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Abstract

Let G be a simple graph with n vertices and ±1-weights on edges. Suppose
that for every edge e the sum of edges adjacent to e (including e itself) is positive.

Then the sum of weights over edges of G is at least −n2

25 . Also we provide an
example of a weighted graph with described properties and the sum of weights
−(1 + o(1)) n2

8(1+
√
2)2

.

The previous best known bounds were −n2

16 and −(1 + o(1))n
2

54 respectively. We
show that the constant −1/54 is optimal under some additional conditions.

Mathematics Subject Classifications: 05C07, 05C22

1 Introduction

A graph (finite, simple, undirected) is a pair (V,E), where V stands for a set of vertices,
and E denotes a set of unordered pairs of vertices, whose elements are called edges. Let G
be a graph; for a given edge e = (u, v) define its closed edge-neighborhood as an edge subset
N [e] formed by e and all edges of G adjacent to e. A weight function f : E → {+1;−1}
is called a signed edge domination function of G if∑

e′∈N [e]

f(e′) > 1

∗“Native towns” a social investment program of PJSC “Gazprom Neft” (Sections 2 and 3)
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for every e ∈ E; in this case we say that (G, f) is an SED-pair of order |V |. Let s[(G, f)]
be the sum of weights over all edges of a graph G equipped by a weight function f .

Denote by E+ the set {(u, v) ∈ E | f(u, v) = 1} and by E− the set {(u, v) ∈ E|f(u, v) =
−1}. Define

sv =
∑
e∈N(v)

f(e)

for each v ∈ V , where N(v) stands for the set of edges containing v. Let V+ be {v ∈
V |sv > 0} and V− be {v ∈ V |sv < 0}.

The following problem was posed by Xu in [5, 6].

Problem 1. What is

g(n) := min{s[(G, f)] | (G, f) is an SED-pair of order n}

for each positive integer n?

Note that for every g(n) 6 0 since an empty graph provides an SED-pair. The only
known result was provided by the following theorem.

Theorem 2 (Akbari–Bolouki–Hatami–Siami [2]).

(i) For every n

g(n) > −n
2

16
.

(ii) There is a sequence of SED-pairs of order n that satisfies1

s[G, f ] 6 −(1 + o(1))
n2

54
.

We refine both items as follows.

Theorem 3.

(i) For every n, g(n) > −n2

25
.

(ii) For every n there is an SED-pair of order n that satisfies

s[G, f ] < −(1 + o(1))
n2

8(1 +
√

2)2
.

Moreover, if n = 4(p + q)p, where p > 1 and q > 1 are positive integers satisfying
p2 = 2q2 − 1, then

s[G, f ] =

⌊
− n2

8(1 +
√

2)2
+

3
√

2− 4

4
n

⌋
.

1In fact the authors claim the bound −n2

72 but the provided example gives the bound −(1 + o(1))n2

54 .
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Note that there are infinitely many p and q satisfying the condition p2 = 2q2−1, since
it is a special case of Pell’s equation; it is well known that the positive solutions are

p =

√
2− 1

2
(3 + 2

√
2)k − 1 +

√
2

2
(3− 2

√
2)k, q =

√
2− 1

2
√

2
(3 + 2

√
2)k +

1 +
√

2

2
√

2
(3− 2

√
2)k,

for k ∈ N.
We show that Theorem 2(ii) is optimal under additional assumptions.

Theorem 4. Let (G, f) be an SED-pair of order n. Suppose that every e ∈ E− connects
a vertex from V+ and a vertex from V−; and every e ∈ E+ connects some vertices from
V+. Then

s[(G, f)] > − 1

54
n2.

1.1 Graphons

A graphon (also known as a graph limit) is a symmetric measurable function W : [0, 1]2 →
[0, 1]. Define a signed graphon as a symmetric measurable function W : [0, 1]2 → [−1, 1].
A signed graphon is edge-dominated if W (x, y) 6= 0 implies∫ 1

0

(W (x, t) +W (y, t))dt > 0.

