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1. Imtroduction

The embeddability problem for the class of finite partial groupoids is unsolvable, i.e.,
there is no alporithm for deciding whether or not a finite partial groupoid can be
embedded into a semigroup. (See ez, T. Evans [23,24]). In recent years, various
sufficient conditions for embeddability of not necessarily finite partial groupoids into
semigroups have been studied, and we deal in this paper mainly with classes of partial
gronpoids which are embeddable into a semigroup.

After preliminaries in Section 2, in Section 3 we prove {Theorem 1) that the
following clusses of partial gronpoids are not first-order [nitely axiomatizable: the
class of all associative partial groupoids, the class of all partial semigrowps, the class
of all f-presemigroups, and the class of all F-presemigroups,

In Section 4 we start with characterizations of I7-presemigroups in Theorem
2, It is based on results by MUILA, Newman [47] and by D.E. Knmth and P.B. Bendix
[34], and it vields in particular o new proof of & theorem of R. Baer [4. Section 3,
Theorem 1]. Then we show (Theorem 3) that a theorem of IR, Stallings [51] on
LUepregroups is a special case of the R, Baer’s theorem on UV-presemigroups, just
cited. We alzo investigate a set of partial groupolds shown to be embeddable into
semigronps by PW. Bunting, J. van Lecuwen, and D, Tameari in [8]. Apart from a new
proof of this result, we state Turther properties of these partial groupoids {Theorem
4) and illustrate in this way several concepts occuring in our paper.

In Section 5 we introduce tlie use of the Knuth-Bendix completion procedure
[or deciding embeddability of Anite partial groupoids into semigroups. In 1975 T L
Hall [29] pave an example {attributed by T.E. Hall to C.J. Ash} of an embeddable
fnite semigroup amalgam which is not embeddable inte a finite semigroup. Among
other applications we use the Knuth-Bendix completion procedure to give a simple
proof of this result.

2. Preliminaries

For any set X, we denote by X% the free semiproup on X, and by A" the free
monoid on X with the empty word A as identity. The length of & word w & X7 s
denoted by [w|.

2.1. Partial groupoids

A particl groupeid is a triple G = (&, I, 1) where & is a nonempty set, D C & = T,
and p: D — &G is a mapping. Let G = (7, D, u) and H = (I, F,»] be partial
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groupoids. Denote iz, y) by x -y and w{z, gy} by z-y. A komomorphism of (7
inte H is & mapping @ G — H such that {x,5) € D implies (p(x), @(y)) € E
and w(x - y) = wlz)=w(y), for all z,y £ 7. In particular, if there is a bijective
homomorphism @ of G onto H such that ! is also a homomorphism, then the
partial groupoids & and ff are called isomorphic. We use the notation ([48])

lzuip W (zmy) e D,
I:‘:['.[s"'rIﬂ}IJ iff {:ﬁnwi-i-]:lu tor .i:-l:l"'!?lll.]"

We shall somelimes say that # .y is defined, instead of (z,y)p. As in [8], the
symbaol + in a multiplication table of a partial groupoid means that the corresponding
product is not defined, A word 27...2, is said to be (F-frreducible if for i =
L., n—1, (o) & D We denme by JRA(G) the set of all G-irreducible
words,

Let G = (&7, D, i) be a partial groupoid and let ©(G) be the relation on G+
defined as follows: (xy, plz.y)) € ©(G) il (z,y)p. Let B(G) be the congruence on
G generated by @y(G). Then U(G) = GF/O(G) is called the wniversel semigroup
of the partial groupoid &,

Let (7 and A Dbe partial gronpoids, 7 is said to be embeddable into F if there
is an injective homomorphism of & into &

A partial groupoid G = (G, D, i} is said to be a relative partiel subgroupoid
of a partial gronpeid H = (H, £, ) if the following conditions are satisfied:

(i) G CH;

(i) {(z,9) € D iff (x,y) € E and vz, y) € G for all (z.9) € & x &;

(i) gz, ) = v{z,9) for all (x,y) € 0.
Sinve each subset & of f determines uniquely a relative partial subgroupoid of
(H, £, v) (where D) has to be defined by (i) and o by (iif]}, one calls {G, 0, p) the
reladive partial subgroupeid of (H, E, v} deformined by GC M.

Concerning Lhe last both concepls we note the following: If & = (G, D, ) is
emnbeddable into & = (H, £, »#}, then the homomorphic image () of & need not be
a relative partial subgroupoid of H. In fact, using that each clement of @[G) = &' C
H satisfies &' = o[z} for a nnique & € &, we introduce D' = {(«",¢') : (x,y) € 2}
atd p'(x’ i) = (plr, y)) and obtain for the partial groupoid (&, I, 1) contained
in (H, £, v] instead of {1}, {i1) and (iii} merely

(il &' C H;
(i) [ e D= (' ) e B forall (2,9") € &' = G";
(iii") el y") = vz’ ") for all (=) € DY,

Let again G be a partial groupoid and B(G) the congruence on (4 generated
by Go{C). Then w — w' for w, o' € GF is called a direct mave from w to w' and
an nverse move from w' to w if there are w, v € 0* and =,y £ 7 such that w = wayy
and w' = uplz, y)v (P.M. Cohn [16, p. 158], S.M. Gensemer and H.J. Weinert, [27]).
Moreover, w ~ w' (mod ©(G)) holds for w # w' of GV if there is a sequence of
words w = g, wy, .. wy = W' in GF where each step from w; to w,., is either o
divect or an inverse move. Following [33, p. 26] we also call w = wy,wy, ..., 0, = w'
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a seguence of clementary Sa{F) -fransifions from w lo w' and r the lengéh of Lhis
seepience. In particnlar, for each word w & GV of length &, & = 3, Sglw] denotes
the subset of & consisting of all elements of G which can be obtained from w by a
sequence of & — 1 direct moves (R. Baer [2, Section 1, Definition 2]). If no ambiguity
is possible, then we write Glw) instead of Gelw).
We introdnee the following conditions on a partial groupoid (5

(AD) Forall my,z e &, if {z, v, 2)p, (z,pz)p and (29, 2lp. then o-(y-2) ={xy) 2.
(B1) For all z,w.z € &, if (w1, z)p and (& -y, z)p, then (z,¥ z)p.
(B2) Forall x,y,z€ G, il (x,y, 2)p and {24 2z)p, then {z-v.2)p.
(C1) Forall &,9,2 € G, if {z,4,2)p and (z-y,2) & D, then (x,y-2) € D, z-y=x

and y-z=z.
(C2) For all 2,y,z € G, if [,y z)p and [z, y-z} & D, then (x-y,2) € D, r-y==x
and yoz==z.
(D1) For all w,x,y, 2z € G if (w, 2,9, 2)p, then (w, - ylp or (& y,2)n.
(D2) For all w,x, 4,z G, if (z,y, 2)p and (w,x-ylo, then {w,2)p or {z-y, 2)po.
(D2) For all w,z,y,z € G, if (w,r, 9 p and (&g, z)p, then (w2 -y or {3, 2)o.
(AL) Forall w=my...0, € G" where n = 3,
(A} For all n = 3, condition {4;) holds,

S(uw)| = 1 holds.

