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a b s t r a c t

This paper is devoted to the study of the graph sequence Gn = (Vn, En), where Vn is the
set of all vectors v ∈ Rn with coordinates in {−1, 0, 1} such that |v| =

√
3 and En consists

of all pairs of vertices with scalar product 1. We find the exact value of the independence
number of Gn. As a corollary we get new lower bounds on χ (Rn) and χ (Qn) for small values
of n.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let Rn be the standard Euclidean space, where the distance between any two points x, y is denoted by |x− y|. Let V be an
arbitrary point set inRn. Let a > 0 be a real number. By a distance graphwith set of vertices V , wemean the graph G = (V , E)
whose set of edges E contains all pairs of points from V that are at the distance a apart:

E = {{x, y} : |x − y| = a}.

Distance graphs are among the most studied objects of combinatorial geometry. First of all, they are at the ground of
the classical Hadwiger–Nelson problem, which was proposed around 1950 (see [12,27]) and consists in determining the
chromatic number of the space:

χ (Rn) = min
{
χ : Rn

= V1 ⊔ · · · ⊔ Vχ , ∀ i ∀ x, y ∈ Vi |x − y| ̸= 1
}
,

i.e., the minimum number of colors needed to color all the points in Rn so that any two points at the distance 1 receive
different colors. In other words, it is the chromatic number of the unit distance graph whose vertex set coincides with Rn.
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Due to the extreme popularity of the subject, colorings of unit distance graphs are very deeply explored. Let us just refer
the reader to several books and survey articles [21,2,5,14,23,25,24,26,28]. In particular, the best known lower bounds for the
chromatic numbers in dimensions ⩽ 12 are given below [23,20,8,4,6,18,16,17,15]:

χ (R2) ⩾ 4 [23], χ (R3) ⩾ 6 [20], χ (R4) ⩾ 9 [8], χ (R5) ⩾ 9 [4], χ (R6) ⩾ 11 [6], χ (R7) ⩾ 15 [23],

χ (R8) ⩾ 16 [18], χ (R9) ⩾ 21 [16], χ (R10) ⩾ 23 [16], χ (R11) ⩾ 25 [17], χ (R12) ⩾ 27 [15].

Recently further improvements were announced [7,13]:

χ (R6) ⩾ 12 [7], χ (R7) ⩾ 16 [7], χ (R8) ⩾ 19 [13], χ (R10) ⩾ 26 [7], [13], χ (R11) ⩾ 32 [13], χ (R12) ⩾ 36 [7].

These improvements are essentially based on computer calculations.
In growing dimensions, the following bounds are the best known [22,18]:

[22] (1.239 . . . + o(1))n ⩽ χ (Rn) ⩽ (3 + o(1))n [18].

In this paper, we consider a special sequence of graphs defined in the following way.
Let Vn be the set of all vectors v from Rn with coordinates in {−1, 0, 1} and |v| =

√
3. The set Vn can be considered as the

set of vertices of a graph Gn = (Vn, En), where an edge connects two vertices if and only if the corresponding vectors have
scalar product 1. Note that G1 and G2 are empty and G3 is just a cube.

Recall that an independent set in a graph is any set of its vertices which are pairwise non-adjacent and the independence
number of G denoted by α(G) is the size of a maximum independent set in the graph G.

Theorem 1. For n ⩾ 1, let c(n) denote the following constant:

c(n) =

{0 if n ≡ 0
1 if n ≡ 1
2 if n ≡ 2 or 3

(mod 4).

Then, the independence number of Gn is given by the formula

α(Gn) = max{6n − 28, 4n − 4c(n)}.

Actually, the result of Theorem 1 is a far-reaching generalization of a much simpler lemma proved by Zs. Nagy (see [19])
in 1972 and used not only in combinatorial geometry, but also in Ramsey theory. In this lemma, G′

n = (V ′
n, E

′
n), where V ′

n
is the set of all vectors v, |v| =

√
3, with coordinates in {0, 1} and again an edge connects two vertices if and only if the

corresponding vectors have scalar product 1. Lemma states that in this case α(G′
n) = n − c(n).

