after explaining how software
coMponents are to be identified within SDBC. This is illustrated in Fig. 6.8.

As it is seen from the figure, a business coMponent is to be methodologically
reflected in the specification of software. Further, as thefigure suggests, such a “business
processmodeling input” alone is insufficient for specifying a piece of software. One is to
consider as well what do the (future) users of the system-to-be require, as discussed
already. Said otherwise, it is necessary addressing the user-defined requirements.

One is to consider as well some technical (and technological) issues possibly
leading to design restrictions (since software systems are about offering technolog-
ical solutions to some “problems” in the corresponding enterprise systems).

Based on all that input, a business coMponent could find its reflection in a
specification model featuring the software system-to-be. The model could be
presented, for instance, in use case notations [14]. However, for the purpose of
re-use, we might find it useful to identify (by applying decomposition) some
software coMponents. Hence, we arrive at the identification of a software coMpo-
nent(s). The figure is also featuring two “situations,”, namely, Situation “a” (right
up) and Situation “b” (right bottom). We would more often face Situation “a”
because (as suggested already in the book) a business component would usually
be mapped towards an ICT application that in turn would be decomposed in terms of
software component/coMponents (hence, we usually have different granularity
levels as it concerns business coMponents and software coMponents). Nevertheless,
Situation “b” is also possible—if a business coMponent is reflected in a software
specification model and it is not wise to apply decomposition (e.g., because the
model is re-usable as it is); in such cases we directly arrive at the identification of a
software coMponent, on the basis of the business coMponent. Hence, we may either
reflect a business coMponent in a number of software coMponents or we may reflect
a business coMponent in just one software coMponent.

6.2 Elaboration 157

Thus, re-use at the level of software coMponents is about re-using modeling
patterns representing software specifications.

Re-using business coMponents points to the enterprise modeling level where we
identify ENTERPRISE ENGINEERING BUILDING BLOCKS. As it concerns
re-use, we are hence interested in re-usable (enterprise engineering) building blocks
that in turn can be either GENERAL or GENERIC—see Fig. 6.9a.

To illustrate this:

• An analogy for general is a lorry platform—it can be “extended” in one way if the
lorry would be transporting flowers and in another way if the lorry would be
transporting cars, for example.

• An analogy for generic is a universal plug adaptor—it can be “adjusted” in one
way if used in Japan and in another way if used in the UK, for example.

Hence, with regard to the re-usability of business coMponents, if general or
generic business coMponents are identified, they could be re-used in the specifica-
tion of different software artifacts; this could be realized either by extending a
general business coMponent or by parameterizing a generic business coMponent,
as illustrated in Fig. 6.9b.

business
coMponent

software
specification

model

user-defined
requirements

derived
software

coMponent

decomposition

tech.
aspects

a b

business
coMponent

software
coMponent

Situation ‘b’

business
coMponent

software
coMponent 1

Situation ‘a’

…

software
coMponent n

Fig. 6.8 Deriving a software coMponent (Source: [1], p. 74; ©2005, The Author, reprinted with
permission)

158 6 The SDBC Approach

General business coMponents are models that reflect core issues and can be
extended in a number of ways. For instance, a general brokerage model could be
further developed—in one way for building an e-trade system and in another for
building a hotel reservation system, to give just two examples. Hence, the particular
extension of a general business coMponent is motivated by the purpose of use.
Further, a generic business coMponent should contain in itself more than one
optional “functionalities.” Through parameterization, such a coMponent can be
adjusted depending on the desired purpose of use.

In summary, within SDBC, it is possible to derive a business coMponent in three
ways: either in the trivial way (by building a model corresponding to a business
process—see Definition 8), or by extending a general business coMponent, or by
parameterizing (adjusting) a generic business coMponent (Fig. 6.10):

re-usable building block

general building block generic building block

a

…extending
parameterizing

bk

bk = business
CoMponent

b

Fig. 6.9 (a) Re-usable building blocks (Source: [1], p. 75; ©2005, The Author, reprinted with
permission). (b) Re-using general/generic business coMponents (Source: [1], p. 76; ©2005,
The Author, reprinted with permission)

6.2 Elaboration 159

Re-using a business process within SDBC is a matter of making a general
business process description that is sufficiently abstract, such that re-use is
possible. For example, an <arrangement of a service> IN GENERAL may be
specified as coming through <registration> + <payment> + <reduction
approval> + . . ., for example. Then, this abstract description can be extended in
different ways:

– One example could be a HOTEL RESERVATION ARRANGEMENT that in
particular comes through: NO REGISTRATION + PAYMENT OF A DEPOSIT
and PAYMENT OF ADMINISTRATIVE COSTS + EARLY BOOKING
REDUCTION APPROVAL +. . .;

– Another example could be an AUTO INSURANCE ARRANGEMENT that in
particular comes through: REGISTRATION IN AN INSURANCE COMPANY
+ INSURANCE PAYMENT and PAYMENT OF ADMINISTRATIVE COSTS
+ NO-CLAIM REDUCTION APPROVAL +. . .;

– and so on.

Hence, a general business process could be reflected in different specific
business processes, by adding some particular content to the general business
description.

?

general
business

coMponent

generic
business

coMponent

business
process

derived
business

coMponent

modeling
extension

parameterization

Fig. 6.10 Deriving a
business coMponent
(Source: [1], p. 80; ©2005,
The Author, reprinted with
permission)

160 6 The SDBC Approach

We have now introduced the SDBC approach, and in the remaining of the current
chapter, we will firstly outline the SDBC design process (in Sect. 6.3) and then the
main SDBC notations (in Sect. 6.4).

6.3 The SDBC Design Process

Based on the essential SDBC features introduced already in the current chapter,
this section outlines the SDBC design process. Two graphical techniques have
been developed especially for that purpose: the ACTIVITY MODEL and the
INPUT/OUTPUT MODEL. The development of such techniques was considered
necessary because neither of the popular ones (activity diagram, flow charts, Petri
Net, IDEFo, and so on [1]) proved to be sufficiently effective for thoroughly
representing the SDBC steps, by providing information on both the dynamics
featuring the activities to be realized and the inputs and outputs of each of them.
It is particularly useful that the activity model and the input/output model are not
only fully consistent with each other but they also provide views in those two
essential directions (respectively). Hence, the dynamic perspective and the “input-
output” perspective are soundly matched between the two models [1]. The activity
model itself (Fig. 6.11) is sophisticated in terms of dynamics (it is featuring parallel
processes, two types of synchronization, and so on) of the activities to be realized
in applying SDBC; the input/output model in turn (Fig. 6.12) represents the inputs
and outputs of each activity. The corresponding legend is as follows:

6.3 The SDBC Design Process 161

[A..Z]

bank i

activity

decision point

precedence

connection between an output and its relevant input

a point to which a (sufficient) number of iterations have to
be made before proceeding further

OR synchronization bar

AND synchronization bar

a synchronization bar’s IN point

a bank to store models in and/or use models from

trigger to the SDBC modeling

i

activity <A>

i

 activity’s name

 activity’s input
 activity’s output

 activity’s number* (identification)

* minor activities are not assigned numbers

Next to that: bp/bc stand for business process/coMponent

ATTENTION: Representing business coMponents in different figures in the
current book, we use either the label “ ” or “ .” No matter if a business
coMponent is labelled “ ” or “ ,” we mean the same. The difference in labeling
is only due to “convenience” with regard to the particular figures, such that all used
notations are easy to follow.

We will firstly consider the SDBC activity model, depicted in Fig. 6.11. There are
nine activities on the figure and also four minor activities (they are not assigned a
number; their names are backgrounded in grey).

There are three decision points and a point to which a sufficient number of
iterations have to be made before proceeding further. There are two OR synchroni-
zation bars: the first one is associated with the IN points “A” and “B” (the AB bar),
and the second one is associated with the IN points “E,” “F,” and “G” (the EFG bar).
There is an AND synchronization bar; it is associated with the IN points “C” and “D”

162 6 The SDBC Approach

(the CD bar). There is a trigger to the application of SDBC, pointing to Activity 1
(“information structuring”). The last activity from the model is Activity 9 (“integra-
tion”). Activity 1 and Activity 9 are thus assigned “start” and “end” labels,
respectively.

The trigger is pointing to Activity 1. It is about the information structuring,
concerning a focused structured description of the target business reality; this
includes thus a delimitation step (see above in the chapter). Then we arrive at the
first decision point (“conduct business process generalization?”). There a decision
is to be made on whether the mentioned structured business reality description
should be used for the specification (modeling) of a particular business process
(e.g., hotel reservation match-making), as reflected in Activity 2 (“identification of
a business process”), or the description is to be used for achieving a generalized
view (e.g., match-making), as reflected in Activity 3 (“generalization of a business
process”). The decision is to be made in the process of studying the particular
domain. For example, it might be known that an issue is unique for a company and
thus, there is no sense to develop a generalized model of it. As seen from Fig. 6.11,
such a business process generalization (Activity 3) could be realized not only based
on a structured description of the studied enterprise system but also based on the
specification of a particular business process (this should be done if a generaliza-
tion of such a specification will be also needed further by the modeler—see the
second decision point (“generalize?”)). That is why both before and after Activity
2, it is allowed for reaching the “AB” synchronization bar which leads to Activity 3.

As also seen from Fig. 6.11, a model of a particular business process (realized
within Activity 2) might be used as well for building a generic business coMponent
(Activity 5), as it is according to the third decision point (“model a generic business
coMponent?”), in particular if the process flows towards the “CD” synchronization
bar. Otherwise, the process would flow towards the minor activity “MODELING”,
from where we arrive at Activity 6 (“constructing a business coMponent”), through
the “EFG” synchronization bar. This reflects the situation in which no re-use is
realized—we just specify a business process (Definition 6) and reflect it into a
business coMponent (Definition 11).The re-use facilities of SDBC hence relate to
Activities 3, 4, and 5.

As for Activity 3, after it, there follows the fourth decision point (“model a general
business coMponent?”). There a decision is to be made on whether a general
business coMponent is going to be modeled; a general model of a business process
is considered sufficient for building a general business coMponent. If yes, Activity 4
(“modeling a general business coMponent”) is reached, leading afterwards to the
minor activity “EXTENSION”, from where we arrive at Activity 6 (“constructing a
Business CoMponent”), through the “EFG” synchronization bar. Otherwise the
“CD” synchronization bar is reached. It leads to Activity 5 (“modeling of a generic
Business coMponent”).

As seen from the figure, for modeling such a coMponent, the required input is a
specification of at least two (seen from the “ ” at IN point “D”) models of particular
business processes AND a general business process specification (model). The
reason is that the generic model would require not only a general specification

6.3 The SDBC Design Process 163

which captures “core issues” (derived from a generalized business process model)
but also at least two particular business process specifications to be related to (at least
two) corresponding selection options (options to be selected by parameterizing the
model); actually, the rationale behind using generic modeling patterns (that capture,
as discussed already, several possible design outputs based on grasped core issues) is
that the modeler would be able to easily adjust the generic pattern, arriving at either
of the optional design outputs offered by the pattern. After Activity 5, the process
flows towards the minor activity “PARAMETERIZATION”, from where we arrive
at Activity 6 (“constructing a business coMponent”), through the “EFG” synchro-
nization bar.

2

identification of a bp

1 start

inf. structuring

3

generalization of a bp

4

modeling of a general bc

6

constructing a bc

8

elaboration

end

9

integration

7

deriving a software
specification model

5

modeling of a generic bc

generalize? model a
general bc?

Yesconduct bp
generalization?

Yes

Yes

Yes
model a

generic bc?

2

E F G

D

C
B

A

validation

activity <A>MODELING activity <A>EXTENSION activity <A>PARAMETERIZATION

activity <A>DECOMPOSITION

Fig. 6.11 SDBC—activity model (Source: [1], p. 83; ©2005, The Author, reprinted with
permission)

164 6 The SDBC Approach

Thus, the “EFG” synchronization bar reflects the three ways of deriving (within
SDBC) a business coMponent: either without realizing re-use (by reflecting a
business process model in a business coMponent), or by extending a general
business coMponent, or by parameterizing a generic business coMponent (see
Fig. 6.10).

A constructed business coMponent is then to be reflected in a software specifi-
cation model; hence, we arrive at Activity 7 (“deriving a software specification
model”). A sound mapping is to be accomplished allowing for a precise reflection
between the two. Both the business coMponent and the resulting software specifi-
cation model should undergo at least structural and dynamic validation [1]. This is
indicated by the label “validation,” positioned along the line between Activity 6 and
Activity 7.

Regarding the software specificationmodel, as mentioned before, depending on the
granularity of the source business coMponent, the model could or could not refer to a
particular software coMponent (Fig. 6.8). The question concerning software granu-
larity is to be addressed particularly from the perspective of the software system-to-be.
Usually, a derived software specification model is to be reflected in more than one
software coMponents. So, progressing from Activity 7 to Activity 8 (“elaboration”)
comes through the minor activity “DECOMPOSITION” (indication for the need to
decompose the software specification model into more than one software coMpo-
nents). However, in the cases in which no decomposition would be necessary, the
software specification model is considered itself being a software coMponent.

Once identified, a software coMponent needs to be specified in more detail—
further elicitation should be provided concerning the coMponent’s entities and
interactions. So, once identified and specified, a software coMponent should undergo
elaboration (Activity 8).

And in the end, after a sufficient (see below) number of software coMponents
have been identified, specified, and elaborated, they should be integrated (Activity
9) in the process of specifying the functionality of the software system-to-be. Hence,
there is a “special” relation between Activity 8 and Activity 9; an indication for this is
the symbol positioned on the line between those activities, showing that many
software coMponents would be necessary that would represent together a sufficient
input for specifying a complete model of the software system-to-be. However,
establishing what is a sufficient “basis” for integration is a delicate issue because
of the following: (1) Often some members of the development team would be still
tuning the overall application architecture while other team members would be
considering in parallel particular software coMponents; for this reason, it may be
not known at a particular moment which is the “full set” of software coMponents to
be considered for integration. This may lead to situations when “clusters” of
coMponents are integrated but this does not reflect all application components. (2)
It may be that “draft” application versions are built and if this would be the case, the
integration would inevitably be partial in the sense that it does not “cover” all
application coMponents. This decision is often subjective and/or intuitive; anyway,
we adopt in SDBC the relevant general guidelines provided in [15], related to the
component-based product-line engineering [16].

6.3 The SDBC Design Process 165

So, after considering the SDBC activity model, we proceed to the SDBC input/
output model. It is depicted in Fig. 6.12. As seen from the figure, the starting input
for applying SDBC is any (informal, unstructured) description of the enterprise
system to be considered (Input 1.1), including domain-imposed requirements

i#1.1. a
description of
the business
reality under
study

o#1.1.
structured

information

start1

inf. structuring

identification of a bp

o#2.1.
specification of

a bp

i#3.1.: o#1.1. o#3.1.
specification of

a general bp
i#3.2.: o#2.1.

generalization of a bp

i#2.1.: o#1.1.

i#4.1.: o#3.1.
i#4.2.: external
bank of general
bc

2

4

D

P

bankbank

bank

end

9 o#9.1.
software

system

i#9.1.: o#8.1.
(bank)

5

C2C1

6

7

8

S

i#8.1.: o#7.1. o#8.1.
elaborated

software model

o#7.1.
software

specification
model

constructing a bc

deriving a software
specification model

decomposition

elaboration

integration

i#6.1.: o#2.1.
i#6.2.: o#4.1.
i#6.3.: o#5.1.

i#7.1.: o#6.1.
i#7.2.: ext bank
of software
coMponents

o#6.1. model
of a bc

3

modeling of a general bc

o#4.1. medel
of a general bc

i#5.1.: o#2.1.
AND o#3.1.
i#5.2.: external
bank of generic
bc

modeling of a generic bc

bank

bank

o#5.1. model
of a generic bc

Fig. 6.12 SDBC—input/output model (Source: [1], p. 86; ©2005, The Author, reprinted with
permission)

166 6 The SDBC Approach

possibly representing norms [17]. The description might be textual or it might be a
graphical model, a conversation or any other form. The first activity’s output
(Output 1.1) should be a structured description of the studied system. This descrip-
tion should thoroughly reflect the considered business reality; next to that, the
description must be precisely delimited, as mentioned before. As seen from the
figure, such a structured and delimited description might be stored in a bank
() from where to be usable also in other relevant modeling tasks.

Such a description could be used as an input for either Activity 2 (Input 2.1) or
Activity 3 (Input 3.1) (either for identifying a business process or for building a
generalized business process model). Building a generalized business process model
could be done as well based on an identified business process (Input 3.2). An
indication for this is the line between Activity 2 and Activity 3.

