
Enforcing Context-Awareness
and Privacy-by-Design in the Specification

of Information Systems

Boris Shishkov1,3(&) and Marijn Janssen2

1 Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Sofia, Bulgaria

2 Faculty of Technology, Policy, and Management,
Delft University of Technology, Delft, The Netherlands

M.F.W.H.A.Janssen@tudelft.nl
3 Institute IICREST, Sofia, Bulgaria
b.b.shishkov@iicrest.org

Abstract. Networked physical devices, vehicles, home appliances, and other
items embedded with electronics, software, sensors, actuators, and connectivity,
allow for run-time acquisition of user data. This in turn can enable information
systems which capture the “current” user state and act accordingly. The use of
this data would result in context-aware applications that get fueled by user data
(and environmental data) to adapt their behavior. Yet the use of data is often
restricted by privacy regulations and norms; for example, the location of a
person cannot be shared without given consent. In this paper we propose a
design approach that allows for weaving context-awareness and privacy-by-
design into the specification of information systems. This is to be done since the
very early stages of the software development, while the enterprise needs are
captured (and understood) and the software features are specified on that basis.
In addition to taking into account context-awareness and privacy-sensitivity
these two aspects will be balanced, especially if they are conflicting. The pre-
sented approach extends the “Software Derived from Business Components”
(SDBC) approach. We partially demonstrate our proposed way of modeling, by
means of a case example featuring land border security. Our proposed way of
modeling would allow developers to smoothly reflect context and privacy fea-
tures in the application design, supported by methodological guidelines that
span over the enterprise modeling and software specification. Those features are
captured as technology-independent societal demands and are in the end
reflected in technology-specific (software) solutions. Traceability between the
two is possible as well as re-use of modeling constructs.

Keywords: Enterprise modeling � Software specification
Context-awareness � Privacy

1 Introduction

We observe increasing public demands for resilient Enterprises Information Systems
(EIS) that are not only effective and efficient but also compliant with societal
(legislation-related) demands, in the fields of privacy, security, transparency, and so on

© Springer International Publishing AG, part of Springer Nature 2018
B. Shishkov (Ed.): BMSD 2017, LNBIP 309, pp. 87–111, 2018.
https://doi.org/10.1007/978-3-319-78428-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78428-1_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78428-1_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78428-1_5&domain=pdf

[28]. EIS in turn often count on run-time environmental information, such that they are
capable of adapting their behavior accordingly. Helpful in this respect are the latest IoT
(Internet-of-Things) developments: networked physical devices, vehicles, home
appliances, and other items embedded with electronics, software, sensors, actuators,
and connectivity, allow for run-time acquisition of user data [15]. Hence, empowered
by sensor technology and connectivity, EIS can “know” what is going on around and
use this information for optimizing their internal processes, for maximizing the
user-perceived effectiveness, and for analyzing relevant data. For this, EIS need support
from context-aware applications (they are EIS-internal), for the sake of delivering to
the end user services that are adequate with regard to his or her situation at the moment
[30]; context-aware applications get fueled by user data from emails, chat messages,
sensors, and so on. Nevertheless, those innovative features lead to an increased com-
plexity with regard to the underlying software; this in turn often assumes new risks
[15], including risks that concern privacy [28]: for example, the European data pro-
tection act requires that the location of a person cannot be shared without given
consent. Hence, more advanced modeling methods and techniques may be necessary,
especially in the area of EIS, such that: (i) enterprise needs are aligned with software
specifications; (ii) context-awareness is achieved but also balanced with privacy (it is
to be noted that because of the limited scope of this paper, we only focus on
context-awareness as an optimization strategy and we only focus on privacy as a
relevant societal demand). Thus, we have opted for an explicit consideration of
context-awareness [30] and privacy [14].

We propose a design approach for weaving context-awareness and privacy-by-
design into the specification of information systems. This is to be done since the very
early stages of the software development, while the enterprise needs are captured (and
understood) and the software features are specified on that basis. In addition to con-
sidering context-awareness and privacy-sensitivity these two aspects will be balanced,
especially if they are conflicting.

In order to avoid starting from scratch, we have looked for a relevant existing
software specification approach to extend further for the sake of accommodating
context-awareness and privacy-by-design. Nevertheless, we could only consider an
approach that effectively brings together enterprise modeling and software specifica-
tion because context issues and privacy issues are to be captured from the enterprise
environment but need to be reflected in software solutions. Actually, enterprise engi-
neering alone is insufficiently capable of grasping the technical complexity of an EIS
(and its reach outside through software services [31]), while a purely software engi-
neering perspective would assume only superficial enterprise-specific domain knowl-
edge [27]. We need a common modeling ground for this, allowing us to properly align
enterprise modeling and software specification. Such a common ground can be
co-created by enterprise engineers and software engineers, featuring: (a) technology-
independent enterprise models rooted in social theories; (b) technology-specific soft-
ware models rooted in computing paradigms [26]. Further, we would only consider an
approach that is consistent with the Model-Driven Architecture – MDA [22] that can be
considered as a de facto standard. Finally, we consider important that the approach of

88 B. Shishkov and M. Janssen

choice has sound underlying theories. In this regard, we have opted for considering the
SDBC approach [27] reflected in previous work (“SDBC” stands for: “Software
Derived from Business Components”), noting that: (i) SDBC effectively brings together
(in a component-based way); (ii) SDBC is consistent with MDA; (iii) SDBC considers
several underlying social theories, such as Enterprise Ontology [7] and Organizational
Semiotics [21] as well as computing paradigms, such as Service-Oriented Computing
[32]; also SDBC brings this all together through its modeling guidelines and notations,
such that adequate modeling generations and transformations are possible. This means
that taking as input unstructured business information, we should be able to usefully
apply a modeling and design process, such that we come through enterprise models and
reach as far as the specification and implementation of software. Since we consider
SDBC as an approach with such capabilities, we adopt SDBC in the current research.
Further, staying consistent with MDA (see above), we assume a development process
starting with computation-independent modeling and ending up with code generation.

Nevertheless, for the sake of brevity, we are limiting our focus to the CIM gen-
eration (Computation-Independent Models (CIM) point to the highest level of
abstraction in MDA), noting that:

• SDBC is capable of adequately reflecting a CIM input into lower-level software
specifications;

• It is at this highest level of abstraction where context-awareness and privacy are to
be weaved in, bringing together both an enterprise perspective and a software
perspective.

That is how an SDBC-rooted enterprise-modeling-driven software specification is
improved, by weaving in context-awareness and privacy enforcement. We partially
demonstrate our proposed way of modeling, by means of a case example featuring land
border security.

Our proposed way of modeling would allow developers to reflect context and
privacy features in the application design, supported by methodological guidelines that
span over the enterprise modeling and software specification. Those features are
captured as technology-independent societal demands and are in the end reflected in
technology-specific (software) solutions. Traceability between the two is possible as
well as re-use of modeling constructs.

The remaining of the current paper is organized as follows: In Sect. 2, we present
several basic concepts. In Sect. 3, we provide the problem conceptualization. Section 4
is featuring background information on context-awareness and privacy, considering
also related work respectively. In Sect. 5 we briefly outline the SDBC approach (also
justifying its choice) and in Sect. 6 we present a proposal on how to weave in context-
awareness and privacy in the software specification. In Sect. 7, we present a motivating
application scenario in the public security domain, based on which we partially
demonstrate our proposed way of modeling. Finally, in Sect. 8, we present the
conclusions.

