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1. Introduction

The following bound was introduced by Lovász in his celebrated paper on Shannon 
capacity. In particular it implies famous Hoffman bound [8].
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Theorem 1 (Lovász, [12]). Let G = (V, E) be a simple graph. Consider a symmetric real 
matrix A such that Aij = 1 for every pair {i, j} /∈ E(G). Then

α(G) � λmax(A),

where α(G) is the size of a maximal independent set of G and λmax(A) is the maximal 
eigenvalue of A.

The minimum of λmax(A) over the appropriate A is called Lovász number or Lovász 
theta function of a graph.

Also we need the following corollaries. Suppose that A and G satisfy the conditions 
of Theorem 1. Let c, λmax and sp stand for the minimal entry, the maximal eigenvalue 
and the spectral radius of A, respectively.

Corollary 1. Let I be a set with at most ε|I|2/2 edges inside. Suppose that (1 − c)ε < 1. 
Then

|I| � λmax

1 − (1 − c)ε .

Corollary 2. Let I and J be subsets of V (G) with at most ε|I| · |J | edges between I and 
J (edges in I ∩ J are counted twice here). Suppose that (1 − c)ε < 1. Then

|I| · |J | �
(

sp
1 − (1 − c)ε

)2

.

For the bounds on disjoint I and J one can make the class of appropriate matrices 
slightly wider, i.e. not demand Aii = 1. Then one may combine the proof of Corollary 2
with Proposition 4.1 in the paper of Haemers [7].

Structure of the paper Subsections 1.1 and 1.2 contain our results. Section 2 is devoted 
to proofs; we also provide the proof of Theorem 1 in the interest of completeness. We 
discuss relation to several subjects and propose some further questions in Section 3.

1.1. A straightforward application to the eventown problem

Let F be a family of subsets of [n] is eventown if the intersection of any two members 
is even (in particular all sets have even size). Berlekamp [2] and Graver [6] independently 
proved F has at most 2�n/2� members, which is also best possible. The proof is very short 
up to general linear algebra. Note that every maximal eventown F is a linear subspace of 
Fn

2 ; otherwise one can replace F with spanF . Since F lies in the orthogonal complement 
F⊥ and dimF + dimF⊥ = n, |F | has the dimension at most �n/2�.
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Consider the following Hadamard matrix

A =
(

1 1
1 −1

)
.

Its spectrum is {±
√

2}. Then the spectrum of M = A⊗n is {±2n
2 }. Let us consider 

G = (2[n], E) and (X, Y ) ∈ E iff |X ∩ Y | is odd. Then we identify elements of 2[n] with 
{0, 1}n by usual way as well as indices for rows and columns of matrix M (where we 
mean that A = (aij)i,j∈{0,1}). Let M = (mst)s,t∈{0,1}n . Then for each X, Y ∈ 2[n] we 
have

mχ(X),χ(Y ) =
n∏

r=1
a(χ(X))r,(χ(Y ))r = (−1)|{r∈{1,...,n}|a(χ(X))r,(χ(Y ))r=−1}| = (−1)|X∩Y |.

Thus we see that graph G and matrix M satisfy the conditions of Theorem 1.
Applying Theorem 1 one has |F | � 2n/2. For even n we already get another proof of 

the eventown theorem. For even n we should also recall that F is a linear subspace, so 
|F | � 2�n/2�.

Let op(F ) denote the number of distinct pairs f1, f2 ∈ F for which |f1 ∩ f2| is odd. 
O’Neill [13] showed that for 1 � s � 2�n/2� − 2�n/4� there is a family F with |F | =
2�n/2� + s and op(F ) = s · 2�n/2�−1. Also he conjectured that this example is tight and 
proved the conjecture for s = 1, 2. The application of Corollary 1 gives twice weaker 
bound for even n (and much weaker bound for odd n).

Theorem 2. Let |F | = 2n/2 + s for some integer s. Then

op(F ) � s · 2
⌊
n
2
⌋
−2.

1.2. An application to k-town problem

Let F be a family of vectors from {0, . . . , k − 1}n, such that (f1, f2) = 0 (mod k) for 
any f1, f2 ∈ F (in particular for f1 = f2); such F is further called a k-town family.

First, for prime k the classical argument gives the tight upper bound k�n/2�.
If k is square free we can obtain the same bound from the prime k case in the following 

way. Let us see that the case k = pq is a formal consequence of the cases k = p, k = q

if p, q are coprime. Indeed let F ⊂ (Z/pqZ)n such that (f1, f2) = 0 for each f1, f2 ∈ F . 
Then by assumption the number of residues modulo p for elements F does not exceed 
p

n
2 and number of residues modulo q for elements F does not exceed q

n
2 . Then by the 

Chinese remainder theorem |F | � p
n
2 q

n
2 .

