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SUMMARY In this paper we present the exact expressions for the bit
error probability over a Gaussian noise channel of coded QAM using sin-
gle error correcting integer codes. It is shown that the proposed integer
codes have a better performance with respect to the lower on the bit error
probability for trellis coded modulation. :
key words: integer codes, finite rings, QAM, BEP, AWGN

1. Introduction

Coded modulation refers to the process of combined and
jointly optimized channel coding and modulation schemes.
It has been studied extensively by Ungerboeck [1], [2], Imai
and Hirakawa [3] and others. In 1982, Ungerboeck con-
structed a trellis code that maps the input sequence into sig-
nal points of a fixed signal constellation by a method re-
ferred to as set partitioning. This technique is referred to as
trellis coded modulation (TCM). An alternative technique
that allows the coding theorists to deal with larger and more
complicated constellations, is block coded modulation [4]—
[6].

The concept of block coded modulation is the follow-
ing. Each signal point of the signal constellation that is un-
der consideration is matched by a symbol of a finite ring,
for instance by symbols of the ring Z, of integers modulo
A. The information sequence is mapped into a sequence
of symbols of Z4 and coded by a code over the same ring.
Hence, based on the correspondence between elements of
the ring and signal points of the constellation, the encoder
transforms the input information sequence into a sequence
of signals.

Here we restrict ourselves to the basic definitions and
refer the reader to the above mentioned papers for more de-
tails.

Any linear code C can be represented by a generator
matrix or a parity check matrix. Let H be an r X n matrix.
The subset of Z/;, defined by '

C={c=(c1,....co) €Z} | cH" =0} (1)

is a linear code over Z4.
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Sometimes it is more useful to consider the cosets of
C,i.e., toreplace 0 in (1) with a vector d € Z.

In this paper we restrict ourselves only to the applica-
tions of codes with » = 1, namely to the codes, which are
defined as follows:

Definition 1. [6] Let Z,4 be the ring of integers modulo
A. An integer code of length n with weight sequence w =
(Wi, wy,...,w,) € Zy, w; # 0, is referred to as a subset of
Z}, defined by

Cw,d) = {c ez Z cw;=d mod A} o)

i=1
where d € Z,.

Obviously, C(w, d) does not exist for any d # 0. For
more details we refer [7].

Assume that a signal point s; is sent through an
AWGN-channel. At the other end the detector estimates
the received signal r; and gives signal point s; at the out-
put. If j # i the detector has taken a wrong decision. In
terms of block codes over Z, the aforesaid can be described
in the following way. When a codeword ¢ € C(w, d) is sent
through a noisy channel the received vector can be written
in the form

r=c+e,

where € = (ey,...,e,) € Z) denotes the error vector. It
is clear that the different signal points have not the same
chance to be a result of decision process. The probability
signal point s; to appear at the output of the detector de-
pends on the Euclidean distance between s; and really-sent
signal s;. In terms of codes over Z, it means that the ele-
ments of Z,4 are not equally probable as a value taken by
e;. Which elements of Z4 are more probable depends on the
chosen indexing of the signal points by the elements of Z,.
Therefore, it makes sense to consider (there is a point in
considering) the next definition.

Definition 2. [6] The code C(w, d) is said to be a sin-
gle (xey, xe,, ..., xeg)-error correctable if it can correct any
single error with value +e;, i=1,...,5s. ]

Obviously, C(w,d) is a single (xep,zxey,...,+e;)-
error correctable code if and only if the subsets
(xwjey, wjey, ..., tw,es} C Z,, are pairwise disjoint and
of the same cardinality 2s, for any j = 1,2,...,n. Thus, we
have

A>2sn+1.
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Some classes of single error correctable codes are con-
structed in [7] and the following main results are obtained
there.

Theorem 1. Let Z} be the set of all invertible el-
ements of Z4, and G = {1,92,...,9n.-1,-92,...,—gn}
be a subgroup of Z} of even cardinality |G| = 2n. If
eie’! ¢ G, ej,ej € Z, or the integer e; divides A, but
le;G| = 2n and e; ¢ e,G, then the code with weight sequence
w = (1,92,...,9,) is (e, tey,..., te,) single error cor-
rectable.

Theorem 2. Let A = * + 1. The integer code over Z,
with a weight sequence consisting of the elements of the set
W = {apt“ ! + a5 % + ... + a;_y), satisfying

0 <ag9< |_L:2.ZJ
ay <a; < t-2-aq
min{l + ag,a;} <a; < t—-1-q

min{l + ag, ax-3} <@ <t-1-gqg
l+ay<ap 1 <t—-1-aqag

is a single (+1, ¢, ..., +r*"")-error correctable. Moreover,
the length of the code is given by

a t-1-2a%2-@¢-1-2a)
n_Z t—-2-2a

For the proofs and details we refer to [7].