A generalized business process model could be stored in a bank () for
multiple uses. It could also be used as an input for constructing (Activity 4) a general
business coMponent (Input 4.1). As seen from the figure, general business coMpo-
nents could also be taken from an external bank () (Input 4.2). A
constructed general business coMponent could be either stored in a bank—C1
bank (for use in other project(s))—or used as an input for the construction (Activity
6) of a business coMponent (Input 6.2). As seen from Fig. 6.11, this comes through
extending the general business coMponent.

Regarding the modeling of a generic business coMponent, it should be based on a
generalized business process model AND at least two (Fig. 6.11) models of partic-
ular business processes; this concerns Input 5.1, Fig. 6.12. Generic business coM-
ponents could also be taken from an external bank (). As seen from
Fig. 6.12, a constructed generic business coMponent could be either stored in a
bank (C2 bank) (for use in other project(s)) or used as an input for the construction
(Activity 6) of a business coMponent (Input 6.3). As seen from Fig. 6.11, this comes
through parameterizing the generic business coMponent. And finally, as seen from
Fig. 6.12, the third possible input (Input 6.1) for the construction of a business
coMponent is a business process model (Output 2.1).

Deriving a software specification model (from which software coMponents could
be identified, by applying decomposition, as already mentioned) is based either on a
business coMponent constructed in the above proposed way (Input 7.1) or on import
of software coMponents from an external bank (Input 7.2).

Each of the derived software coMponents should be elaborated (Activity 8; Input
8.1) in terms of structural, dynamic, and data aspects (in order to bring sufficient
elicitation for the further software design activities, as already mentioned) and stored
in a bank (). From there, software coMponents will be taken (Input 9.1) and
integrated for the purpose of specifying the software system-to-be.

A specification model of a software system represents the final output (Output 9.1)
of the SDBC approach. Hence, the end point is reached and this is indicated by
labeling Activity 9 with “end,” as stated already.

In summary, we have outlined the SDBC design process, by means of the SDBC
activity model and the SDBC input/output model, developed exclusively for that
purpose. In the following section, we will present the notations to be used for the
SDBC modeling itself.

6.3 The SDBC Design Process 167

6.4 The SDBC Notations

SDBC is an approach that has its underlying theoretical roots and also its process
outline elaborating on what and how to do in implementing the approach—all those
have already been introduced.

Hence, it should be possible to apply any (graphical) notations in realizing SDBC
modeling as far as they conform to the approach’s underlying concepts. Still, we are
proposing particular graphical notations for the SDBCmodeling, making sure (based
on previous research [1]) that those notations are well aligned with SDBC’s under-
lying concepts and supportive theories. For this reason, we recommend using those
notations although we do not claim that they are exclusive with regard to the
implementation of SDBC.

Since SDBC has two “grounding points,” namely, enterprise engineering and
software engineering (see Fig. 6.2), we will firstly present in this section several
most important enterprise-modeling-related notations (Fig. 6.13) and then we will
present several most important software-specification-related notations (Fig. 6.14).

Those notations will be considered in the following chapter, when the SDBC
approach will be demonstrated by means of a case study and illustrative examples.

With regards to the enterprise modeling notations, as it is seen from Fig. 6.13:

• The RR (“RR” standing for “Roles and Relations”) model (or chart) that is
depicted up-left in the figure reflects a RELATION between TWO roles (meaning
role types), assuming that any MORE COMPLEX relation can be decomposed in
a number of relations that are “between” two roles. In the chart, the labels
featuring the two roles that concern a relation are “put” in named boxes. Further,
the label featuring the relation itself is “put” in between. Finally, the label that
features the role pointing to the realization of the relation is underlined. Let us
consider, for example, the roles “expert” and “customer” as well as the relation
“realize expertise”. Hence, we should underline the word “expert” because it is
the expert who realizes the expertise. And in the end, each role-to-role relation is
given a unique code—see the right side of the RR model visualization.

• The SCI (“SCI” standing for “Structuring the Customer Information”) model
(or chart) that is depicted up-right in the figure assumes an instantiation with regard
to the addressed enterprise and elaboration with regard to its structure. In the chart,
there is a big rectangle with rounded corners—this is where the labels featuring the
modeled enterprise are “put.” They are positioned as follows: (1) The name of the
enterprise is put in a smaller rectangle with rounded corners and (2) The labels
corresponding to the relevant organizational units of the enterprise are put in small
rectangles. Further, there are named boxes outside the big rectangle with rounded
corners. Here, we put labels featuring roles (not instantiated). Each of those roles
concerns a collaboration with the enterprise. Finally, the unit-role lines indicate
where in particular (in which particular organizational units) are those collabora-
tions focused. For example, the ABO supermarket in Sofia has a number of
departments including Finance department, Sales department, Marketing depart-
ment, and so on, while at the same time, there are a number of related ABO-external
role types, such as customer, supplier, insurer, and so on.

168 6 The SDBC Approach

Fig. 6.13 SDBC—enterprise modeling notations (©2017, The Author, reprinted with permission)

6.4 The SDBC Notations 169

Fig. 6.14 SDBC—software specification notations (©2017, The Author, reprinted with
permission)

170 6 The SDBC Approach

• In the end, those relations (see above) are to be reflected in corresponding
transactions (see Definition 5). They are modeled using notations as presented
in Fig 6.13—see the middle-left part of the figure: we have labels featuring the
initiator and the executor put in boxes while the transaction itself is modeled as a
disk+diamond, conforming to enterprise ontology [18]; the small black box in
the chart is to indicate who the executor is.
Further, modeling self-activation is also possible, assuming that the initiator and
the executor are the same “entity.” Finally, “zooming in” with regard to a
transaction is possible, such that all corresponding coordination (communicative)
acts are revealed (modeled as a disk+box) as well as the corresponding produc-
tion act (modeled as a diamond+box), with “rq,” “pm,” “st,” and “ac” meaning
“request,” “promise,” “state,” and “accept,” respectively.

• With transactionsmaking up corresponding business processes (see Definition 6)
which in turn are to be also modeled in terms of overall behavior, we need
appropriate notations and we have opted for the Petri Net (PN) notations [1].
Those notations are depicted in Fig. 6.13—see the middle right part of the figure.
We argue that those notations are intuitive; also they are considered widely
popular. For this reason, we will not introduce them in the current chapter.
What we would like to make explicit nevertheless is the wide applicability of
the PN notations, allowing for modeling sequential behavior, parallel behavior,
decision points, and so on, as the figure suggests.

• Finally, as it concerns the modeling of data (we call it factual modeling), we have
opted for ORM (the Object Role Modeling). This notation has been studied in [1].
A corresponding visualization is presented in Fig 6.13—see the bottom right part
of the figure. Actually, using ORM notations, one could model two types of
entities/roles and a relation between them. In fact, this is similar to the RR
notations. What is specific about ORM nevertheless is that it is about POPU-
LATING the model in terms of data corresponding to instantiations. For instance,
if we have the types “professor” and “department,” and the relation “works for,”
populating the model would mean instantiating as follows, for example: Professor
John Smith works for the Computer Science department, Professor Ben Starkey
works for the Physics department, Professor George Ashley works for the
Chemistry department, and so on.

With regard to the software specification notations, as it is seen from Fig. 6.14,
they are based onUML. That is becauseUnified Modeling Language is claimed to be
a de facto standard notation as it concerns the specification of software [1, 14]. In
particular:

• The use case diagram is appropriate for modeling the functionality of the software
system-to-be at high level. The system is represented as a number of use cases
(ovals) in a rectangular area, surrounded by the primary actor (the system’s
customer) and possibly by stakeholders with related interests. There may be
relations among use cases or between an actor and a use case—those are
represented by lines (association symbol), as it is shown on Fig. 6.14 (up).
Finally, there are two stereotypes considered, namely, “include” and “extend.”

6.4 The SDBC Notations 171

Explaining this further is left beyond the scope of the current chapter; it is
expected that most readers are familiar with UML.

• The UML class diagram is featuring classification and is capable of modeling
classes (specifying attributes and operations accordingly), aggregation, gener-
alization, and so on, as shown on Fig. 6.14 (in the middle of the figure).
Explaining this further is left beyond the scope of the current chapter; it is
expected that most readers are familiar with UML.

• The UML activity diagram is capable of modeling overall system behaviors,
having explicit notations that allow to model sequential behavior, parallel
behavior, and decision/join/split patterns, as shown on Fig. 6.14 (down).
Explaining this further is left beyond the scope of the current chapter; it is
expected that most readers are familiar with UML.

And in the end, it is to be noted that neither the enterprise modeling notations
addressed above (see Fig. 6.13) nor the software specification notations addressed
above (see Fig. 6.14) reflect exhaustive lists of notations since this is not considered
necessary. The notations we have presented are possible notations of choice when
applying SDBC and are expected to “cover” some typical modeling situations.

* * *
IN SUMMARY, in this chapter, we have presented the SDBC approach, elaborat-

ing its foundations, design process outline, and recommended notations. In this way,
we have shared our ideas on how enterprise engineering and software engineering can
be brought together, driven by the goal of specifying software. In the following
chapter, we will demonstrate this, by means of a case study and illustrative examples.

References

1. Shishkov B (2005) Software specification based on re-usable business components. Delft
University Press, Delft

2. Shishkov B (2017) Enterprise information systems, a modeling approach. IICREST Press, Sofia
3. Shishkov B, Janssen M (2018) Enforcing context-awareness and privacy-by-design in the

specification of information systems. In: Shishkov B (ed) Business modeling and software
design, BMSD 2017. Lecture notes in business information processing, vol 309. Springer,
Cham

4. Shishkov B, Janssen M, Yin Y (2017) Towards context-aware and privacy-sensitive systems.
In: 7th International symposium on business modeling and software design, BMSD 2017,
SCITEPRESS

5. Shishkov B, Van Sinderen M, Quartel D (2006) SOA-driven business-software alignment. In:
Proceedings of the ICEBE’06 IEEE international conference on e-business engineering. IEEE

6. Cockburn A (2000) Writing effective use cases. Addison-Wesley, Boston, MA
7. Shishkov B, Larsen JB, Warnier M, Janssen M (2018) Three categories of context-aware

systems. In: Shishkov B (ed) Business modeling and software design, BMSD 2018. Lecture
notes in business information processing, vol 319. Springer, Cham

8. Shishkov B, Van Sinderen M, Tekinerdogan B (2007) Model-driven specification of software
services. In: Proceedings of the ICEBE’07 IEEE international conference on e-business engi-
neering. IEEE

172 6 The SDBC Approach

9. Shishkov B (2010) Methodological support for the design of enterprise information systems
with SDBC: towards distributed, service-oriented and context-aware solutions. In: Proceedings
of the 4th international workshop on enterprise systems and technology, SCITEPRESS, Athens,
Greece, July 2010

10. Shishkov B, Warnier M, Van Sinderen M (2010) On the application of autonomic and context-
aware computing to support home energy management. In: Proceedings of the 12th interna-
tional conference on enterprise information systems (ICEIS), SCITEPRESS, Funchal, Madeira,
Portugal, 8–12 June 2010

11. Shishkov B, Dietz JLG (2004) Design of software applications using generic business compo-
nents. In: Proceedings of the 37th Hawaii international conference on system sciences (HICSS),
IEEE, Big Island, Hawaii, USA, 5–8 January 2004

12. Wieringa RJ (1995) Requirements engineering, framework for understanding. Wiley,
New York

13. Kotonya G, Sommerville I (1998) Requirements engineering. Wiley, New York
14. UML. The unified modeling language. http://www.uml.org
15. Atkinson C, Muthig D (2002) Enhancing component reusability through product line technol-

ogy. In: Proceedings of the 7th international conference on software reuse, Austin, TX, USA,
15–19 April 2002

16. Atkinson C, Bayer J, Bunse C, Kamsties E, Laitenberger O, Laqua R, Muthig D, Paech B,
Wust Z, Zettel J (2001) Component-based product line engineering with UML. Addison-
Wesley, Boston, MA

17. Liu K (2000) Semiotics in information systems engineering. Cambridge University Press,
Cambridge

18. Dietz JLG (2006) Enterprise ontology, theory and methodology. Springer, Heidelberg

References 173

http://www.uml.org

Chapter 7
Case Study and Examples

The case study research strategy contributes (in general) to capturing some
practical perspectives of the investigated problems. It is helpful for considering the
knowledge of practitioners in exploring the research area. According to Yin [1], a
case study is an empirical inquiry that investigates a contemporary phenomenon
within its real-life context, especially when the boundaries between phenomenon
and context are not clearly evident. The case study as a research strategy comprises
an all-encompassing method—with the logic of design incorporating specific
approaches to data collection and data analysis. Although in the past, case studies
had been considered only as an exploratory tool [2], they have proved to be more
than just an exploratory strategy. Some of the best and most famous case studies
have been both descriptive and explanatory [1].

Usually, case studies are the preferred strategy when HOW or WHY questions
are being posed, when the investigator has little control over events, and when the
focus is on a contemporary phenomenon within some real-life context [1].

In order to realize successfully this strategy, it is essential to design properly the
particular case study, to collect precisely consistent evidence and to analyze it.

In the current research, the case study strategy is applied following a specific goal,
namely, to validate the applicability of a proposed approach.

Hence, firstly in the current chapter, the applicability of SDBC will be “demon-
strated” by means of a test case study carried out at a large Dutch insurance
company (since it was not considered appropriate mentioning its name, the com-
pany is referred to as “Icomp” coming from “Insurance company”). The goal of the
case study is not only to provide practical evidence about the strengths of SDBC but
also to validate some of the essential ideas and concepts suggested within the current
book. Following the Icomp case, we will present (further in the current chapter)
small illustrative examples for the sake of briefly illustrating issues that are not
“covered” by the Icomp case.

This chapter is structured as follows: Sect. 7.1 presents the case study back-
ground, bringing elicitation on the case’s focus, problem, and goals as well as on the
selection of the target organization (where the case study has been carried out).

© Springer Nature Switzerland AG 2020
B. Shishkov, Designing Enterprise Information Systems, The Enterprise Engineering
Series, https://doi.org/10.1007/978-3-030-22441-7_7

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-22441-7_7&domain=pdf

Section 7.2 outlines the collected information, to be used as an input for the
application of SDBC. This information has been kindly delivered to us by represen-
tatives of the target organization. The particular application of the SDBC approach is
reflected in Sect. 7.3. And in the end, Sect. 7.4 and Sect. 7.5 present (as addition)
illustrative examples, as abovementioned.

7.1 Background

The preparation of the case study has been driven by its goal and also by the
consideration of several other relevant aspects. Among them are the selection of a
target organization, the case study focus, and the problem definition. Those issues
will be briefly discussed below:

Goal of the Case Study
From the perspective of the needs of the current research, the main goal of the case
study has been defined as follows: validation of the conceptual framework of the
SDBC approach and also of its application guidelines, by applying them in a real-life
case. Taking into consideration the essential elements presented as part of those
guidelines, the case study should focus on the following aspects:

• Enterprise analysis and modeling, comprising the consideration of the initial
(case) information, the structuring of corresponding elements, and the identifica-
tion of relevant business process modeling units and their adequate reflection in
business coMponents (soundly elicited in terms of structure, dynamics, data, and
communicative issues).

• Derivation of a software specification model, comprising the reflection of a
business coMponent(s) into a corresponding software specification model, to be
further decomposed in terms of software coMponents.

Selection of an Organization to Be Explored
In order to adequately validate SDBC, a suitable organization had to be found, and it
also had to get involved in the case study, such that relevant information is provided
accordingly. The choice of an organization was based on the following criteria:

• Size of the organization. The bigger an organization, the greater the complexity of
its business processes; this in turn concerns the sophistication of the support
provided by corresponding information systems to those business processes. For
instance, small organizations working in an ad hoc manner are rarely facilitated
by sophisticated information systems and technologies. Thus, focusing (in this
research) on the support to business processes, provided by ICT applications
which are comparatively (more than average) complex, we have had the require-
ment for a large organization (with more than 2000 employees).

• The business domain. As it is well known, organizations belonging to some
business domains are more dependable on a proper ICT application support
than organizations belonging to other business domains. We have targeted
business domains related to the financial sector because financial companies are

176 7 Case Study and Examples

currently among those greatly depending on information systems and
technologies.

Hence, as stated before, the case study considered in the current chapter has been
carried out in a financial (in particular insurance) company, namely, the company
Icomp. Icomp delivers financial products (and financial services) to end customers.