Enforcing Context-Awareness and Privacy-by-Design 89

2 Basic Concepts

In order to effectively address the enterprise-software alignment and consider on top of
that context-awareness and privacy, we need a common conceptual background.
Hence, we present several relevant basic concepts in the current section, noting that
there are numerous concepts and modeling constructs underlying SDBC. For the sake
of brevity however, we will only address some of them in the current section, espe-
cially those ones that are considered relevant to the challenge of weaving context-
awareness and privacy-enforcement in land-border-security-related software specifi-
cations. For more related information on SDBC, interested readers are referred to [26].

Taking this into account, we firstly present the system definition inspired by Bunge
[3] and having fundamental importance in the SDBC modeling:

Definition 1. Let T be a nonempty set. Then the ordered triple r = <C, E, S> is
system over T if and only if C (standing for Composition) and E (standing for
Environment) are mutually disjoint subsets of T (i.e. C \ E = ∅), and S (standing for
Structure) is a nonempty set of active relations on the union of C and E. The system is
conceptual if T is a set of conceptual items, and concrete (or material) if T � H is a set
of concrete entities, i.e. things.

Inspired by the system definition, we focus particularly on enterprise systems since
a (border-security) software system would inevitably operate in an enterprise sur-
rounding (comprising (organizational) entities, business processes, regulations, and so
on) and we consider an enterprise system as being composed of human entities col-
laborating among each other through actions, driven by the goal of delivering
products/services to entities belonging to the environment of the system. As for an EIS,
it is also composed of human entities (they are often backed by ICT (Information and
Communication Technology) applications as well as by technical and technological
facilities) but the EIS goal is to support informationally a corresponding enterprise
system. This is functionally reflected in the collection, storage, processing, and
exchange (or distribution) of data among users within or between enterprises, or among
people within wider society [26].

Further, it is important to present the SDBC units of modeling and in this regard, it
is to be noted that essentially, SDBC is focusing on the ENTITIES to be considered and
their INTER-RELATIONS. It is desired to be able to model entities and relations
abstractly (no matter if enterprise entities or software entities are concerned), and also
to be able to specialize such models accordingly, in an enterprise direction or in a
software direction. For this:

• We consider actors (combination of the actor-role and the entity fulfilling the role)
since often one entity can fulfil many roles and one role can be fulfilled by many
entities [26];

• We consider a generic interaction pattern (featuring the transaction concept – see
Definition 2) that is claimed to be helpful in modeling any real-life interaction in an
enterprise/software context:

90 B. Shishkov and M. Janssen

Definition 2. A transaction is a finite sequence of coordination acts between two
actors, concerning the same production fact. The actor who starts the transaction is
called the initiator. The general objective of the initiator of a transaction is to have
something done by the other actor, who therefore is called the executor [7].

Hence, enterprise modeling and software specification are both being approached
by those two essential concepts: ACTOR and TRANSACTION. Thence, a business
process is viewed as a structure of (connected) transactions that are executed in order to
fulfil a starting transaction and a business component is viewed as an enterprise
sub-system that comprises exactly one business process. Further, a complete (by this
we mean elaborated in terms of structure, dynamics, and data) model of a business
component is called a business coMponent. The identification of business coMponents
(featured in terms of actors and transactions) is hence considered an essential enter-
prise modeling task within SDBC.

Further elaboration of other relevant concepts will be presented in Sect. 5, when
introducing the SDBC approach.

3 Problem Conceptualization

As suggested by the Introduction, the problem we are facing in the current paper
concerns modeling situations in which context-awareness and/or privacy need to be
adequately reflected in the (software) system functionalities. This points to two prob-
lem “components” (context-awareness and privacy), as visualized in Fig. 1.

If we have a system that is delivering services to a user belonging to the system
environment, then we may have the following three situations:

Fig. 1. Problem conceptualization

Enforcing Context-Awareness and Privacy-by-Design 91

(i) Situation “service0”, as labelled in the figure: this is the typical service provi-
sioning, when the (software) system is delivering a service to the user, re-
gardless of context and privacy demands. An example of this is a ticket machine
service – regardless of the user situation and of any specific privacy demands,
the ticket machine is issuing tickets in the same way to any user in any situation.

(ii) Situation “service1” is when the service is delivered in “versions” in the sense
that depending on the situation of the user, a corresponding service version is
instantiated; the situation of the user is captured through sensors (see the black
disk with “s” in the figure), as displayed in the figure. An example of this is an
intelligent music playing service that may be adjusted not to play while the user
is sleeping, to play tender music during morning hours, to play rhythmic music
while the user is driving, and so on, assuming the possibility for capturing the
user situation either through sensing (sensing that the user is in the car, for
instance) and/or through a timer, or in another way.

(iii) Situation “service2” is featuring a privacy-driven adaptation of the service
delivery, assuming that the system is receiving privacy demands from Society
(see the black disks with “p” in the figure) that are to be “translated” into
functional solutions. For example, security monitoring may need to be updated,
driven by public demands, such that any captured visual information is to be
destroyed if after some period of time, no incident has occurred.

Hence, if we assume that (i) is covered by current software specification approa-
ches, such as SDBC, we consider challenging achieving (ii) and/or (iii), and if both are
to be achieved – to resolve possible tensions.

Our proposed way of tackling this will be explained in the following sections.

4 Background and Related Work

As mentioned in the Introduction, in this section we address context-awareness and
privacy, by providing brief introductions and considering related work.

4.1 Context-Awareness

The advances in wireless telecommunications and sensor technology, in combination
with the capabilities of smart devices, have empowered IT systems to “know” what is
going on with the end user while (s)he is utilizing corresponding services – this rep-
resents a user perspective in service delivery. Hence, the service delivered to the user is
to be adapted to the situation of the user. For example, a person wearing a body-area
network [1] through which body vital signs are captured, may appear to be at “normal
state” and then, for example, vital signs are captured and recorded as archival infor-
mation, or the person may appear to be in an “emergency state” and then help would
need to be urgently arranged. Thus, one kind of service would be needed at normal state
and another kind of service would be needed at emergency state. For this reason, the
system should be able to: (i) identify the situation of the user; (ii) deliver a service to the
user, which is suited for the particular situation. This is illustrated in Fig. 2.

92 B. Shishkov and M. Janssen

As it is seen from the figure a service is delivered to the user and the user is
considered within his or her context, such that the service is adapted on the basis of
the context state (or situation) the user finds himself/herself in. That state is to be
somehow sensed and often technical devices, such as sensors, are used for this
purpose.

Context-aware systems actually deliver services to the user by means of ICT
applications (“applications”, for short). Hence, unlike “traditional” applications
assuming that users would have common requirements independent of their context,
context-aware applications are capable of adapting their behavior to the
situation of the user. This is especially relevant to services delivered via mobile
devices. Such applications are, to a greater or lesser extent, aware of the user context
situation (for example: user is at home, user is traveling) and provide the desirable
services corresponding to the situation at hand. This quality points also to another
related characteristic, namely that context-aware applications must be able to capture
or be informed about information on the context of users, preferably without effort and
conscious acts from the user part.