In this paper we investigate the problem of finding ex-
act expressions for the bit error probability over a Gaussian
noise channel of coded QAM using integer codes correcting
a single error of given type.

We shall compare our codes with trellis codes since the
latter are well known and often used in many applications.
Our goal is not to make a complete comparison with all ex-
isting codes used for code modulation. The codes based
on algebraic integers [8], [9] are very elegant and powerful
tool for QAM, but they require fixed parameters (neverthe-
less they are enough for effective implementations) Integers
codes considered in the paper are more flexible and they are
originally intended for multidimensional modulation. With
this paper we want to show that they work well for QAM,
too. Our examples are chosen in order to illustrate the flexi-
bility of integer codes (see Example 4).

2. BER for Coded L?-QAM and Other Examples

Let us consider an M-QAM constellation with average en-
ergy E per symbol. Then, in the uncoded case, the average
energy per bit is E; = E/log, M. Suppose we use a coded
M-QAM scheme with an integer code C of length n. Let m
information bits be coded by a block of n signals. Then the
average energy per bit is E} = % Therefore
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The notation R, is used since the above ratio shows not only
the loss of energy, but also the resulting bit rate of the used
code.

Let P4 and P% be the probabilities for an error per sym-
bol in a uncoded and coded cases, respectively. We define
code gain

def p ’ﬁ

G=R Pe
as a measure of our gain when we use coded M-QAM. Note
that G is not a constant, but a function of a signal-to-noise
ratio.

Let C be capable of correcting up to ¢-errors of given
type. Nevertheless that herein we give examples only for
codes correcting one error, we shall consider the general
case.

Suppose that in the uncoded case the detector demodu-
late correctly the received signal with an average probability
per symbol g,. When the code C is used then any ¢t symbols
from a sequence of n symbols can be correctly detected even
if the received signal is out of the typical decision region D.
More precisely, for ¢ of n symbols the decision region 2’
is wider than D and this leads to a probability of correct
detection g, > q,.

The probability for i among n sent symbols the received
signals to lie in ' \ D is

(ﬁwfwﬁﬂi

Thus, the average probability per symbol Q¢ of correct de-
cision when the code C is used is given by

q=dZCﬁr%MF. 3)

i=0

In the considered case ¢t = 1, we have

Qi =4qu Vn 1 +n(g; — Qu)/%v &)

From an implementation point of view a better mea-
sure for performance is the probability a bit emitted by the
source to be erroneously received. It is referred to as bit-
error rate (BER). This probability also allows comparisons
among modulation systems with different values of M and
different codes used. Since BER depends also on the chosen
mapping of the source bits onto the signals in the constel-
lation this comparison is not an easy task in general. One
approach to estimating the bit-error rate P, is the following:

Let 4 = Ry log, M source bits be coded by a symbol of
the chosen M-ary constellation. Suppose that the resulting
BER is P, = p. Then the probability (1 — p)* of correct
decoding these yu bits at the receiver should coincide with
the average probability per symbol Qy, i.e.

(1-py=1-P,
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where P; is the symbol error probability. Therefore

1
p=1-(1-Py-
-1

=1Ps(1+“ P+
H 2u

E=Du=1),
62 P+ )

For enough small values of P a good approximation is
the often given in the literature lower bound

P53 1p, ©)
i

Therefore

Pox o — (1= TG —alas).  ©
Ry log, M

The above shows that the code gain G can be consider
as a measure for our gain in bit-error rate since

— e =

log, M P; Py’

The square L>-QAM constellation

First we shall calculate g, for a square L?>-QAM con-
stellation in the case of AWGN-channel with two-side
power spectral density Ny/2. Let d = Ay/2 be the half min-
imum distance between the signal points (along each of in-
phase and quadrature axes).

The relation between d and the average energy per bit
E, is given (see e.g. [10, Sect. 7.6]) by

3E}log, L
d= | —2——. 7
771 (N

Let denote v = d/ vV Ny. Then

310g2L E; 3log, L
= 2 = 8
ENT-TN  N12-1? ®

where p = E}/Np.