The observations above should be folklore, meanwhile we do not know how to prove the 
first inequality in the following theorem without spectral graph theory for an arbitrary k.
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Theorem 3. If F is a k-town family then

|F | � k
n
2 .

Moreover suppose that k is prime, and (f1, f2) �= 0 (mod k) for at most ε|F |2 pairs 
f1, f2 ∈ F . If ε < k−1

k then

|F | � k
n
2

1 − k
k−1ε

.

Obtaining an example of k-town F with |F | = k
n
2 in the case of prime k and even 

n is equivalent to finding a set of n
2 pairwise (and-self) orthogonal linear independent 

vectors in (Z/kZ)n. There are lots of such sets; for example for a prime k = 4t + 1 one 
can consider vectors of the form vj = e2j−1 + εte2j for 1 � j � n

2 (here {ej} — is the 
standard basis in (Z/kZ)n, ε is a primitive root in Z/kZ).

For a general prime k one can choose v1, v2, . . . inductively and almost arbitrarily 
such that vj ∈ 〈v1, . . . , vj−1〉⊥ \〈v1, . . . , vj−1〉 and (vj , vj) = 0. This can be done: indeed, 
for j < n

2 −2 we can choose arbitrary 4 < dim〈v1, . . . , vj−1〉⊥−dim〈v1, . . . , vj−1〉 linearly 
independent vectors and find vj in their span (as any quadratic form with � 3 variables 
over finite field has an isotropic vector). When j = [n2 ] − 2, we can choose 4-dimensional 
V ⊂ (〈v1, . . . , vj−1〉⊥ \ 〈v1, . . . , vj−1〉) ∪ 0 as well, and it is also well-known that there 
exists vn

2 −1, vn
2
∈ V such that (vn

2 −1, vn
2 −1) = (vn

2 −1, vn
2
) = (vn

2
, vn

2
) = 0.

In some cases where k is non-prime we can obtain examples of different nature. For 
example, when k = m2 for some integer m one can consider the set of vectors of the 
form (mx1, . . . , mxn). This example shows that in the case of k being a perfect square 
the first inequality of Theorem 3 is also tight for an odd n.

Suppose that we are interested in the scalar product t instead of 0. Then the statement 
of Theorem 3 can be slightly improved.

Corollary 3. Let F be a family of vectors from {0, . . . , k− 1}n, and (f1, f2) = t (mod k)
for every f1, f2 ∈ F . Then

|F | � c(t, k) · k n
2

for some 1√
2 < c(t, k) � 1. Moreover if k

gcd(k,t) tends to infinity c(t, k) tends to 1√
2 (gcd

stands for the greatest common divisor).
Assume also that k is prime and (f1, f2) �= t (mod k) for at most ε|F |2 pairs f1, f2 ∈ F

for some t �= 0. If ε < k−1
k then

|F | � c(k) k
n
2

1 − k
k−1ε

,

where c(k) < 1 and c(k) → 2
√

2 with k → ∞.
π
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2. Proofs

Proof of Theorem 1. Let I be an independent set, denote by χI its characteristic vector. 
Then

(AχI , χI) = |I|2.

From the other hand, one has

(AχI , χI) =
∑

c2iλi �
(∑

c2i

)
λmax = |I| · λmax,

where χI =
∑

civi is the decomposition of χI via orthonormal eigenbasis {vi} of A. (We 
use that symmetric matrix has real spectrum and the length of χI is the same in the 
standard basis and in {vi}, i.e. 

∑
c2i = |I|.) �

Proof of Corollary 1. Denote by χI the characteristic vector of I. Then

(AχI , χI) � |I|2 · (1 − (1 − c)ε).

From the other hand, one has

(AχI , χI) =
∑

c2iλi �
(∑

c2i

)
λmax = |I| · λmax,

where χI =
∑

civi is the decomposition of χI via orthonormal eigenbasis {vi} of A. �
Proof of Corollary 2. Denote by χI and χJ the characteristic vectors of I and J respec-
tively. Then

(AχI , χJ) � |I| · |J | · (1 − (1 − c)ε).