Larman and Rogers used the mentioned lemma to prove χ (Rn) ⩾ (1 + o(1))n2/6 (in fact, it was suggested by Erdős
and Sós), which was the first nontrivial lower bound on χ (Rn). It is worth noting that the chromatic number of G′

n almost
coincides with the bound n/α(G′

n), as was shown in [1].
On the other hand there is a natural bijection between {0, 1}n and the subsets of n-element set, which gives deep

combinatorial sense to graphs of the mentioned types. In several recent papers [9,11,10] Frankl and Kupavskii consider
analogues of some classical combinatorial problems in {0, ±1} setup.

The proof of Theorem 1 is given in the following parts: some examples showing the lower bound in Theorem 1 and
some preliminaries are given in Section 2; the upper bound is proved in Section 3 (for the case n ⩽ 13 we use computer
simulations). Note that, roughly speaking, the quantity 13 is a threshold where the bound 6n − 28 starts dominating the
bound 4n.

As a corollary of Theorem 1 we get the following bounds for the chromatic numbers of Euclidean spaces.

Theorem 2. Let c(n) be the constant defined in Theorem 1. Then, for all n ⩾ 3, we have

χ (Rn) ⩾ χ (Qn) ⩾ χ (Gn) ⩾
|Vn|

α(Gn)
=

8
(n
3

)
max{6n − 28, 4n − c(n)}

.

Asymptotically, the bound in this theorem is 2
9n

2(1+ o(1)), which is a weak result. On the other hand, for small values of
n, the theorem gives the best known bounds, namely:

χ (R9) ⩾ χ (Q9) ⩾ 21,

χ (R10) ⩾ χ (Q10) ⩾ 30,

χ (R11) ⩾ χ (Q11) ⩾ 35,

χ (R12) ⩾ χ (Q12) ⩾ 37.

Actually, we will show in Section 4 the following stronger result for n = 9.
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Proposition 1. The inequalities hold

χ (R9) ⩾ χ (Q9) ⩾ 22.

2. Lower bounds in Theorem 1 and some preliminaries

2.1. Auxiliary definitions

Consider the graph Gn. Any of its vertices has three non-zero coordinates and n − 3 coordinates equal to 0. We call base
the set of non-zero coordinates of a vertex. Tomake our expositionmore concise, wewill use the word ‘‘place’’ instead of the
word ‘‘coordinate’’ or instead the expression ‘‘coordinate position’’. For example, it will be convenient to say (a bit informally)
‘‘vertex v intersects place x’’, if the vector v from Rn corresponding to this vertex has nonzero value of the coordinate vx. For
the same reasons, we introduce the notion of a signplace: it is a coordinate with a fixed sign (plus or minus). In particular,
from now on, we can say (again, a bit informally) ‘‘vertex v intersects signplace x+ (x−)’’, if it has the value of the coordinate
vx equal to +1 (−1). Finally, we define the degree of a place (signplace) in a setW of vertices of Gn as the number of vertices
fromW intersecting this place (signplace).

2.2. Constructions of independent sets in Gn

It suffices to show that α(Gn) ⩾ 4n − 4c(n) and that α(Gn) ⩾ 6n − 28.
The first construction is as follows. Consider the first 4 places. Take all the 4 bases that can be taken on these places. For

each base, consider 4 variants:

1, 1, 1; 1, −1, −1; −1, 1, −1; −1, −1, 1.

Clearly any two vectors with these bases have scalar product different from 1. We call this construction (and its natural
analogues) quad.

Take [n/4] consecutive quads. If the remainder still consists of 3 places, then add 4more bases. Eventually, we get exactly
4n − 4c(n) vectors that form an independent set in Gn.

Now, let us make the second construction. Take the following vectors:

1, −1, 0, 1, 0, . . . , 0, 0, 0, 0; 1, −1, 0, 0, 1, 0, . . . , 0, 0, 0, 0; . . . ; 1, −1, 0, 0, 0, . . . , 0, 1, 0, 0, 0;

0, 1, −1, 1, 0, . . . , 0, 0, 0, 0; 0, 1, −1, 0, 1, 0, . . . , 0, 0, 0, 0; . . . ; 0, 1, −1, 0, 0, . . . , 0, 1, 0, 0, 0;

−1, 0, 1, 1, 0, . . . , 0, 0, 0, 0; −1, 0, 1, 0, 1, 0, . . . , 0, 0, 0, 0; . . . ; −1, 0, 1, 0, 0, . . . , 0, 1, 0, 0, 0.

