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Abstract. In order to investigate the amalgamated free products of groups, in

1950 R. Baer (Free sums of groups and their generalizations. II, Amer. J. Math.

72 (1950), 625-646) introduced the concept of an 5-pregroup and gave an

infinite set of elementary (i.e., of a first-order language) axioms for S-pregroups.

The term "S'-pregroup" was introduced by J. R. Stallings (Adian groups and

pregroups, Essays in Group Theory, Math. Sei. Res. Inst. Publ., vol. 8,

Springer-Verlag, New York, 1987, pp. 321-342), who suggested the problem of

finding a finite set of elementary axioms for S-pregroups (ibid, Question 5, The

first part, p. 340). In the present paper we show that the class of all S-pregroups

is not finitely axiomatizable, i.e., it cannot be characterized by any finite set of

elementary axioms.

1. Preliminaries

In this section we review some of R. Baer's results on S-pregroups.

A partial groupoid is a triple G — (G, D, ß) where G is a nonempty set,

D ç G x G and p: D —y G is a mapping. We use the following notations [5, 4]:

x-y = p(x,y),

(x,y)D   iff   (x,y)£D.

Let G = (G, D, p) be a partial groupoid and F (G) be the free group on the

set G. Let do be the relation on F(G) defined as follows: (x-y, xy) £ do iff

(x, y)o ■ Let 6 be the congruence on F(G) generated by do • Then U(G) =

F(G)/6 is the universal group of the partial groupoid G.

Definition. A partial groupoid G = (G, D, p) is said to be an S-pregroup if it

satisfies the following axioms:

(Al) There exists an identity element   1  £ G  such that for all x £ G,

(x, 1 )d , ( 1, x)d , and x • I = I • x = x .

(A2) For each x £ G, there exists x~x £ G suchthat (x, x~x)r>, (x~x, x)d ,

and x - x~x = x~x • x = 1 .

(A3) For all x, y, z £ G,

(i) if (x, y)D and {y, z)D , then:  {x • y, z)D iff (x, y • z)D .

(ii) if (x, y)D, (y, z)D , and (x • y, z)D , then x • (y ■ z) = (x • y) • z .
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(A4) For all x, y £ G, x ~ y (mod 8) implies x = y .
(A5) For each reduced word X, 1 ~ X (mod 6) implies I — X.
Axiom (A4) means that G embeds in its universal group. Axiom (A5) means

that in the universal group of G the identity element cannot be represented as

a nontrivial reduced word.

Theorem 1 (R. Baer [1, §4, Theorem]). A partial groupoid G — (G, D, p) is

an S-pregroup if and only if it satisfies axioms (Al), (A2), (A3), and for each

n>4, the following axiom :
(Sn) For all Xx, ... , x„ £ G, if for i = I, ... , n - I, (x¡, x~+\)D and

(x„ , xxx)d, then there exists j < n -2 such that (xj , x~x2)d ■

It is routine to verify that the infinite set of axioms for S-pregroups due to

R. Baer can be written as an infinite set of elementary axioms.

2. The class of all S-pregroups is not finitely axiomatizable

We will prove that the infinite set of elementary axioms for S-pregroups due

to R. Baer is not equivalent to any of its finite subsets. From this follows the

fact that the class of all S-pregroups is not finitely axiomatizable. The reader

is referred to [2] for the fundamentals of first-order theories.

Theorem 2. The class of all S-pregroups is not finitely axiomatizable.

Proof. By Theorem 1, a partial groupoid G is an .S-pregroup if and only if it

satisfies axioms (Al), (A2), (A3), and for each aa > 4, axiom (S„). We will

prove that (Al), (A2), (A3), and (Sk) for k = 4, 5, ... , n - 1 do not imply
(S„). To prove this we construct a partial groupoid G„ that satisfies (Al), (A2),

(A3), and (Sk) for k = 4, 5, ... , n - I but not (S„).
Let G„ = {G„,D,p). We define

G„ = {1, a0, ... , an-x, ÜQX, ... , a~\, b0, ■■■ , b„-X, b^x, ... , b~}x}.

We will denote by © addition modulo aa . Let / = 0, 1, ... , aa - 1. We
define partial multiplication in G„ as follows: 1 is the identity of G„ and

a~x[b~l] is the inverse of a¿   [b¡]. All other products are

bi • aiel = a¡,        b¿   • a¡ = ai9)x,       a¡ • am = b¡,
-i      -i       -i -i _i -i       -i

am -bi    - a i   >        «,    • bi = a^x,        am •«,' = b¡   .

Clearly, G„ satisfies (Al) and (A2). It is routine to verify that Gn satisfies

(A3). We will prove that G„ satisfies {Sk) for k — 4, 5, ... , n - I.

Let X = xx ■ --xm be a word. A subword of A" is a word xrxr+x •xî,

where 1 < r < s < m. The subword xx---xs (i.e., r — 1) of X is called a

left factor of X [3], and the element xi is called the first letter of X. We will

say that the word Xi • • • xm is regular if for i = I, ... , m-l, (x,, x".1, )p and

(xm , xx x)d ■ Thus (Sm), m > 4, holds iff for every regular word Xi • • ■ xm

there exists j < m - 2 such that (x¡, x~x2)d •

We will consider regular words of length Ac , where 4 < k < n — 1.

If in a regular word X = x\---Xk , we have x, = 1 for some / < Ac or

Xj = Xj+x for some j < k — 1, then, obviously, X satisfies (Sk) ■ In what

follows we will omit these cases.
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For x £ Gn we define

C(x) = {y: (x,y-x)D, y ¿I, andy^x}.

For i — 0, I, ... , n - I ,we have

(1) C(a¡) = {aiex,am},

(2) C(a-x) = {biei,b-i},

(3) C(bi) = {a-¿x},

(4) C(b-X) = {a~x}.

We distinguish four cases.

Case 1. The first letter of a regular word X is a,. Using ( 1 ) we see that X

has as a subword at least one of the following words:

ajüjexüj   or   üjüj^üj ,    where j € {0, 1.n — 1}.

Thus (Sk) holds.

Case 2. The first letter of a regular word X is a~x . Using (2), (3), and (4)

we see that X has as a left factor, either

a~xbiela~x    or   a~xb~xa~x.

Thus (Sk) holds.
Case 3. The first letter of a regular word X is a3, . Using (3), (2), and (4) we

see that X has as a left factor, either

bia-^bi   or   b^b-^a;^.

Thus (Sk) holds.

Case 4. The first letter of a regular word X is ¿a"1 . Using (4), (2), and (3)

we see that X has as a left factor, either

b-xa-xbiexa-x   or   brla~lbrl.

Thus (Sk) holds.
We have proved that G„ satisfies (Sk) for k = 4, 5,..., n— 1. To show

that C7„ does not satisfy (S,,), note that the word üqüx ■ ■ ■ an-x is regular, but

for j = 0, 1, ... , AA-3, (ay, ajx2) £ D. This completes the proof of Theorem

2.
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