Focus of the Case Study
Considering the company Icomp, the case study has focused in particular on a part of
the company’s business, namely, the distribution of financial products. This choice
has been made not only because such a focus has a direct relation to the core of the
business of Icomp (this will be seen from the information provided further on in the
current chapter) but also because the mentioned part of the business of the company
strongly requires appropriate business process modeling and is dependent on infor-
mation systems and technologies. Therefore, relevant improvements (and innovative
ideas) in those directions could be useful for Icomp and beyond.

Problem Definition
Considering the available actual information featuring Icomp (this information is
reflected in the following section), we have defined two problems to be addressed in
the current case study:

• The environment of Icomp demands a sounder and more flexible way in which the
company specifies and modifies its financial-products-related Business Pro-
cesses, grasping adequately all essential aspects.

• A better clarity would be appreciated about the impact of eventual reorganization
within the company’s financial-products-related business activities. This is driven
by the necessity of introducing relevant technologies in support of the mentioned
activities.

Goal in Context
Considering the main goal of this case study (see above) and in relation to the
defined problems (addressed already), we have made the following elaboration of
the general case study goals, in the light also of benefits that the case study could
bring to Icomp:

• Provide insight into the way in which the financial-products-related business
processes of the company could be modeled so that there is a possibility for
flexible modifiability (possibly counting on re-use), soundness, and completeness
(regarding the essential aspects of a business reality).

– This might include the modeling of essential issues characterizing the com-
pany and its environment.

• Provide insight into the way in which a software specification model could be
soundly derived based on an enterprise model (featuring business processes).

– This might include a proposal featuring the introduction of an ICT application
and a demonstration how its specification can be realized.

The following section will provide information about Icomp.

7.1 Background 177

7.2 Icomp

As stated before, this case study has been carried out at the company Icomp. We will
briefly introduce it in the current section, considering one particular view on Icomp,
namely, the financial products distribution part of the company’s business (in line
with what has been mentioned already). From now on, by “Icomp”we will mean just
those things (concerning the company) that are associated with this particular view.

Such a perspective on Icomp has been taken (as already explained) because of its
direct relation to the core of the company’s business: the distribution of financial
products to end customers through brokers. As discussed already, the distribution of
such products is where Icomp would possibly need an application support.

Distributing financial products through brokers means that there are a number of
(insurance) financial companies, a number of brokers, and a number of end customers
concerning this distribution mechanism. Brokerj distributes products of a number of
companies (including Icomp, if it has an agreement with Icomp) to a number of end
customers. End_customerkmight be advised by a number of brokers about the products
of a number of financial companies. Hence, Icomp uses a number of brokers through
which it distributes its (financial) products to a number of end customers. Thus, we
could relate Icomp basically to two actor-role types, namely, “BROKER” and
“END_CUSTOMER”, as shown in Fig. 7.1. For example, as it concerns the terms we
use: (1) In the financial context, “broker”would be a role type featuring a finance-related
match-making capability in general; (2) “contracting broker” or “advising broker”
would be particularly broker-related roles (a contracting broker would be capable of
contracting on behalf of the parties while an advising broker would just connect the
parties); and (3) “Company ABC” would be an instance of “contracting broker,” if
offering finance-related match-making with a contracting “capability.” This is just to
illustrate our considering the terms “instance,” “role,” and “role type.” Now back to the
case study: The BROKER role could be fulfilled by any of the intermediary (brokerage)
companies registered with Icomp. The END_CUSTOMER role could be fulfilled by
any human or organization interested in the financial products distributed by Icomp.

Thus, on the figure, the line between Icomp and END_CUSTOMER is dashed,
indicating that the relation to end customers is indirect; it comes through brokers.

A broker collaborating with Icomp distributes its financial products on the basis
of an agreement. It specifies which products the broker could sell to end customers
and what commission it would get from Icomp. The following information elabo-
rates further on the Icomp-broker relation:

• An agreement can be started/changed/ended between Icomp and a broker.

Icomp

BROKER

END_CUSTOMER
Fig. 7.1 Brokers,
facilitating the relations of
Icomp with end customers
(Source: [2], p. 128; ©2005,
The Author, reprinted with
permission)

178 7 Case Study and Examples

• A broker might receive support from Icomp. For example, if a broker has been
successful in selling products (of Icomp) to representatives of a particular cus-
tomer segment, it might be useful that Icomp provides to the broker a specialized
training concerning this particular segment.

• The commission paid by Icomp to a broker is featured as follows:

– For each new agreement, a broker gets a “starting commission.”
– For each month in which an end customer keeps his/her insurance (particularly

advised by a broker), the broker gets “monthly commission.”

• A broker must pay a premium to Icomp for an agreement initiated.

With respect to the financial products distribution, Icomp has relations not only
with intermediary (brokerage) companies but also with reinsurance companies,
product development companies, investigation companies, and other (less
important) ones.

It is possible that in some cases a reinsurance company takes over insurance risk
from Icomp.

In complicated situations, Icomp relies on investigation companies for the provi-
sion of expert support, for instance, realization of an expertise.

For keeping its product portfolio actual, Icomp receives support from product
development companies delivering new financial (including insurance) products.

As for Icomp itself, it is essential to consider its being divided into five depart-
ments, namely, Account Management, Acceptance, Claims, Finance, and
Marketing.

The Account Management department manages the Icomp-broker relations. It
proposes agreement(s) to a broker, and once an agreement is signed, the department
controls its execution, by making sure that the broker’s results are in accordance to
what is in the agreement.

The Acceptance department handles requests of end customers for financial
product(s), for example, a request for a property insurance.

The Claims department deals with claims of end customers and the (eventual)
investigation (by experts) of those claims.

The Financial department deals with payments, including the premium payments
received by Icomp from end customers, the payments of Icomp to end customers for
claims, the commission payments that brokers receive from Icomp, the payments of
Icomp to product development companies and so on.

The Marketing department is responsible for the products strategy of Icomp,
dealing with product development and also with advertising and public relations.

The following section focuses on the application of the SDBC approach and is
essentially reflecting the content of Chap. 7 of [2]; further, the source of all the
figures used in the section is the mentioned chapter (for this reason, the sources of
used figures are not explicitly mentioned for each figure, only in the following
section).

7.2 Icomp 179

7.3 Applying SDBC

Based on the case study background on one hand and on the information about
Icomp on the other hand (addressed consecutively in the previous sections), this
section is to elaborate on how SDBC could be applied within the context of the
Icomp case:

The section is divided into three sub-sections as follows:

• Section 7.3.1 will focus on the considered (within the case study) information and
the identification (based on it) of several relevant business coMponents.

• Section 7.3.2 is to consider the specification and elaboration of a particular
business coMponent.

• Section 7.3.3 will demonstrate the derivation of a software specification model,
based on the specified business coMponent.

Since the steps to follow in applying the SDBC approach have been introduced,
explained, and discussed in the previous chapter, we will now just follow those of
them relevant to the tasks within the current case, without explaining in much detail
the steps.

7.3.1 From the Case Information to Business CoMponents

As mentioned before, in this sub-section, we will show how business coMponents
could be identified based on the case information (see Sect. 7.2). We provide below a
roadmap (fully consistent with the SDBC outline—see Chap. 6) which gives in
advance information about the modeling activities (steps) to take place within the
current sub-section, in order to achieve the goal (as defined already):

Step 1 : Building of a generalization hierarchy for the explored domain.
Step 2 : Identification of relevant actor-roles.
Step 3 : Identification of the corresponding (potential) inter-role actions (relations).
Step 4 : Elaboration of those relations in terms of semiotic norms.
Step 5 : Decomposition of Icomp + a related positioning of corresponding relations.
Step 6 : Construction of a SCI chart.
Step 7 : Derivation of business coMponents.

Those seven steps will be addressed within the current sub-section.

Building of a Generalization Hierarchy for the Explored Domain
Structuring and positioning semantically the case information is in line with Activity
1 (from the SDBC Input/Output Model (see Chap. 6)).

As a starting point concerning the case information (see Sect. 7.2), we select the
entities (natural/legal persons) who collaborate with the target company (Icomp).
They are (in alphabetical order) intermediary companies, investigation companies,
product development companies, and reinsurance companies. Investigation

180 7 Case Study and Examples

companies are actually a sub-type of consultancy companies (according to the
interviewed specialists from Icomp). The rest of the mentioned ones are sub-types
of financial companies. Being an insurance company itself, Icomp is a financial
company too.

This information is sufficient for identifying a generalization hierarchy
(organizational business objects model) for the explored domain. The hierarchy is
charted in accordance with the guidelines proposed in [2], with the aim of bringing
order in the original input information. The organizational business object model
regarding Icomp is shown in Fig. 7.2a.

Hence, as seen from the figure, Icomp collaborates with:

– Three types of financial companies, namely, (1) reinsurance companie(s),
(2) intermediary companie(s), and (3) product development companie(s).

– Investigation companies which are types of consultancy companies.

The position of Icomp within this model is also clear—Icomp is an insurance
company.

Besides these types of companies, Icomp collaborates also, of course, with its
customers. According to the considered case information, a customer of Icompmight
be any person, legal or natural. This is illustrated on Fig. 7.2b where “LP” stands for
legal person and “NP” stands for natural person.

In the rest of this section, any customer, no matter to which of the two customer
sub-types (Fig. 7.2b) it belongs, would be called “customer.”The reason is that Icomp
does not distinguish between its customers in any way. It is to be stated also that

O r g a n i z a t i o n

C o m p a n y …

Financial Company …

(Re) insurance Company Intermediary Company Prod. Dev. Company … Investig. Company

 Consultancy Company

…

…

L e g a l pe r s o n Na t u ra l pe r s o n

P E R S O N

LP Customer NP Customer

 CU S T O M E R

a

b

Fig. 7.2 (a) The organizational business object model concerning the case study. (b) The business
object model regarding the customers of Icomp

7.3 Applying SDBC 181

besides the term “customer,” the materials concerning Icomp, including the descrip-
tions presented in the previous section, contain also the terms “client” and “end
customer”. Actually, those two are synonyms of “customer”. Hence, they will be left
out for the rest of the current section and only the term “customer” will be used.

Identification of Relevant Actor-Roles
Following the roadmap, the next step is to produce an actor-role model based
on the business object models. As studied and motivated already, if the actor-role
concept is applied, then it would be easier to model complex systems; examples were
mentioned already in support of this claim: for instance, if a manager sends a fax,
then she/he plays the role “Secretary.” Hence, in such a case, if we do not model an
actor-role, we should either model the individual natural/legal persons (which is too
much complicated in such situations) or oversimplify those issues (which might lead
to limitations in the enterprise model being created). Further on in the current
section, the term “role” will be used, meaning “actor-role” (see Chap. 2).

Thus, we proceed towards the identification of roles; this is in tune with the SDBC
application guidelines, presented already in the current book. We start with an initial
consideration of the roles which are typical for each of the identified company types
(see Fig. 7.2a). In particular, the starting point is to find a suitable word (“label”) for
each of those roles; this is done by studying the case information (customers should
be considered, too). The next step is to find out (based on the case information)
whether any company could fulfill not only the role(s) typical for its type but also
other roles; this was not observed considering the Icomp case.

However, formulating a word (label) does not give full information about the
meaning of the role. Therefore, the word should be extended with some elaboration.
By role elaboration is meant a description about what characterizes the particular
role. We do this as follows:

• The typical role type for a reinsurance company is formulated as REINSURER:
one fulfils REINSURER if taking over risk from an existing insurance. A
reinsurance company is not expected to take other roles.

• The typical role type for an intermediary company is formulated as BROKER:
one fulfills BROKER if matching customers to relevant financial companies, in
particular insurance companies (in the current case), by (1) giving financial
consultations to customers about those companies and (2) directing customers
to particular companies if there is a match between customer requirements and
company product(s)—such a direction is realized, by advising for a product of a
particular company. An intermediary company is not expected to take other roles.

• The typical role type for a product development company is formulated as
SUPPLIER: one fulfills SUPPLIER if delivering financial products to insurance
companies. A product development company is not expected to take other roles.

• The typical role type for an investigation company is formulated as EXPERT:
one fulfils EXPERT if delivering expertise (in the form of expert reports and/or
investigations) for the benefit of insurance companies. An investigation company
is not expected to take other roles.

• In is necessary also to formulate the role type CUSTOMER: one fulfills CUS-
TOMER if purchasing financial products (including insurance products) and
providing specialized information upon request.

182 7 Case Study and Examples

• Icomp, as the target company in this case study, fulfills the role type INSURER;
one fulfills INSURER if selling financial products (including insurance products).

We stress upon the fact that we have identified role types (rather than particular
roles). We have already discussed this in the previous section, considering an
example featuring the role type “broker” and the roles “contracting broker” and
“advising broker.” Let us consider another example, featuring receptionists: (1) A
receptionist at the Mitsubishi Dealership in Hoofddorp (NL) is supposed to meet
visitors, help customers, mediate between customers and mechanics, make appoint-
ments, and so on; (2) A receptionist at the EWI Faculty of TU Delft (NL) is supposed
to meet visitors, manage the campus cards of employees, assist during coffee breaks
in the building (if any), check for “late workers” in the building before closing time,
and so on. Both roles are “receptionist” but what is meant by this at Mitsubishi—
Hoofddorp and TU Delft are different. For this reason, it makes sense considering
“receptionist” as a role type (this is actually the role “receptionist” in general) and
possibly modeling as different roles the “Hoofddorp features” and the “Delft fea-
tures,” as in the above example. Anyway, this is a matter of modeling choices that
are often done intuitively by the designer. As for the current case study, considering
REINSURER, for example, this is a role type; we may have “regulatory reinsurer”
(just fulfilling what the state is supposed to “guarantee” to customers), “corporate
reinsurer” (working for profit), and so on, as particular roles. Anyway, we are not
going to discuss this further and it is not to be expected that in the current case study
we will always be explicit in distinguishing between roles and role types. It is
possible that we consider a reinsurance company that is just an “instance” of
REINSURER, meaning that we are not interested whether the business of this
company is “regulatory” or “corporate,” for example.

Further, those identified role types are expected to somehow relate to initiators/
executors of particular transactions. This, as a part of the modeling output reflected
in the current section, would facilitate the identification of business coMponents.

Figure 7.3 shows the identified role types and also their elaborations. The role
type labels are depicted in rectangles outlined by double line. Attached to them are
rectangles outlined with single line. The elaborations are depicted in them.

As seen from the figure, there are six role types: INSURER corresponds to
insurance companies (such is the company under study (Icomp)). CUSTOMER corre-
sponds to the customers of insurance companies. The other roles types are straightfor-
wardly derived from the hierarchy model (see Fig. 7.2a): REINSURER (Fig. 7.3) is the
role type typical for a reinsurance company (Fig. 7.2a), BROKER (Fig. 7.3) is the role

R o l e
types

sell insurance products

take over insurance risk * give financial consultation
* advise for ins. product

realize expertise deliver financial products

EXPERT

* purchase insurance products
* provide information

CUSTOMERINSURER

BROKER SUPPLIERREINSURER

Fig. 7.3 Basic role types within the Icomp case

7.3 Applying SDBC 183

type typical for an intermediary company (Fig. 7.2a), and so on. As for the role
elaborations which are also depicted on Fig. 7.3, they have been formulated based
on the case study information and interviews with employees of Icomp.

Identification of Inter-role Relations
Based on the identified major role types, the (potential) actions (relations) among
them are studied. We will call those relations inter-role relations from now on, or
“relations” for short. Studying the relations would be useful with regard to a
consideration of the structure and dynamics of the explored enterprise system. As
a first step in identifying the existence of relations, the interviewed Icomp employees
were asked to answer whether or not a relation exists between each two of the role
types. Table 7.1 contains the collected data. As seen from the table, only the grey
rows correspond to an existing relation. For example, from the third row (from top to
bottom), it is seen that there exists a relation between INSURER and EXPERT.

We now have to briefly describe each identified relation. In achieving this, we
will firstly consider in more detail the particular role types and secondly address
aspects that concern their relations.

The first sub-task could be realized through binary relationships—a binary
relationship does concern two entities and is usually described by ;
the nouns correspond to the entities and the verb describes the relation among them.
If we take, for example, the role type COMPOSER, related to the expression
“writing songs,” then we could form a binary relationship. It would be between
COMPOSER and SONG (between the role type and something related to its output).
The verb “write” describes how those two relate.