Here we consider a continuous analogue of Problem 1. Denote

κ := inf
1

2

∫ 1

0

∫ 1

0

W (x, y)dxdy (1)

where the infimum is taken over all edge-dominated graphons W .
The following theorem is a standard result in the theory of graph limits [3], we include

the proof in Appendix A for completeness.

Theorem 5.

(i) g(n) > κn2, in other words s(G, f) > κn2 for any SED-pair (G, f) of order n;

(ii) g(n) = (κ+ o(1))n2 for large n.

Theorems 3 and 4 also have natural continuous analogues.

Structure of the paper. Theorem 3(ii) is proved in Section 2. Section 3 is devoted
to the proof of Theorem 3(i). Section 4 cites a result, determining the maximal sum
of squares of vertex degrees among all graphs with n vertices and e edges; we use it
in Section 5, containing the proof of Theorem 4. Appendix A contains the proof of
Theorem 5, Appendices B-D contain auxiliary calculations.
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2 Examples

In this section we provide a sequence of SED-pairs that achieves the upper bound

−(1 + o(1))
n2

8(1 +
√

2)2
.

2.1 A graphon example

The following signed graphon realizes an example for Theorem 3(ii). Put [0, 1] = AtBtC,
where |A| = 1− 1√

2
, |B| = 1√

2
− 1

2
, |C| = 1

2
. The function W is defined in Fig. 1.

−
1
√

2

1

1

1

0

0

−
1
√

2

−
1
√

2
0

0 1

1

A

B

C

A B C

Figure 1: A graphon example for Theorem 3(ii).

Note that W is edge-dominated: indeed, for (x, y) ∈ A× A∫ 1

0

(W (x, t) +W (t, y))dt = 2

(
− 1√

2
|A|+ |B|

)
= 0,

for (x, y) ∈ A×B∫ 1

0

(W (x, t) +W (t, y))dt = − 1√
2
|A|+ |B|+ |A|+ |B| − 1√

2
|C| = 1

2
− 1

2
√

2
> 0,

for (x, y) ∈ B ×B∫ 1

0

(W (x, t) +W (t, y))dt = 2

(
|A|+ |B| − 1√

2
|C|
)

= 1− 1√
2
> 0,

and for (x, y) ∈ B × C∫ 1

0

(W (x, t) +W (t, y))dt = |A|+ |B| − 1√
2
|C| − 1√

2
|B| = 0.

Finally,

1

2

∫ 1

0

∫ 1

0

W (x, y)dxdy =
1

2

(
−|A|

2

√
2

+ 2|A| · |B|+ |B|2 − 2|B| · |C|√
2

)
= − 1

8(1 +
√

2)2
.
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2.2 An explicit graph approximation

Here we provide the best approximation we can do. Fix p and q such that p2 = 2q2 − 1,
and p, q > 1.

We need several auxiliary definitions. Define a graph KX,Y, k
l

= (X ∪ Y,EX,Y, k
l
) for

|X| = al, |Y | = bl and integers a, b, k 6 l. Split X into a disjoint sets of size l: X =
X1 ∪ X2 ∪ · · · ∪ Xa with |Xi| = l; also split Y into b disjoint sets of the same size:
Y = Y1 ∪ Y2 ∪ · · · ∪ Yb with |Yi| = l. For each pair 1 6 i 6 a, 1 6 j 6 b consider the
following bipartite graph Gij = (Xi ∪ Yj, Eij) with parts Xi and Yj (all graphs Gij are
isomorphic). Enumerate vertices as follows Xi = {v1, v2, . . . , vl}, Yj = {u1, u2, . . . , ul}.
Define Eij as the set of all pairs (vg, uh), for which g − h mod l lies in {1, 2, . . . , k}. Put

EX,Y, k
l

=
⋃

16i6a,16j6b

Eij.

Obviously the degree of every vertex in Gij is equal to k, so the degree of a vertex in
KX,Y, k

l
is bk = |Y |k

l
for vertices in X, and ak = |X|k

l
for vertices in Y .