V Forall o,y € &, 0 2~y (mod B(G)), then = =5,
(Qp) Forall o, 2 6 G, i ey ~ 2 {mad ©0&F), theo (r,y)o.
() Forall z,xy,... 2, € G andall n = 2, if 1.z~ o (mod &(G)), then there
exists ¢ € {1,...,n — 1} such that [z, 20 )6-
(51 For all w,ve &Y i w e v (mod &), then Glu) = &lv),
(L) For all w,v € JRR{G), if &~ v (mod O(5)}, then |u| = |v].
(1N For all u,» € TRE(G), if w ~ v (mod @{G)}, then =,
Clearly, conditions (AQ) and { Ag) are equivalent.
A partial groupeid & is called
- an associative partial growpoid i it satisfics condition (A);
- a partinl semigrowp {J.-C. Spehner [50, Definition 1]) il it is embeddable into a
sCMigroupn,

- an H-presemigroup i it §s a relative partial subgroupoid of a semigroup;
- an S-presemigeoup il 1L satisfies condition (3);
- an L-presemigrowp il it satisfies conditions (L) and (P
- an U -presemigroup if it satisfies condition (U) and thus (P},
Theorem A.  Lel & be o particl growpeid. Then

(i) {B. Baer [2]). G iz a partied semigroup if and only if it salisfies condibion ()

(it} (R. Baer 2]). G is an K-presemigroup if and only if i sotisfies conditions ()
i (Cn ) :

{iii) (R Baer [2]). @ i5 an S-presemigroup if end only of i safisfies conditions (P)

andd ()5
BN
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{iv) (R. Ba.er [4]] G is an L-presemigroup if and only if it satisfies conditions
(A0), (B1), (B2), (D1}, (D2), and (D3);

(v) (R. Ba.er [4]] G iz an U -presemigroup if and only if it satisfies conditions

(A0), (B1), (B2), (C1), and (C2). .

The following notations will be convenient:
A - the class of all associative partial groupoids;
P - the class of all partial semigroups;
R - the class of all R-presemigroups;
5 - the class of all S-presemigroups;
L - the class of all L-presemigroups;
U - the class of all I/-presemigroups.
Wehave U C L € S C R C P C A, R. Baer [2-4] has shown that all these inclusions
are strict, and we refer to wvarious examples given in Section 4 and
Section 5.
Note that recently the author studied various classes of partial groupoids (see
[17-21)).

2.2. Rewriting systems

Let X be a set. An arbitrary binary relation R on X* is called a rewriting system
{or a string-rewriting system) on X. An element (£,r) € R, also written { — 7, is
called a rule of R. The single-step reduction relation on X* induced by R, which by
abuse of notation will also be denoted by — | is defined as follows:

u—rv iff Jz,yeX* J{r)eR: u=xfy and v=uzxry.

Its reflexive and transitive closure — is the reduction relation induced by R, while
its reflexive, symmetric and transitive closure ©(R) coincides with the congruence
on X* generated by R.

A rewriting system R on X is called terminating if there is no infinite sequence
of single-step reductions. The length-reducing ordering > on X* is defined as
follows: for all w,v € X*, u >0 v iff [u| > |v|. £ =g 7 forall (f — 1) € R,
then R is terminating. A length-plus-levicographic ordering >y 10 on X* is defined
as follows: for all u,v € X*, u >pLo v iff either |u| > |v] or |u| = |v| and v precedes
4 in the lexicographic ordering induced by some well-ordering on X . If £ >0 r for
all ({ — r) € R, then R is terminating.

A rewriting system R on X is called eonfluent if for any w, u,v € X* such
that w —3 u and w ——+ v there exists w' € X* such that u —=+ w' and v — ',
A rewriting system R is complefe if it is both terminating and confluent.

Let (uv — s} € R, (vw — t) € R for nonempty words u,v,w € X*. Then
the word wvw is called an overlap ambiguity of R. Let (v — s5) € R, (uvw —
t) € Randlet u = A and w = A imply s # t. Then the word uvw is called an
inclusion ambiguity of K. In these both cases, the pair of words (sw,ut) or {usw,t),
respectively, is called a critical pair of R. A critical pair (p,¢) of R is resolved if
there is a word w' € X such that p 4 w' and g — w'.

A word u € X* is called R-irreducible if there is no single-step reduction
u —+ v for some v € X*. We denote by TRR(R) the set of all R-irreductible words.
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Theorem B.  Lel @ be o lerminaling rewriting system on X, Then the following
contditions wre equivalent:
(i) for all w,v e TRE(R), if u~ v (mod O{R)), then u =w;
(1) f iz complete;
{iii) all erilicel pairs of B are resolved. m

The equivalence (i) <= (ii} is due to M.H.A, Newman [47] and the cquivalence
(i) = (iii) to D.E. Kouth and P.B. Bendix [34].

Two rewriting systems Ry and A on the same set X are called eguivaleni
if they generate the same congruence on X', A rewriting svstem on X is finete if
both X and R are finite sets. Let £ be o finite terminating rewriting system. D,
IKnuth and P. Bendix [34] have developed a procedure for creating a finite complete
rewriting system which is equivalent to R, Note that for some inputs the completion
procedure will never terminate. For o description of the Knuth-Bendix completion
procedure see e.g. [7, 15, 30, 36],

3. The class of all partial semigroups is not finitely axiomatizable
Clearly, a partial groupoid & = {G, D, 4] can be considered as a pair M (&) = (G, T
where T is the ternary relation on G defined by (z,y, z) € T il and only if (&, ) p and
plz,y) = z. In the terminology of AT Maleev [44], M{() is the madel corresponding
to {7. If we nse a Hrst-order language L consisting of one ternary relation symhol,
p osay, then we can rewrite each of conditions [A0), (B1), (B2), (C1), (C2), {D1),
{(D2), and (D3) as a sentence of L. For example, {AQ) and (B1) can be rewritten as
sentences of L as follows;

AT Ya¥y¥e. . Valpoimer A przzgm A prymess A postay — 1 =g,

B1" VoL Vo 3 ylpaaman A pradsas A prsEaly — pryrgy) .
We denote by M the following sentence:
VoW gVo Vespoizar A primy — x =1
The next proposition follows from Theorem A and Proposition 1.5.10 of [33]:

Proposition 1.  The following classes of partial groupoids are first-order axioma-
tizahle

{i) The clas: & of all associntive partiol groupeids fe defined by the senfence M and
by an infinite set A" of sentences. For ench n = 3, condition (A,) rewrites as a
Sindle sef AL of sentences of the form

(1) VaW¥y¥o . ¥ralpuvs A A provy — 2 =]
where vy, ..., v € {T1, -, B ]
{i1) The eloss P of all partinl semigroups is defined by an nfiniic set P of sentences

af the form (1),
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(iii) The elass R of all R-presemigroups is defined by the infinite st P oand by an
infinile sef Q% of senlences of the form

i Ty.. i T 3 ]‘_,I'[',l'_i'U'l'Ug'l‘.?a Mol A Py _atle Wy —F jJ'U3+|_'U5+Ey|

where vy, v € {0, 30 )
{iv) The class 8 of all S-presemigroups is defined by the infinele sels PUoand (Y and
by an infinite set Q' of sentences of the form

W T 3w priveuy A LA pu g v,
1

P Vel VoLV Pk Vo]

where vy, Weagg € {1y, Lm0} I

Note that the class of all associative partial groupoids, the elass of all partial
semigroups and the class of all F-presemigroups are quasivarieties in the sense of
AL Maleev [44, 45]. The sentence M is a quasi-identity (in the sense of AL Maleewv),
the sentences of the form (1) are quasi-identities, and the sets P and (2% are
equivalent to an infinite set of quasi-identities,

Theorem 1. The following clusses are not firsi-order findiely axiomatizable:
i) The class A of all essosiative partial groupoids:

(ii) The class P of all partinl semigroups

(iii) The class R of all B-presemigroups ;

jiv) The elass 8 of all S-presemigroups.