Thus, looking at Fig. 7.3, we could analogously form binary relationships since,
as it could be seen, a plus a could be considered as a
noun-verb-noun expression. Thus we have:

Table 7.1 Identified inter-role relations

INSURER REINSURER Yes, a relation exists
INSURER BROKER Yes, a relation exists
INSURER EXPERT Yes, a relation exists
INSURER SUPPLIER Yes, a relation exists
INSURER CUSTOMER Yes, a relation exists
REINSURER BROKER No, a relation does not exist
REINSURER EXPERT No, a relation does not exist
REINSURER SUPPLIER No, a relation does not exist
REINSURER CUSTOMER No, a relation does not exist
BROKER EXPERT No, a relation does not exist
BROKER SUPPLIER No, a relation does not exist
BROKER CUSTOMER Yes, a relation exists
EXPERT SUPPLIER No, a relation does not exist
EXPERT CUSTOMER Yes, a relation exists
SUPPLIER CUSTOMER No, a relation does not exist

184 7 Case Study and Examples

INSURER – sell – (insurance) products

REINSURER – take over – (insurance) risk

BROKER – give – (financial) consultation

BROKER – advise for – (insurance) products

EXPERT – realize – expertise

SUPPLIER – deliver – (financial) products

CUSTOMER – purchase – (insurance) products

CUSTOMER – provide – (specialized) information

Further, we extend (based on Table 7.1) each of the above eight expressions with
corresponding to a role type which relates to the role type represented

within the particular expression. This is done as follows: For a particular role type,
we can see the “candidate-matches” from the table. Thus, we have to choose one of
them. The criterion is how it matches the context of the expression. For example,
starting from INSURER, we see from Table 7.1 that it relates to REINSURER,
BROKER, EXPERT, SUPPLIER, and CUSTOMER. Therefore, we ask the ques-
tion: To whom does INSURER sell insurance products? The answer (according to
the case information) is: “to CUSTOMER.” Therefore, we extend the first expres-
sion with CUSTOMER:

INSURER – sell – (ins.) products – CUSTOMER

If we go further, we see from Table 7.1 that REINSURER relates only to
INSURER; we ask the question: From whom does REINSURER take over risk?
The answer is “from INSURER.” Therefore, we extend the second expression with
INSURER:

REINSURER – take over – (ins.) risk – INSURER

We continue analogously:

BROKER – give – fin. consultation – CUSTOMER

BROKER – advise for – financial products – INSURER

EXPERT – realize – expertise – INSURER

SUPPLIER – deliver – financial products – INSURER

CUSTOMER – purchase – ins. products – INSURER

CUSTOMER – provide – spec. information – EXPERT

We now need to consider the above expressions and check them against redun-
dancy since there is a risk to describe twice one and the same thing, like in the
following two expressions:

INSURER – sell – insurance products – CUSTOMER

CUSTOMER – purchase – insurance products – INSURER

Considering the case information, we have concluded that the information in the
above two expressions is about one and the same thing, namely, the INSURER’s

7.3 Applying SDBC 185

selling of insurance products to CUSTOMER. Therefore, we randomly choose one
of the above two expressions and leave out the other one. Let’s select the first one.

Further, we will use the above expressions as an input for building the so-called
Icomp RR chart (see Chap. 6) in order to facilitate the description of relations (we
remind that “RR” stands for “Roles and Relations”). In order to build the chart, we
need to consider the above expressions, putting the role type names in . The
names of those of the role types that relate to the realization of a particular activity
(e.g., the activity: “sell insurance products”) are . Next to that, the name of
the role type corresponding to the target (within the case study) organization should
disappear. On its place we put the particular name of the organization (Icomp).
Hence, we should .
This is because we are not interested in any company which could fulfill INSURER
but in this role as performed in particular by the company Icomp.

Between each two boxes (concerning role types and featuring a particular rela-
tion), we should put together all the text (from the corresponding expressions above):
this is between the names of the role types. For example, we take the text “realize
expertise” from the line:

EXPERT – realize – expertise – INSURER

The RR chart is depicted on Fig. 7.4. As seen from the figure, each line contains
two role type names (the name of the target company is in some places instead a role
type name) and in between is the description of the relation. All those are derived
straightforwardly from the previously constructed expressions. As it could be seen,
we have also given a unique code to each relation (R1 toR7). Onwards, we will refer
to each of the modeled relations using those codes.

REINSURER

BROKER

BROKER

EXPERT

SUPPLIER

Icomp

CUSTOMER

Icomp

Icomp

Icomp

take over insurance risk

give financial consultation

advise for fin. products

realize expertise

deliver financial products

Icomp CUSTOMERsell insurance products

R2

R3

R4

R5

R6

CUSTOMER EXPERTprovide specialized inf. R7

R1

Fig. 7.4 RR model for the Icomp case

186 7 Case Study and Examples

Norm Elaboration
Following the roadmap: an important step to take place on that basis is adding
further precision to the descriptions of the relations, by applying organizational
semiotics, and in particular norm analysis (see Chap. 4). The construction of norms
has been considered in the mentioned chapter. Hence, no explanations will be made
here about how the norms are constructed on the basis of the information featuring
corresponding relations. A norm will be attached to each relation (see Fig. 7.4),
being given a name containing “N” (from the word norm) and the code of the
relation. The seven constructed norms are:

NR1
Whenever BROKER has advised CUSTOMER in favor of a Icomp’s product

and CUSTOMER fits within Icomp’s policy.

If CUSTOMER decides to purchase this product.

Then Icomp.

Is obliged to insure CUSTOMER according to the concrete product details
and based on a payment from CUSTOMER, made accordingly.

NR2
Whenever there is a long run relation between Icomp and REINSURER.

If an insurance to be realized by Icomp would include a unacceptably high risk
for Icomp and the insured objects fit within REINSURER’s policy.

Then (if asked) REINSURER.

Is obliged to take over risk(s) from Icomp regarding the particular insurance.

NR3
Whenever CUSTOMER has a request for consultation to BROKER.

If an insurance company having got an agreement with BROKER has an
appropriate product with regard to the CUSTOMER’s particular request.

Then BROKER.

Is obliged to consult CUSTOMER about this product.

NR4
Whenever there is an agreement between Icomp and BROKER.

If a product of Icomp is a best match with regard to a CUSTOMER’s request.

Then BROKER.

Is obliged to do advice for CUSTOMER in favour of Icomp’s product(s).

NR5
Whenever there is a non-standard situation regarding a stated claim.

If Icomp asks EXPERT for an expert evaluation (expertise).

Then EXPERT.

Is obliged to realize an expertise with regard to the stated claim.

7.3 Applying SDBC 187

NR6
Whenever there is an agreement between Icomp and SUPPLIER about delivery

of insurance products.

If CUSTOMER wants to have a product whose production and delivery falls
in the mentioned agreement as a responsibility of SUPPLIER, and Icomp has ordered
this financial (in particular insurance) product to be developed.

Then SUPPLIER.

Is obliged to deliver the financial product.

NR7
Whenever EXPERT is involved in an expert evaluation (expertise).

If EXPERT asks CUSTOMER for specialized information.

Then CUSTOMER.

Is obliged to cooperate by providing the required information.

Positioning of the Relations
So far, we have realized an identification and a thorough elaboration of the essential
relations concerning the Icomp case.

Our focus towards Icomp as the company under study requires adding more
precision about the way Icomp handles the mentioned relations internally. Said
otherwise, it is of interest to know which of the departments (organizational units)
within the company are involved in each of the relations. Such information would be
of significant importance for specifying an ICT application which, for example,
might operate across some (or all) of the mentioned departments.

Therefore the next step should be to position the relations with regard to the
Icomp organizational units. Those units have been defined based on the information
featuring Icomp (see Sect. 7.2).

We consider Fig. 7.4 and leave out of consideration the relations R3 and R7
because they do not relate directly to Icomp. We take then the remaining relations
(which all do concern Icomp) and conduct interviews in order to clarify for each
particular relation the corresponding Icomp department(s) involved. Of course, it
appears that often a relation concerns more than one department. For example, the
relation between Icomp and BROKER comes firstly through the Account Manage-
ment department (considering the agreement and also the Icomp-BROKER collab-
oration in general) and secondly through the Financial Department (as long as
payments are concerned).

Figure 7.5 contains the results. The names of the Icomp departments are put in
. Each relation (in) having connection with a department is linked

to it.

188 7 Case Study and Examples

We have purposefully simplified slightly the way we look at the organizational
structure of Icomp because this would make our further modeling activities easier to
understand. However, the modeling complexity would be sufficient for adequately
demonstrating the strengths of the SDBC approach.

SCI Chart
Based on the modeling results which have been achieved so far, we will (according
to the roadmap) apply the SCI chart (see Chap. 6) for summarizing the initial case
information (“SCI” stands for “Structuring Customers’ Information”). The model-
ing outputs depicted in Figs. 7.3, 7.4, and 7.5 should be a sufficient basis for
constructing the chart; it is presented in Fig. 7.6 where the following abbreviations
are used:

am stands for “Account management department.”

md stands for “Marketing department.”

fd stands for “Financial department.”

ad stands for “Acceptance department.”

cd stands for “Claims department.”

On the figure, the target organization (Icomp) is represented within the
. Inside are depicted labels featuring the five depart-

ments (source: Fig. 7.5); within an is an elaboration concerning
Icomp. In the rounded cornered rectangle are labels featuring the
five considered role types plus their elaborations (source: Fig. 7.3). On the basis of
Figs. 7.4 and 7.5, the role types are linked (where appropriate) to corresponding
departments within Icomp. Also, where appropriate, the role types are linked to each
other. This is done using lines and each line is given a number.

In this way, through the SCI chart, we have achieved a compact, complete, and
focused view on the target organization (and additional relevant information).

I C O M P

Acceptance Department

Claims Department Financial Department

Marketing DepartmentAcc Mngmnt Department R4 R6

R1 R2

R1 R5 R1 R6

R4 R2

Fig. 7.5 Relations and organizational units concerning the Icomp case

7.3 Applying SDBC 189

Derivation of Business coMponents
According to the guidelines for application of SDBC [2], a SCI chart could facilitate
the identification of business coMponents, particularly using the notations
concerning transactions (see Chap. 6).

We consider the lines from the SCI chart—each line originates one or more
business process patterns. In those patterns, we consider the organizational units
within Icomp as roles. Hence, the set of business process patterns, derived from the
Icomp SCI chart is:

Icomp

am

ad

cd

md fd

The core of the business of
Icomp is selling of insurance
products to humans and
organizations.

* gives fin consult
* advise for ins product

BROKER

CUSTOMER

* purchase fin
product(s)

* provide inf

delivers financial
products

SUPPLIER

EXPERT

Make (realize)
expertise

REINS-RER

takes over ins
risk

1
2 3 4

5
6

7

13

9
8

10

12

15

14
11

Fig. 7.6 Icomp—SCI chart

190 7 Case Study and Examples

1 am start AGREEMENT BROKER
1 am end AGREEMENT BROKER

1 am manage AGREEMENT

2 fd pay COMMISSION BROKER

3 BROKER advise (for a) PRODUCT CUSTOMER

4 SUPPLIER deliver new PRODUCT md

5 fd pay PREMIUM SUPPLIER
6 fd pay reinsurance PREMIUM REINSURER

7 REINSURER start REINSURANCE ad

7 REINSURER end REINSURANCE ad

8 CUSTOMER pay PREMIUM fd

8 fd pay CLAIM CUSTOMER
9 ad start CUSTOMER AGREEMENT CUSTOMER

9 ad end CUSTOMER AGREEMENT CUSTOMER

9 CUSTOMER give HEALTH INFORMATION ad

10 CUSTOMER declare DAMAGE cd

10 cd state COMPENSATION CUSTOMER

11 CUSTOMER give HELATH STATEMENT EXPERT

12 EXPERT give EVALUATION cd

13 md provide new PRODUCT am

14 cd order CLAIM PAYMENT fd

15 ad order PREMIUM PAYMENT fd

This output represents the starting point for the identification of business coM-
ponents. Essential for this is the discovery of transactions. It is claimed (and
motivated) that the above output could facilitate the mentioned discovery. Next to
that, this output’s being focused adds value to the overall consistency of the set of
transactions and business coMponents (being identified).

We will take, for illustrative purpose, several of the above business process
patterns. Through the identification of transactions, we will reflect those patterns
in coordination-structure models (which represent the actor-roles, transactions, and
the system boundary), identifying in this way business coMponents. We will con-
sider, in particular, the patterns whose featuring are in bold in the above list,
starting with the following one:

1 am start AGREEMENT BROKER

Firstly, we are clear what the system under study is. It is Icomp (the Account
Management department is one of its departments)—this is reflected in one of the
roles in the above expression. Secondly, we are clear which the roles under
consideration are; in this case they are “am” and “BROKER.” Hence, we could
model this as presented in Fig. 7.7:

7.3 Applying SDBC 191

What we know also from the pattern is the essence of the inter-role relation: “start
agreement.” However, reflecting it directly in one transaction would not provide a
complete view since we need to analyze this information and identify the starting
transaction (see Definition 6). To achieve this, one would (usually) answer the
helpful question: What is the cause? We have done this, discovering that a broker
could have an agreement started only based on an application (submitted). There-
fore, the starting transaction would be:

T2 application F2 application <A> has been submitted

We then ask: What happens next? It is that am receives an application from a
broker and, before being able to start an agreement with the broker, am needs
an approval by a controller within Icomp (we have not considered it so far
because of it not having a significant importance). Thus, we identify an additional
role type, namely, CONTROLLER. As for the corresponding transaction, it
would be:

T3 approval F3 approval concerning application <A> has been done

Based on this approval is the starting of an agreement, by am:

T1 agreement F1 agreement based on application <A> has started.

Hence, taking the information from Fig. 7.7 and also the identified three trans-
actions (see above) plus the new role type (controller), we are able to build the
relevant business coMponent. This is depicted in Fig. 7.8 (see the notations
presented in Chap. 6):

S02

BROKER

A01

S01: Icomp

am

Fig. 7.7 Representation of a pattern

192 7 Case Study and Examples

Considering the above modeling output and in line with the principles of LAP and
enterprise ontology (see Chap. 4), we construct (see Fig. 7.9) a model that elaborates
on the communicative aspects concerning those three transactions:

S02 T01 T03

T02BROKER

A01

am

A02

controller

S01: Icomp

start agreement approve agreement

submit application

Fig. 7.8 An identified business coMponent—structural view

T01

001

S01: Icomp

S02: BROKER
A01: am A02: controller

rq
T01
pm

T03
pm

T03
st

T03
ac

T03

T02

T03
rq

T01
st

T01
ac

T01

T02
rq

T02
pm

T02
ac

T02
st

Fig. 7.9 An identified business coMponent—communicative view

7.3 Applying SDBC 193

We will be more detailed about the elaboration of identified business coMponents
in the following sub-section. In this sub-section we just consider the identification of
business coMponents.

We continue with the rest two business process patterns to be considered and
reflected in business coMponents:

5 fd pay PREMIUM SUPPLIER

8 fd pay CLAIM CUSTOMER

Proceeding analogously, we will identify business coMponents based on the
patterns.

Since both patterns concern payment, we propose using a re-usable business
coMponent, in particular a general business coMponent. It is to be extended after-
wards. We are not going to explain those issues since they have been considered in
Chap. 6.

A general payment business coMponent specified in the same notations is
depicted in Fig. 7.10.

As seen from the figure, in the general case, we have an organization providing a
service to a customer and claiming therefore payment in return. Usually, the entity
delivering the service is not the entity handling the payment: there are two internal
role types depicted on the figure, therefore, namely, SELLER and PAYMENT
CONTROLLER. SELLER delivers a service to the customer (“BUYER”) and
informs about this PAYMENT CONTROLLER who as a result of self-activation
(on a periodic basis) would handle the payment accordingly.

Taking the first of the two considered patterns, we extend straightforwardly the
model shown in Fig. 7.10. BUYER in this case would be Icomp (its Marketing
department (md) buys a financial product and its Financial department (fd) has to
pay to a corresponding supplier). This is represented on Fig. 7.11:

Fig. 7.10 A general payment business coMponent

194 7 Case Study and Examples

As for the second pattern, we again reflect straightforwardly the information: this
time the payment should be directed to a customer. However, before the payment
could be initiated (as studied from the case information) it is necessary that an expert
(external to Icomp) investigates the case. Considering this accordingly, we derive a
business coMponent, as represented in Fig. 7.12:

Hence, we have demonstrated the identification of business coMponents. In the
following sub-section, we will consider the elaboration of a particular (identified)
business coMponent.

S03

SUPPLIER

A03

S01: Icomp

deliver product

realize payment activate payment collections

md

A04

fd

T04

T05T05 T05T06

Fig. 7.11 A possible extension of the general payment business coMponent

Fig. 7.12 Another possible extension of the general payment business coMponent

7.3 Applying SDBC 195

7.3.2 Elaborating a Business CoMponent

In the previous sub-section, we have demonstrated the identification of business
coMponents, using SDBC. As mentioned at the beginning of the current section, in
this sub-section, we will demonstrate the specification and elaboration of an identi-
fied business coMponent; in the following sub-section, we are going to demonstrate
the derivation of a software specification model, based on the business coMponent.