From the other hand, one has

(AχI , χI) =
∑

cidiλi �
(∑

|ci| · |di|
)

sp �
√(∑

c2i

)(∑
d2
i

)
· sp =

√
|I| · |J | · sp,

where χI =
∑

civi and χJ =
∑

divi are the decompositions of χI and χJ via orthonormal 
eigenbasis {vi} of A. �
Proof of Theorem 3. Consider the following k × k matrix:

ajl = φjl,

where φ is a primitive k-th root of unity and 0 � j, l � k − 1 and the matrix M = A⊗n. 
Then we have A4 = k2E, therefore |λ| = (k 1

2 )n = k
n
2 for each eigenvalue λ of M , i.e., 

sp(M) = k
n
2 .
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Let us see that A (and, as a consequence, M) has an eigenbasis in Rn. Let {ei} be a 
standard basis. Then moving to the basis {e1, 1√

2(ej ± ek+2−j)} or to {e1, e k
2
, 1√

2(ej ±
ek+2−j)} for even k (note that it is a unitary transformation) we obtain a block matrix 
with two blocks of the form A1, iA2, where A1, A2 are the real symmetric matrices (they 
have the sizes k+1

2 and k−1
2 respectively for odd k and k2 + 1, k2 + 1 for even k). As a 

matter of fact, for each 2 � j � k we have

A(ej + ek+2−j) =
k∑

l=1

φ(j−1)(l−1)el +
k∑

l=1

φ(k+1−j)(l−1)el

= 2 +
k∑

l=2

(φ(j−1)(l−1) + φ(j−1)(l−1))el

= 2 +
[ k2 ]∑
l=2

2 · Re(φ(j−1)(l−1))(el + ek+2−l)

and for each 2 � j � k, j �= k
2

A(ej − ek+2−j) =
k∑

l=1

φ(j−1)(l−1)el −
k∑

l=1

φ(k+1−j)(l−1)el

=
k∑

l=2

(φ(j−1)(l−1) − φ(j−1)(l−1))el

= i ·
[ k2 ]∑
l=2

2 · Im(φ(j−1)(l−1))(el − ek+2−l).

Thus we see that this change of the base (over R) leads to real symmetric matrix 
and to pure imaginary symmetric matrix, which both have real eigenbasis, therefore A
has real eigenbasis as well. Hence N := ReM has the same real eigenbasis with M . 
Obviously, all eigenvalues of N lie in {±kn/2, 0}.

Let us consider G = ((Z/kZ)n, E), where (X, Y ) = ((x1, . . . , xn), (y1, . . . , yn)) ∈ E

iff 
∑n

r=1 xryr �= 0. Then we also identify (Z/kZ)n as indices for rows and columns of 
matrix M (taking all indices in A modulo k). Let M = (mst)s,t∈{0,...,k−1}n . Now for each 
X, Y ∈ (Z/kZ)n, (X, Y ) /∈ E we have

mX,Y =
n∏

r=1
axr,yr

= φ
∑n

r=1 xryr = φ0 = 1.

Thus graph G and matrix M (and also N) satisfy the conditions of Theorem 1, so the 
first statement of the theorem is proved.
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Now let k be a prime number. An immediate application of Corollary 1 gives

|F | � k
n
2

1 − tε
,

where t = 1 − cos
(⌊

k
2
⌋ 2π

k

)
, which tends to 2 with k → ∞. So we modify the proof of 

Corollary 1 in the following way.
For every root φ the matrix N = N(φ) satisfies

(N(φ)χF , χF ) =
∑
i,j∈F

Nij(φ)

and

(N(φ)χF , χF ) � |F | · k n
2 .

Summing up these inequalities for all k-th roots except 1 one has

(k − 1) · |F |2 · (1 − ε) − ε · |F |2 � (k − 1) · |F | · k n
2 (1)

since for every i, j that corresponds to sets with nonzero scalar product
∑
φ	=1

Nij(φ) = −1,

and for i, j that corresponds to sets with zero scalar product
∑
φ	=1

Nij(φ) = k − 1.

Rewriting (1) finishes the proof. �
Proof of Corollary 3. Fix a primitive k-th root of unity φ and consider the same matrices 
A and M as in the previous proof. Let us consider G = ((Z/kZ)n, E), where (X, Y ) =
((x1, . . . , xn), (y1, . . . , yn)) ∈ E iff 

∑n
r=1 xryr �= t. Then G and N := Re(φtM) satisfy the 

conditions of Theorem 1. Note that N and M shares a real eigenbasis, so all eigenvalues 
of N lie in Re{±φtkn/2, ±φtkn/2i}. Hence the spectral radius of N lies between 1√

2k
n/2

and kn/2.
Let us check the second part of the first proposition. Note that for any coprime x, y we 

have xy
gcd(xy,t) = x

gcd(x,t) ·
y

gcd(y,t) and c(t, xy) � c(t, x)c(t, y) — this follows from remarks 
before Theorem 3. Therefore we need only treat the case k = ps for prime p.