Developing context-aware applications is hence not a trivial task and as above
suggested, the following related challenges have been identified: (i) Properly deciding
what physical context to sense and what high-level context information to pass to an
application, and also bridging the gap between raw context data and high-level context
information; (ii) Deciding which potential end-user context situations to consider and
which ones to ignore; (iii) Modeling context-aware application behavior including
switching between alternative behaviors [30].

The basic assumption underlying the development of context-aware applications is
that user needs are not static, however partially dependent on the particular situation
the user finds himself/herself in, as already mentioned. For example, depending on
his/her current location, time, activity, social environment, environmental properties, or
physiological properties, the user may have different interests, preferences, or needs
with respect to the services that can be provided by applications.

Context-aware applications are thus primarily motivated by their potential to
increase user-perceived effectiveness, i.e. to provide services that
better suit the needs of the user, by taking account of the user situation. We refer to the
collection of parameters that determine the situation of a user, and which are relevant
for the application in pursue of user-perceived effectiveness, as user context, or context
for short, in accordance to definitions found in literature [6].

context-
aware
system

Fig. 2. A schematic representation of a context-aware system

Enforcing Context-Awareness and Privacy-by-Design 93

As above-mentioned, context-awareness also implies that information on the user
context must be captured, and preferably so without conscious or active involvement
of the user. Although in principle the user could also provide context information by
directly interacting with the application, one can assume that in practice this would be
too cumbersome if not impossible; it would require deep expertise to know the rel-
evant context parameters and how those are correctly defined, and furthermore be very
time consuming and error-prone to provide the parameter specifications as manual
input [30].

In studying RELATED WORK, we have considered context-aware application
practices. Due to the complexity and importance of handling context-awareness, many
studies have tried to investigate different ways of developing context-aware applica-
tions. Many context modeling techniques have been created to enumerate and represent
context information [37]. Methodologies for architectural design were proposed by
researchers, such as: Context Toolkit – it aggregates context information [6], Context
Modeling Language [11] & Model Driven Development (MDD), and UML- based
approaches [2, 35] which mainly describe the key steps and activities for modeling
context-aware applications; next to that: Contextual Elements Modeling and Man-
agement through Incremental Knowledge Acquisition (CEManTIKA) support the
development of context-aware applications. Further, Vom Brocke et al. have proposed
a framework which consists of 4-dimensional factors to be considered in the design of
context-aware applications, including (1) application goals, (2) characteristics of the
process, (3) internal organizational specifications where context-aware applications are
implemented, (4) the broader or external environment in which context-aware appli-
cations are built [38]; those factors can be used as guidelines when designing a
context-aware application. In general, many current research projects are focusing on
the development of context-aware applications, touching upon concepts, networking
aspects, middleware aspects, user-interface-related concerns, services, and so on. Still,
even such a wide consideration of context-aware applications has not yet inspired (in
our view) a widely accepted agreement on the development of such applications.
Hence, it is still a question how to weave context-awareness in the specification of
software, and the current paper offers some contribution in this direction.

4.2 Privacy

As mentioned already, with regard to the (software) system-to-be, we are not only
aiming at context-awareness but we are also willing to weave in values, such as privacy
and transparency. In this paper, we are focusing on privacy not only because it is one
of the key values (e.g. [14]) but also because it is highly relevant with regard to the
land-border security application domain addressed in the paper. Hence, in the
remaining of the current sub-section, we will firstly discuss privacy in general (still
assuming a border security focus) and then we will focus on privacy enforcement
practices (related work) that are to be taken into account with regard to our case-driven
modeling approach.

Although the boundaries and specific contents of privacy vary significantly in
different countries, the main definition of information privacy includes the right to
be left alone and control of information about ourselves [24]. Data

94 B. Shishkov and M. Janssen

can have various needs of privacy, whereas some information should always be opened
to create transparency, other information should not be shared without proper
authorization.

Although there is much information claimed to be privacy-sensitive, we consider
the following information concerning border control as privacy sensitive, referring to
the Pearson’s privacy information classification [24]:

• Personally identifiable information: information that can be used to identify an
individual
• Data from records: name, date of birth, bio-metrics, address, social security

number, and so on;
• Surveillance data: images, video, voice, and so on;
• Secondary data: bank account number, credit card number, phone number,

social media network ID, and so on;
• Demographical information: sex, age group, race, health status, religion, education,

and so on;
• Usage data

• Networking-related data: mobile phone history data, Internet access point data,
computer log files, and so on;

• Recorded online activities: messenger records, contribution to social websites,
and so on;

• Travel data: ticketing/boarding pass data, reservations, cancellations, and so on;
• Unique device identities: any information that might be uniquely traceable to a

device, e.g. IP address, device fabric number, Radio Frequency Identity (RFID)
tags, and so on.

In studying RELATED WORK, we acknowledge that privacy enforcement is often
difficult. ICT enables the creation of systems that ensure the privacy of data, which is
called privacy-by-design [14]. Privacy-by-design has received attention within
organizations as a way to always ensure that privacy is protected. Privacy-by-design
suggests integrating privacy requirements into the design specifications of systems,
business practices, and physical infrastructures. In the ideal situation, data is collected
in such a way that privacy cannot be violated. This requires that both governance
aspects (such as data updating processes and procedures, access rights, decision-
making responsibilities, and so on) and technical aspects (such as encryption, access
control, anonymization, and so on) are covered.

Since privacy enforcement solutions differ in different contexts, some general
principles to guide the privacy-by-design are to be (adapted and) used. For instance, the
principles stated in Article 5 of the EU General Data Protection Regulation, need to be
carefully considered, including: lawfulness, fairness and transparency, purpose limi-
tation, data minimization, accuracy, storage limitation, integrity and confidentiality,
and accountability. However, some principles would often be in conflict with the
characteristics of implemented border control information systems - for instance, the
continuous collection of surveillance image data is against the principle of purpose
limitation. Therefore, technical solutions should be a trade-off between privacy and
(border-control-related) benefits [18].

Enforcing Context-Awareness and Privacy-by-Design 95

Technical solutions regarding privacy enforcement would in general refer to PET –

Privacy-Enforcement Technologies. Those technologies assume secure
communication and data storage by encryption, access control and auditing,
anonymization of on-line activity, detection of privacy violators, and so on [25, 40].
Since PET can only partially address privacy-related problems, they need to be
combined with information governance features in order to create
comprehensive privacy-enforcement mechanisms.

Besides PETs, PITs (Privacy-Invasive Technologies) and privacy
threats are also frequently examined in various domains [4, 13, 17, 34, 39].

Nevertheless, there is still limited insight in how enterprises can reduce privacy
violation risks for open data in particular, and there is no uniform approach for privacy
protection [16].

5 SDBC

In considering the SDBC approach in the current section, we will firstly provide jus-
tification with regard to our choice to base our modeling on that approach, secondly,
we will discuss the Design Science relevance of SDBC, and finally, we will briefly
outline the approach.

5.1 Justification

As studied by Shishkov [26], there are many other approaches/modeling languages,
some widespread and widely used. What justifies our considering particularly SDBC is
the following:

• SDBC is neither addressing only enterprise modeling nor is it addressing only
software specification; instead, the approach brings both together which is
important if one needs to reflect sophisticated (legislative) requirements in complex
software architectures.