As for the particular coMponent to be considered, it will not be one of the
coMponents identified on the basis of the SCI chart (see Sect. 7.3.1). It will be,
instead, a business coMponent resulting from a business improvement proposal
concerning Icomp (the conceptual framework of SDBC allows for business re-de-
sign, as a possible design step, whenever this is considered necessary).

Our reason for introducing a business improvement proposal is that such an
improvement is expected to create an adequate foundation for realizing a useful
software support to Icomp while simply automating any currently existing business
processes within the company would bring less value to it.

Therefore, we will address the following:

– The problem concerning the need for improvement.
– A relevant business improvement proposal.
– A resulting business coMponent, to be adequately specified and elaborated.

The business coMponent will be elaborated in terms of structure, dynamics, data,
and communicative issues (see Fig. 7.13), as according to the SDBC approach.

Problem Statement
Regarding some relatively simple cases in which an advice is straightforwardly
deliverable (based on relevant information and rules), using human brokers is too
expensive. It would be more appropriate if human brokers are used just in cases in
which their particular expertise is to be applied.

Business
CoMponent

structural
perspective dynamic

perspective

communicative
perspective

data
perspective

Fig. 7.13 Elaborating a
business coMponent

196 7 Case Study and Examples

The Financial Mediator: A Proposal
Reflecting the above problem, we have made a business improvement proposal
according to which a new business unit is to be introduced, namely, a Financial
Mediator (FM).

The FM facilitates Dutch insurance companies. In order to use FM, a
company should subscribe (for free). FM brings about the following useful
deliverables:

• Advice (to customers or insurance brokers) on what of the offered (by the
registered companies) products best satisfies a particular customer
demand.

• Delivery (to customers) of products of insurance companies.

Any customer could request (for free) FM to do for him/her either advice or
delivery of a product. The customer should firstly specify his/her request
(choosing from a list): (s)he should make it clear whether the request is
about a health insurance, auto insurance, and so on, specify the particular
demand (e.g., to insure a car against theft with the highest possible coverage
(which includes car accessories, tires, and so on)), and so on. Based on this, a
request processing unit within FM generates a standardized specification
regarding the customer’s request, which is delivered to a match-making unit
within FM. This unit is to further realize a match allowing the FM to do the
advice. The match is driven by a particular criterion chosen by the customer
(e.g., a preference for the cheapest or the most reliable product available). In
order to deliver such a criterion-driven match, the match-making unit uses a
data-bank of relevant rules and procedures. Besides the output given by the
request processing unit, the match-making unit needs as well an output from a
data search and processing unit. It searches through the information that
concerns registered companies, applying procedures to it. This allows for a
precise identification of candidate-matches, relevant to the particular cus-
tomer’s request. Thus, given this output plus the (mentioned) standardized
specification of the customer’s request, the match-making unit would be able
to realize a match, applying the mentioned rules and procedures.

As for the subscription of (insurance) companies, any (Dutch) company could
subscribe for free. This is facilitated by a subscription processing unit withinFM.
This unit could realize a subscription only after another unit within FM
(a company profile builder) creates a profile of the particular company, making
its data available through a data-bank (to be usable also by the data search and
processing unit). Usually, FM creates “standard profiles”; however, several
special companies could have “golden profiles” (with more benefits).

Allowance: a customer’s using FM (either for advice, or contract, or
product delivery) is to be limited to no more than five times per month. As

(continued)

7.3 Applying SDBC 197

for (insurance) companies’ allowance, a company is allowed to subscribe to
FM only if it is licensed according to the Dutch financial laws.

As for a product delivery: once a customer has chosen a product, she/he
might request that FM facilitates the actual product delivery. The customer
requests an offer (FM is to be authorized to generate offers, based on
information from the particular company, kept in its profile). Once FM (its
offer generating unit) has produced an offer, it should have it firstly approved
by the respective (insurance) company, before delivering it to the customer.
From the moment of the delivery, the particular insurance (or other financial
product) is in effect—between the customer and the corresponding (insurance)
company.

A company should pay a commission to FM for each realized (through
FM) insurance (or other product).

Financial Mediator (FM): The Business CoMponent
On the basis of the above proposal, we identify a relevant business coMponent,
namely, the FM business coMponent.

Since we have already demonstrated the SDBC business coMponent identification
mechanism, we will not demonstrate the identification itself again (it has been done
analogously, as in the previous sub-section). The current sub-section aims instead
(as stated already) at demonstrating the specification and elaboration of a business
coMponent.

Hence, we go directly to the identified transactions (the transactions listed below).
The first six of them relate to the FM’s delivering advices. The rest (backgrounded
grey) relate to the FM’s contracting concerning financial (insurance) products.

198 7 Case Study and Examples

As seen from the above list, FM could deliver an advice. This requires that a
match-making is performed, based on a standardized specification of the customer’s
information and on generated candidate-matches. As for the consideration of (insur-
ance) companies, FM could offer them subscription. It is completed only after a
particular company profile has been created by FM.

It is seen also that once a customer has chosen a particular financial (insurance)
product, it could be facilitated by FM for the product’s delivery. FM offers a
contract based on which the customer would acquire the product. The contract,
however, would need to be approved by the particular company, before being
offered to the customer. After it has been offered, the customer should accept it
and from this moment on, she/he has rights and obligations concerning the
product. For each product delivery, a payment of commission should take
place, from the particular financial (insurance) company to FM. A payment
controller is activated periodically in collecting all payments due for the partic-
ular period.

Further, we will reflect those transactions in models, offering elaboration in two
aspects, namely, structural and communicative. We will then elaborate further those
models with semiotic norms (see the previous sub-section).

Afterwards we will derive, based on those models, Petri Net and ORM models,
offering elicitation in terms of dynamics and data, respectively. We will attach to the
Petri Net models some further refined norms.

Hence we will address further the structural, communicative, dynamic, and data
aspect of the considered business reality. This four-aspect business view (Fig. 7.13)
is in tune with the SDBC foundations (see Chap. 6).

Financial Mediator: Structural and Communicative Aspects
For the sake of clarity, in modeling the above transactions, we will firstly consider
those of them which concern the FM’s offering advice services and secondly
those concerning the FM’s offering contracting services (backgrounded in grey
color).

As for the first of the mentioned transaction groups, we have reflected it in the
model, represented in Fig. 7.14. The model concerns the structural business coM-
ponent perspective.

As mentioned before, the identification of such a model has been demonstrated,
including the identification of roles and transactions. Hence, we take them directly
in building the model, without explaining how we have identified them.

The functionality of FM concerns customers and insurance companies (for short,
“IC”). Hence, we have two major role types: CUSTOMER and INSURANCE
COMPANY. As seen from the figure, in the model, they are reflected as the roles
“Customer” (S02) and “Insurance Company” (S03)—those are already ROLES (not
role types) because the perspective is case-specific; those roles are external with
respect to FM. The transactions T01 and T05 concern the FM-Customer and FM-
IC relations, respectively.

7.3 Applying SDBC 199

Next to that, a number of actions take place within FM where we have identified
six roles (internal as it concerns FM). They are A01 (Advisor), A02 (Match-
maker), A03 (Request Processing Unit), A04 (Data Search and Processing
Unit), A05 (Subscription Processing Unit), and A06 (Company Profile
Builder). Transactions T01, T02, T03, and T04 as well as roles A01, A02,
A03, and A04 concern directly the advice delivery: they are about the mere
(FM’s) delivery of an advice to a customer. Transactions T05 and T06 as well
as roles A05 and A06 concern indirectly the advice delivery: they are about the
collection and use of information (concerning insurance companies) needed for
performing an advice.

As seen from Fig. 7.14, A01 is to deliver advice (T01). However, this could be
done only based on a realized match-making—a matching between what the
particular customer requests and what is offered by the insurance companies
(registered with FM). A02 is to realize such a match-making (T02). What A02
needs in turn in order to realize the match are two things: (1) a complete
specification regarding the request of the (particular) customer, a specification
presented in standardized notations (the reason is that if such a specification is not
standardized, it would be hardly match-able with information concerning insur-
ance companies), and (2) list of candidate-matches. A03 must generate the
mentioned standardized specification (T03) and A04 should provide candidate-
matches (T04). In performing T04, A04 is facilitated by two data-banks, namely,
DB01 and DB02. These data-banks are claimed to be an essential elaboration
concerning the model. Using DB02, A04 gets direction what procedures to apply
(and where to find them) in connection to a particular need expressed by a
customer. For example, if a customer needs an auto-insurance, following a
procedure helps to adequately direct a further searching through companies
(in this particular case, searching in their property insurance departments and/or
“schemes”). Based on such an orientation achieved, A04 could effectively direct
its search for relevant (insurance-companies-related) information, using the bank
DB01. It contains information about the (insurance) companies registered with
FM, the (financial) products offered by them, and also other relevant details.
Thus, using those two (mentioned) data-banks, A04 should be able to provide to
A02 a list of candidate-matches (with regard to the particular (customer) request).
Therefore, based on the request specification (delivered by A03) and this
candidate-matches list, A02 must realize the match-making. However, this should
be done according to a particular criterion (like reliability or quality of service, for
instance). It should be specified by the customer. Having received this informa-
tion, A02 should apply particular procedures in approaching the “matching”
information (this information would be considered in one way if the cheapest
(financial) product is the goal and in another way if the most reliable product is to
be selected). With respect to this, A02 is facilitated by the data-bank DB03. It
allows A02 to know what procedure (or a combination of procedures) to apply to

200 7 Case Study and Examples

the “matching” information based on a criterion chosen by the customer. The
data-banks and related information will be considered in more detail further on
within the current sub-section, when we will address the data business coMponent
aspects.

Also, it is seen from Fig. 7.14 that A05 is to realize the subscription (T05) of a
(insurance) company wishing to use FM. Before a subscription could be handled, a
company profile is to be built (T06) by A06. This includes adding data to the data-
bank DB01 which was mentioned already.

As also seen from the figure, the realization of the T01 transaction includes
providing (relevant) information to A02, A03, and A04 (the dotted lines between
T01 and these roles indicate this). A02 is to receive the criterion (chosen by the
customer) according to which to perform the match-making. A03 should receive
the (full) information submitted by the customer. A04 should be provided with
information featuring the type of the customer need (for instance, “auto-
insurance”).

Thus, we have done the basic elaboration on the model and will then add further
detailisation using semiotic norms. This is a logical continuation of the norm
derivation characterizing the earlier analysis phases (those phases addressed in the
previous section have presented the derivation of more general semiotic norms
intended to “govern” the ones to be identified). Since the role of norms and their
derivation have already been explained in previous chapters, we will directly go to
the content of the identified norms attached to the transactions. Since they concern
the essential level, we will label them as follows: a string consisting of “E” (from
“Essential”), “N” (from “Norm”) and a number of the particular transaction. The
derived norms are the following:

EN1
Whenever S02 has requested advice.

If A02 has realized match-making.

Then A01.

Is obliged to formulate and deliver an advice.

EN2
Whenever S02 has requested advice.

If A03 has delivered standardized customer specification AND A04 has delivered
candidate-matches.

Then A02.

Is obliged to realize match-making.

7.3 Applying SDBC 201

EN3
Whenever S02 has requested advice.

If A03 has received submitted customer information.

Then A03.

Is obliged to delivered standardized customer specification.

EN4
Whenever S02 has requested advice.

If A04 has received information about the type of a customer need.

Then A04.

Is obliged to deliver a candidate-matches list.

Fig. 7.14 The FM business coMponent (advice view)—structural aspect

202 7 Case Study and Examples

EN5
Whenever S03 has requested subscription.

If A06 has built a (relevant) company profile.

Then A05.

Is obliged to realize subscription.

EN6
Whenever S03 has requested subscription.

If A06 has received submitted customer information.

Then A06.

Is obliged to build a company profile.

Based on the model represented in Fig. 7.14, we derive a model (Fig. 7.15)
representing the communicative view on the addressed business reality.

As seen from Fig. 7.15, we have added elaboration (concerning the communica-
tive aspect) by applying the transaction pattern (see Chaps. 4 and 6) to each of the
transactions (see Fig. 7.14).

As seen from Fig. 7.15, two sub-processes are to be considered—one of
them relates to the FM’s delivering advice to a customer, and the other one
relates to the FM’s realizing subscription to an (insurance) company. This is
indicated by two starting points (on the figure): starting point 001 and starting
point 002, respectively.

As also seen from the figure, the dependence of T01 on the execution of T02, the
dependence of T02 on the executions of T03 and T04, and the dependence of T05
on the execution of T06 are all reflected accordingly in the model.

Therefore, we have considered so far the “Advice view” over the FM business
coMponent as far as the structural and communicative aspects are concerned. We
continue analogously towards the consideration of the “ ” over the
coMponent. We proceed analogously and will not offer as detailed explanations as in
the previous paragraphs.

The built model (featuring the structural perspective) corresponding to the
contracting view is depicted in Fig. 7.16.

7.3 Applying SDBC 203

S02: Customer

S01: FINANCIAL MEDIATOR (Advice viwe)
A01: Advisor

A02: Match-maker

A04: Data Search & Processing Unit

A06: Company Profile Builder

A05: Subscription Processing Unit

S03: Insurance Company

A03: Request Processing Unit

T01
rq

T01
ac

T01
pm

T02
rq

T02
pm

T02
st

T04
ac

T03
ac

T04
pm

T04
st

T06
pm

T06
st

T06
rq

T06
ac

T05
pm

T05
st

T05
rq

T05
ac

T03
rq

T03
pm

T03
st

T04
rq

T02
ac

T01

T02

T03

T04

T06

T05

T01
st

002

001

Fig. 7.15 The FM business coMponent (advice view)—communicative aspect

204 7 Case Study and Examples

As seen from the figure, the depicted functionality of FM concerns also cus-
tomers and insurance companies—S02 and S03. There are internal actors as well:
A07 (Contractor) and A08 (Payment Controller).

As also seen from the figure, A07 could offer (T07) to S02 a contract (in doing
this, A07 is facilitated by a data-bank (DB04) containing contract templates that
concern particular companies). This could be realized only based on an approval
(T08) of such a contract, from the concerned insurance company.

It could be seen as well from the figure that S03 could deliver (T09) a (insurance)
financial product to S02. However, this could be done only based on a submitted
(to the company) customer-FM agreement (T10) based on an offer acceptance
(T11) by S02.

It could also be seen from the figure that in some situations, a (insurance)
company should realize payments to FM. Actually that is about any realized
(through FM) product delivery. FM should be notified about each realized (through
it) product delivery. An indication for this is the dotted line between T09 and A08.
A08 has (therefore) the information (it is stored in the data-bank DB05) about what
each (registered) company owes to FM. A08 is activated by itself periodically. Then
it is to handle the payments accordingly.

Fig. 7.16 The FM business coMponent (contracting view)—structural aspect

7.3 Applying SDBC 205

We go further (as we already did in the above paragraphs) for norm elaboration.
We will not do this for transactions T12 and T13 because they are straightforwardly
understandable. The derived norms are below:

EN7
Whenever S02 has requested contract.

If S03 has approved a contract proposed by A07.

Then A07.

Is obliged to deliver the contract.

EN8
Whenever S02 has requested contract.

If A07 has offered a contract not contradicting with the policy of S03.

Then S03.

Is obliged to approve the contract.

EN9
Whenever S02 has requested a financial product.

If A07 has submitted an agreement (about the product) concerning S02.

Then S03.

Is obliged to deliver the financial product.

EN10
Whenever S02 has requested a financial product.

If S02 has accepted a corresponding contract.

Then A07.

Is obliged to submit to S03 the appropriate agreement.

EN11
Whenever S02 has requested a financial product.

If A07 has offered a contract which does not contradict with S02’s interests.

Then S02.

Is obliged to accept the contract.

Based on the model represented in Fig. 7.16, we derive a model (Fig. 7.17)
representing the communicative view on the addressed business reality.

As seen from the figure, three sub-processes are to be considered: the first one
relates to the FM’s offering a contract to a customer, the second one relates to an
insurance company’s delivering a financial product, and the third one relates to the
FM’s payments handling. This is indicated by three starting points (on the figure):
003, 004, and 005, respectively.

As also seen from the figure, the dependence of T07 on the execution of T08, the
dependence of T09 on the executions of T10, and the dependence of T10 on the
execution of T11 are all reflected accordingly in the model.

206 7 Case Study and Examples

Therefore, we have considered so far both “Advice” and “Contracting” views
over the FM business coMponent as far as the structural and communicative aspects
are concerned.

We continue with consideration of the dynamic and data aspects.