FProof. (i) We shall prove that the infinite set of first-order axioms for associative
partial groupoids consisting of M and A!, n = 3, is not equivalent to any of its finite
subsets. From this it follows thal the class of all associative partial groupeids is nat
first-order fnitely axiomatizable. We refer the reader to 6] for the fundamentals of
ficst-order theories,

Let n = 5. We shall prove that concditions M and AL, k=3, ., n—1, donot
imply AL, To prove this we construct a partial groupeid &, whose model MG,
satisfies AL, k=3,... . n—1 hut not A’ . On the set 7, = {ag, ot B b,
€1y -5 g, . e} we define a partial groupoid 7, by the multiplicitions

(I:g'{i.q:f}'h I:'-!.|_‘--E.||_=!.|21 hf":'!':-f!:'r':ll:'”: -?:22:...:1’[—3:

fry—a - g = o, @y-ay = Cro Oy - fyqd = Cig, J=L...,n—4d,
g - Cpud = G, O] ' Cpos =B,
We denote ©5(G,) by @y, ©(0,) by €, and for each wm'd w of &) we denote
by w& the ©-class of w. We have 0@ = {o;}, i = 1,...,n. We shall examine the
other G-classes containing an element of G, by rmlmdi_rmg an oriented graph [ as

defined in P.M. Cohn [16, p.158]. The vertices of I' are the elements of G and the
arrows of [ are the direct moves. Then the different ©-classes are just the connected
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components of ['. Now the connected components of T containing an element of 7,
are as [ollows:

flwily — '!"l s by flglly —* -I.T-]_{:ll —h bz 1

f-!,lbll:'l.l, —h EJ;&.L — by
1y o Clydly
fyitaly

vl'.[-]b‘]f.'.ﬂ ceedljoyp —F o —F bi—laH-] b {-"i
iRy floilgily .y S

LT PR IR L L
where 1 =4, ..., n— 2,
ity —F £,
gdla ity . o dfjgn —F Cpil5 . gyn —F oL —F Oy ey T GG
where 7 =2,.,., ,n—3,
byeg ...y

[ Tuic] P RN Y
* Aoty .. fy —F ... —F dalpon —F Cp_a

by .0y — by — 0 — bypeny, —
el - - - Oy
pidatyels oo iy —F 00 —F Oyl gy —F D Cgop =

We see that S{oyay ... a0,) = {d, e} and for each word w of G} distinet from
@pia .. iy we have |[Siw)] < 1. Henee &, satisfies (Ay), # =3, ,n—1 bui
not (A, ), whence MiG,) satisfies M and Ay, & =3,...,n— 1 but not A} . This
completes the proof of (i).

(it} The proof is similar to the proof of (i), We shall prove thal the infinite set
P oof first-order axioms for partial semigroups is nol equivalent to any of its finite
subsets.

Consider again the partial groupoid &, defined in the proof of (i). We have
seen that the ©-class of = € G, — {d, &} contains exactly one element of G, namely
. The sequence of elementary Eyg-lransitions of minimal length from 4 to e has
length 2n — 2.

Since o and e belong to the same ©-class, by Theorem A (i), the partial
gronpoid (7, is nat a partial semigroup. Henee M((3,) does not satisly M. Let B
be a finite subset of P/ For each quasi-identity & € P we denote by (,(d) the
number of occurences of the symbol p in ). Let £,(4) = ny, ¥ € £, Choose
n = ny, forall o € P, Then M{F,) satisfes 5 but not P

{111} The proof is similar to the proof ol {ii}. Consider again the partial groupoid
{7, defined in the proof of (i), From the connected components of the oriented graph
[ we see thal & satisfes condition (Qg), whence M{G,) satisfies Q%. Choose
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n = ng, for all W & B where Fy s a finite subset of P and ny, 35 the number of
oceurences of the symbol p in o € . Then M{G,) satisfies @}, and Fj but not
P

(iv) The proof is similar to the prool of (ii). Let Qf be a finite subset of
(. We construct a partial groupoid H, whose model A (Hy) satisfies P, Q)
and ¢fy but not Q. Let Gy be the partial groupoid defined in the proof of (i)
and let H,, be the relative partial subgroupoid of 7, defined by the subset I, =
{ag,. v, by, o, g0}, Since 20(G,) = x8(H,), for all = £ H,, from the
connected components of the oriented graph [' we sce that for each © € H, — {c, 5}
the @, )-class of r contains exactly one H,-irreducible word, namely x. Bul
Ca—z and the Mo -irreducible word bag. .. e, belong to the same ©(H,)-class. The
sequence of elementary Sg{ H,)-transitions of minimal length from ¢, _y to bag . o,
has length n — 1.

Sinee e, 5 and the H, -irreducible word by ... belong to the same ©(H,)-
class, the partial groupoid Hy, does not satisty condition (@), whence M(H,) does not
satisfy Q. For each sentence ¥ € (' we denote by £,¢(+) the number of occurences
of the symbol p in 4. Let fe(w) = ny, @ € Q). Choose n = ny, for all o € 2.
Then M{H,} satisfies P, ¢, and Q) but not ¢,

This completes the prool of Theorem 1. =

Notes. (i) In 1979 E.5. Lyapin [42] (see also [43, Chapter T, Section 5)) proved that,
for » = 3, the conditions (A, ) are mutually independent. In the proof of Theorem 1
(i) we have defined the partial groupoid &, since it is simpler than the E.S. Lyvapin’s
one.

(i} The embeddability problem for semigroups is solvable if there is an al-
gorithm for deciding whether or not any finite partial groupoid is embeddable in a
semigroup. In 1953 Trevor Evans [23] (see also [24, 25]) proved that the embeddability
problem for semigroups is solvable if and ouly if the word problem for semigroups is
solvable, T\ Evans result and the well-known result that the word problem for semi-
groups is unsolvable imply that the class of all partial semigroups is not first-order
finitely axiomatizable (as noted in 1951 by T. Evans [22, p. 66]). The above proof of
Theorem 1 (ii) does not use the unsolvability of the word problem for semiproups.