• SDBC is not only limited to general guidelines and related modeling notations but it
is also a method in the sense that different modeling activities are carried out in a
specific order – this is to ensure that the software system being modeled is
well-aligned with the business needs.

• SDBC is empowering re-usability and traceability which are considered essential
with regard to software development in general.

• SDBC is aligned with the UML notations representing a de facto standard notation
for specifying software [36] and is consistent with MDA.

• In previous work, SDBC has been considered particularly in the border security
application domain [29].

For this reason, we have opted for adopting SDBC in the current work and in the
following sub-section we will also justify the Design Science relevance of the
approach.

96 B. Shishkov and M. Janssen

5.2 Relevance to Design Science

In Design Science research, the information systems research framework
proposed by Hevner et al. [12] has been widely accepted and applied in many IT
artefact designs [23]. According to that framework, researchers develop an IT artefact,
by considering the business needs and limits within an appropriate environment which
consists of involved people, organizations and available technologies [12]. In such a
design process, for the sake of supporting the design, researchers use: (i) existing
knowledge bases (that include theories, models, and methods) as knowledge founda-
tions and (ii) data analysis, measures, and validation criteria as methodologies. After
having been developed, the IT artefact is to be evaluated and justified via analysis, case
studies, experiments and/or simulation. New developed artefacts can also contribute to
the knowledge base(s) accumulation.

Hence, referring to Design Science, we acknowledge that SDBC is essentially
oriented towards a goal-driven modeling that relates to corresponding user needs and
the modeling itself is justified by the capabilities (and limitations) of the corresponding
entities contributing to the service deliveries. For this reason, we consider SDBC as
relevant in general with regard to Design Science. Nevertheless, SDBC lacks powerful
goal generation mechanisms and for that it needs support from other tools – for
example, tools related to Artificial Intelligence [27]; anyway, this is left beyond the
scope of the current paper.

5.3 Outline

SDBC is a software specification approach (consistent with MDA) that covers the early
phases of the software development life cycle and is particularly focused on the
derivation of software specification models on the basis of corresponding (re-usable)
enterprise models. SDBC is based on three key ideas: (i) The software system under
development is considered in its enterprise context, which not only means that the
software specification models are to stem from corresponding enterprise models but
means also that a deep understanding is needed on real-life (enterprise-level) processes,
corresponding roles, behavior patterns, and so on. (ii) By bringing together two dis-
ciplines, namely enterprise engineering and software engineering, SDBC pushes for
applying social theories in addressing enterprise-engineering-related tasks and for
applying computing paradigms in addressing software-engineering-related tasks, and
also for integrating the two, by means of sound methodological guidelines.
(iii) Acknowledging the essential value of re-use in current software development,
SDBC pushes for the identification of re-usable (generic) enterprise engineering
building blocks whose models could be reflected accordingly in corresponding software
specification models. We refer to [26] for information on SDBC and we are reflecting
the SDBC outline in Fig. 3.

As the figure suggests, there are two SDBC modeling milestones, namely
enterprise modeling (first milestone) and software specification (sec-
ond milestone). The first milestone has as input a case briefing (the initial (textual)
information based on which the software development is to start) and the so called
domain-imposed requirements (those are the domain regulations to which the software
system-to-be should conform).

Enforcing Context-Awareness and Privacy-by-Design 97

Based on such an input, an analysis should follow, aiming at structuring the
information, identifying missing information, and so on. This is to be followed by the
identification (supported by corresponding social theories) of enterprise modeling en-
tities and their inter-relations. Then, the causalities concerning those inter-relations
need to be modeled, such that we know what is required in order for something else to
happen [32]. On that basis, the dynamics (the entities’ behavior) is to be considered,
featured by transactions (see Definition 2). This all leads to the creation of enterprise
models that are elaborated in terms of composition, structure, and dynamics (all this
pointing also to corresponding data aspects) – they could either feed further software
specifications and/or be “stored” for further use by enterprise engineers. Such enter-
prise models could possibly be reflected in corresponding business coMponents
(see Sect. 2). Next to that, re-visiting such models could possibly inspire enterprise
re-design activities, as shown in Fig. 3.

Furthermore, the second milestone uses as input the enterprise model (see above)
and the so called user-defined requirements (those requirements reflect the demands of
the (future) users of the software system-to-be towards its functioning).

That input feeds the derivation of a use case model featuring the software
system-to-be. Such a software specification starting point is not only consistent with the
Rational Unified Process - RUP [19] and the Unified Modeling Language
– UML [36] but is also considered to be broadly accepted beyond RUP-UML [5, 8, 26].
The use cases are then elaborated, inspired by studies of Cockburn [5] and Shishkov
[27], such that software behavior models and classification can be derived accordingly.
The output is a software specification model adequately elaborated in terms of
statics and dynamics. Applying de-composition, such a model can be reflected in

Fig. 3. SDBC - outline (Source: [28], p. 48)

98 B. Shishkov and M. Janssen

corresponding software components, as shown in the figure. Such an output could
inspire software engineers to propose in a future moment software re-designs, possibly
addressing new requirements.

Further, in bringing together the first milestone of SDBC and the second one, we
need to be aware of possible granularity mismatches. The enterprise modeling is
featuring business processes and corresponding business coMponents but this is not
necessarily the level of granularity concerning the software components of the
system-to-be. With this in mind, an ICT application is considered as matching the
granularity level of a business component – an ICT application is an implemented
software product realizing a particular functionality for the benefit of entities that are
part of the composition of an enterprise system and/or a (corresponding) EIS. Thus the
label software specification model, as presented in Fig. 3, corresponds to a
particular ICT application being specified. Software components in turn are
viewed as implemented pieces of software, which represent parts of an ICT application,
and which collaborate among each other driven by the goal of realizing the func-
tionality of the application (functionally, a software component is a part of an ICT
application, which is self-contained, customizable, and composable, possessing a
clearly defined function and interfaces to the other parts of the application, and which
can also be deployed independently). Hence, a software coMponent is a con-
ceptual specification model of a software component. Said otherwise, the second SDBC
milestone is about the identification of software coMponents and corresponding soft-
ware components.

In this paper, we will only address the business coMponent identification and its
reflection in a use case model featuring the specification of the ICT application-to-be,
weaving in context-awareness and privacy-enforcement accordingly – this will be
considered in the following section.

6 Weaving in Context-Awareness and Privacy

Considering the problem conceptualization (see Fig. 1), we are deriving three key
demands with regard to the desired weaving of context-awareness and privacy:

• We need to be able to capture user context to be used by the (software) system for
its adapting services delivered to the user;

• We need to be able to capture public-values-related demands (such as privacy) and
“translate” them into functional (software) solutions;

• If fulfilling both privacy demands and context awareness would assume tensions
(because of conflicting requirements), we need to be able to resolve those tensions
in a socially-responsible way.

All those demands originate from the (enterprise) environment of the (software)
system-to-be but require technology-specific (software) solutions. For this reason, we
could neither position those demands as relevant to the enterprise modeling SDBC
milestone nor can we position them as relevant to the software specification SDBC
milestone; thus, they have to be positioned in between, as suggested by Fig. 4.