Note that any upper bound for |F | with some t = t0 is also an upper bound for 
t = t0r

2, r ∈ (Z/kZ)∗. Indeed, if (f1, f2) = t0r
2 for each f1, f2 ∈ F , then (1

rf1, 1rf2) = t0
and we can apply a bound for t = t0. Now we are to show that we can choose r = r(k, t)
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such that | Re(φtr2)| tends to 1√
2 if k

gcd(k,t) tends to infinity — in this case | Re(φtr2
il)|

tends to 1√
2 as well. To obtain this, it’s sufficient to choose r such that | tr2

k/8 | tends to 1
(with suitable choice of representative of tr2 modulo k).

Any t ∈ Z/psZ we can consider as t = pmt′, r ∈ Z/ps−mZ and replacing (t, ps) with 
(r, ps−m) (this doesn’t change both ratios in question) we can assume that t ∈ (Z/psZ)∗
(and k

gcd(k,t) = k).
Let p > 2. Let’s prove that we can choose l such that |l| < k

1
2 and t = lw2 modulo 

k for some w. Suppose that t is non-square modulo k (else we can take l = 1). If p = 2, 
then all non-squares are known to be of the form 3w2, 5w2 or 7w2 for some w, so we can 
take l ∈ {1, 3, 5, 7} (when s > 5). If p > 2 we can take l1, l2 with |li| <

√
p such that 

l1 = l2t modulo p by Thues lemma. Then for some i li is a non-square modulo m and 
therefore modulo k = ps. As t is non square as well we can write t = liw

2 and take l = li.

Now take x ∈ Z such that x2 ∈
(

k
8|l| −

(
k
|l|

) 1
2
, k

8|l| +
(

k
|l|

) 1
2
)

, then ||lx2| − k
8 | �

(kl) 1
2 < k

3
4 and | lx2

k
8
| tends to 1 when k tends to infinity, as desired (we put r = x

w

modulo k).
Now we prove the second part of Corollary. Repeat the proof of the corresponding 

part of Theorem 3. Then the right part of (1) is replaced with

k−1∑
a=1

sp Re(φtaM).

Note that for every a

sp Re(φtaM) = max(Re(φta),Re(φta · i),−Re(φta),−Re(φta · i)) · kn/2 =

max
(∣∣∣∣cos 2πta

k

∣∣∣∣ ,
∣∣∣∣cos

(
2πta
k

+ π

2

)∣∣∣∣ ,
∣∣∣∣cos

(
2πta
k

+ π

)∣∣∣∣ ,
∣∣∣∣cos

(
2πta
k

+ 3π
2

)∣∣∣∣
)
kn/2.

After summation over 1 � a � k − 1 and taking kn/2 out of the brackets and dividing 
by k − 1, one has a Riemann sum for the following integral

∫ π/4
0 cos(x)dx

π/4 = 2
√

2
π

. �
3. Discussion

3.1. Related subjects

It turns out that Theorem 3 is closely related with several well-studied themes.

Erdős distance problem over a finite field Let Fq be a finite field. Hart and Iosevich [9]
proved that if t �= 0 and E ⊂ Fn

q , then
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|{(x, y) ∈ E ×E : x · y = t}| = |E|2
q

+ R(E),

where

|R(E)| � q
n−1

2 |E|.

In the notation of Theorem 3 (for this part we assume k to be prime) it implies inequality

|F | � k
n−1

2

k−1
k − ε

.

This bound is better than Theorem 3 for a large prime k, but it essentially requires the 
condition t �= 0. The bound for t = 0 is obtained in [10] and is slightly weaker than 
Theorem 3.

Define the distance in an n-dimensional vector space over a finite field as

dist(x̄, ȳ) = (x1 − y1)2 + . . . (xn − yn)2,

i.e. we omit the square root in the standard formula. Let Δ(E) be the set of all distances 
between points in E. The Erdős distance problem is to determine the smallest possible 
cardinality of the set Δ(E) over all sets E of a given size.