() Let A = [{5; : i e I}; U] be a semigroup amalgam. In 1975 G.
Lallement [33] gave an example to show that no finite set of equational implications
with existential quantifiers and with variables taken from card [ distinet sels can
serve as i necessary and sufficient condition for the amalgam A to be embeddable
into a semigroup. A slight modification of G. Lallement’s example can be used to
prove thatl the class of all partial semigroups is not first-order finitely axiomatizable.
Note that the partial groupoid &, defined in the proof of Theorem 1 is simpler than
that used in [35].

(iv} A partial groupoid @ is called an incomplete semigroup (1. Evans [22]) if
it satisfies conditions (AD), (B1), and (B2). I & is an K-presemigroup, then it is an
incomplete semigroup (R. Baer [3, Section 3, Lemma 1]). In 1972 5.F. Gudder [28,
p. 718] raised the question of whether the converse is true, and if not to characterize
fi-presemigroups. For an example of an incomplete semigroup which is not an R-
presemigroup, see e.g., the partial groupoid G(b) defined in Section 4. Theorem 1 (iii)
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shows that the class of all H-presemigroups cannot be characterized by any finite sel
of frist-order axioms.

(v] Theorem 1(iv) is a corollary to Theorem 2 of [L8], Proposition 1 of [2,
Section 4], and Lemmna 1 of [3, Section 3]. Note that the proof of Theorem 2 of [L8]
is based on a theorem of B. Baer [3, Section 4, Theorem| (Theorem 1 of [18]} while
the above proof of Theorem 1 (iv) does not nse R. Bacr's theorem.

4. Deciding embeddability of partial groupoids

As already announced in the introduction, we give a theorem which includes R. Baer's
theorem on U -presemigroups, formulated here as Theorem A (v).

Theorem 2.  let & = {0, 0, u) be e partial groupsid, Then the following condi-
tionrs are eqitvalent:

(1) & is an 7 -presemigroug;
(i) ©9(G) is & complele rewriting system;

(i) & satisfies conditions (AQ), (B1)}, (B2), {C1), and (C2).
Proof.  For all (zy, p(x,9)) € 84(G) we have [oy] = [ple, )], whenee 8y(5) isa
terminating rewriting system for each partial groupoid G,

Setting A = €4(G) in conditions (i} and {ii) of Theorem B, we obtain con-
ditions (i} and (ii) of Theorem 2. Hence, to complete our proof by Theorem B, we
show that condition (iil) of Theorem B for R = Gg(F) s equivalent fo condition (iii)
of Theorem 2.

The rewriting system Spl(7) does not have any inclusion ambignities. All
overlap ambiguities of @y{F) are of the form zyz where (2,4, 2)p. Lot 2y = 5 and
-z = 1. Then the corresponding eritical paivs of GG are of the form (52, 21). We
prove that all eritical pairs of ©y{7) are resolved if and only if & satisfies conditions
(A, (B1), (B2}, (C1}, and {C2).

Suppose that (z -y, 2)p. Then the critical pair {5z, xt) is resolved if and only
il (g zlp and (z-y) - 2= (y- z), Le, if and only if & satisfies conditions (B1)
and (A0}, Similarly, it (x, i-2)p, then the critical pair {sz,xf) is resolved il and only
il & satisfies conditions (B2) and [A0).

Mow suppose that {w-y,z) & L. The critical pair {5z, zt) is resolved if and
only if {z,y-2) @0, o y=xand y-z = z, i.e, if and only if (7 satisfics condition
(C1). Similarly, if (&, - z) & D, then the critical pair {sz, #1) is resolved if and only
if (7 satsifics condition (C2).

This completes the proof of Theorem 2, =

Woe shall give some examples of M -presemigronps.

Example 1. Aoy set X can be considered as an UV-presemigronp with empty set
of multiplications. Then X is the universal semigroup of X
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Example 2. Let {5 i e I} beafamily of semigroups such that $;n5; = @ for
all ¢, § € I with ¢ & §, We define a partial gronpoid G on the set {5 : ¢ € I} in
wlhich a product of two elements is defined if and only if they both belong to the same
&; and their product is then talen as their product in 8;. Then the partial groupoid
G is an U-presemigronp and the universal semiproup of G is the free product of the
semigroups S, t € f.

Example 3. Let {5;: i £ I} be a family of semigroups, let L7 be a subsemigroup
of S; foralli e T oand let 5,5 = U forall 4,5 € T with 4 &£ j. The semigroup
amalgam A = [{5 @ ¢ £ I}; U] determines a partial groupoid G(A) (see [14,
Section 9.4]). A description of semigroup amalgams whase partial groupoids are -
presemigroups is due to BL5. Lyapin [38, 38, 40] (for the case 7| = 23, For a shorl
proof see [19, Section 5. As a special case, if Q[A) satisfies condition (A0) and I7 is
an ideal of 5; for all i € 7, then G{A) is an I/ -presemigroup.

Example 4, Let {5 €€ I} be afamily of semigroups, lel Wy ddef i#i5}
be a family of semigroups and let 5,0 8; = U for all 4,5 € 7 with § # . Then
Ay, =& te fp (U 67 e, @4 i} is called o generalized semigroup
amalgam (E.5. Lyapin [41]). The generalized semigronp amalgam A, delermines a
partial groupoid G{AZ) on the set {5 : i £ §} in which a product of twao clements
is defined il and only if they both belong to the same 5; and their product is then
taken as their product in S;. In 1992 LV, Lobodina [37, Theorem| proved that if
the partial groupoid G{A ;] salislies condition {AQ) and 07 is an ideal of S; and of
S; for all 4,3 € T wich ¢ £ 7, then G{A;) is a partial semigroup, One can easily
verify that G(A,) is actually an £ -presemigroup. This gives a new proof of L.V,
Lobodina’s theorem.

Example 5. In 1978 K. Byleen, J. Meakin, and F. Pastijn [10] introduced the
four-spiral semigroup Spy. Let G be the partial groupoid whose multiplication table
is

_ t?J' n hoood
i T
ble b b o=
R |
did = ¢ d

Then (7 is an U-presemigroup whose universal semigroup is Spy.

Example 6. Let G he the partial groupaid on the set {1, p, g} defined by the
multiplications 1-1=1, 1-p=p-1=p, l-g=g-1=¢, p-g=1. Then & is an
U-presemigroup whose universal semigroup is the beyelic semipgroup C(p, 4).

Example 7.  In 1980 [£. Byleen, J. Meakin, and I, Pastijn [L1] introduced a family
of semigronys .;_L[ri:_-'ﬂ}} o 7 1, @ % 1, which may be considered to be generalizations
of the bicyelic semigroup Clp, g) which is isomorphic to A{L 1), Let G{w, 4 he the
partial groupoid on the set {1, py, .., Do G100 ia} defined by che mnléiplications
L1=1, Lpy=p-l, e =mq-L=qe, pyrp =1, je{l,....a} ke{l, . __ 3}
Then Gia, d) is an U-presemigroup whose universal semigroup is Ao, 7).
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We introduce che following conditions on a partial groupoid G
((G1) There exists an ideptity element 1 & & such that for all = & &,
[z, g, {(Lalpand z-1=1 2=z
(G2} For each & & & there exists 27! € & such that [x,27 e, (27l a)p and
gre~l=xl.g=1,
(G3) Forall oy, 2 e G, il (2, 2)p and w £ 1, then (&9, z]p-
(G4) Forall -y, 2 € G, il (x oy, 2z)p and v £ 1, then (&, 9 z)p.