Now define graph KX, k
l

= (X,EX, k
l
) for |X| = 2al and integer a, k < l. Split X into

2l disjoint sets of size a: X = X1 ∪ X2 ∪ · · · ∪ X2l. The edge between vertices u and v
exists if and only if i− j mod 2l lies in

{−k,−(k − 1), . . . ,−2,−1, 1, 2, . . . , k − 1, k},

where v ∈ Xi, u ∈ Xj. Then the degree of every vertex in KX, k
l

is equal to 2ak = |X|k
l
.

Let KX = (X,EX) be the complete graph (i.e. every pair of vertices forms an edge)
on the vertex set X. Degree of each vertex in KX is equal to |X| − 1.

Now we are ready to provide the desired construction. Let p and q be a positive
solution of p2 = 2q2 − 1. Put

A = {a1, a2, . . . , a2p2}, B1 = {b1, b2, . . . , b2p(p−q)}, B2 = {b2p(p−q)+1, b2p(p−q)+2, . . . , b2pq},

C1 = {c1, c2, . . . , c6p(p−q)}, C2 = {c6p(p−q)+1, c6p(p−q)+2, . . . , c2(p+q)p}.

Define the vertex set
V = A ∪B1 ∪B2 ∪ C1 ∪ C2

(so n = 4p2 + 4pq). The edge set E and weight function f are defined by explicit
expressions for E+ and E−:

E+ = EA,B1∪B2,
1
1
∪ E

B1,
p2−pq−1
p(p−q)

∪ EB1,B2,
1
1
∪ EB2 ;

E− = EA, q
p
∪ EB1,C2,

q
p
∪ EB2,C1,

q
p
,∪E

B1,C1,
2pq−2q2−1
2p(p−q)

∪ E
B2,C2,

4q2−2pq−1
2p(2q−p)

.

Since p divides all of the cardinalities |A|, |B1|, |B2|, |C1|, |C2|; 2p(p− q) divides |B1|, |C1|,
and 2p(2q − p) divides |B2|, |C2|, the definition of f is correct.
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Some annoying calculation gives

sai = 0, sbi = p2, sci = −p2

for every i.
Note that there is no edge between A and C or inside C. Also all edges inside A of

between B and C are negative, so our construction is an SED-pair.
Finally we count

s[G, f ] =
1

2

∑
v∈V

sv =
p2(|B1|+ |B2| − |C1| − |C2|)

2
= −p4.

Recall that p2 = 2q2 − 1 and n = 4p2 + 4pq = 2p(2p+
√

2
√

1 + p2). So

s[G, f ]

n2
=

−p4

(2p(2p+
√

2
√

1 + p2))2
= − 1

8(1 +
√

2)2
+

5
√

2− 7

8p2
+

31
√

2− 44

32p4
+O(p−5).

Since n = (4 + 2
√

2)p2 +
√

2− 1
2
√
2p2

+O(p−3)

s[G, f ] = − n2

8(1 +
√

2)2
+

3
√

2− 4

4
n− 1

2(2 +
√

2)
+ o(1).

One can also derive

s[G, f ] =

⌊
− n2

8(1 +
√

2)2
+

3
√

2− 4

4
n

⌋
.

3 The lower bound of Theorem 3

Consider an arbitrary SED-pair (G, f), where G = (V,E).
It is known that for each v, u ∈ V if (v, u) ∈ E− ∪ E+, then sv + su > 0 (check it by

hands or see Lemma 1 in [2]). If V− is empty, then s[G, f ] > 0. Let x be

−min
v∈V−

sv

and consider an arbitrary vertex a such that sa = −x. Let N−(a) be {v ∈ V |(a, v) ∈ E−}.
Then |N−(a)| > x and sv > x for each v ∈ N−(a), so N−(a) ⊂ V+. Then

x2 6
∑

v∈N−(a)

sv 6
∑
v∈V+

sv.

Clearly, V− is an independent set (i.e. has no edges inside) so

∑
v∈V+

sv =
∑
v∈V−

sv + 2

 ∑
(u,v)∈E+|u,v∈V+

1−
∑

(u,v)∈E−|u,v∈V+

1
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6
∑
v∈V−

sv + 2
|V+| · (|V+| − 1)

2
6
∑
v∈V−

sv + |V+|2.