In each line, we have a set of vectors, which is a particular case of what we will call snake in Section 3 and later. In every
snake, we have n − 6 vertices. Thus, the total amount of vertices here is 3n − 18. Obviously, the union of these snakes is an
independent set in Gn. Moreover, we can add to it 4 more vectors, which have a common base —the three first places: say,

1, 1, 1, 0, . . . , 0; 1, −1, −1, 0, . . . , 0; −1, 1, −1, 0, . . . , 0; −1, −1, 1, 0, . . . , 0.

Thewhole construction is a particular case of a cobra discussed later inmore details. Here the cobra contains 3n−14 vertices.
Of course, we can take one more cobra, whose ‘‘head’’ is on the three last places and whose ‘‘tail’’ consists of minus ones

instead of ones. Eventually, we get exactly 6n − 28 vertices forming an independent set in Gn.
The lower bound is proven.
It is worth noting that in Section 3 we will make a rather subtle analysis of possible independent sets in Gn. One would

be able to derive from this analysis a complete description of examples giving the lower bound in Theorem 1. However, we
will not present such description explicitly in this paper.

It is also worth noting that in the above example having 6n − 28 vertices and avoiding the scalar product 1, the scalar
product −3 is also absent. Moreover, one can exclude 6 vertices from that example so that the scalar product −2 disappears
as well.

2.3. Basic lemma

Let A be an arbitrary independent set of the maximum size in Gn. We already know that |A| ⩾ max{6n− 28, 4n− 4c(n)}.
Assume that we exclude some signplaces and all the vertices from the graph Gn intersecting them. Then we get a new graph
G′ with a possibly smaller independent set A′. Denote by a(A′) the maximum degree of a signplace in the set A′. Denote by
m(A′) the number of signplaces in A′.

The following lemma is an important ingredient in the proof of the upper bound.

Lemma 1. Assume that we exclude k signplaces. Assume that the number of vertices excluded from A does not exceed 2k. Then
we have either a(A′) ⩾ 5 or m(A′) < 14.
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Proof of the lemma. By pigeon-hole principle a(A′) ⩾ 3(|A| − 2k)/(2n − k). If |A| ⩾ 4n, then a(A′) ⩾ 6 and we are done.
The inequality |A| ⩾ 4n is true for n = 8, 12 and n ⩾ 14. Thus, it remains to consider only n = 7, 9, 10, 11, 13. If n = 7,
then |A| ⩾ max{14, 20} = 20. If k = 1, then 3(|A| − 2k)/(2n − k) ⩾ 54/13, i.e., a(A′) ⩾ 5. If k ⩾ 2, then it may happen that
3(|A| − 2k)/(2n − k) ⩽ 4. But in this case, m(A′) = 2n − k ⩽ 14 − 2 < 14. The same argument works for the 4 other values
of n. The proof is complete.

3. Proof of Theorem 1

If n ⩽ 13, one can prove the theorem via computer simulations using the standard Bron–Kerbosch algorithm (see [3]). It
is worth noting that the case n = 7 was considered by Cibulka in [6].

3.1. Starting the proof

LetA be an arbitrary independent set of themaximumsize inGn. Assume thatwe have already excluded several signplaces
with the corresponding vertices (see Section 2.3). By Lemma 1 either a(A′) ⩾ 5 or m(A′) ⩽ 13. The second case will be
considered in Section 3.4. So we assume that a(A′) ⩾ 5.

Consider a signplace with the maximum degree. Call it x+

1 (each time when we choose a sign we can choose plus without
loss of generality) and consider the set of vertices intersecting it (denote it by Nx+1

). Note that no base can contain more than
two vertices from Nx+1

. Thus, we have at least three different bases. Also it is clear that any two bases containing vertices
from Nx+1

intersect in exactly two signplaces. There are two different possibilities.