Enforcing Context-Awareness and Privacy-by-Design 99

Hence, as shown on the figure, the difference with the common SDBC modeling
(with no specific needs for weaving context-awareness and privacy in the design)
would be that the OUTPUT of Milestone 1 (Enterprise Modeling) is not the INPUT for
Milestone 2 (Software Specification). Instead, the Milestone 1 output would have to
undergo some transformations to become a Milestone 2 input: this is presented in the
right part of Fig. 4, using the notations of the UML Activity Diagram [36] – the “start”
point relates to the Milestone 1 output while the “end” point relates to the Milestone 2
input. What is going on between those two points and how is it justified?

• Two processes flow in parallel, one related to the desired context-awareness
enforcement (left part of the Activity Diagram) and the other one – to the desired
privacy enforcement (right part of the Activity Diagram).

• Those two parallel processes hold an a-priori equal importance but in the end, they
reach a synchronization bar where BALANCING NORMS are to be implemented,
as a final parameterization of the Milestone 2 input. For example, in the case of a
security camera video-recording (the security system is assumed to be adapting to
the monitoring circumstances as well as to be privacy-sensitive and not distribute
facial information) if there is indication for real-time criminal activities, then
according to a balancing norm, context-awareness should prevail over privacy and
no privacy sensitivity would be observed towards those persons being monitored.

• As for the context-awareness process, it follows from the context-aware service
delivery features, as introduced and discussed in the Introduction and in Sub-
sect. 4.1, also assuming that for each user state type that is of high occurrence
probability, there is a corresponding system behavior type that is prepared at design
time. Then the first thing to be done is to capture the user context and if there is a
system behavior type (prepared at design time) that corresponds to the user state

Fig. 4. Extending SDBC – weaving in context-awareness and privacy

100 B. Shishkov and M. Janssen

type (to which the captured context is pointing), then that behavior type is
instantiated accordingly. Otherwise, “auto-pilot” behavior would have to be trig-
gered that is guiding the system based on rules that are applied at run time.

• As for the privacy process, it follows from the privacy-related features as introduced
and discussed in the Introduction and in Subsect. 4.2, also assuming that for each
situation type of high occurrence probability there is a corresponding system
behavior type specified at design time, and there are corresponding privacy-related
“instructions”. Then it is only necessary to position the “current” system behavior
with regard to a corresponding behavior type (for example: “camera surveillance
while Police are chasing a criminal”, “camera surveillance while a person is walking
in a public area”, and so on), such that it is known how the behavior instance would
need to be refined.

Those methodological guidelines have been considered firstly by Shishkov et al.
[28] and also in the current paper, mainly inspired by the relevance of weaving context-
awareness and privacy-by-design in the (SDBC-driven) specification of software,
considering dedicated studies addressing context-awareness and privacy. Still, our
guidelines are not yet exhaustive and need further elaboration, especially as it concerns
some modeling transformations (as it will be seen in the following section). Never-
theless, the partial validation (realized in terms of a case example) clearly demonstrates
the adequacy of the proposed guidelines and their relevance. This will inspire further
related research activities that would not only address the model transformations with
regard to the context-privacy perspective considered in the current paper but would also
broaden the public demands perspective, reaching as far as Value-Sensitive
Design [9].

The above-mentioned illustrative case example will be considered in the following
section.

7 Illustrative Example

As mentioned in the Introduction, we partially validate our proposed way of modeling
(that touches upon the weaving of context-awareness and privacy) by means of an
illustrative example, featuring land border security. In this section, we will
firstly present the case briefing and then we will proceed with the security system
modeling.

7.1 Case Briefing

Border control is one of Europe’s biggest recent challenges, in the light of severe sea
border problems in Greece and Italy in 2015–2017 [10] and land border problems in
Bulgaria and Croatia, for example. This leads not only to deadly incidents for numerous
migrants who undertake illegal sea/land border crossings in severe (weather) conditions
but also to allowing terrorists (mixed with regular migrants) land on Europe’s territory.
According to many reports of the European Union - EU (www.europa.eu), this un-
controlled migration to Europe is causing societal tensions and is stimulating extreme

Enforcing Context-Awareness and Privacy-by-Design 101

http://www.europa.eu

political views. Further, even though illegal migration to Europe is mainly fueled by
smuggling channels, it is partially ‘facilitated’ by technical/organizational
weaknesses at the EU external borders. In this paper, we abstract from the former and
focus on the latter. Such a focus has been justified by numerous EU efforts, aiming at
improving security at the external borders of the European Union – for example: new
border facilities are constructed along those borders, Police officers from some
Western EU countries are sent to the South-Eastern EU borders to physically help, new
organizational approaches and technical solutions are developed, and so on, as
according to the European Union; all those efforts are directed towards stopping the
illegal migration to the European Union and it is widely agreed that any migrant should
legally approach an EU border point where (s)he would be treated according to the laws
and values of the EU.

In that sense, we take an application scenario which concerns the EU land
border control (our focus is particularly on the external EU borders) and this is
about monitoring and reaction to violations. Fulfilling this assumes
human actions because security-related decisions are always human-centric [20].
Still, in what they are doing, border police officers receive useful technical
support, assuming various channels: infrared images, visible images, proximity
sensors, and so on, followed by some kind of intelligent data fusion algorithms [29].
We acknowledge this “duality” – human entities vs. technical entities and acknowledge
as well the need to orchestrate this “whole” in a sound way, allowing for objectivity
and capability with regard to any situation that is possible to occur. Hence, we are
approaching typical situations in this regard, and also the corresponding desirable
reactions to those situations. Hence context-awareness is relevant with respect to land
border security. Further, realizing that, the above-mentioned technology requires,
among other things, IT-based services to recognize people (i.e. biometrics), we
acknowledge the need for a special treatment of those issues as far as privacy is
concerned because it is justified to distribute personal details of a terrorist but it is not
justified to distribute personal details of anybody. We thus identify and approach some
privacy-sensitive situation types accordingly. In realizing all this, we take as an
example the situation at the Bulgarian-Turkish land border [29]; nevertheless, we
abstract from many location-specific details in order to reach findings that are generic
and widely applicable.

Monitoring the land border is a continuous process where: (i) There is a (wired)
border fence that is supposed to obstacle illegal migrants to get in; still, such a facility
can be overcome by using a ladder or by just destroying the wire. (ii) There are border
police officers who are patrolling (possibly using vehicles); still, no matter how many
border police officers are deployed in the border area, it would be physically impossible
to guarantee police presence at any time anywhere along the border, over hundreds of
kilometers. (iii) There are sensors and other (smart) devices, as mentioned above; they
are realizing surveillance; we assume the possibility that a device would perform local
processing plus artificial reasoning; based on this, it may generate contentful messages
to be transmitted to corresponding human agents.

102 B. Shishkov and M. Janssen

Taking the above into account, we argue that there are two main situation types at
any point along the border, namely: (a) Normal Situation (NS); (b) Alarm
Situation. We realize that both context-awareness and privacy enforcement are
“under control” with regard to (a) because:

• Within NS, all is just progressing according to pre-defined rules – hence, there is no
need to adapt the system behavior to surrounding context;

• Following pre-defined rules would also assume adequate treatment of privacy-
sensitive data (for example: the border police officers are also monitored but it is not
allowed to distribute their facial information).

What is more interesting thus is what is done in the case of (b) where
context-awareness and related privacy enforcement are crucial.