T07 T12

T13

T09

T08

T10

T11

T07
ac

T07
rq

T09
ac

T09
rq

T12
rq

T12
pm

T12
st

T13
rq

T12
ac

T13
ac

T13
pm

T13
st

T09
st

T07
pm

T08
rq

T08
pm

T10
rq

T08
st

T10
pm

T10
st

T11
rq

T11
ac

T11
pm

T11
st

T10
ac

T09
pm

T08
ac

T07
st

003 004

005

S02: Customer

S02: Customer

A07: Contractor

A07: Contractor

A08: Payment Controller

S03: Insurance Company

S01: FINANCIAL MEDIATOR (Contracting View)

S02: FINANCIAL MEDIATOR (Contracting View)

Fig. 7.17 The FM business coMponent (contracting view)—communicative aspect

7.3 Applying SDBC 207

Financial Mediator: Dynamic and Data Aspects
As for the dynamic aspect, it is considered by reflecting the built (so far) models in
appropriate dynamic (work-flow) ones. We will use Petri Net (PN) notations (plus
norm elaboration that concerns the PN model—see Chap. 6).

An introduction to PN can be found in Shishkov [2] and also on how to derive a
PN model in SDBC. Thus, we will not explain in detail this derivation.

We will firstly build a model corresponding to the “Advice view.”
A basic source for building this dynamic model (which is represented on

Fig. 7.18) is the (already) constructed communicative one (Fig. 7.15).
As seen from Fig. 7.18, the two sub-processes, considered within the communi-

cative model, are reflected in the dynamic one (“Start 1”/”Start 2” from Fig. 7.18
correspond to starting points 001/002, respectively, from Fig. 7.15). This is logical
because such fundamental issues should not change depending on the particular
aspect view.

As it is also seen from the figure, the transactions (Fig. 7.15) are reflected in
corresponding activities. Those are, regarding the first sub-process:

– “FM: Generate standardized (stn.) specification.”
– “FM: Generate candidate-matches.”
– “FM: Perform match-making.”
– “FM: Deliver advice.”

and regarding the second sub-process:

– “FM: Build company profile.”
– “FM: Realize subscription.”

The activities “FM: Generate standardized (stn.) specification” and
“FM: Generate candidate-matches” are modeled through the useful “parallel
process” PN mechanism, reflecting the requirement (see Fig. 7.15) that they both
are completed before the activity “FM: Perform match-making” could be
realized.

We have considered also (as depicted in Fig. 7.18) some particularly important
(from the perspective of the work-flow of events) communicative acts:

– “Customer: Request advice” is a reflection of the “request” part of the transaction
T01. This is necessary to be considered as an activity within the PN model
because what actually needs to take place in triggering the flow of events is that
a customer requests to receive advice from FM.

– “FM: Process information” concerns alsoT01; handling an advice delivery should
include consideration and processing of the customer information (to be accord-
ingly distributed within FM). This has not been modeled as a separate transaction
because it concerns the “information” level, not the “essential” one (see Chap. 4).
However, from the perspective of the flow of events it should be considered.

– “FM: Realize data search” actually concerns the execution part of the transaction
T04. Again, because of its concerning the “information” level, it is not considered
as a separate transaction although it has to be considered within the modeled flow
of events.

208 7 Case Study and Examples

Start 1 Start 2

End 1 End 2

Customer (C): Request advice Ins. comp. (IC): Request subscription

FM: Check customer’s allowance FM: Check company’s allowance

C: Submit request specification IC: Submit (detailed) information

C not allowed IC not allowed

FM: Check submitted information FM: Check submitted information

information insufficient *3 information insufficient *3

FM: Build company profile

FM: Realize subscription

FM: Generate stn. specification FM: Realize data search

FM: Process information

FM: Apply procedures

FM: Generate candidate-matches

result unsatisfactory *10

FM: Apply criteria-related rules

FM: Perform match-making

result unsatisfactory *10

FM: Deliver advice

Fig. 7.18 The FM business coMponent (advice view)—dynamic aspect

7.3 Applying SDBC 209

– The same applies to “FM: Apply procedures.”
– “FM: Apply criteria-related rules” concerns in the same way the execution of the

transaction T02.
– “Ins. comp.: Request subscription” is a reflection of the “request” part of the

transaction T05. This is necessary to be considered as an activity within the PN
model because what actually needs to take place in triggering the flow of events is
that a company requests to be subscribed to FM.

As for the activities “FM: check customer’s allowance” and “FM: Check
company’s allowance” (Fig. 7.18), they reflect a requirement from the business
proposal, according to which: “A customer’s using FM (either for advice, or
contract, or product delivery) is to be limited to no more than five times per
month. As for (insurance) companies’ allowance, a company is allowed to subscribe
to FM only if it is licensed according to the Dutch financial laws.” Those are actually
informational (not essential issues) since they concern information checking. For this
reason, they are not reflected in the models depicted in Figs. 7.14 and 7.15. Since
they affect the flow of events nevertheless, they are to be reflected in the dynamic
model: the customer/company allowance should be checked. If a customer/company
would not be meeting the mentioned requirements, then the customer/company
should not be allowed to use the services of FM; hence a direct move to the “end”
point should take place.

As for the activities “C/IC: Submit request specification / (detailed) information”
and “FM: Check submitted information,” they concern informationally transactions
T01 and T05, respectively. Information aspects concerning those transactions are
not to be reflected at the essential level but have to be considered within the work-
flow of events. This is because the information providing (by a customer/company)
is a key activity from a work-flow perspective. This applies also for the check
whether the information provided is sufficient (if not, the particular customer/
company is to be asked to resubmit the information; the “information insufficient
�3” means that after 3 unsuccessful entries, the user is “kicked out”—analogous
indications are used also in “result unsatisfactory �10” in the same figure).

As for the “Contracting view,” we have derived a model (Fig. 7.19) in an
analogous way.

As for the norm elaboration which is suggested, we have derived several “infor-
mation” norms (attached to the PN models) consistent with the “essential” norms
(identified in the previous paragraphs). In their labeling we include “I” (from
“Informational”), “N” (from “Norm”), and a number. The norm (below) is an
example of such a norm, concerning the activity “FM: Check submitted information”
(we have assigned this activity a number, namely, number 12):

IN12
Whenever a customer has requested advice.

If she/he has submitted information to FM.

Then FM.

Is obliged to check the submitted information.

210 7 Case Study and Examples

And finally, regarding the validation of the derived dynamic models, we could
apply discrete event simulation, as studied in [2].

As for the data aspect, it is considered by reflecting the models built so far in
appropriate data ones. We will use theORM notations (see Chap. 6) for that purpose.

Start 3 Start 4

End 3

End 4

Customer (C): Request contract C: Request financial product

FM: Check customer’s allowance FM: Check customer’s allowance

C: Submit request specification C: Submit request specification

C not allowed C not allowed

FM: Check submitted information FM: Check submitted information

information insufficient *3 information insufficient *3

FM: Check contract availability

C: Consider contract detailsIC: Analyze submitted information

FM: Submit details to Ins. Comp. (IC)

IC: Approve contract

FM: Deliver contract

information unacceptable

C: Accept contract

FM: Submit agreement

IC: Deliver financial product

no contract available

contract unacceptable

Start 5

End 5

FM: Activate payment collections

FM: Claim payment

no payments due

IC: Realize payment

Fig. 7.19 The FM business coMponent (contracting view)—dynamic aspect

7.3 Applying SDBC 211

We will build a model corresponding to the “Advice view”. For the sake of
brevity, we will not elaborate in the current section the models concerning the
“Contracting” view.

Regarding the “Advice view,” we turn to the fundamental link between the
models (built so far) and the data aspect—those are the data-banks DB01, DB02,
and DB03 (Fig. 7.14). We make reflection towards data models by further modeling
those data-banks.

Hence, our “Advice view” (ORM-driven) data model of the FM business coM-
ponent should include elaborations of the data-banks DB01, DB02, and DB03.

Before proceeding to such an elaboration, we need to add some data input to the
business proposal information, which is as follows:

– We have selected for consideration the following seven (insurance) finan-
cial companies situated in the Netherlands: Icomp (situated in a Dutch city,
offering products as follows: 1011001 (those codes will be explained
further on)); OHRA (situated in Arnhem, offering products as follows:
0001010); AEGON (situated in Den Haag, offering products as follows:
1110111); Nationale-Nederlanden (situated in Rotterdam, offering prod-
ucts as follows: 1001110); Euro Lloyd Verzekeringen (situated in Amster-
dam, offering products as follows: 0100100); Unive Verzekeringen
(situated in Zwolle, offering products as follows: 1111110); and AXA
(situated in Utrecht, offering products as follows: 1101001). Details about
those companies have been summarized at:

http://www.sdbc.tk/icomp/detailsicomp.htm
http://www.sdbc.tk/ohra/detailsohra.htm
http://www.sdbc.tk/aegon/detailsaegon.htm
http://www.sdbc.tk/nn/detailsnn.htm
http://www.sdbc.tk/ev/detailsev.htm
http://www.sdbc.tk/uv/detailsuv.htm
http://www.sdbc.tk/axa/detailsaxa.htm

As for the possible customer needs (to be addressed by FM), they might be “auto
insurance,” “health insurance,” “life insurance,” and so on. Procedures (to be
considered concerning them) and their URLs are as follows:

auto-insurance Procedure 1 http://www.sdbc.tk/pr/pr1.htm

health-insurance Procedure 2 http://www.sdbc.tk/pr/pr2.htm

life-insurance Procedure 3 http://www.sdbc.tk/pr/pr3.htm

. . .

212 7 Case Study and Examples

http://www.sdbc.tk/icomp/detailsicomp.htm
http://www.sdbc.tk/ohra/detailsohra.htm
http://www.sdbc.tk/aegon/detailsaegon.htm
http://www.sdbc.tk/nn/detailsnn.htm
http://www.sdbc.tk/ev/detailsev.htm
http://www.sdbc.tk/uv/detailsuv.htm
http://www.sdbc.tk/axa/detailsaxa.htm
http://www.sdbc.tk/pr/pr1.htm
http://www.sdbc.tk/pr/pr2.htm
http://www.sdbc.tk/pr/pr3.htm

As for the criteria consideration (facilitated by procedures), which has already
been mentioned, the following procedures are to be used, corresponding to the four
criteria considered (pay-back, reliability, quality of service, insurance costs):

Pay-back Procedure PB

Reliability Procedure RB

Quality of Service Procedure QS

Insurance Costs Procedure IC

Regarding the product codes (used above already), we would like to make the
following elaboration: We have considered seven types of (insurance) financial
products, namely, Life-insurance-related products, Property-insurance-related
products, Mortgage-related products, Pension-related products, Travel-insur-
ance-related products, Personal-damage-insurance-related products, and Law-
yer-assistance-insurance-related products. We have assigned the following
numbers to those types of products:

Life ins.: 1

Pr. Ins.: 2

Mortg. : 3

Pens. : 4

Trvl. : 5

PersDmg.: 6

LwrAsstnc.: 7

Then we introduce a string of seven binary digits. Each position there corresponds
to the number of a particular type of product.

Thus, the code 0000100, for instance, should let us know that the particular
company (to which this code is attached) offers only travel insurances and related
(financial) products.

We have presented all this information in Fig. 7.20 concerning the data aspect of
the FM “Advice view.”

The top model on the figure concerns the data-bank DB01 (Fig. 7.14); the bottom
model concerns DB03. The model between them concerns DB02.

As seen from the figure, we have consistently conducted data elaboration on the
model represented in Fig. 7.14, considering adequately the factual case information.

Hence, we have considered so far both the “Advice” and “Contracting” views.
Regarding the “Advice model,” we have elaborated it in structural, communicative,
dynamic, and data aspects. Regarding the “Contracting model,” we have elaborated
it in structural, communicative, and dynamic aspects.

So, we have demonstrated business coMponents’ elaboration. In the following
sub-section, we will address the reflection of a business coMponent in the specifi-
cation of software.

7.3 Applying SDBC 213

1 2

1 2

F01

F02

1 2

F03

COMPANY

1 2 3

F04
NEED

PROCEDURE

LOCATION

DB01

<1> is cvrd by <2> at <3>
 auto-insurance Proc. 1 http://www.sdbc.tk/pr/pr1.htm
 health-insurance Proc. 2 http://www.sdbc.tk/pr/pr2.htm
 life-insurance Proc. 3 http://www.sdbc.tk/pr/pr3.htm

… … …

<1> is situated in <2>
 Icomp a Dutch city
OHRA Arnhem
AEGON Den Haag
Nationale-Nederlanden Rotterdam
Eurolloyd Verzekeringen Amsterdam
Unive Verzekeringen Zwolle
AXA Utrecht

PLACE

<1> offers <2>
 Icomp 1011001
OHRA 0001010
AEGON 1110111
Nationale-Nederlanden 1001110
Eurolloyd Verzekeringen 0100100
Unive Verzekeringen 1111110
AXA 1101001

PRODUCTS

<1>’s details are in <2>
 Icomp http://www.sdbc.tk/icomp/detailsicomp.htm
OHRA http://www.sdbc.tk/ohra/detailsohra.htm
AEGON http://www.sdbc.tk/aegon/detailsagn.htm
Nationale-Nederlanden http://www.sdbc.tk/nn/detailsnn.htm
Eurolloyd Verzekeringen http://www.sdbc.tk/ev/detailsev.htm
Unive Verzekeringen http://www.sdbc.tk/uv/detailsuv.htm
AXA http://www.sdbc.tk/axa/detailsaxa.htm

DETAILS

DB02

1

F05
CRITERION 2

DB03

PROCEDURE

<1> is to be approached using <2>
 Pay-back Procedure PB
 Reliability Procedure RB
 Quality-of-Service Procedure QS
 Insurance costs Procedure IC

Fig. 7.20 The FM business coMponent (advice view)—data aspect

214 7 Case Study and Examples

7.3.3 Towards Software Specification

In the previous sub-section, we have demonstrated the SDBC-driven elaboration of a
business coMponent. As mentioned at the beginning of the current section, in this
sub-section, we will demonstrate how a UML-driven [3] software specification
model could be derived on the basis of a business coMponent (in this particular
case, on the basis of the coMponent considered in the previous sub-section). As
already mentioned, the software specification model should reflect the business
coMponent. However, it is necessary that we also consider the user-defined require-
ments towards the software system-to-be. Said otherwise, this model must have two
inputs.

1. A business process modeling input coming through a business coMponent(s).
2. A requirements input coming through the specification of what the (future) users

of the software system-to-be require as automation.

We need, therefore, to add a requirements specification to the business proposal
done already in the current section:

According to the user requirements, the FM must be automated completely,
representing an ICT application which must be accessible via the Internet.
The application should have mechanisms for checking the data accuracy,
before performing match-making. Also, the application should be facilitated
by a database (containing all the information from data-banks DB01, DB02,
DB03, DB04, and DB05), located on a server in The Netherlands.

Therefore, in going through the further (software specification) steps, we will
consider both the input business coMponent (see Sect. 7.3.2) and the user-defined
requirements (see the above paragraph).

Use Case Derivation
Use cases are modeling constructs that serve to link the application domain
(the business world) to the software domain, regarding any UML-driven soft-
ware specification [4]. Hence, the first step in reflecting the FM business
coMponent into a (UML-driven) software specification model must be a use-
case derivation.

According to the SDBC application guidelines [2], a use-case derivation is to go
through three phases, namely:

• Derivation of essential use cases.
• Derivation of informational use cases.
• Derivation of UDR use cases (“UDR” stands for “User-Defined Requirements”).

7.3 Applying SDBC 215

ESSENTIAL USE CASES are pieces of functionality, reflecting actions from a
considered enterprise system, which are “essential,” as according to the enterprise
ontology terminology [5].

INFORMATIONAL USE CASES are pieces of functionality, reflecting actions
from a considered enterprise system, which are informational.

UDR USE CASES are pieces of functionality added on the basis of a consider-
ation of the user-defined requirements towards the software system-to-be.

The SDBC use case derivation concerning those three types of use cases is
depicted on Fig. 7.21 and will be followed further on.