Since in-phase and quadrature components of the sig-
nal are independently detected, when L2-QAM is used with-
out coding, the probability g, of correct detection of the re-
ceived signal is a square of the corresponding probability
for one-dimensional case (L-AM). Therefore, the average
probability of correct demodulation per signal point (see for
example [10, Sect. 7.6] or [11]) is equal to

L-1
L

2
quzé[u@—l)erf(y)]z:(l— erfc(y)), ©

where

2 e
erf(x) = ﬁf e du
0

is the error function and erfc(x) =
is the complementary error function.
—erf(x), lim,,eerf(x)=1)

Therefore

1 — erf(x)
(erf(-x) =

3399
6|5 516
5013 315
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3 2 3
6| 5 4 516
Fig.1  Groups of “cross” type errors on L2-QAM.
pio g, -1 @D
s T TRE T T T
~erf(y) (2 + (L - Derf(y)) . (10)

Let an integer code C be used. Assume that C can cor-
rect one error of the type “cross,” i.e., when the result of
detection 5(¢) is a signal point placed left, right, up or down
of the indeed sent signal point s(z). In this case the decision
region is a union of decision regions of the five signal points
(the sent signal point and its four neighbors).

The signal points are split into 6 groups with different
decision regions (see Fig. 1), as follows:

For the signal points in Group 1, i.e. signal points in
the inner (L —4) X (L — 4) square, the decision region D has
exactly the form of “cross” and it is defined by

-3d < n; <3d U -d<n<d
-d<ng<d -3d<ng<3d |’
where n; and ng are the in-phase and quadrature compo-

nents of the noise n, respectively.
Hence the probability of correct detection is

g = 2Pr(-3d<n <3d)Pr(—d < n <d)
- (Pr(-d < n < d))’,
which gives
g = erf(y)[2erf(3y) — erf(y)].

In similar way one can obtain the probabilities

1

qi2 = serf()[3erf(3y) - 2erf(y) + 1]

q13 = elrf(y)[erf(37) —erf(y) + 1]

q1s = 5 [2erf(y)erf(3y) — erf’(y) + erf(3y)]

1
qi15 = Z[3erf(7)erf(37) — 2erf’(y) + erf(3y)
+erf(y) + 1]
1
qi6 = Z[Zerf(y)erf(%f) — erf?(y) + 2erf(3y) + 1]
for Group 2, 3, 4, 5 and 6, respectively.

Since L?q, = (L — 4)%q11 + 4L ~ 4)q12 + 4q13 +
4(L — 4)q14 + 8q5 + 44q16, We have
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Fig.2  Groups of “square” type errors on L2-QAM.

1
qczﬁ [Z(L— D(L-2)erf(y)erf(3y)—(L— 1)2erf2 )
+2(L — 2)erf(3y) + 2(L — Derf(y) + 3] . an

Let us now consider the case when C can correct one
error of the type “square,” i.e., when the decision region D]
is defined by

-3d < n; <3d
3d<nyg<3d |

In this case the signal points are split into 3 groups ac-
cording to their decision region (see Fig. 2).

Similarly to the calculations for the type “cross,” we
can obtain the following probabilities of correct decision:

qo1 = erf’(3y)
%[erfz(?w) + erf(3y)]

q22

I

1 1
93 Z[erf2(3y) + 1]+ Serf(3y)

for the new first, second and third group, respectively.
Since L?q, = (L— 4)2q21 +8(L—4)qa; + 16433, we have

ge = % (L - 27erf(By) + 4(L - Dyerf(3y) +4]. (12)

Below we give several examples of L2-QAM coded
with a single error (of type “cross” and type “square”) cor-
recting integer codes.

Example 1. (16-QAM constellation) For uncoded 16-
QAM modulation according to (8), (9) and (10)

[2 1 )
Y=43P W= E(l +3erf(y))” and

P = %% - 13—6erf(y) (2 + 3erf(y)) .

Now let us see what we gain if an integer code is used.
Substituting ¢+ = 4 and k = 2 in Theorem 2, we obtain a
single (1, +4)-error correctable code C’ over Z;; with a
weight sequence w = (1,2,3,6). Let us assume that the
points of the 16-QAM constellation are numbered by the
integers from 1 to 16 beginning from the left upper cor-
ner to the bottom right corner. To assign each symbol in
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Fig.3 Code gain G (in dB) versus SNR for Examples 1-4.

a codeword with a point in the constellation, we exclude
codewords that contain zeros from C’. The new code ob-
tained is denoted by C, where |C| = 3856, which implies
that 11 information bits can be transmitted per codeword.
Then the code C, of rate R, = 11/16, will be capable to cor-
rect any single error of type “cross.”” But it is necessary to
implement the code table of C to map each 11 bit informa-
tion block to its codeword. Since 2!" = 2048 <« 3856 we
can even choose codewords corresponding to signal points
with lowest possible energy. According to (11) we have

e = Tel12er)ert(3y) - eri’(y) + dert(3y)
+ 6erf(y) + 3].