So ∑
v∈V−

sv > x2 − |V+|2;

recall that ∑
v∈V+

sv > x|N−(a)| > x2.

On the other hand

s[(G, f)] =
∑

(x,y)∈E+

1−
∑

(x,y)∈E−

1 =

∑
v∈V sv

2
,

and ∑
v∈V

sv =
∑
v∈V+

sv +
∑
v∈V−

sv > 2x2 − |V+|2.

Also ∑
v∈V

sv =
∑
v∈V+

sv +
∑
v∈V−

sv > x2 − x|V−| = −x(|V−| − x) = −x(|V | − |V+| − x).

Put y = x
|V | , k = |V+|

|V | . Then we have the following system of inequalities:{
s[(G, f)] > (y2 − k2

2
)|V |2

s[(G, f)] > −y(1−k−y)
2

|V |2.

So

g(n) > min
06y61,06k61

(
max

(
y2 − k2

2
,−y(1− k − y)

2

))
n2.

One may check by computer (or read explicit calculus in Appendix B) that the mini-
mum is − 1

25
and is reached at y = 1

5
, k = 2

5
.

4 Degree sequences of a graph

Here we display the results from [1], which are required in the proof of Theorem 4; for a
survey see [4].

Definition 6. Let n, e 6
(
n
2

)
be integer numbers. Consider the unique representation

e =

(
a

2

)
+ b, 0 6 b < a.

The quasi-complete graph Ce
n with e edges and n vertices v1, . . . , vn has edges (vi, vj) for

i, j 6 a and i = a+ 1, j ∈ {1, . . . , b}.
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Definition 7. Let n, e 6
(
n
2

)
be integer numbers. Consider the unique representation(
n

2

)
− e =

(
c

2

)
+ d, 0 6 d < c.

The quasi-star graph Sen is the graph with e edges and n vertices v1, . . . , vn, such that
vertices v1, . . . , vn−c−1 are connected with all vertices and vertex vn−c is connected with
vertices v1, . . . , vn−d.

Let F (n, e) be the maximal value of∑
v∈V

(deg v)2

among the graphs G = (V,E) with n vertices and e edges. We use the following result.

Theorem 8 (Alshwede–Katona, [1]). For every n and 0 6 e 6
(
n
2

)
the value F (n, e) is

achieved on Ce
n or Sen.

For G = Ce
n the sum of squares of degrees equals to

ba2 + (a− b)(a− 1)2 + b2 = a3 − 2a2 + 2ab+ b2 + a− b

= (1 + o(1))
(a
n

)3
n3

= (1 + o(1))

(
2e

n2

)3/2

n3,

because a = (1 + o(1))
√

2e. For G = Sen this sum equals to

(n− c− 1)(n− 1)2 + (n− d− 1)2 + (c− d)(n− c)2 + d(n− c− 1)2

= (1 + o(1))((n− c)n2 + (c− d)(n− c)2 + d(n− c)2)

= (1 + o(1))(n− c)(n2 + (n− c)c) = (1 + o(1))n3
(

1− c

n

)(
1 +

c

n
− c2

n2

)
= (1 + o(1))

(
1−

√
1− 2e

n2

)(
1 +

√
1− 2e

n2
−
(

1− 2e

n2

))
n3

= (1 + o(1))

(
1−

√
1− 2e

n2

)(√
1− 2e

n2
+

2e

n2

)
n3,

because c = (1 + o(1))(
√
n2 − 2e).

Corollary 9. Put α = 2e
n2 . Then

F (n, e) = (1 + o(1)) max
(
α

3
2 , (1−

√
1− α)(

√
1− α + α)

)
n3.
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Define
R(α) := α

3
2 , T (α) = (1−

√
1− α)(

√
1− α + α).

We show that R(α) < T (α) for α ∈ (0, 1/2) and R(α) > T (α) for α ∈ (1/2, 1). Define
t =
√

1− α. Note that

R2(α)− T 2(α) = (1− t)2(1 + t− t2)2 − (1− t2)3 = t2(1− t)2(2t2 − 1).