We say that an U -presemigroup is an [ -pregroup if it satisfies conditions {G1)
and {G2). Nole that il & is an U-pregroup, then the universal semigronp UG} of
G s actually a geoup (B. Baer |2, Section 4, Proposition 1]}

Theorem 3 below was proven by 1.1, Stallings [51] (see also I, Rimlinger [49]).
It can be proven in the same way as Theorem 2, e, one can show thal Theorem 3 is
a special case of Theorem B, Here we shall give a proof of Theorem 3 as a corollary
to Theorem A [v).

Theorem 3.  Let &G = ({7, 0, u) be o particl growpoid. Then G is an I -pregroup
if and onliy if @t setisfies conditions (AD), (GL), (G2), (GY), and {G4).

Proof. Suppose that & satisfes (GL) and (G2). We shall prove that & satisfies
(1) i and only if it satisfies (53],

Suppose that & satisfies (C1). Suppose (&3, z)p and y # 1. Suppose, be
way of contradiction, chat (¢ does not sacisfy (G3), e, suppose that (x-9, 2 @ 1
Then, by {C1), x-y =z, wheoce, by (G1) and [(G2), y = 1. A contradiction. Henee
(G3) holds, Now suppose that (7 satisfies (G3). Suppose (2, =)p and (2, 2) @ D
We have two cases: either y =1 or o 22 1. In the fivse case (1) holds, by (G1). In
the second case (3] implies (r -y, 2)p. A contradiction. Hence (C1) holds.

Similacly, if & satisfies (1) and (2], then & satistes (C2) 3 and only if it
satisfies (Gd).

Mext we shall prove that conditions (G1), (G3), and {G4) imply (B1} and
{B2). Buppose (x, 9, z)p. We have two cases: either ¥ = 1 or y 75 1. In the first case
{G1) implies (B1] and (B2). In the second ease (G3) and [G4) imply (B1) and {B2).

We use Theoremn A (v) to complete the proofl of Theorem 3. m

P, Bunting, J. van Leeuwen, and D, Tamari have shown in (8] that the
following partial groupeids &) are partial semigroups:

Gled | b e G la b e Ge) | a b el o b
A e i = = B a % N a = e b
B |+ ¢ & o= a = o+ e = h|le = n
e |b % oa e b o= b e | hos b e | hoa o=
Gle} | a i Af) e b oe Glg) e b e Gl [a b
i n % © it o oo e olo b oo it o
b oo o= b oo o= f | h o & fi o &
et e % a o coE o r.' | e % b e |4 = o
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Gli)[a b ¢ G(jl|a b e Gik)|a b c Gy o b e
i l* % a (o % a @ |i * @ I
h |e e A b b e b h e b e b |+ a o
i b i e boe e e b oe ¥ o8
Gm)|a b ¢ Gla) e b ¢ Glo) |a b c a e
i a da i |+ % a a [+ b e n | &
] 00 % b % Bo|le b e | ¢
e la o b e |boa o= o |bboe eoje ¢o«¢

We give a new prool of these results of [8] and further information about the
considered parlial semigroups.

Theorvem 4. (i) Al portiel growpoids Gz} introduced above are parliel semi-
qroups;

() G(N.GlI)LGE)LGle), and (Glp) are U-presemigrougs;
(v
v

1)
(i) &(n) iz an L-presemdgroup bul nol en U -presemigroup;
) G(b) and G(e) are not R-presemigroups;

)

The remaining & paviia! semdgroups are E-presemigroups, but not 5 -presemigroups.

Proof. By the aid of Theorem A, one werifies in & straiphtforward manner that
the partial groupoids G{f), (G(j), G{k), Gle), and Gp) are U7-presemigroups and
{7(n} is an L-presemigroup.

Let S(b) and S{c] be the semigroups whose multiplication tables are:

Sh)yja b c d Sie) | @ b oo d
a [ od b oa a |[bod bhoe
bold o d b b |d o d
e b od boa e |bhod b
d |a b oa d d e boe i

Lot Gg(b) and Grle) be the relative partial subgroupoids of S(b) and S(e). respec-
tively, defined by the subset {a, b, ¢}, If we delete the multiplication a-e = from the
multiplication tables of Grid) aod Gele), then we obtain the multiplication tables
of (b) and G(e), respectively. Hence G(b) and G(e) are partial semigroups.
Henceforth we denote by C, = {1, 2,2* ...,0" '} the cyelic group of order n.
Let Gr(e) be the relative partial subgroupoid of C defined by the subset {1,a, o}
If we delete the multiplication 1-e = e from the multiplication table of Gg{e), then
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we obtain a partial gronpoid which we denote by *{e). The mapping of G'(e) onto
Gle) given by 1 = a2, aw= b, o — ¢ is an isemorphism. Hence &(e) is a partial
SETHETOUT.

We prove that the other partial groupoids are R-presemigroups. Let S{f) and
S(f} be the semigroups whose multiplication tables are:

SiE)|e b o d S |a b e d
e |d d a a o b dda
bole e b B b |d e a b
c |d b e e c |daa b
d |a o d d e |a b b d

Then G(#) and G{f) are the relative partial subgroupaids of S(i} and S(#), respec-
tively, defined by the subset {r, b, c}. Let Gr(2) be the relative partial subgroupoid
of €y defined by the subset {o,a®}. Then the mapping of G (2] onto G(2) given by
@’ 0, @ bisan isomorphism. Let C? denote the semigroup obtained fram Oy
by adjoining a zero element 0 and let Gg(m) be the relative partial subgroupoid of
% defined by the subset {0, a,a*}. Then the mapping of < (m) onto G(m) given
by 0 a, aw— b @ — cisan isomorphism. Let Ggle) be the relative partial
subgroupoid of C; defined by the subsel {a,a a'}. Then the mapping of Gula)
anto Gia) given by o — a, a' — b, o' ¢ is an isomorphism. Let Ggld) be the
relative partial subgroupoid of Oy &0y = {1, a, b, b} defined by the subset {a, b, eb}.
Then the mapping of Gg{d) onto G{d) given by a—a, b b ab=— ¢ is an iso-
morphism. Let Grlg) be the relative partial subgroupoid of O defined by the subset
{1.a,a*}. Then the mapping of Gglg) onto Glg) given by 1= a, a® — b, ae
is an isomorphism. Finally, let ¢ g(R) be the relative partial subgroupeid of & de-
fined by the subset {a,e’ a'}. Then the mapping of Gr(h) onto G(h) piven by
a—+n, a —b a*— ¢ isan isomorphism. This completes the proof of (i).

MNext we show that the partial groupoid Gin) is not an I-presemigroup.
Indeed, we have (a,c,a)p and (g,c-a) & D but ¢ e # o, Hence (F{n) does not
satisfy condition (C2), whence, by Theorem A (v), Gin) is not an U-presemigroup.