(1) Among the bases, we have {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4}. This case will be referred to as ‘‘quad’’ (cf. Section 2.2).
(2) All the bases contain both x1 and x2. This case will be referred to as ‘‘snake’’ (cf. Section 2.2).

The formal definition of a quad will be given in the next section, where we will analyze Case (1). The same is for a snake
in Section 3.3. In Section 3.4 we will complete the proof.

3.2. The first case — ‘‘quad’’

We know that a(A′) ⩾ 5. At the same time, a(A′) ⩽ 6, since otherwise the vertices from Nx+1
use at least 4 bases and

therefore there is a base among {x1, x2, x3}, {x1, x2, x4}, {x1, x3, x4} such that it intersects the fourth base only on x+

1 , which
is impossible. Put a = a(A′).

Thus, we have exactly three bases containing the vertices from Nx+1
. Two of them (without loss of generality {x1, x2, x3},

{x1, x2, x4}) contain exactly 2 vertices from Nx+1
each, and the third one contains at least 1 vertex. Since {x+

1 , x2, x3} contains
two vertices, it intersects all the four signplaces in x2, x3; the same holds for {x+

1 , x2, x4}, which means that all the six
signplaces of x2, x3, x4 are necessarily intersected.

Consider the set U of all vertices intersecting {x1, x2, x3, x4}. There could be the following possibilities.

• Some vertices from U intersect x1. There are at most 2a such vertices.
• Some vertices from U lie on the base {x2, x3, x4}. There are at most 4 such vertices.
• Some vertices from U intersect {x2, x3, x4} in one place and are not counted above. Actually, there are no such

vertices because for every signplace in {x2, x3, x4} a vertex with a base in {x1, x2, x3, x4} exists (do not forget that
{x1, x2, x3}, {x1, x2, x4} contain exactly 2 vertices each, and the third base contains at least 1 vertex).

• Some vertices from U intersect {x2, x3, x4} in two places and are not counted above. Again, there are no such vertices.
Indeed, assume that some vertex (call it v) intersects {x2, x3, x4} in {xi, xj}. Then {x1, x2, x3} or {x1, x2, x4} intersects
{xi, xj} in exactly one place. This is impossible, since we know that two vertices from Nx+1

lie on {x1, x2, x3} and two
vertices from Nx+1

lie on {x1, x2, x4}.

Summarizing, we have at most 2a + 4 ⩽ 16 vertices intersecting 8 signplaces. We call any of the corresponding
constructions quad.

Now we may assume that A was transformed into A′ in the following way (more details will be given in Section 3.4).

• First, all the signplaces of degree less than 3 have been deleted one by one. Note that by Lemma 1 during this process
either a ⩾ 5 or m ⩽ 13.

• Second, all the quads have been deleted one by one. Note that again by Lemma 1 during this process either a ⩾ 5 or
m ⩽ 13 (at every step the number of excluded signplaces is 8 and the number of excluded vertices is at most 16).

• Third, once again, all the signplaces of degree less than 3 have been deleted one by one. Obviously, there are no new
quads and still by Lemma 1 a ⩾ 5 or m ⩽ 13.

As before, we assume that a ⩾ 5 (since the case m ⩽ 13 is considered in Section 3.4), and so we are prepared to the next
case, in which we have a(A′) ⩾ 5, there are no quads, and every signplace has degree at least 3.
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3.3. The second case — ‘‘snake’’

We start with a formal definition of a snake.

Definition 1. Snake is a set of vertices intersecting a signplace and a place and containing at least 5 vertices.Head of a snake
is a couple of places, which intersect every vertex, and tail of a snake is the set of the remaining signplaces in each vertex.
Size of a snake is the number of its vertices.

Clearly in the current case we have a snake of size a ⩾ 5 in A′. Let it be based on {x+

1 , x2} (with the head being {x1, x2}).
Note that the size of its tail is equal to a, since vertices cannot intersect on tail.

Our aim is to prove that we can exclude some t signplaces with at most 3t − 14 vertices. Moreover, we will show that
there is a special construction (‘‘cobra’’, cf. Section 2.2), which has exactly 3t − 14 vertices on t signplaces and which is the
only such construction up to the graph symmetries.