For α ∈ (1/2, 1) one has t ∈
(

0,
√
2
2

)
and R(α) > T (α). For α ∈ (0, 1/2) one has

t ∈
(√

2
2
, 1
)

and R(α) < T (α).

There are several weaker and better-looking bounds on F (n, e), but they do not meet
our aims.

5 Proof of Theorem 3

Put k = |V+|. Let the degrees of vertices in G[V+] be equal to a1, . . . , ak; the degrees of
vertices in G[V+, V−] be equal to b1, . . . , bk for vi ∈ V+ and c1, . . . , cn−k for vj ∈ V−. Define

a =
1

k

∑
16i6k

ai; b =
1

k

∑
16i6k

bi; c =
1

n− k
∑

16j6n−k

cj;

by double-counting in the graph G[V+, V−] we have kb = (n− k)c.
By the main condition, if we have an edge (v+i , v

−
j ) then

ai − bi > cj.

Sum up all these inequalities; then every vertex v+i is counted bi times, and every vertex
v−j is counted cj times. Hence ∑

16i6k

(ai − bi)bi >
∑

16j6n−k

c2j .

Applying Cauchy–Bunyakovsky–Schwarz inequality, we get√∑
16i6k

a2i
∑
16i6k

b2i −
∑
16i6k

b2i >
∑
16i6k

(ai − bi)bi.

The AM-GM inequality implies∑
16j6n−k

c2j > (n− k)c2 =
k2

n− k
b2.

Consider the following “dimensionless” quantities

α =
a

k
=

1

k2

∑
16i6k

ai; β =
b

k
=

1

k2

∑
16i6k

bi; B =

√
1

k3

∑
16i6k

b2i ; K =
k

n
.
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Then applying Corollary 9 to V+ and using obtained inequalities we have

U(α)k3/2Bk3/2 −B2k3 >

√∑
16i6k

a2i
∑
16i6k

b2i −
∑
16i6k

b2i >
∑
16i6k

(ai − bi)bi >

∑
16j6n−k

c2j >
k2

n− k
b2 = β2 k4

n− k
,

where U(α) = max
(√

R(α),
√
T (α)

)
. By the AM-GM inequality β 6 B. Also,

s[(G, f)] =
1

2

∑
16i6k

ai −
∑
16i6k

bi =
(α

2
K2 − βK2

)
n2.

Thus we have reduced our problem to the following optimization problem:
U(α)B −B2 > β2 K

1−K ;

minimize α
2
K2 − βK2;

0 6 α 6 1, 0 6 K 6 1, 0 6 β 6 B 6 1−K
K
,

(2)

where the last inequality follows from the fact that every bi is at most n− k.
We show that the desired minimum is − 1

54
; it can be reached by the example from

Theorem 2(ii). Note that a possible (with respect to conditions of the system (2)) value
of (α, β,B,K) may not correspond to an SED-pair.

Case 1. In this case α > 1
2
, so U(α) =

√
R(α). Then we have to solve the following

system 
α

3
4B −B2 > β2 K

1−K ;
1
2
6 α 6 1, 0 < K < 1, 0 6 β 6 B 6 1−K

K
;

minimize α
2
K2 − βK2.

In Appendix C we show that the minimum is − 1
54

.

Case 2. In this case α 6 1
2
. Then U(α) =

√
T (α). Then we have a deal with the

following system 
√

(1−
√

1− α)(
√

1− α + α)B −B2 > β2 K
1−K ;

0 6 α 6 1
2
, 0 < K < 1, 0 6 β 6 B 6 1−K

K
;

minimize α
2
K2 − βK2.

This system is analyzed in Appendix D; the minimum is bigger than the desired value
− 1

54
.

So we prove s[(G, f)] > −(1 + o(1))n
2

54
; Theorem 5 finishes the proof.
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Appendix A

Proof of Theorem 5. (i) Let (G = (V,E), f) be an SED-pair of order n. We partition
[0, 1] into n disjoint sets of measure 1/n and identify these n sets with n vertices of G.
For points x, y ∈ [0, 1] denote by v, u the vertices which contain them, respectively, and
put

W (x, y) =

{
f(v, u), if (v, u) ∈ E
0, otherwise.