The partial groupoids (&) and G{e) arc not R-presemigroups. We prove
that &'(d) is not an H-presemigroup, We have

baer — bz — aa
CC /“
coalh — ehbh — ra —

so that aa ~ b (mod @(G(0))) but ao s a G{b)-irreducible word. Hence G(b)
does not satisfy condition {Qu), whence, by Theorem A (ii), G{#) is not an F-
presemigroup, Similarly, for the partial groupoid Gie) we have

el — colh — ab

bbb Q

Gbbe — bee — e — &

Henee Z(e) is not an R-presemigroup.
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The remaining partial groupoids Gizl, = € {un,cd, g b4 0m) and G(2)
are A-presemigroups but not S-presemigroups. We have proved that these partial
proupeids are R-presemigroups, except for Gic). We prove that Gic) is actually
an R-presemigroup. To prove this, we use the above defined semizroup Sled. IF
we delete the multiplication a - 2 = & from the multiplication table of S{c), then
we obtain a partial semigroup which we denote by &(c]. We denote the universal
semigroup of G'e) by Ue), and S(G'(e)) by &, Since ('{c) is a partial semigroup,
by Theorem A (i), the ©-classes «@, 62 and 8 are mutually disjoint. Let i)
be the relative partial subgroupoid of L{e) defined by the subset {08, b@, e&), The
mapping of Gg{e) onto Gic) given by a8 — o, 18— b, B = ¢ is an isomorphism.
Henee () is an f-presemigroup.

We prove that (2} is not an S-presemigroup. We have

ey — b — @

FLETYTEL {

* obe

so that abe ~ a (mod O{G(2)})) but abe is a G(2)-irreducible word. Henee &(2)
does not satisfy condition (0)), whence, by Theorem A (i), <(2) is not an 5-
presemigroup. Similarly, one can prove that Glaz), x € {a.e.d, g, b4, {,m} is not
an S-presemigroup. This completes the proof of Theorem <. =

Notes. (i} We refer the reader to AH. Cliflord [12, 13] {or to A E. Evseev [26,
Section 5]} for the definition of a warp. For any semigroup S we denote by E(S) the
seb of all idempotents of 5. IF B(5) £ ), then the relative partial subgroupeoid of §
defined by the subset E{5) is called a parttal bond (G.R. Baird [3]). Every partial
band is & warp (AL Clifford [13, Theorem 11]). In 1974 AL Clifford [12] raised
the question of whether the converse is true. The partial groupoid (k) can serve as
a simple example of & warp which is not a partial band. One can verify that G{&) is
a warp., Suppose, by way of contradiction, that (k) is a partial band, e, suppose
that there exists a semigroup S such that E(S) = {o,b,c} and G{k) is the relative
partial subgroupoid of & defined hw the subset (o, b, ¢}, Since abeh = ab in S, ab
15 an idempotent of S, whenee the product - b is defined in G(&), contrary 1o the
definition of G{&). Hence (k) is not a partial hand,

{31) We say that a partial groupoid G is o T-presemigronp if its multiplication
tuble can be completed to o multiplication table of a semigroop.

In 1974 E.5. Lyvapin [40, p. 142] {see also B.S. Lyapin and AE. Evseev [43,
po 112, Example 2)) gave an example of an A-presemigronp which is not a 1'-
presemigroup.  The partial gronpoid G{2) can serve as another example.  We
have proved chat G(2) is an F-presemigroap,. We prove cthat G2) is not a T-
presemigronp. Suppose, by way of contradiction, that G2 is a D-presemigroup,
Then either a- b =a or a0 =0, Tn hoth cases we have Sianh) = (o, b}, contrary
to the hypothesis that &2} is o T-presemigroup,

In 1991 E.S. Lyapin and A Evseev [43, p. 112, Example 3] gave an example
of & partial semigroup which is not an f-presemigroup and not a T-presemigroup.
The partial groupoid Gle) can serve as another cxample. We have proved that G{e)
is not an f-presemiproun. We prove that Gle) is not a T-presemigroup, Suppose,
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by way of contradiction, that 7(e) is a T-presemigroup. Then either (i) b-c=a,
or (i) b-ec=1t, or (iil] b -e=e¢. Inall three cases we have [S(bbe)| = 2, contrary
to the hyvpothesis that Gie) is a T'-presemigroup.

(iii) In 1966 5.1 Adjan [1] proved that a semigroup defined by a cyele-free
presentation is embeddable in a group. 5.1 Adjan zave an example [1, Chapter 2,
Example 3] which shows thal the condition is not necessary. Independently, in 1963
:.C. Bush [9] (sec also P.M. Higgins (31, p. 185]) gave another example to show that
the Adjan’s condition is not necessary. We can use the partial groupoid Gi{2) to
construct a simple example. Tndesd, the semigronp presentation P = sgpla, by aa =
b, bl = a) has a left cyele and a right cyele, but the semigroup defined by P s actually
a group, namely, the cyelic group of arder 3. Clearly, if we vse a full groupoid instead
of a partinl one, then the simplest example is the presentation 1Py = sgpla; ae = a) of
the one-element semigroup which s simultaneously the one-element group. Obviously
the presentation 1Py has a lefe eyele and a right eyele.

{iv) Bunting, van Leeuwen, and Tamari [8, p.598] stated that the partial
groupoid Gip) is not a T-pesemigroup. (For the definition of & T-presemigroup see
note (i) above). The multiplication table of G{p} can be completed Lo a multiplica-
tion table of a semnigroup by defining a-b = b0 = ¢, wheoee &(p) 15 a T-presemiproup
which indicates that it should be some mistake in the computer program used in [8].

5. Applving the Kmnth-Bendix completion procedure

In this section we inteodnce the use of the Knuth-Bendix completion procedure for
deciding embeddahilicy of finite partial groupoids into semigroups. We illustrate the
nse of che Knuth-Bendix eompletion procedure by means of two examples, First we
consider the partial groupoid determined by the Ash'’s semigroup amalgam. Secondly,
we consider again the 17 Bunting, van Leeuwen, and Tamari’s partial proupoids.

[t is known (3.1, Neumann [46, p. 532]) that a finite group amalgam is always
ermbeddable in a fnite group, In 1964 J.M. Howle |32, p. 35 raised the question of
whether there exists a finite semigroup amalgam which is embeddable in a semigroup
but not in a finite semigroup.  In 1975 T.E. Hall [29, p.377] gave an example
{attributed by T.E. Hall to C.1. Ash) to show that the answer is in the positive,
Here we shall give o simple proof of this result.

Let G be the partial groupoid whose muoltiplication table is

G0 e

falb g oy
W O T W R VO
el e O o 00 & 0
floon fob g0y
a0 0 o 0 e *« =
B0 b0 fn s =
g 00 g o=+ g 0y
el 0w = = x U e
gl oy 0 = = 0 g 0

Let 5, T, and 17 be the relative partial subgroupoids of & defined by the subseis
[0,e, fia ), {0 fg, 54}, and {0,¢, F}, respectively. Then 5 7 and I7 are
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semigroups such that SMT = U7 The multiplication tables of 5 and T are given in
(33, p.252]. Clearly, G is the partial groupoid determined by the semigroup amalgam
A =[5T:U], The partial gronpoid 7 is embeddable in a semigroup since A is an
inverse semigroup amalgam (T.E. Hall [29]; see also J.M. Howie [33, Chapter VII,
Section 4]).