We have an alternative.

(1) We can exclude 4 + a signplaces ({x1, x2} with all possible signs and a signplaces of the tail) and 3a − 2 vertices.
(2) We have at least 3a − 1 vertices intersecting the signplaces mentioned in the previous point.

In the first case, our aim is realized, since we can put t = 4+ a and get 3t − 14 = 3a− 2. In the second case, the analysis
will be much longer.

Let us consider the second case of the alternative. Each vertex intersecting the tail of the snake that we analyze should
intersect the head as well, and each of the a initial vertices intersects the head on two signplaces. Hence the sum of the
degrees of the head signplaces is at least 4a − 1. But there is no signplace with degree exceeding a, so the degrees of the
signplaces in the head are either

a, a, a, a or a, a, a, a − 1.

Anyway we have a place with two signplaces of degree exactly a. Without loss of generality, this place is x1. Since all quads
are already excluded, we have two snakes with signplaces on x1: one signplace is x+

1 and the second one is x−

1 . Consider their
heads. They could both lie on {x1, x2}, or they could lie on {x1, x2} and {x1, x3}, respectively.

In the first case, all the four signplaces of the head have degree a solely due to 2a vertices from the snakes. In addition,
there are vertices intersecting the tail (since the degree of each signplace is at least 3 and two snakes could provide only two
vertices on a signplace). Each vertex intersecting the tail should intersect the head as well, so the degree of some signplace
in the head exceeds a, which contradicts the assumption that a is the maximum value of the degree.

We are left with the second case: there are two snakes of size a with heads on {x1, x2} and {x1, x3}.
Let Q be the set of vertices lying fully on base {x1, x2, x3}. Denote by B the set of signplaces in the intersection of the tails.

LetC1 andC2 be the sets of the remaining signplaces in the corresponding tails. Let q, b, c1, c2 be the sizes of the corresponding
sets. We have already described all the vertices intersecting x1, since the maximum degree is equal to a. Consider the sum
of the degrees of the signplaces on x2 and x3. Since the degree of each signplace is at least 3, we have a new vertex for each
signplace from the intersection of the tails. Each vertex of this type should intersect both heads, and it cannot contain x1.
Therefore, it contains both x2 and x3 and adds 2 to our sum. We have at least two vertices intersecting each signplace of
the symmetric difference of the tails. Each vertex of this type should intersect the head of a corresponding snake and could
intersect two signplaces of its tail. In total, these vertices add at least

2(c1 + c2)/2 = c1 + c2

to the sum. Each of the 2a initial vertices intersects {x2, x3}. Each vertex from Q adds yet another 1 to the sum, since it
intersects {x2, x3} on two places. Again in total, the sum of the degrees of the four signplaces on {x2, x3} is at least

2b + c1 + c2 + 2a + q.

On the other hand, since the degree of each signplace is at most a, this sum does not exceed 4a. So we have

2b + c1 + c2 + q ⩽ 2a.

Each vertex from Q is in one snake. Consequently, q = q1 + q2 (qi is the number of vertices lying in a corresponding snake),

b + q1 + c1 = a, b + q2 + c2 = a,

and the inequality always turns to equality!
Thus, there is a set of

t := 6 + b + c1 + c2

signplaces intersected by

q + 3b + 3c1 + 3c2 ⩽ 3(b + c1 + c2) + 4 = 3t − 14

vertices.
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The second case of the alternative is complete, and our aim is attained. However, we will also prove below an upper
bound on t .

Suppose that the number of vertices is exactly 3t−14. It means that all the intermediate inequalities turned to equalities.
The last inequality turns to equality only when q = 4. One can see that any vertex intersecting a signplace from C1 or C2
should intersect 2 vertices of the tail, so it intersects {x1, x2, x3} only on 1 vertex, which contradicts q = 4. Hence C1 = C2 = ∅

and b = a− 2. For every signplace from x+
∈ B there is a vertex intersecting x+ and lying on base {x, x2, x3}. It turns out that

there is a third snake on {x2, x3}. We call cobra the union of such 3 snakes. Finally, one can see that there is no place x such
that x+, x− lie in B, otherwise there is an edge between two vertices on the base {x1, x2, x}.