Approaching (b) and taking into account the case information, we define in turn
three situation types concerning migrants possibly attempting to illegally cross the land
border outside an official border crossing point: 1. Human-Triggered Alarm
Situation (HTAS): when a border police officer faces an attempt of one or more
persons to illegally cross the border. Then the officer can do ONE of three things,
namely: 1.1. Try to physically stop the persons from crossing, following the corre-
sponding EU regulations; 1.2. Connect to colleagues and ask help; 1.3. Activate par-
ticular devices for taking pictures and video of the violators. It is important to note that
in this situation, the person in charge has full decision-making capacity. 2.
Device-Triggered Alarm Situation (DTAS): when a device is “alarmed” by
anything and there is no border police officer on the spot. Then, there are two pos-
sibilities: 2.1. The detecting device is “passive” in a sense that the (video) information
it is transmitting, is received in run-time and straightforwardly “used” by a distant
officer who intervenes generating a decision and corresponding actions; 2.2. The
detecting device is “active” in a sense that based on information coming from at least
several sensing units, the information gets filtered and automated reasoning is per-
formed, based on which a “hypothesis” on what is happening is generated by the device
and sent to corresponding human agents. 3. Outage Situation (OS): when any
unexpected (power, performance, or other) outage occurs, not necessarily assuming
illegal border crossing at the same time. This calls for urgent system recovery both in
human and technical respect.

7.2 Modeling the Border Security System

A logical starting point in our case-driven modeling is the “translation” of the case
briefing into better structured information that would be featuring the original business
reality and corresponding domain-imposed requirements. As it is well-known, this often
assumes (partial) enterprise re-design (re-engineering) that is needed for the sake of
making the considered enterprise system adequately supportable by ICT applications [7].

Because of the limited scope of this paper, we are not going in detail on how we
analyze the case briefing and how we conduct such a partial enterprise re-design.
Moreover, this is not directly related to the main challenges addressed in the current
paper, namely: the enterprise-IT alignment, with incorporation of context-awareness

Enforcing Context-Awareness and Privacy-by-Design 103

and privacy-by-design. Hence, we move directly to the textual reflection of the case
briefing, holding in itself re-design-driven and requirements-driven updates:

Hence, this refined case briefing appropriately reflecting the business needs, is our
starting point. SDBC has particular strengths on further structuring such information:
actor-roles are methodologically identified as well as corresponding transactions, and
so on. For the sake of brevity, we do not go in further detail here; still, for more
information on those issues, interested readers are referred to [26].

The entities (featuring actor-roles) are:

• S (Sensor); S is capturing the occurring situations (situation instances), for example:
“all looks normal during night time”, “two persons are hanging over the border
fence”, “one person is running next to the patrolling vehicle”, and so on, to give just
several examples; in this, S is supported by sensing devices, sensor networks,
cameras, data fusion engines, and so on.

• PE (Pattern Engine); PE is linked to two pattern banks, namely: ‘sp’ and ‘pp’ –
they hold the subclass specifications (‘sp’ featuring situations and ‘pp’ featuring
privacy-driven restrictions). Hence, PE is capable of providing such information as
reference.

• MM (Match-Maker); MM is matching an instance to a subclass, for example:
matching a situation instance captured by S to a subclass from Bank ‘sp’.

• TE* (Task Engine); TE is generating a desired system behavior description (a task),
by instantiating accordingly a behavior subclass (the bank that holds the subclass
specifications featuring behaviors is ‘bp’) corresponding to a respective situation
subclass.

* For the sake of enforcing privacy, it is necessary to match each prescribed desired
system behavior to corresponding privacy-driven restrictions stored in Bank ‘pp’; Thus,
MM should do a match, based on a prescribed behavior instance (delivered by TE) and
privacy patterns (delivered by PE).

• PrE (Privacy Engine); PrE delivers a refined behavior recommendation accordingly.
• C (Customer); C is hence fulfilled by the corresponding border police officer(s)

and/or other team member(s) using such a task specification (as RECOMMENDA-
TION) in order to establish their actions accordingly.

104 B. Shishkov and M. Janssen

Thus, next to identifying entities (featuring actor-roles [7, 26]), we are to also
identify corresponding transactions (see Definition 2): this we present as the
Border Security Business Entity Model, expressed using notations inspired
by DEMO [7] – see Fig. 5:

On the figure, the identified entities are presented in named boxes, while the small
grey boxes, one at the end of each connection indicate the executor entity [26]. The
connections indicate the need for interactions between entities in order to achieve the
business objective of recommendation generation – in our case, those interactions
reflect transactions. Hence, with each connection, we associate a single trans-
action (t): C- PrE (t1), PrE-MM (t2), and so on. As for the delimitation, C is posi-
tioned in the environment of the recommendation generation system, and PrE, MM,
TE, PE, and S together form the system, where we have included as well the three data
banks mentioned above, namely: ‘bp’, ‘pp’, and ‘sp’.

Further, we have to make explicit the the causal relationships among the
transactions, and given the business entity model, we establish that in order for PrE to
deliver a refined task specification as a recommendation to C, it needs input from MM
that in turn needs input from TE and PE. Further, in order for TE to deliver a desired
system behavior description, it needs input from MM that in turn needs input from
S and PE. Those causal relationships are presented in Fig. 6, using the notations of
UML Activity Diagram [36].

As can be seen from the figure: (a) capturing a situation instance and considering
corresponding situation patterns (viewed as subclasses) go in parallel firstly; (b) sec-
ondly goes a match between the two that establishes the relevant subclass (featuring
situations) corresponding to a respective behavior pattern; (c) the behavior specifi-
cation and consideration of relevant privacy-driven restrictions go in parallel thirdly;
(d) fourthly goes a match between the two, that establishes the relevant privacy-driven
restrictions with regard to the considered behavior; (e) finally, the refined behavior
specification is delivered to C in the form of recommendation.

Hence, context-awareness and privacy are incorporated through corresponding
modeling “building blocks” featuring transactions 6 + 7 and 3 + 4, respectively, as
suggested by Fig. 6. Further, with regard to the SDBC modeling process, we have

t6

t4

t1

t2

t5

t3
TE

t7

PE
S

MM

sp

C PrE

pp

bp

Fig. 5. Business entity model for the border security case

Enforcing Context-Awareness and Privacy-by-Design 105

identified the entity model and the causality relations. What goes next are transactions
(see Fig. 3) and with regard to this, we use the SDBC interpretation of the transaction
concept – see Fig. 7.

SDBC interprets the transaction concept as centered around a particular production
fact (see Definition 2). The reason is that the actual output of any enterprise system
represents a set of production facts related to each other. They actually bring about the
useful value of the business operations to the outside world and the issues connected
with their creation are to be properly modeled in terms of structure, dynamics, and data.

However, considering also the corresponding communicative aspects is important.
Although they are indirectly related to the production facts, they are to be positioned
around them. SDBC realizes this through its interpretation of the transaction concept.
As it is seen from Fig. 7, the transaction concept has been adopted, with a particular
stress on the transaction’s output – the production fact. The order phase (left side of
the figure) is looked upon as input for the production act, while the result phase (right
side of the figure) is considered to be the production act’s output. The dashed line

privacy -
enforcem

ent

sp

pp

t6 t7

t5

t3 t4

t2

t1

context-
aw

areness

Fig. 6. Modeling the causal relationships among transactions

P-actinput output

r(I) p(E)

d(E)

compromise
found?

s(E) a(I)

d(I)

compromise
found?