We shall use the Knuth-Bendix completion procedure to give a short proot
that & is a partial semigroup. The rewriting system ©4(G) is not complete. [f
we apply the Knuth-Bendix completion procedure to ©p(G), then we obtain the
following complete rewriting systemn:

B(H) = y(G)U{ax — 0, bg —+ 0, by — 0, ge— 0, za — 0, yh— 0}.

Next we use Oy(H) to extend the multiplications of & by defining a-z =10, b-g=
0, b-y =0, gra=10 =z-a=0 y-bt=0 Wedenote by H the olained
partizl groupoid. By Theorem 2, H is an U/-presemigroup. Clearly, ¢ embeds in
H, whence & 1s a partial semigroup.,

We prove that the partial groupoid & is not embeddable in a finite semigroup.
The rewriting systems (G and G, H) are equivalent, i.e., they generale the same
congruence on 7. Hence the universal semigroup U{(7) of & coincides with the
universal samigroup U{H) of H. We denote B(G) = B(H) hy 2. Since H is an
L -presemigroup, the &-classes 0, z00, and ay© are mutually disjoint. Let £ be
the relative partial subgroupoid of @) defined by the subset {8, 08, ay®},
Let I be the relative partial subgroupoid of the bicyclic semigroup Clp, q) defined
by the subset {1,p,g}. Then the mapping of E onto I given by 2 — 1, 260 —
P oy — ¢ 18 an isomorphism. Hence U{G) contains a copy of C(p, g}, whence, by
Corollary 1.32 of [14], & cannot be embedded in a finite semigroup.

Consider again the Bunting, van Leeuwen, and Tamari’s partial groupoids
G(x) of Section 4. For each of them we denote the rewriting svstem ©y(7(z)) by
Sylx). For example, @9(2) = {an — b, bh — a}. Define the rewriting systems

2) = {ab— ba},

—

u) = {eb— ba, aa — eh, be —+ch, cbe — ),
= {ab— b, bo—ch, bc —ch, an —3 b},
= {ab— b, bo —s ch, be — b},

e

It

e

By

Rif{d) {na — e, Wb — ce, coc — ),
File) = {bc—rch, ab— b},

Lalgy = {be— b},

Ei(h) = {ab—ba, ve—s ca, be — b},
Ri(i) = {aa — ab},

Bi(f} = {ab—rca, ae — ea, be — ca},
Ri(m) = {be — ch},

Bi(n) = {aa — ab, ba — bb}.

Fut Ap = {f.0.k 0,p} and Ay = {a,b,e,d, e, g, ki, € m, n, 2} and denote R(x) =
en{‘?) ] H| |:j"}, I e .n"!l.'l.
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Froposition 2. For e € Ay, the rewriting system Sglx) is complele. For v £ Ay,
the rewriling system Rz} i @ Knuth-Bendiz completion of the rewriting system
S EE

Froof.  For x & Ay, we use the length-reducing ordering on {a. b, c}* For = € A,
we nse the length-plus-lexicographic ordering on {e, b, ¢} induced by the ordering
i = b > oo The rest of the proof is left to the reader or the reader’s Favourite
completion program. -]

MNow we give a second proof of Theorem 4 i), based on Proposition 2,

For x € Ay, Porposition 2 and Theorem 2 imply that Gix) is an U -presemi-
group, Let = € A, Sinee each element of @{x) is a fi(x)-irreducible word and
since, by Proposition 2, R(x) is a complete rewriting system, by Theorem B, distinct
elements of G(z) belong to distinet ©(R(x))-classes, and consequently, to distinct
(G (w))-classes. Henee, by Theorem A {i), G(z) is a partial semigroup.

Naotes. Let &, be the cyclic group of order n and let U(x) be the universal
semigroup of G}, It is easy to see that U{f), U{e), Uln), Ulo), and Uip) are
infinite semigroups, Actually I7(f) is an infinite group, namely 7 ) 2 Ca =y, The
universal semigroups ol the remaining partial groupoids are finite, so that, by using
the corresponding complete rewriting system, we can easily write their multiplication
tables. The rewriting system R(2) has three 8(2)-irreducible words (distinet form
the emply word A}, namely a.b, and b, so that £7(2) is o semigroup of order 3. Set
i =e. Then U2} Lhas multiplication table

We can easily write the above multiplication table by using the complete rewriting
system RH(2}. Eg, ac = aba — baa —+ W — a. The mapping of 07{2)
onto Oy given by o — a, b = a® ¢ 1 is an isomorphism.  Similarly,
Ufa) = Oy, Uld) = Comlh, Ule) = Ulg) =20, Ulh) =G, Ulm) = cl.
Let S(b), S(i), and S(€) are the semigroups whose multiplication tables are given in
Section 4. Then U(b) = S(b), U7{i} = S(i), and U{f) = 5(6). Il we set ab = d, then
the multiplication tables of I7{y) and U{%) are:

Ui |a b od Uikhyla b ¢ d
a |la d a d ¢ la d e d
ol e b oe bole b o b
o e b oeoh o e foe b
i l d oo doa d jo d e d

Acknowledgements

The anthor would like to thank the releree for various improvements in the paper.
The author would alse like to thank Professors D, Skordev, [ Dimovski, and §.
Dodunekoy for their help and encourngement.

411



(1]

9]

[10]
[11]
[12]
[13]

[14]

115]

[16]
[17]

[18]

DExov

References

Adjan, 5. T., “Defining relations and algorithimic problems for groups and
semigroups”, Trudy Mat. [ust. Steldov wol. 85, Nauka, Moscow, 1966, En-
plish translation, Proe. Steklov Inst, Math. vol. 83, Amer. Mach. Soc., Prov-
idenee, R.1., 1967.

Baer, R., Free sums of groups and thetr generelizafions. An enalysis of the
asspeialive low, Amer. I Math, T1 (1949), TOG-742.

Bacr, R., Free sums of growps aned their genevalizations IT, Aer. J. Math.
T2 (19307, 625-646.

Baer, R., Free sums of groups and their generalizations {11 Amer. J. Malh,
T2 (1950), 647-G70.

Baird, (i, R., On semigroups and wniform porficl bands, Semigroup Forum 4
(1072), 185-188,

Barwise, J., editor, “Haudbook of Mathematical Logic”, North-Holland, Am-
sterdam, 1977,

Benninghofen, B., 5. Kemmerich, and M. ¥, Richter, “Systems of Reduce-
tions”, Lecture Notes in Compuier Science vol. 277, Springer-Verlag, Berlin,
1987,

Bunting, P, W., I. van Leenwen, and D. Tamari, Deciding associalivily for
partial multiplication fables of erder 5, Math, of Computation 32 [1978),
03605,

Bush, . O, Nofe on an embedding theovem of Addyan, Proc. Amer. Math.
Do, 14 [1963), 397-390,

Byleen, K., J. Meakin, and F. Pastijn, The fundemental fowr-spiral semi-
group, J. Algebra 54 {1978), G-26.

Byleen, K., J. Meakin, and F. Pasiijn, The double four-spival semigroup,
Simon Slevin, 54 (1980), no. 2, 75-105.