It is easy to see that
∫ 1

0
(W (x, t) + W (y, t))dt = sv + su > 0 whenever x ∈ v, y ∈ u and

(v, u) ∈ E. Thus signed graphon W is edge-dominated, and κ 6 1
2

∫ 1

0

∫ 1

0
W = 1

n2 s(G, f)
that proves (i).

(ii) Fix ε ∈ (0, 1) and an edge-dominated signed graphon W such that 1
2

∫ 1

0

∫ 1

0
W <

κ + ε. Let n be a (large) integer. Denote k = bεnc, m = n− k. Since ε > 0 is arbitrary,
and the lower bound g(n) > κn2 is already established in (i), for proving (ii) it suffices to
prove that

g(n) 6 2kn+m2(κ+ ε) (3)

for all large enough n.
Choose m points v1, . . . , vm ∈ [0, 1] uniformly and independently at random. Denote

V = {1, 2, . . . , n}, and define the signed graph G = (V,E) as follows:
1) if i > m, the vertex i is joined with all other vertices and f(i, j) = 1 for all

j ∈ V \ {i};
2) if i, j 6 m, we join i and j by an edge with probability |W (vi, vj)| and put f(i, j) =

signW (vi, vj) if i and j become joined (the above events are independent).
If we define

f̃(i, j) =

{
f(i, j), if (i, j) ∈ E
0, otherwise,

then the expectation of f̃(i, j) equals W (vi, vj). If v1, . . . , vm are fixed, the Chernoff bound
guarantees that:

a) the probability that si − k =
∑

j6m f̃(i, j) differs from
∑

jW (vi, vj) by a value
greater than k/5 is exponentially small, and this holds true even if v1, . . . , vm are fixed;

b) the probability that
∑

jW (vi, vj) differs from m
∫ 1

0
W (vi, t)dt by a value greater

than k/5 is also exponentially small, and this holds true even if vi is fixed;

c) the probability that
∑

i

∫ 1

0
W (vi, t)dt differs from m

∫ 1

0

∫ 1

0
W (x, y)dxdy by more

than k/5 is also exponentially small.
Therefore with high probability none of the above 2m+ 1 events happens, and we get∣∣∣∣si − k − ∫ 1

0

W (vi, t)dt

∣∣∣∣ 6 2k

5

for all i = 1, . . . ,m, and ∣∣∣∣∣
m∑
i=1

si − km−m2

∫ 1

0

∫ 1

0

W

∣∣∣∣∣ 6 3km

5
.
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These bounds yield that (G, f) is an SED-pair, and

g(n) 6 s[G, f ] =
1

2

n∑
j=1

sj 6 k(n− 1) +
km

2
+

3km

10
+

1

2
m2

∫ 1

0

∫ 1

0

W 6 2kn+m2(κ+ ε)

that is (3).

Appendix B

We have to calculate

min

(
max

(
y2 − k2

2
,−y(1− k − y)

2

))
= −1

2
max

(
min(k2 − 2y2, y − y2 − ky)

)
.

Let k1, y1 ∈ [0, 1] be any values representing this maximum (the maximum is reached by
compactness).

First, we show that y21 −
k21
2

= −y1(1−k1−y1)
2

. Indeed, this equality means that k1 =
−y1+
√

5y21+4y1

2
. Suppose the contrary; if k1 >

−y1+
√

5y21+4y1

2
then

min(k21 − 2y21, y1 − y21 − k1y1) 6 y1 − y21 − k1y1

< y1 − y21 − y1
−y1 +

√
5y21 + 4y1
2

=

(
−y1 +

√
5y21 + 4y1
2

)2

− 2y21

= min

y1 − y21 − y1−y1 +
√

5y21 + 4y1
2

,

(
−y1 +

√
5y21 + 4y1
2

)2

− 2y21


and if k1 <

−y1+
√

5y21+4y1

2
then

min(k21 − 2y21, y1 − y21 − k1y1) 6 k21 − 2y21

<

(
−y1 +

√
5y21 + 4y1
2

)2

− 2y21 = y1 − y21 − y1
−y1 +

√
5y21 + 4y1
2

= min

y1 − y21 − y1−y1 +
√

5y21 + 4y1
2

,

(
−y1 +

√
5y21 + 4y1
2

)2

− 2y21

 .