Deriving Essential Use Cases
As according to [2], we derive the essential use cases (Fig. 7.22) by mapping them
straightforwardly from corresponding transactions (Figs. 7.14 and 7.16). As for the
UML use case diagram, the actors there reflect straightforwardly the external role
types (Figs. 7.14 and 7.16). The reason is that we are to automate FM completely.
Therefore the FM perspective is to coincide with the perspective of the software
system-to-be.

essential use cases

informational use cases

UDR use cases

Business CoMponents

user-defined requirements

UML use case diagram

Fig. 7.21 The SDBC use case derivation procedure

216 7 Case Study and Examples

Deriving Informational and UDR Use Cases
Based on the identification of the essential use cases and having as a source the
dynamic (PN) models (Sect. 7.3.2), where we have reflected the informational issues
related to the FM business coMponent, we identify the following use cases:

– “check allowance”
– “check submitted information”
– “process information”
– “apply search”
– “apply procedures”
– “apply rules”
– “submit information”
– “check contract availability”

<<include>>
submit agreement

handle contract acceptance

realize subscription

generate req.
specification

generate cand.-
matches

handle offer approval<<include>>

Offer contract

Company
Customer

create profile
<<include>>

deliver advice

<<include>> <<include>>

perform match-making

<<include>>

arrange payment

activate payment collections

<<include>>

Fig. 7.22 FM: Use case model (identification of the Essential use cases)

7.3 Applying SDBC 217

all of which reflecting straightforwardly corresponding PN processes/transitions
(Figs. 7.18 and 7.19). Next to that, we have added the use case:

– “request additional information”
as an extension to the use case “check submitted information,” since in some

situations (when the submitted information is insufficient), it might be necessary
that additional information is submitted.

We have also identified the following two UDR use cases reflecting the (above
specified) user-defined requirements:

– “check data accuracy”
– “add data in database.”

Thus, the complete UML use case model is depicted in Fig. 7.23 where, as seen,
the Informational use cases are backgrounded in gray and the UDR use cases are
backgrounded in black.

Regarding the use case diagram, there are two actors: Customer and (Insurance)
company. The Customer takes the decision, has the responsibility, and has the goal
of having an advice delivered and/or having a contract offered, and so on. The
Company (by this we mean the insurance company) in turn takes the decision, has
the responsibility, and has the goal of distributing its (financial) products, counting
for this on a mechanism that facilitates the process of adding data to the FM
database, establishing a subscription, and so on. The diagram contains 23 use
cases: “deliver advice,” “add data in database,” and so on. There are
15 <<include>> relationships (one of them concerns the use cases “deliver
advice” and “perform match-making,” indicating that the FM’s delivering an
advice to Customer requires performing a match-making (based on which the
advice would be specified)) as well as one <<extends>> relationship (in some
cases, as mentioned above, if submitted information is insufficient, before continu-
ing its operation further, FM would need the submission of some additional infor-
mation, so the basic use case is “check submitted information,” and it is extended
with “request additional information”).

218 7 Case Study and Examples

Elaboration
Based on the built UML use case model, it is possible to make further elaborations
concerning either particular use cases (specifying them in more detail) or the model
as a whole.

We will proceed with demonstrating how any particular use case of interest could
be adequately specified. We follow a use case specification mechanism inspired by
[6, 7]. Below we will just demonstrate the specification of a use case from the model
already built (see Fig. 7.23).

We have selected, for illustrative purposes, the use case “add data in database”
and the mentioned investigation is applied to it—see Fig. 7.24 (only those extensions
related to Activity 6 are depicted).

The use case is written at “system” scope (as opposed to “enterprise” scope) since
it describes an interaction with a computer system. The indicated “summary” level

<<include>>

submit agreement

realize subscription

generate req.
specification

generate cand.-
matches

handle contract approval
<<include>>

offer contract

Company
Customer

build profile

<<include>>
deliver advice

<<include>>
<<include>>

<<include>>

perform match-making

<<include>>

arrange payment

activate payment collections

<<include>>

request additional
information

<<extends>>

check allowance

<<include>>

process inf.

submit inf.
<<include>>

check submitted information

<<include>>

check contract availability

handle contract acceptance

apply rules

<<include>>

apply search

<<include>>

<<include>>

apply proced.

check data accuracy

add data in database

Fig. 7.23 FM: Thorough use case model

7.3 Applying SDBC 219

means that the use case is long running (executed over months or years), showing the
context in which the user goals operate.

For further (dynamic) elaboration (and visualization) of the considered use case
(“add data in database”), a UML activity diagram [3] could be straightforwardly
derived based on the main success scenario + extensions (see Fig. 7.24). As seen
from this figure, there are nine core activities (complemented with extensions), in the
mentioned use case. Some of them are shown in Fig. 7.25, as an overallUML activity
diagram.

Extensions

…
6a. The data from the form
submitted by Company is
incomplete. => FM asks
Company to submit again the
form and provide complete
information, indicating what is
incomplete in the submitted
form. Go: 5.

6b. The data from the form
submitted by Company is
irrelevant with respect to FM’s
scope. => FM informs
Company that the provided data
is inadequate and cancels
service. Go: END.

…

 Goal in context: Company’s information is added in FM’s database

Scope: System
Level: Summary

 Use case: “add data in database”

Primary actor (User): Company

Stakeholders and Interests:
- Company – wants its data to be correctly added in FM’s database
- Owner of FM – wants to be compensated for running FM
- The Public – wants to be sure that the data in FM’s database is correct

Precondition: none

Minimal guarantee:
Company is in a position to provide correct data

 Trigger: Company decides to add information in FM’s database

Main success scenario

1. COMPANY: decides to subscribe and add data in FM’s
database (and initiates contact with FM).

2. FM: provides initial information and requires ID data
and credit card number (as a guarantee for the future).

3. COMPANY: provides ID data and credit card number.

4. FM: initiates credit card authorization procedure and lets
Company log on.

5. COMPANY: enters FM’s system and submits a form.

6. FM: checks the data provided and asks for Company’s
confirmation.

7. COMPANY: confirms its will the data to be saved.

8. FM: saves the data.
.

9. COMPANY: logs out.

Scenario’s END reached.

Fig. 7.24 Specification of the use case “add data in database”

Decision to add data in database

…

Data validation

Confirmation

Log out of COMPANY

[Data incomplete]

[Data OK]

…

[Data irrelevant]

1

7

9

6

Fig. 7.25 UML activity diagram for the use case “add data in database”

220 7 Case Study and Examples

As studied in [2], based on such a dynamic model, it is straightforward to proceed
to computer simulation. We will not demonstrate this in the current chapter.

As mentioned above, one might need to elaborate either particular use cases,
specifying them in more detail, as demonstrated above, or the model (Fig. 7.23) as a
whole. In elaborating the model as a whole, one could take either a structural
perspective or a dynamic perspective.

The PN business process models (see Figs. 7.18 and 7.19) can be used as a basis
for deriving a dynamic elaboration of the overall use case model (Fig. 7.23).
However, in realizing this, one should add accordingly information concerning the
user-defined requirements because this information is certainly missing in the
business process models.

As for the structural elaboration of the overall use case model, it could be
conducted by reflecting both the structural business process models (Figs. 7.14
and 7.16) and the overall use case model (Fig. 7.23) into UML class diagram(s)
[3]. We will show below only a partial UML class diagram (concerning just the use
cases “ ” and “ ”; we reflect also the two profile types,
as from the initial case information). The UML class diagram is depicted in
Fig. 7.26:

In summary, so far in the current chapter, we have demonstrated, by means of the
Icomp case, how starting from a case briefing and coming through enterprise models
software specification could be derived.

Profile

id: String
 kind: String
 memory: Number

 create ()
 destroy ()

Subscription

 date: Date
 id: String

 create ()
 destroy ()

Standard Profile Golden Profile

Fig. 7.26 FM: Partial UML class diagram

7.3 Applying SDBC 221

7.4 Enabling Service Orientation

The service-oriented architecture and its strengths have been discussed in Chap. 5.
In the current section, we will demonstrate how the SDBC modeling output can be
used as a basis for deriving service-oriented specifications, such that the resulting
software is capable of being delivered to users by means of technology-enabled
services. In order to accommodate service orientation, we would need partial
refactoring of some of the models, presented in the previous sections of the current
chapter. Further, we are offering only a partial illustration of the above because the
goal is to just demonstrate how SDBC models could accommodate service
orientation.

We firstly take a partial view and do a slight simplification with regard to the
model presented in Fig. 7.14: We represent the Customer, Advisor, Match-maker,
Request Processing Unit (we call it “Request handler,” for short), and Data Search
and Processing Unit (we call it “Data searcher,” for short), as just entities and put
their corresponding labels in named boxes, as follows:

• Customer (C).
• Advisor (A).
• Match-maker (MM).
• Request handler (R).
• Data searcher (D).

Further, we consider the transactions as just interactions that we represent as
connections between the boxes featuring entities. The small gray boxes, one at the
end of each connection, indicate the executor role (as according to LAP and
enterprise ontology—see Chap. 4) of the connected entities, similarly to the model
represented in Fig. 7.14. The connections indicate the need for interactions between
entities, in order to achieve the business objective of financial mediation; with each
connection, we associate a single interaction (i):

• C-A (i1).
• A-MM (i2).
• MM-R (i3).
• MM-D (i4).

Further,C is positioned in the environment of the financial mediation system FM,
and A,MM, R, and D together form the FM system. Through i1, FM is related to its
environment (represented by C). Thus, from the perspective of C, there is no
difference between FM and A.

This all is depicted as a business entity model in Fig. 7.27a.

222 7 Case Study and Examples

What we have illustrated in Fig. 7.27b is the external behavior of FM, at a high
level of abstraction, and then we move to the abstraction level which concerns the
internal behavior of FM. With respect to the external behavior model, as already
mentioned, it should envision the interaction between the customer (C) and the
system (FM) and is represented by a single action (expressed by an oval) in
Fig. 7.27b. The depicted action has also attributes (put in a box) elaborating the
result of the action.

This single action i corresponds to the business objective of the FM system: to
serve the request (r) of a customer, by giving advice (a) that satisfies certain criteria
(F(r,a) ¼ true).

Regarding the internal behavior model, it should reflect the interactions between
the entities of the system, as exhibited in Fig. 7.28. This model shows how the
interaction i1 between the Customer C and the Advisor A is made dependent on
other interactions (i2, i3, and i4) in the system. Each interaction between two entities
(e.g., C and A) represents a request (e.g., from C to A, of type RequestC-A) and
advice (e.g., from A to C, of type AdviceA-C), where the advice satisfies certain
criteria (e.g., as expressed by the truth value of function FA).

Assuming that the models of Figs. 7.27b and 7.28 represent the same request
from the customer (r ¼ r1) and the same advice to the customer (a ¼ a1), it follows

i3

i4

i1

FM
i2

i

Request r,
Advice a |
F(r,a) = true

C

a) b)

A MM
R

D

Fig. 7.27 (a) FM: business entity model. (b) FM service behavior represented by a single action
(Source: [8], p. 90; ©2006, IEEE, reprinted with permission)

i1i2

RequestMM-D r4
AdviceD-MM a4
FD(r4,a4) = true

RequestMM-R r3
AdviceR-MM a3
FR(r3,a3) = true

RequestC-A r1
AdviceA-C a1
FA(r1, a1, i2.a2) = true

RequestA-MM r2
AdviceMM-A a2
FMM(a2, r2, i3.a3, i4.a4) = true

i4

i3

Fig. 7.28 Interactions in decomposed FM system, implementing the FM service behavior (Source:
[8], p. 90; ©2006, IEEE, reprinted with permission)

7.4 Enabling Service Orientation 223

that F(r,a) ¼ true iff (FA(r1, a1, i2.a2) ¼ true and FMM (a2, r2, i3.a3, i4.a4) ¼
true and FR (r3,a3) ¼ true and FD (r4,a4) ¼ true).

We now need to further elaborate this model, in order to achieve a better link to
relevant real-life enterprise aspects, and we do this by considering the transaction
concept—as discussed already in previous chapters, this would allow the modeling
of failure scenarios (not only success scenarios). Further, we acknowledge the
essential role of real-life communication and coordination in an enterprise system.
Hence, we apply the transaction pattern, expressing it using a notation well-suited
for SOA, namely, ISDL [8].

Figure 7.29 exhibits the generic process of an interaction reflected through the
transaction pattern (see Chap. 6) and modeled at two different abstraction levels.
At the highest level, the interaction is represented by a single action which models
the production fact that is established. Characteristics of the production fact are
modeled using the information attribute. At a lower abstraction level, the interac-
tion’s communication aspects are modeled conforming to the transaction pattern
(see Fig. 6.6). Separate actions are used to model the interaction’s request, promise,
state, accept and decline, and the production act. It should be noted that actions IdEx
and IdIn correspond to the decline of an interaction followed by a unsuccessful
negotiation; and actions IpEx and IaIn represent the promise and acceptance, respec-
tively, which are followed by a successful negotiation.

Hence, if we would need to go to a still lower abstraction level, compared to the
one in the behavior model (Fig. 7.28), we may go for “zooming in” with regard to
each of the four interactions, represented in the model, such that we arrive at a
detailed behavior aspect model of the FM, as shown in Fig. 7.30:

Data types

Request represent the request
Pfact represent the production fact
Statement represent the statement
St(..) function rendering

statement of some
production fact

I = interaction
Pa = Production act
r = request
p = promise
d = decline
s = statement
a = accept
In = Initiator
Ex = Executor

IsEx

IdInIdEx

IpExIrIn IaInPa

I

Request r
Request r
[r = IrIn.r]

Pfact f Statement s
[s = St(Pa.f)]

Statement s
[s = IsEx.s]

Pfact f

Fig. 7.29 IDSL interpretation of the transaction pattern (Source: [8], p. 91;©2006, IEEE, reprinted
with permission)

224 7 Case Study and Examples

It should be noted that the number labels of production acts (gray ovals in the
figure) correspond to the interactions i1–i4 (Fig. 7.28). Further, following one
instance of the behavior, we have two possible outcomes, namely, successful and
failure outcomes.

Based on the detailed behavior model and through simplification, we arrive at a
service-oriented model (Fig. 7.31): we group together coordination acts based on
their relations to production acts. Furthermore, we straightforwardly reflect (from
the detailed behavior model) the information on how those groups relate to each
other; we use an alternative way to model the decline acts: a decline-after-request
act and a decline-after-state act are represented by a special value of an informa-
tion attribute (e.g., Result r I r ¼ “decline”) of the promise and accept acts,
respectively. Information attributes of the act and constraints on the values of
these attributes are not represented in the figure. The model, presented in this way,
defines services rooted in the transaction pattern, consistently with the achieved
modeling output.

rC pA 1

dA

pMM

dMM

rMM pR

dR

rMM pD

dD

rA

sA

dCsMM
aA

dA

2

sR aMM

dMM

3

sD aMM

dMM

4

success
aC

failure

start

Fig. 7.30 Detailed behavior aspect model of the FM (Source: [8], p. 91; ©2006, IEEE, reprinted
with permission)

7.4 Enabling Service Orientation 225

Thus, the business entities represented in Fig. 7.27a point to the (application)
components underlying the services represented in Fig. 7.31. This assumes the
easiest decision: to do a one-to-one mapping between the business entities
(Fig. 7.27a) and the application components (it was implicit that the business entitiy
model was straightforwardly mapped to an application componentsmodel where the
application components correspond to the business entities, and this is how we have
reached in the end the service model represented in Fig. 7.31). Nevertheless, such a
one-to-one mapping between the two has the disadvantage that the identified ser-
vices are tightly coupled. This means that there is a dependency of the service
provided by one component on services provided by other components (as seen
from Fig. 7.31). We argue that a solution would be to introduce an additional
application component, called orchestrator, that has the task of coordination—
inspired by service orchestration (Fig. 5.4).

The orchestrator is an application-specific component, as the coordination is
application-specific. The (subordinate) services, however, which are coordinated
by the orchestrator, may be useful for many different types of applications. Their
descriptions may therefore be published through a public or corporate registry, such
that they can be discovered and selected for invokation by an orchestration compo-
nent. Related to its coordination tasks, the orchestrator could sometimes supply to
one service the result of another service, if this is necessary for the service to perform
its task.

a1

r4 p4

r3 p3 s3 a3

Service A

r1 p1 s1

r2 p2 s2 a2

Service MM

Service R
s4 a4

Service D

Fig. 7.31 Refined interactions in decomposed FM, implementing the FM service behavior (Source:
[8], p. 92; ©2006, IEEE, reprinted with permission)

226 7 Case Study and Examples

Figure 7.32a depicts the orchestrator’s (O) desired role. It concerns the
interactivities between the “original” components (reflecting corresponding business
entities) as well as coordination. The orchestrator mediates not only the interaction
between the customer (C) and the system but also all interactions between compo-
nents inside the system.

For this reason, in order to enable orchestration, we need to firstly refine the
business entity model (Fig. 7.27a), by reflecting there the orchestration entity
(colored gray in Fig. 7.32b) that mediates the interactions among entities.

Then in a similar way (see above) we can reflect this in a behavior model and in
the end in a service model.

Thus, we have conducted an enterprise re-design in order to facilitate the
accommodation of service orientation in the context of SDBC modeling.