P-fact

Legend
r: request I: Initiator
p: promise E: executor
s: state
a: accept

cancel

Yes Yes

Fig. 7. The SDBC interpretation of the transaction concept (Source: [27], p. 70)

106 B. Shishkov and M. Janssen

shows that a transaction could be successful (which means that a production fact has
been successfully created) only if the initiator (the one who is initiating the transaction)
has accepted the production act of the other party (called executor). As for the (co-
ordination) communicative act types, grasped by an SDBC transaction, they are also
depicted in the figure. The initiator expresses a request attitude towards a proposition
(any transaction should concern a proposition – for example, a shoe to be repaired by a
particular date and at a particular price, and so on). Such a request might trigger either
promise or decline - the executor might either promise to produce the requested product
(or service) or express a decline attitude towards the proposition. This expressed
decline attitude actually triggers a discussion (negotiation), for example: “I cannot
repair the shoe today, is tomorrow fine?… and so on”. The discussion might lead to a
compromise (this means that the executor is going to express a promise attitude
towards an updated version of the proposition) or might lead to the transaction’s
cancellation (this means that no production fact will be created). If the executor has
expressed a promise attitude regarding a proposition, then (s)he must bring about the
realization of the production act. Then the result phase follows, which starts with a
statement expression by the executor about the requested proposition that in his/her
opinion has been successfully realized. The initiator could either accept this (expressing
an accept attitude) or reject it (expressing a decline attitude). Expressing a decline
attitude leads to a discussion which might lead to a compromise (this means that finally
the initiator is going to express an accept towards the realized production act, resulting
from negotiations that have taken place and compromise reached) or might lead to the
transaction’s cancellation (this means that no production fact will be created). Once the
realized production act is accepted the corresponding production fact is considered to
have appeared in the (business) reality.

Hence, one could “zoom in” with regard to any of the transactions depicted in
Fig. 6 and elaborate each transaction, using the transaction pattern presented in Fig. 7.
This actually means modeling transactions at two different abstraction
levels. At the highest abstraction level, the transaction is represented as a single
action which models the production fact that is enabled. At a lower abstraction level,
the transaction’s communicative aspects are modeled conforming to the transaction
pattern. The transaction’s request (r), promise (p), state (s), accept (a),
decline, and the production act are modeled as separate actions. This is illustrated in
Fig. 8 (abstracting from declines and cancellations), featuring only part of the model
depicted in Fig. 6, namely, focusing only on transactions 5, 6, and 7:

t7

…

t6 r6 s6

t5…

p6 a6

r7 p7 s7 a7

r5 p5 s5 a5

Fig. 8. Detailed behavior aspect model featuring transactions

Enforcing Context-Awareness and Privacy-by-Design 107

As it is seen from the figure, in order for t5 to be realized, both the realization of t6
and the realization of t7 are to be fulfilled. Hence, upon requesting t5 and before the
promise, it is necessary that t6 and t7 are initiated. If realized successfully, both
transactions’ output is necessary for the delivery of the production act of t5 (the
production acts are depicted as black boxes in the figure).

That is how transactions are elaborated.
In summary, such an enterprise modeling featuring entities (and data aspects) and

corresponding causal relationships as well as the behavior elaboration of respective
transactions, represents an adequate basis for specifying software on top of it.

We now move to the specification of software: the derivation of use cases
is the first challenge – see Fig. 3. For detailed information concerning the derivation of
use cases from transactions, interested readers are referred to [26] – for the sake of
brevity, we go directly to a partial use case model, derived on the basis of the 7
transactions (see Figs. 5 and 6). The model is depicted in Fig. 9.

As it is seen from the figure, all use cases, except for the ones backgrounded in
black and grey, correspond to respective transactions: the SYSTEM’s DELIVERY OF
RECOMMENDATION (assuming behavior refinement) to CUSTOMER includes
MATCHING between: (i) BEHAVIOR SPECIFICATION and (ii) PRIVACY
RESTRICTIONS. In turn, (i) includes MATCHING between (iii) CAPTURED
SITUATION and (iv) A SITUATION PATTERN (this matching allowing to identify
the right behavior pattern to consider).

Those are the so called essential use cases – the ones straightforwardly
reflecting transactions [26, 33]. Those use cases usefully drive the alignment between
enterprise modeling and software specification, guaranteeing that the software
system-to-be is stemming from corresponding enterprise models.

Nevertheless, next to the essential use cases, we have also: (a) informational
use cases, reflecting informational issues (not essential); (b) use cases
reflecting user-defined requirements with regard to the software
system-to-be [26]. An example for (a) is the use case APPLY SEARCH - delivering
situation patterns and generating privacy restrictions are essential business tasks

generate privacy
restrictions

generate
behavior

specification

Customer

deliver
recommendation

perform match-making

deliver situation
patterns

capture
situation

check data
accuracy

<<include>><<include>>

<<include>><<include>>

<<include>>

<<include>><<include>>

<<include>>

<<include>>

apply search

Fig. 9. Partial use case model for the border security case

108 B. Shishkov and M. Janssen

requiring in turn informational activity, namely: searching through the corresponding
data banks. An example for (b) is the use case CHECK DATA ACCURACY - it may
be required by the user that upon match-making, the accuracy of corresponding data is
checked. Those two use cases are only to illustrate (a) and (b). Because of the limited
scope of this paper, we have only considered a partial use case model, aiming at being
explicit on the enterprise-software alignment that in turn builds upon the weaving of
context-awareness and privacy at the enterprise modeling level.

For this reason, we are not going to address in the current paper the elaboration of
use cases as well as the further software specification reflected in behavior + states
modeling and classification. Interested readers are referred to [27] where this is con-
sidered and justified by means of a case study. Still, we will consider (in future
research) those issues with regard to the land border case example.

8 Conclusions

The contribution of the current paper concerns a proposed design approach that allows
for smoothly reflecting context and privacy features (and tackling possible tensions
among the two) in the application specification, supported by methodological guide-
lines that span over the enterprise modeling and software specification, fueled by the
SDBC approach. We have partially demonstrated our way of modeling by means of a
case example featuring the domain of land border security. Hence, we have not only
contributed to the enterprise-software alignment research (addressing also the challenge
of weaving context-awareness and privacy-by-design in the software specification) but
we have also delivered a useful domain-specific study featuring an application domain
where context-awareness and privacy have essential impact. As future research, we
plan to consider a large-scale border security case study assuming software develop-
ment activities as well as the consideration of other public values as well (next to
privacy), such as transparency and accountability.