In both cases

min(k21 − 2y21, y1 − y21 − k1y1)

< min

y1 − y21 − y1−y1 +
√

5y21 + 4y1
2

,

(
−y1 +

√
5y21 + 4y1
2

)2

− 2y21

 ,
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and 0 <
−y1+
√

5y21+4y1

2
< 1 (because y1 <

√
5y21 + 4y1 < y1 + 2), so (k1, y1) doesn’t

represent the maximum, a contradiction.

Since y21 −
k21
2

= −y1(1−k1−y1)
2

for k1 =
−y1+
√

5y21+4y1

2
, one may search for maxS(y) with

0 6 y 6 1, where

S(y) = y − y2 − y−y +
√

5y2 + 4y

2
= y − yy +

√
5y2 + 4y

2
.

Consider the derivative of S

S ′(y) =

(
y − yy +

√
5y2 + 4y

2

)′

= 1− y −
√

5y2 + 4y

2
− y 10y + 4

4
√

5y2 + 4y

= −(y +
√

5y2 + 4y)(5y − 1)(y + 1)√
5y2 + 4y(

√
5y2 + 4y + 1)

.

For y > 1
5

one has S ′(y) < 0, so S(y) < S(1
5
) for each y > 1

5
. Analogously y < 1

5
one

has S ′(y) > 0, so S(y) < S(1
5
) for each y < 1

5
. Then S(y) 6 S(1

5
) = 2

25
for each y ∈ [0, 1].

So

min

(
max

(
y2 − k2

2
,−y(1− k − y)

2

))
= −1

2
max

(
min(k2 − 2y2, y − y2 − ky)

)
= −1

2
maxS(y) = − 1

25
.

Appendix C

Here we solve the system
α

3
4B −B2 > β2 K

1−K ;
1
2
6 α 6 1, 0 < K < 1, 0 6 β 6 B 6 1−K

K
;

minimize α
2
K2 − βK2.

Case 1: K > 1
2
. Then by AM-GM inequality

√
R(α) > 2β

√
K

1−K and equality holds

for B = β
√

K
1−K . Then

β 6

√
R(α)

2
√

K
1−K

=

√
R(α)

2

√
1−K
K

.

Hence
α

2
K2 − βK2 >

α

2
K2 −

√
R(α)

2

√
1−KK3/2 =: q(α,K);
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we are going to minimize q(α,K). Derive with respect to K:

dq(α,K)

dK
= Kα−

√
R(α)

2

3− 4K

2
√

1−K
K

.

Find the roots of the derivative. We may multiply by
√

1−K
K

√
(1−K)Kα =

√
R(α)

(
3

4
−K

)
.

Then K < 3
4
. Square the equation

(1−K)Kα2 = R(α)

(
3

4
−K

)2

.

It is quadratic in K

(α2 +R(α))K2 −
(

3

2
R(α) + α2

)
K +

9

16
R(α) = 0.

Then D = 3
4
R(α)α2 + α4 and the roots are

K1 =
(3
2
R(α) + α2) +

√
3
4
R(α)α2 + α4

2(α2 +R(α))
; K2 =

(3
2
R(α) + α2)−

√
3
4
R(α)α2 + α4

2(α2 +R(α))
.

Obviously, the first root is always bigger than 3/4. Note that

K2 =
1

2
+

R(α)
2
−
√

3
4
R(α)α2 + α4

2(α2 +R(α))
.

Easily √
3

4
R(α)α2 + α4 > α2 >

1

2
α1.5 =

R(α)

2

since α > 1
2

so the second root is smaller than 1/2. Hence we should check only K = 1/2
and K = 1. Clearly q(α, 1) is non-negative; one may check (see Fig. 2) that q

(
α, 1

2

)
is

bigger than − 1
54

.
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Figure 2: The plot of q
(
α, 1

2

)
+ 1

54
. Figure 3: the plot of q(α,K0(α)) + 1

54
.