Since n = |[W| = 4, then using (4) we obtain

Pfq‘:l-Qu V41+4(51c—CIu)/CIu-

Code gain G as a function of SNR is plotted in Fig. 3.

Example 2. (16-QAM constellation) Using Theorem
1 and the same indexing as in Example 1 of the points of 16-
QAM constellation we can obtain a single (+1, £3, +4, +5)-
error correctable code C’ over Z;7 with w=(1, 2). The code
C’ can correct single error of type “square.”” The bit rate
of the code is R, = 3/8. If we map 0000 into 16 the code
gives rate 1/2 (the value O cannot be obtained in a code-
word). Note that no code table is required in this example.

According to (12) we have for g.:

1
ge= Z[erf2(3~y + 2erf(3y) + 1]

The code length n = 2 and using (4) we obtain

Pi =1- VQM(zqc = qu).

Example 3. (32-QAM constellation) Let us consider
a 32-QAM constellation indexed by the elements of Zs, as
shown in Fig. 4. This constellation is a square 62-QAM con-
stellation whose 4 vertices are cut. Following the construc-
tion given in Theorem 1 let us take G = {1,15,-1,-15}.
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Fig.4 A 32-QAM signal space constellation.

The cosets G, 3G, 5G and 7G are pairwise disjoint. Thus
the code C over Z3, with a weight sequence w = (1, 15)
is a single (+1, 3, +£5, +7)-error correctable. Note that no
code table is required in this example. The resulting bit rate
Ry =1/2.

For the considered constellation y = d/+/Ny and
signal-to-noise ratio p = Ej /Ny are related by

Y= Vp/4

Similar to the case of LZ-QAM constellation, one can calcu-
late that

Gu = %[23erf2(7) + Gerf(y) + 2erf( V2y) + 1]

and P} = 1-gq,.

Now let us determine the probability of an error when
the considered code C is used. This code allows any sin-
gle error of type “cross” to be corrected but for the chosen
constellation the calculations slightly differ from the ones in
the case of L>-QAM. There are 5 types of decision regions:
D, D, D, D,, D, corresponding to sets of 4, 8, 4, 8
and 8 points, respectively. The corresponding probability of
correct detection are respectively given by

qy, = erf(y)[2erf(3y) — erf(y)]

4o = 5erO)Berf(3y) = 2erf(y) + 1
iy = glderfy)erfBy) ~ derf'(y) + 2erf(y) + 1]
iy = 5 [6erfCert(3y) - 3ert?() + 2erf(3y)
+2erf(V2y) + 1]
s = é[8erf(y)erf(3y) — derf’(y) + 2erf(3y)
+ 2erf(2V2y) - erf?(2 V2y) + 1] + I,

3401

where

1
Y 2042
I = —— erf(yw)e™ 4 du
§ 2ﬁfo )

Since g, = 3—'2[4(];] + 84, + 4q’13 + 84|, + 8q’15], then

. 1
ge = 3—2[38erf(y)erf(3y) — 22erf?(y) + 4erf(3y) + 6erf(y)

+ 2erf( V2y) + 2erf(2 V2y) — erf2(2 V2y) + 3 + 8(Is)]

The block length is n = 2, hence, the bit error proba-
bility is equal to

P? =1- VQM(2QC = qu).

Example 4. (256-QAM square constellation) In this
case, applying (7) and (8) for L = 16, we get that

_ [ 4
Y= 85P

is the relation between y and signal-to-noise ratio p. The
probabilities g, and P% for the uncoded case are given by
(9) and (10), i.e

_
9= 756

and P§{ =1-gq,.

Let us index each signal point s;; with a pair (i, j) €
Zy¢ X Z16 of elements of Z;¢, where { is the number of the
row and j is the number of the column which s;; is placed
in. The counting begin from the left bottom corner to up and
to right, respectively. A given byte is mapped into signal
point s;;, if its left 4 bits and its right 4 bits are the binary
representation of i and j, respectively.

Let us consider two codes over Zi¢:

e A single +l-error correctable code C; with
W=(1,2,3,4,5,6,7) and

e A single (1, +2)-error correctable code C, with
W=(1,3).