References

1. AWARENESS. Freeband AWARENESS Project (2008). http://www.freeband.nl
2. Ayed, D., Delanote, D., Berbers, Y.: MDD approach for the development of context-aware

applications. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R., Vieu, L. (eds.)
CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 15–28. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-74255-5_2

3. Bunge, M.A.: Treatise on Basic Philosophy. A World of Systems, vol. 4. D. Reidel
Publishing Company, Dordrecht (1979)

4. Burghardt, T., Buchmann, E., Böhm, K.: Why do privacy-enhancement mechanisms fail,
after all? A survey of both, the user and the provider perspective. In: Workshop W2Trust, in
Conjunction with IFIPTM (2008)

5. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Boston (2000)
6. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)
7. Dietz, J.L.G.: Enterprise Ontology, Theory and Methodology, 1st edn. Springer, Heidelberg

(2006). https://doi.org/10.1007/3-540-33149-2

Enforcing Context-Awareness and Privacy-by-Design 109

http://www.freeband.nl
http://dx.doi.org/10.1007/978-3-540-74255-5_2
http://dx.doi.org/10.1007/978-3-540-74255-5_2
http://dx.doi.org/10.1007/3-540-33149-2

8. Dietz, J.L.G.: Generic recurrent patterns in business processes. In: van der Aalst, W.M.P.,
Weske, M. (eds.) BPM 2003. LNCS, vol. 2678, pp. 200–215. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-44895-0_14

9. Friedman, B., Hendry, D., Borning, A.: A survey of value sensitive design methods. Int.
J. Found. Trends. Hum. Comput. Interact. 11, 63–125 (2017)

10. FRONTEX: The website on the European Agency, FRONTEX (2018). http://frontex.europa.eu
11. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications:

models and approach. Perv. Mob. Comput. 2, 37–64 (2006)
12. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Q. 28(1), 75–105 (2004)
13. Huberman, B.A., Franklin, M., Hogg, T.: Enhancing privacy and trust in electronic

communities. In: 1st International ACM Conference on Electronic Commerce, EC 1999.
ACM (1999)

14. Hustinx, P.: Privacy by design: delivering the promises. Identity Inf. Soc. 3(2), 253–255
(2010)

15. IoTDI 2nd International Conference on Internet-of-Things Design and Implementation.
ACM/IEEE (2017)

16. Janssen, M., Van den Hoven, J.: Big and open linked data (BOLD) in government: a
challenge to transparency and privacy? Gov. Inf. Q. 32(4), 363–368 (2015)

17. Johnston, A., Wilson, S.: Privacy compliance risks for Facebook. IEEE Technol. Soc. Mag.
31(2), 59–64 (2012)

18. Könings, B., Schaub, F., Weber, M.: Privacy and trust in ambient intelligent environments.
In: Ultes, S., Nothdurft, F., Heinroth, T., Minker, W. (eds.) Next Generation Intelligent
Environments, pp. 133–164. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
23452-6_4

19. Kruchten, P.: The Rational Unified Process, An Introduction. Addison-Wesley, Boston
(2003)

20. LBS. LandBorderSurveillance, the EBF, LandBorderSurveillance Project (2012). http://ec.
europa.eu

21. Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press,
Cambridge (2000)

22. MDA. The OMG Model Driven Architecture (2018). http://www.omg.org/mda
23. Offermann, P., Blom, S., Schönherr, M., Bub, U.: Artifact types in information systems

design science – a literature review. In: Winter, R., Zhao, J.L., Aier, S. (eds.) Global
Perspectives on Design Science Research. DESRIST 2010. LNCS, vol. 6105, pp. 77–92.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13335-0_6

24. Pearson, S.: Taking account of privacy when designing cloud computing services. In:
International Workshop on Software Engineering Challenges of Cloud Computing, ICSE
2009 (2009)

25. Seničar, V., Jerman-Blažič, B., Klobučar, T.: Privacy-enhancing technologies approaches
and development. Comput. Stand. Interfaces 25(2), 147–158 (2003)

26. Shishkov, B.: Enterprise Information Systems, A Modeling Approach, 1st edn. IICREST,
Sofia (2017)

27. Shishkov, B.: Software specification based on re-usable business components (Ph.D thesis),
1st edition, TU Delft. Delft (2005)

28. Shishkov, B., Janssen, M., Yin, Y.: Towards context-aware and privacy-sensitive systems.
In: 7th International Symposium on Business Modeling and Software Design, BMSD 2017.
SCITEPRESS (2017)

110 B. Shishkov and M. Janssen

http://dx.doi.org/10.1007/3-540-44895-0_14
http://frontex.europa.eu
http://dx.doi.org/10.1007/978-3-319-23452-6_4
http://dx.doi.org/10.1007/978-3-319-23452-6_4
http://ec.europa.eu
http://ec.europa.eu
http://www.omg.org/mda
http://dx.doi.org/10.1007/978-3-642-13335-0_6

29. Shishkov, B., Mitrakos, D.: Towards context-aware border security control. In: 6th
International Symposium on Business Modeling and Software Design, BMSD 2016.
SCITEPRESS (2016)

30. Shishkov, B., van Sinderen, M.: From user context states to context-aware applications. In:
Filipe, J., Cordeiro, J., Cardoso, J. (eds.) ICEIS 2007. LNBIP, vol. 12, pp. 225–239.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88710-2_18

31. Shishkov, B., Van Sinderen, M.J., Tekinderdogan, B.: Model-driven specification of
software services. In: IEEE International Conference on e-Business Engineering, ICEBE
2007. IEEE (2007)

32. Shishkov, B., Van Sinderen, M.J., Quartel, D.: SOA-driven business-software alignment. In:
IEEE International Conference on e-Business Engineering, ICEBE 2006. IEEE (2006)

33. Shishkov, B., Dietz, J.L.G.: Deriving use cases from business processes, the advantages of
DEMO. In: 5th International Conference on Enterprise Information Systems, ICEIS 2003.
SCITEPRESS (2003)

34. Seigneur, J.-M., Jensen, C.D.: Trading privacy for trust. In: Jensen, C., Poslad, S.,
Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 93–107. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24747-0_8

35. Simons, C., Wirtz, G.: Modeling context in mobile distributed systems with the UML. Vis.
Lang. Comput. 18(4), 420–439 (2007)

36. UML. The Unified Modeling Language (2017). http://www.uml.org
37. Vieira, V., Tedesco, P., Salgado, A.C.: Designing context-sensitive systems: an integrated

approach. Expert Syst. Appl. 38(2), 1119–1138 (2011)
38. Vom Brocke, J., Zelt, S., Schmiedel, T.: On the role of context in business process

management. Inf. Manag. 36(3), 486–495 (2016)
39. Weber, R.H.: The digital future - a challenge for privacy? Comput. Law Secur. Rev. 31(2),

234–242 (2015)
40. Zhu, N., Zhang, M., Feng, D., He, J.: Access control for privacy protection for dynamic and

correlated databases. In: International IEEE SmartCity Conference, SmartCity 2015. IEEE
(2015)

Enforcing Context-Awareness and Privacy-by-Design 111

http://dx.doi.org/10.1007/978-3-540-88710-2_18
http://dx.doi.org/10.1007/978-3-540-24747-0_8
http://www.uml.org

	Enforcing Context-Awareness and Privacy-by-Design in the Specification of Information Systems
	Abstract
	1 Introduction
	2 Basic Concepts
	3 Problem Conceptualization
	4 Background and Related Work
	4.1 Context-Awareness
	4.2 Privacy

	5 SDBC
	5.1 Justification
	5.2 Relevance to Design Science
	5.3 Outline

	6 Weaving in Context-Awareness and Privacy
	7 Illustrative Example
	7.1 Case Briefing
	7.2 Modeling the Border Security System

	8 Conclusions
	References