Clifford, A. H., “The [undamental representation of a regular semigroup™,
Math. Dept. of Tulane University, 1974,

Clifford, A, He., The furdamentel representadion of o regular semigroup, Semi-
group Forwm 10 (1975}, §4-92.

Clilford, AL IL, and G, B. Preston, *The Algebraic Theory of Semigroups”,
Mathematical Survevs, no. 7, Amer. Math, Soc., Providence, UL, vol. T,
1961, vol. IT, 10GT.

Cohen, I E., String vewriling. A swreey for group theorisls, Geometric
Gronp Theory, vol. 1 (Niblo, G AL, and Raller, M.A., editors), Cambridge
University Press, Cambridge, 1963, 37-47.

Caobn, P M., “Universal Algebea”, Harper and Row, New Yorld, 1965
Dekov, DLV, The embedding of semigroup amalparns, 1. Algebra 141 (1991),
158-161.

Dekow, DOV, The class of all S-pregroups iz not finalely eciomalizable, Proc,
Amer. Math. Soc. 115 [1992), 805-807,

412



27
28
[20]
30
31
(32
33

[34]

DEKOv

Drekeov, DL V., Free products with emelgemotion of semigroups, Semigronp
Forum 46 [1993), 34-61.

Dekov, D. V., fANN extensions of semigrowps, Semigroup Forum 49 (1994),
23-87.

Deleov, TN VL, Ewbeddebility and the word problern, 1. Symbolic Logic 80
(1095), 1194 1198.

Ewvans, T., The word problem for ghatrect alpebras, 1. London Math, Soc, 26
(1951, 64-71.

Evans, T., Embeddability and the word problem, J. Londen Math. Soc. 28
(1953), 76-80.

Evans, T., Word preblems, Bull. Amer. Math, Soc. 84 {1978), TEO-802.
BEvans, T., Some solveble word problems, Word Problems [I (Adian, 5.0,
Boone, W W, and Higman, G., eds.), North-Holland, Amsterdam, 1980, 87-
1o,

Evseev, AL E., A swrvey of pariial groupoids, Propecties of Semigroups (Lyapin,
E.5., ed), Leningrad, Gos, Ped. Inst., Leningrad, 1984, 39-76 {Russian); En-
glish translation in Amer. Math. Soc, Transl, (2) 139 [1088), 43-67.
Gensemer, 5. H., and I1 1. Weinert, O the embadding of partial growpoids
ireto sernigroups, Bayreother Math, Schr. 28 {1980), 139-163,

Gudder, 50 P, Portial algebraic structures asseciated with orthemedular
pasets, Pacific I, Math. 41 {1972), TI7-730.

Hall, T. L., Free products with emalpemalion of inverse serdgroups, J. Alge-
bra 34 [1075), 373-383,

Hermiller, 5. M., Rewriting systems for Coweler groups, 1. Pure Appl, Algebra
92 {1994}, 137-148. '
Higgins, P M., “Techoigues of Semigronp Theory™, Oxford University Press,
Oxford, 1992,

Howie, I. M., The embedding of semigroup amelgams, Quart. I Math. Ceoford
(2} 15 (1064), 55-G8.

Howie, 1. WM., “An [Introdoction to Semigronp Theory™, Academic Pross,
London, 1976,

Knuth, D, E., and P. B, Bendix, Simple word problems in weiversal algebng,
Computational Problems in Absrract Algebra {Leech, J., ed.) Pergamon
Pross, Oxford, 1970, 2632497,

Lallement, G., Amalgamated products of sermigroups: The embedding problem,
Trans. Amer. Math, Soc. 206 (1975), 375-304.

LeChenader, Pho, “Canonical Forms in Finitely Presented Algebras™, Pit-
man, London and Wiley, New York, 1956,

Lobodina, L. V., The embedding of generalized semigroup amalgems with
ideal interzections, Partitions and Homomorphisms of Semizgroups {Lvapin,
L8, edl ), Ross, Gos, Ped. Inst., St-Petersburg, 1992, 838-99 (Russian),

413



(58]

[39]

|40]

[41]

[42]

[43]

[44]

45
16
47
3

19

[a0]

[51]

LDERov

Lyapin, E. 5., The independence of subsemigroups of a semigroup, Dokl
Akad, Nauk S55R 185 (1969), 1220-1231 (Russian); English franslation,
Soviet Math. Dokl. 10 [1060), 492—404 .

Lyapin, E. 5., Inlevsections of independend subsermigroups of o semigrougp,
Tzv. Vyssh, Uchebn, Zaved. Matematika, no. 4 (83) (1970}, 67-73 (Russian).
Lyapin, E. 5., Problems of the fheory of semigroup ertensions of particl
groupsids, Modern Algebra, vyp. 1 {Lyapin, E.5., ed.], Leningrad. Gos. Ped.
Inst., Leningrad, 1974, 130-143 {Russian).

Lyapin, E. 5., Independend semdgroup extensions of portiol growpodds, Modern
Algebra, vyp. 2 (Lyapin, B.5., ed.), Leningrad. Gos. Ped. lost., Leningrad,
1974, 5371 (Russian).

Lyupin, E. 5., Weak associativity of perticl operations, Semigroup Varieties
and Semigroups of Endomophisms {(Lyapin, E.5., ed.), Leningrad. Gos. Ped.
Inst., Leningrad, 1979, 95-112 {Russian).

Lyapin, E. 5., and A. E, Evseev, “Partial Groupoids”, Ross, Gos, Ped, Tnst.,
Si.-Petersburg, 1991 (Russian).

Maleew, A L1, A few remarks on guasivariedios of algpebroic sypsiems, Algebra
i Logika 5 (1966), no. 3, 3-0 (Russian); English translation in Maleev, AT
“The Metamathematics of Algebraic Systemns™, North-Holland, Amsterdam,
1971, 416-421,

Maleev, A, 1., *Algebraic Systems", Nanka, Moscow, 1970 { Russian); English
tranaslation, Springer-Verlag, New Yorlk, 1973,

Mewmnann, B. 1., An exsay on free products of groups with amalgemations,
Philos. Trans. Roval Soc. London, Ser. A, 246 (1954), 303-354.

Newman, M. H. AL On dheories wilh o combinatoricl definition of “epuivae-
lenee™ Ann. of Math, 43 (1042}, 284243,

Rimlinger, F. 5., “Pregroups and Bass-Secre Theory”, Mem. Amer. Math,
Soc., no. 361, Amer. Math, Soc., Providence, B.1., 1987,

Rimlinger, F. 5., The structure of Promislow’s continuous free product, Ar-
boreal Group Theory (Alperin, B.C., ed.), Springer-Verlag, New York, 1991,
d45-34313.

Spehner, J.-C. Le demi-groupe Glrement engendrd por un geoupoide periicl
et Uimage homomeorphe associetive marimale de G, C.I. Acad, Sci, Paris
2744 {1072), 040-043,

Stallings, J. R, A remark about the description of free products of groups,
Proe. Cambridge Philos. Soc. 82 (1966), 126-134,

Lohari Bnjaeeski 81
G000 Stara Zagora

Bulgrrin

Livceived November 5, 19496
and i final form July 14, 1007

414