In the case when the code C; is used, any six sig-
nal points (corresponding to 6 bytes at the input of the
modulator) s;,;,, Si,jy» Siyjss Sicja» Sisjs» Sisjs are followed by
such an additional signal s, that (a, iy, iy, i3, i, is, Ig) and
(b, jis J2s J3, Ja, Js, J6) are codewords of C;. In this case the
probability g, is given by (11), and namely:

[1 + 15erf(y)]?

1
gc = %[184erfz(3y) + S6erf(3y) + 16].

The code length n = 7 and using (4) we have

szl—qu V71+7(qc_Qu)/qu-

The encoding with C; is the same. The unique differ-
ence is that the rate of C; is not 6/7, but 1/2. However, in
this case much more different types of errors are correctable.
The region 2 is a “big square” with a side of length 5d and
with a center - the sent signal point, i.e.,
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-5d < n; <£5d
-5d < DQSSd )

Calculations similar to the ones described above give

1

- 2
= 5eg 3+ 13erf(5y))”.

qc

and

P? =1- VCIM(ZQC - qu)-

3. Comparison with Trellis Coded Modulation

Integer coded modulation (ICM) has an obvious advantage
over trellis coded modulation (TCM): less complexity that
results in faster encoding and decoding procedures. It makes
ICM better suited for real time applications. But to compare
theoretically the performance of ICM and TCM is not a sim-
ple task since what is evaluated for TCM is the probability
of an error event P(e), and not the probability P;. An er-
ror event of length / occurs when instead of the really-sent
sequences of signals the output of the demodulator is an-
other one corresponding to a trellis path that splits from the
correct path at a given time, and re-merges exactly / symbol-
times later. The Euclidean distance between these two paths
is greater or equal to 64... An upper bound for P(e) and P,
can be found in [12),[13]. A lower bound for P(e) is given
(see [14, Sect. 12.4] ) by

1 6free )
P(e) > —erfc . (13)
( 2 ( 2VNy
Since the error event is realized by erroneously detect-
ing [ consequence signals (the length of an error event con-
sisting of two paths of distance &j..), the assumption

P, ~ +/P(e)

gives a base to compare the performance of ICM and TCM.
Hence, we use (5) to compare BEP of TCM and ICM.

Another acceptable approach to comparing the two
modulation schemes is doing simulation experiments, but
the description of such experiments is out of the range of
this paper.

16-QAM constellation. Let us compare the ICM
schemes from Example 1 to the TCM that maps 3 source
bits to a signal of 16-QAM given in [2]. In this case
&7 = 57 = 20d” and according to its trellis diagram it
is realized by an error event of length 3. Thus we assume
that the probability

Figure 5 shows the comparison between the symbol error
probabilities versus signal-to-noise ratio (SNR).

32-QAM constellation. The comparison between the
coded case in Example 3 and TCM with &7, = 6A7 = 24d°
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Fig.5 A comparison of bit error probability versus signal-to-noise ratio
between uncoded, coded (type “cross” and “square”) 16QAM and TCM.

Prabability of Bit Error

L L n
0 2 4 6 8 10 12
Eb/No(db)

Fig.6 A comparison of bit error probability versus signal-to-noise ratio
between coded 32QAM (from Exampie 3) and TCM.

-1 — uncoded
- - TCM 1

- square
S =l - - bigsquare

Probability of Bit Error

=)
(S

6 L L L L
6 8 10 12

e m @
Eb/No(db)

Fig.7 A comparison of bit error probability versus signal-to-noise ratio
between TCM uncoded and coded (type “square” and “big square™) 256-
QAM.

([2)) as functions of signal-to-noise ratio is plotted in Fig. 6.

256-QAM constellation. The comparison of ICM
schemes from Example 4 to TCM (where &7, = 8AF =
324% [2]) as functions of signal-to-noise ratio are plotted in

Fig.7.
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4. Conclusion

In this paper we derived the exact formulae on bit error
probability of L2-QAM constellation and some other spe-
cific constellations coded by single error correctable inte-
ger codes. The comparison of bit error probability versus
signal-to-noise ratio between integer coded modulation and
trellis coded modulation shows that ICM has a better per-
formance and less complexity. As a disadvantage of ICM
could be pointed that not for any 2¥-QAM constellation can
be found a good code over Zo« and corresponding indexing
of the points. This results in decreasing the code rate. But
the approach used in Example 4 shows how to avoid this
disadvantage. Adding points to the constellation is another,
nevertheless not so good, approach. The using of integer
codes capable of correcting more than one error makes it
possible to improve the performance, but increases the de-
coding complexity.

Therefore we can conclude that ICM is an equal (even
better than TCM) opportunity for coded modulation and
should be applied by the constructors of modems.
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