7.5 Other Examples

Through the Icomp case, we have demonstrated how enterprise engineering and
software engineering could be brought together, inspired by SDBC, such that enter-
prise modeling and application modeling are adequately carried out (and alignment
between the two is supported) as well as the (possible) move towards service orienta-
tion. In this, we have considered requirements but not so explicitly and we have
assumed a top-down approach—starting from high-level business information and
moving to lower-level software specifications. Hence, further elaboration is needed
with regard to the above and we provide it by considering two illustrative examples,
namely, (1) the eVoting example where we explicitly consider requirements and (2) the
Border Security example where we take a middle-out (rather than top-down) approach.
Those two examples will be briefly considered in the following sub-sections.

a) b)

MMA

D

R

O

C

C i1a i1b

i2ai2b

i3a

i4a

i3b

i4b

O

MM

D

R

A

Fig. 7.32 (a) Desired role of the orchestrator. (b) The refined entity model (Source: [8], p. 92;
©2006, IEEE, reprinted with permission)

7.5 Other Examples 227

7.5.1 The eVoting Example [9]

We consider identifying actor-roles (AR) and corresponding relations (R) in the
context of a typical Voting scenario:

FIRSTLY: ARs

AR1—CAMPAIGNER: the one(s) campaigning in favor of a particular policy/party/
vision and influencing the people in that way.

AR2—VOTER: the one(s) voting for parliament/president/etc., and thus executing
basic rights in the country.

AR3—PRIMARY COUNTER: the one(s) counting the votes in a particular voting
station.

AR4—SECONDARY COUNTER: the one(s) aggregating the final result, by putting
together the voting results from the voting stations.

AR5—ORGANIZER: the one(s) organizing the voting process and supporting all
abovementioned accordingly.

AR6—CONTROLLER: the one(s) controlling all abovementioned.
7—SYSTEM: even though this is not an actor-role, we have to somehow model

abstractly the “place holder” where all voting “goes.”

SECONDLY: Rs

AR1-AR2 suggesting that the CAMPAIGNER is promoting political messages that
are supposed to influence the VOTER.

AR2-SYSTEM suggesting that the VOTER provides essential input to the SYSTEM,
namely, the vote.

SYSTEM-AR3 suggesting that the SYSTEM has impact with regard to each voting
station (said otherwise, each voting station has its “own” SYSTEM), by provid-
ing the information needed by the PRIMARY COUNTER for calculating the
station results.

AR3-AR4 suggesting that the SECONDARY COUNTER needs the PRIMARY
COUNTER’s feedback from each voting station, in order to aggregate the overall
voting results.

AR5-ALL suggesting the ORGANIZER of the elections has relationship with all
abovementioned ARs and the SYSTEM as follows: creating conditions for the
CAMPAIGNER to do promotion adequately; establishing that the rights of the
VOTER are guaranteed; establishing rules and mechanisms according to which
the PRIMARY COUNTER and the SECONDARY COUNTER should fulfill
their corresponding tasks; and establishing and running the voting SYSTEM.

A6-ALL suggesting that the CONTROLLER should execute effective control
concerning all abovementioned ARs and the SYSTEM, as a guarantee that the
voting is fair.

This is the basis for our conceptual requirements-driven model; further, we
abstract from several issues, such that we do not consider an AR pointing to the
one(s) (outside the CAMPAIGNER) who may be somehow influencing the decision

228 7 Case Study and Examples

of the VOTER—this could have been modeled as an AR by itself but we have not
done this because of the lack of technical relevance.

We present our conceptual model in Fig. 7.33, and we use simple and intuitive
graphical notations: the labels of the ARs are put inside boxes and the SYSTEM is
presented as an oval, while the Rs are represented as lines (the arrows indicate who is
ADDRESSED in the relationship—e.g., if the CAMPAIGNER is influencing the
VOTER, then the arrow should be at the VOTER end because the VOTER is
addressed by this).

As seen on the figure, we have not only drawn arrows at each line (lines
representing Rs) but we have also added labels there: the CAMPAIGNER would
influence the VOTER, the ORGANIZER would enable the SYSTEM, and so on.

Further, we refer to particular public demands with regard to a possible intro-
duction of eVoting, and in this case, the demands are:

• Secrecy of vote, possibly achieved through anonymous credentials, such that not
even the system “knows” how a person has voted.

• Cost adequacy, possibly achieved through smart decisions rather than posh
hardware that would generate future “dependencies.”

• Guarantee against violations with regard to the way the system works.
• Guarantee against manipulations of the final voting results.
• Support of secure communication between the computers and the servers that is

to be possibly cryptography-enriched.
• Controllability—any third parties should be able to “verify” that the system is

working properly.
• Guarantee that each vote has been counted and that the person who had voted

would not be allowed to vote again.
• Fault reaction is to be established as a guarantee that even if the system (partially)

crashes, it would recover and this would not affect its storage and processing
functions.

• Ease of use even by persons who are not of high computer literacy.
• No need for extra qualification of the election authorities.

S Y S T E M

CAMPAIGNER

VOTER

PRIMARY COUNTER

SECONDARY COUNTER

ORGANIZER

CONTROLLER

influence

feed (by voting

enable

co
nt

ro
l

provide feedback

feed (by voting output)

Fig. 7.33 The voting
conceptual model (Source:
[9], p. 191; ©2016,
SCITEPRESS, reprinted
with permission)

7.5 Other Examples 229

We then elaborate those public demands:
With regard to the SECRECY OF VOTE demand, there are two things: (1) it is to

be guaranteed that nobody can know how a person has voted and (2) it is to
be ensured that the person has been marked as “voted,” such that she/he would not
go to vote again.

With regard to the COST ADEQUACY demand, the only way of avoiding the
“big expensive black box” is to conceptualize the eVoting process such that it is
known what technology is needed for what.

A way to guarantee against VIOLATIONS with regard to the way the system is
working is to present the user with a simple and exhaustive list of
options, with no possibilities to do anything outside the presented options.

A way to guarantee against MANIPULATIONS OF THE FINAL RESULTS is to
keep things at two levels, such that the Primary Counters generate the
“raw” results based on which the Secondary Counters generate the
final results and this all stays stored with possibility to check it in
the future.

The COMPUTER-SERVER communication is to be such that there is a guaran-
tee that a “packet” sent by a computer is received by the server
and by no one else; this is a matter of organization and also a matter of
networking protocols.

CONTROLLABILITY can be partially achieved if all intermediary
results get transparent, and then the only remaining challenge is how
are the “raw” results generated.

FAULT REACTION is a matter of recoverability, and this is a
non-functional concern that has to be addressed from a functional perspective
nevertheless.

EASE OF USE is a matter of design.
The issue on QUALIFICATIONS needed for being involved in eVoting is a

matter of legislation; as it was mentioned before, sufficient IT literacy among the
population is assumed.

We then derive (straightforwardly) semiotic norms (see Chap. 4) corresponding
to the elaborated demands. We take just for the sake of illustrating this one eVoting
public demand, and we reflect it in a specified requirement expressed as a norm. We
take the SECRECY OF VOTE elaborated demand and we derive the norm
accordingly:

OS Norm 1:
Whenever John has voting rights
if John is executing eVoting
then the eVoting system
is (1) obliged to mark John as “voted”
is (2) prohibited from recording the way John has voted.

Based on OS Norm 1, we derive a workflow pattern expressed with the notations
of UML activity diagram [3]—see Fig. 7.34:

230 7 Case Study and Examples

That is how we would methodologically derive user-defined requirements, in
support of SDBC modeling.

7.5.2 The Border Security Example [10]

The Border Security domain is characterized by MANY possible-to-occur situations
that concern the monitoring of illegal migration, combatting related crime, and so on,
and there is a need for context-awareness and better interoperability with regard to
the existing (national) border security platforms and systems. At the same time, we
realize that it is not straightforward applying context-aware solutions in the Border
Security domain. Hence, research is needed on Context-Aware Border Security
(CABS) control since it would be difficult for a country to supply persons and
equipment at every potentially risky border point. A CABS system would hence
guarantee adaptability with regard to the situation at hand—persons and equipment
would only be deployed at the spot where they are needed and in the moment when
they are needed. In principle, the modeling of systems, such as a CABS system,
should not be expected to differ a lot from the way of modeling any other system,
using SDBC, as long as context-awareness has adequately been addressed (see
Chap. 3). Still, the Border Security domain assumes greater complexity because of
numerous possible situations and prediction difficulties. Further, what is observed at
the border is a “mixture” of personnel and devices, subject to numerous rules and
“functionalities”, and it is not trivial approaching this in terms of technology-
independent models, automation, and so on. This is because some (intuitive) tasks
can only be realized by humans while other (surveillance) tasks can only be realized
by devices, to give just an example. Hence, we need to “adapt” SDBC to the
peculiarities of the Border Security domain. SDBC goes “top-down” from a “bird-

person is
asking to vote

person is voting

voting rights?

person is marked
“voted”

vote counted,
person not associated

yes

no

Fig. 7.34 Workflow pattern
corresponding to OS
Norm 1 (Source: [9], p. 193;
©2016, SCITEPRESS,
reprinted with permission)

7.5 Other Examples 231

view” enterprise model through delimitation with regard to the software system-to-
be to technical (software) specifications. Nevertheless, for specifying a CABS sys-
tem, we propose to go “middle-out,” as exhibited in Fig. 7.35, and we adapt the
application of SDBC accordingly.

On the figure, “GM” stands for “general model”, “CM” stands for “conceptual
model”, “ITM” stands for “IT model”, “HM” stands for “humans model”, “AM”

stands for “aspect model”, and “DA” stands for “data analytics”.
We propose to go middle-out because in the Border Security domain, it seems

most pragmatic to start with modeling “what is there” (a mixture of person-tasks,
device functionalities, and so on to be seen at the border)—such a model we call a
general model (GM). No other model that would inevitably be abstract would allow
for grasping everything correctly and also communicating it adequately with all
relevant stakeholders—this is claimed to be of great importance particularly for the
Border Security domain. Just as an example of GM, we consider a typical land
border point and we take an “imaginary” view on things that may be seen at a border
point—see Fig. 7.36:

Fig. 7.35 CABS—way of
modeling (Source: [10],
p. 209; ©2016,
SCITEPRESS, reprinted
with permission)

232 7 Case Study and Examples

As seen from the figure, there is a border fence and border police officers
patrolling along the fence; there are cameras attached to the fence, which realize
crowd monitoring and there are mobile cameras attached to drones; there are
fingerprint devices that can be used by police officers for personal identification;
and there are (networked) computers running and streaming all sensor raw data, and
also processing it by applying data fusion algorithms (for example), allowing
“higher-level” reasoning, and so on. Hence, we claim that such a model should be
the starting point in specifying a CABS system.

We use the GM as basis for deriving a CABS-related classification of concepts—
this we call a conceptual model (CM); see Fig. 7.35. This way of “arriving” at the
CM guarantees that our further system development activities would be “grounded.”
The human agent concept and the device concept appear to be essential within
the CABS conceptual model (Fig. 7.37). That is because the CABS general model
suggests that anything that can be observed at the border either relates to a personal
(human) role or to a functionality delivered by a device (equipment). Further, among
the human agents at the border (besides the persons who are crossing the border and
are thus left outside the scope of the CABS system) are customs officers and
police officers, while among the devices one could observe at the border are
sensors, computers, and vehicles. Sensors in turn could be audio sen-
sors and video sensors, while computers could be servers and personal
computers, and vehicles could be cars and drones and so on. This is just as an
example on how a CM can be derived, based on a GM.

Fig. 7.36 A GM example (Source: [10], p. 209; ©2016, SCITEPRESS, reprinted with permission)

7.5 Other Examples 233

Such a conceptual model is the necessary starting point in an SDBC software
development or just for building an enterprise model (see the previous sections of
the current chapter).

Hence, we demonstrated that not only top-down modeling but also middle-out
modeling can be supported by SDBC.

* * *
IN SUMMARY, in the current chapter, by considering one case study and two

illustrative examples, we demonstrated how enterprise engineering and software
engineering can be brought together, supported by SDBC and enriched by an explicit
consideration of user-defined requirements, and also how this can be extended to
accommodate service-orientation and middle-out modeling.

References

1. Yin R (1994) Case study research: design and methods. Sage, Thousand Oaks
2. Shishkov B (2005) Software specification based on re-usable business components. Delft

University Press, Delft
3. UML, The unified modeling language. http://www.uml.org
4. Shishkov B, Dietz JLG (2005) Applying component-based UML-driven conceptual modeling

in SDBC. In: Proceedings of the 7th International Conference on Enterprise Information
Systems (ICEIS), 24–28 May 2005. SCITEPRESS, Miami, FL, USA

5. Dietz JLG (2006) Enterprise ontology, theory and methodology. Springer, Heidelberg
6. Cockburn A (2000) Writing effective use cases. Addison-Wesley, Boston
7. Shishkov B, Dietz JLG (2003) Deriving use cases from business processes, the advantages of

DEMO. In: Proceedings of the 5th International Conference Enterprise Information Systems
(ICEIS), 23–26 April 2003. SCITEPRESS, Angers, France

8. Shishkov B, Van Sinderen M, Quartel D (2006) SOA-driven business-software alignment. In:
Proceedings of the ICEBE’06 IEEE international conference on e-business engineering, IEEE

9. Shishkov B, Janssen M (2016) Towards a service-oriented architecture for eVoting. In: Pro-
ceedings of the 6th international symposium on business modeling and software design
(BMSD), 20–22 June 2016. SCITEPRESS, Rhodes, Greece

10. Shishkov B, Mitrakos D (2016) Towards context-aware border security control. In: Proceedings
of the 6th international symposium on business modeling and software design (BMSD),
20–22 June 2016. SCITEPRESS, Rhodes, Greece

human agent

entity

device

customs
officer

police
officer

... vehiclecomputer ...sensor

video
sensor

audio
sensor

dronecar

personal
computer

server

Fig. 7.37 Deriving a conceptual model (Source: [10], p. 210; ©2016, SCITEPRESS, reprinted
with permission)

234 7 Case Study and Examples

http://www.uml.org

	Prologue
	Contents
	Chapter 1: Introduction
	1.1 Retrospection
	1.2 Enterprise Engineering (EE), Software Engineering (SE)
	1.3 Challenges
	1.4 Enterprise Information Systems (EIS)
	1.5 Essential Concepts
	1.6 The Modeling Approach
	1.7 Outlook
	References

	Chapter 2: Systems
	2.1 The System Concept
	2.2 Enterprise Systems
	2.3 Enterprise Information Systems
	2.4 Ontological Systems and Function
	2.4.1 Construction vs. Function

	2.5 Normalized Systems
	References

	Chapter 3: System Environment and Context-Awareness
	3.1 System Behavior Perspectives
	3.1.1 Self-Managing Context-Aware Systems (SMCAS)
	3.1.2 User-Driven Context-Aware Systems (UDCAS)
	3.1.3 Value-Sensitive Context-Aware Systems (VSCAS)

	3.2 Context-Awareness
	3.3 Context-Aware Applications
	3.4 Context Analysis, Context States, Occurrence Probabilities, and Context Parameters
	3.5 Context-Awareness and Classification
	References

	Chapter 4: Social Theories
	4.1 Human Relativism and TOA
	4.1.1 Human Relativism
	4.1.2 TOA

	4.2 LAP and Enterprise Ontology
	4.2.1 LAP
	4.2.2 Enterprise Ontology

	4.3 Organizational Semiotics
	4.3.1 Semantic Analysis
	4.3.2 Norm Analysis

	References

	Chapter 5: Computing Paradigms
	5.1 Component-Based Development
	5.1.1 Component Implementation Models
	5.1.2 Component-Based Development Methods

	5.2 Service-Oriented Architecture
	5.2.1 SOA Foundations
	5.2.2 Web Services

	5.3 Model-Driven Engineering
	5.3.1 Model-Driven Architecture
	5.3.2 Meta-Object Facility

	5.4 Cloud Computing
	5.5 Aspect-Oriented Software Development
	References

	Chapter 6: The SDBC Approach
	6.1 Outline and Concepts
	6.2 Elaboration
	6.3 The SDBC Design Process
	6.4 The SDBC Notations
	References

	Chapter 7: Case Study and Examples
	7.1 Background
	7.2 Icomp
	7.3 Applying SDBC
	7.3.1 From the Case Information to Business CoMponents
	7.3.2 Elaborating a Business CoMponent
	7.3.3 Towards Software Specification

	7.4 Enabling Service Orientation
	7.5 Other Examples
	7.5.1 The eVoting Example [9]
	7.5.2 The Border Security Example [10]

	References