Case 2: K < 1
2
. Consider √

R(α) > B +
β2

B

K

1−K
.

It also implies that B > β
√

K
1−K but the condition B > β is stronger since K < 1

2
. Then

the optimal B is equal to β and hence β =
√
R(α)(1−K) and we minimize

q(α,K) :=
α

2
K2 −

√
R(α)(1−K)K2.

The derivative with respect to K is

αK − 2
√
R(α)K + 3

√
R(α)K2.

It has zeros at 0 and
2
√
R(α)−α

3
√
R(α)

. The derivative is negative on

(
0,

2
√
R(α)−α

3
√
R(α)

)
, so q(α,K) is

a decreasing function. After
2
√
R(α)−α

3
√
R(α)

the derivative is positive, so the function increases.

Hence q(α,K) has local minimum in K at

K0(α) =
2
√
R(α)− α

3
√
R(α)

=
2

3
− α

3
√
R(α)

.

Substitution gives

q(α,K0(α)) =
α

2

(
2

3
− α

3
√
R(α)

)2

−
√
R(α)

(
1

3
+

α

3
√
R(α)

)(
2

3
− α

3
√
R(α)

)2

=

√
R(α)

54

(
α√
R(α)

− 2

)3

.

One may check (see Fig. 3) that q(α,K0(α)) > − 1
54

.
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Appendix D

Now we solve the system
√

(1−
√

1− α)(
√

1− α + α)B −B2 > β2 K
1−K ;

0 6 α 6 1
2
, 0 < K < 1, 0 6 β 6 B 6 1−K

K
;

minimize α
2
K2 − βK2.

First, consider T (α). Since it is positive,
√
T (α) and T (α) have the same intervals of

monotonicity. Change the variable t =
√

1− α. Note that α ∈ [0; 1/2) implies t ∈
(

1√
2
; 1
]
.

Then
T (α) = (1− t)(t+ 1− t2) = t3 − 2t2 + 1.

Since T ′(t) = 3t2 − 4t = 3t(t − 4
3
) < 0 for all t, T (t) is a decreasing function. Note that

t(α) is also decreasing, so
√
T (α) and T (α) are increasing functions.

Consider two cases.

Case 1: K > 1
2
. Then by AM-GM inequality

√
T (α) > 2β

√
K

1−K and equality holds

for B = β
√

K
1−K . Then

β 6

√
T (α)

2
√

K
1−K

=

√
T (α)

2

√
1−K
K

.

Analogously to Appendix C we reduce to finding the minimum of

q(α,K) :=
α

2
K2 −

√
T (α)

2

√
1−KK3/2.

Again derive with respect to K and find the roots

K1 =
(3
2
T (α) + α2) +

√
3
4
T (α)α2 + α4

2(α2 + T (α))
; K2 =

(3
2
T (α) + α2)−

√
3
4
T (α)α2 + α4

2(α2 + T (α))
.

Obviously, K1 > 3/4. So the only possible root is K2. We should examine K = K2 (in
the case when it is bigger than 1/2), K = 1

2
and K = 1. One can see (for example by

compare the plots on Fig. 4 and Fig. 5) that K2(α) > 1
2

implies that q(α,K2(α)) is bigger
than − 1

54
.
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Figure 4: The plot of q(α,K2(α))+ 1
54

. Figure 5: The plot of K2(α)− 1
2
.

Finally, note that for K = 1 function q is positive. For K = 1/2 one may see the plot
on Fig. 6 to check that q

(
α, 1

2

)
> − 1

54
.

Figure 6: The plot of q
(
α, 1

2

)
+ 1

54
. Figure 7: The plot of q (α,K0(α))+ 1

54
.

Case 2: One can repeat step-by-step the second case of Appendix C. We minimize

q(α,K) :=
α

2
K2 −

√
T (α)(1−K)K2.

Derivation and substitution gives

q(α,K0(α)) =

√
T (α)

54

(
α√
T (α)

− 2

)3

.

One may check (see Fig. 7) that q(α,K0(α)) > − 1
54

.
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