In the case of prime k > 2 Theorem 3 gives the following elementary bound which is 
far from the Iosevich–Rudnev estimate [11]. Let E be a set with |Δ(E)| = s. Without 
loss of generality (0, . . . , 0) ∈ E; otherwise one may shift E. Then E lies on s spheres 
centered at (0, . . . , 0). By a pigeon-hole principle there is a sphere containing a subset 
E′ ⊂ E of size at least (|E| − 1)/s. Since k is odd and E′ lie on a sphere, there are at 
most s different scalar products between vectors of E′. Let t be a most popular scalar 
product in E′ ×E′. Then one may apply Theorem 3 with ε = s−1

s and receive that

|E′| � kn/2

1 − k
k−1

s−1
s

= s(k − 1)kn/2

k − s
.

Hence

|E| � s2(k − 1)kn/2

k − s
+ 1.

For instance, s = k − 1 means that we evaluate the size of a set without a single 
distance r by k

n+6
2 , meanwhile Iosevich–Rudnev estimate is Ck

n+1
2 with an absolute 

constant C > 0.
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A bound via singular numbers Let G = (V, E) be a simple graph. Suppose that A is a 
complex matrix such that Aij = 1 for every pair {i, j} /∈ E(G). Then

α(G) � σmax(A),

where α(G) is the size of a maximal independent set of G and σmax(A) is the maximal 
singular value of A (i.e. the square root of a maximal eigenvalue of a self-adjoint operator 
A∗A, where A∗ denotes the adjoint of A). The proof immediately follows from the main 
theorem of [3].

For matrix A in the proof of Theorem 3 one has

A∗A = kE,

so every singular number of matrix A is equal to 
√
k. Hence every singular number of 

M = A⊗n is equal to kn/2. This implies the first inequality of Theorem 3.

Hypergraph discrepancy and asymptotic precision of Theorem 2 when ε is close to 1/2
A hypergraph is a pair (V, E), where V is a finite set whose elements are called vertices 
and E is a family of subsets of V , called edges. A vertex 2-coloring of a hypergraph 
(V, E) is a map π : V → {±1}. A discrepancy of a coloring π is the largest value of 
| 
∑

v∈e π(v)| over e ∈ E.
Consider an explicit hypergraph H = (V, E), where V = [N ] × [N ] and edges have 

form I × J for I, J ⊂ [N ]. Note that every {±1} matrix of size N produces a 2-coloring 
of H. Let N = 2n and χ be the coloring from A⊗n (recall that A is 2 × 2 Hadamard 
matrix). Let I × J be an edge of H providing the discrepancy disc of χ; without loss of 
generality let disc be positive. Then

disc = (A⊗nχI , χJ) = (1 − 2ε) · |I| · |J |,

where ε satisfies the conditions of Theorem 2. Theorem 2 implies

disc2 = |I|2 · |J |2(1 − 2ε)2 � 2n|I| · |J | � 23n = N3. (2)

Astashkin proved [1] that H has the discrepancy at least cN3/2 for every coloring χ
and some absolute constant c > 0, i.e. inequality (2) is precise up to an absolute constant. 
It means that Theorem 2 is precise up to an absolute constant in the case when |I| and 
|J | are close to N and 1

2 − ε is of order 2−n/2.

3.2. Further questions

Generalization on k-eventown We say that F ⊂ 2[n] is k-eventown if the size of the 
intersection of any (not necessarily different) f1, f2 ∈ F is zero modulo k. The problem 
of determining the maximal size of k-eventown was studied by Frankl and Odlyzko [4]. 
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They found a nice construction based on Hadamard matrices of k-eventowns of size at 
least (ck)�n/(4k)�, where c > 0 is an absolute constant. In addition, they showed that any 
k-eventown has size at most 2O(log k/k)n as n tends to ∞.

In particular, for k = 3 the best known lower and upper bounds are 24�n/12� and 
2�n/2� respectively.

Generalization on t-wise k-eventown We say that F ⊂ 2[n] is t-wise k-eventown if the 
size of the intersection of any different f1, . . . , ft ∈ F is zero modulo k. Note that a 2-wise 
k-eventown is not the same as an k-eventown, since in the former we do not require that 
the sets themselves have size zero modulo k.

Sudakov and Vieira [14] show that a t-wise eventown has for t � 3 a unique extremal 
configuration and obtain a stability result for this problem. Gishboliner, Sudakov and 
Tomon [5] show that for every k there is t = t(k) that the size of any t-wise k-eventown 
is bounded by

|F | � 2[n/k] + const(k, t).

A generalization of the methods of the paper, if it exists, will have a deal with some 
tensor analysis.
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