As a result, t does not exceed n + 3, and the tail of a corresponding snake cannot contain two signplaces on the same
place.

Summing up the above, if we have no quad, then there is a cobra, which consists of three snakes with a common tail and
pairwise intersecting heads. It has 3t − 14 vertices on t signplaces, 8 ⩽ t ⩽ n + 3.

3.4. Finishing the proof

In the previous sections we have shown that there are the following options.

• To exclude a signplace and at most 2 vertices intersecting it.
• To exclude 8 signplaces and at most 16 vertices intersecting it.
• To exclude t signplaces with at most 3t − 14 vertices (8 ⩽ t ⩽ n + 3).
• To get m(A′) ⩽ 13.

Clearly the two first options yield at most 2m vertices on m signplaces. Computer simulations give that the same holds
for the fourth option. According to this, only the following cases could occur.

(1) There is no cobra. Then the number of vertices does not exceed 4n ⩽ 6n − 28.
(2) There is one cobra and t ⩽ n. Then the number of vertices does not exceed

3t − 14 + 2(2n − t) ⩽ 5n − 14 ⩽ 6n − 28.

(3) There is one cobra and t = n + 1. We are left to prove that n − 1 signplaces on n − 3 places can contain at
most 2n − 3 vertices. Suppose the contrary, then, by pigeon-hole principle, there is a signplace of degree at least
3(2n−2)/(n−1) = 6. Using the same arguments as in Sections 3.1–3.3we get a quad or a cobra, but both constructions
contain 3 places with 2 signplaces, which contradicts our assumptions.

(4) There is one cobra and t = n+2. We are left to prove that n−2 signplaces on n−3 places can contain at most 2n−6
vertices. Then the number of vertices does not exceed

3(n + 2) − 14 + 2n − 6 ⩽ 5n − 14 ⩽ 6n − 28.

Again, suppose the contrary, so there is a singplace of degree at least 3(2n−5)/(n−2). For n < 4 the claim is obvious,
and for n ⩾ 4 we have 3(2n − 5)/(n − 2) > 4. Using the same arguments as in Sections 3.1–3.3 we get a quad or a
cobra, but both constructions contain 3 places with 2 signplaces. Thus, we get a contradiction.

(5) There is one cobra and t = n + 3. All other signplaces lie on distinct places, and we can apply Nagy’s lemma
(see Section 1 and [19]) to get an upper bound n− 3 for the number of vertices. Then the number of vertices does not
exceed

3(n + 3) − 14 + n − 3 = 4n − 8 < 5n − 14 ⩽ 6n − 28.

(6) There are two or more cobras. Then the bound 6n − 28 for the number of vertices is straightforward.

The proof of Theorem 1 for n ⩾ 14 is complete.

4. Proof of Proposition 1

Suppose that χ (G9) = 21. Clearly |V (G9)|
α(G9)

= 21, and therefore every color has size 32. By computer simulations we see
that the only way to reach 32 vertices in an independent set is by taking a couple of full quads. Thus, we have a collection of
21 pairs of full quads (denote it by A); this collection covers each base exactly two times, since every full quad has exactly 4
vertices on every covered base. Note that every pair of quads does not cover exactly one place, so one can split A into nine
disjoint parts:

A = A1 ⊔ · · · ⊔ A9.

Let S1 be the set of all bases such that each of them does not contain the first place. Obviously |S1| =
(8
3

)
= 56. Consider a

pair of quads p ∈ A. Note that p covers 8 bases from S1, if p ∈ A1, and 5 bases from S1 otherwise. Denote the cardinalities of
A1 and A \ A1 by a and b, respectively. Every set in S1 is covered twice, and therefore we have 2|S1| = 112 = 8a + 5b. Hence
there are the following possibilities: (a = 14, b = 0), (a = 9, b = 8) and (a = 4, b = 16). But a + b = |A| = 21, so we get a
contradiction.

Proposition 1 is proved.
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