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Soft Decoding of Integer Codes and Their Application to Coded
Modulation∗
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SUMMARY Integer codes are very flexible and can be applied in dif-
ferent modulation schemes. A soft decoding algorithm for integer codes
will be introduced. Comparison of symbol error probability (SEP) versus
signal-to-noise ratio (SNR) between soft and hard decoding using integer
coded modulation shows us that we can obtain at least 2 dB coding gain.
Also, we shall compare our results with trellis coded modulation (TCM)
because of their similar decoding schemes and complexity.
key words: finite rings, integer codes, coded modulation, QAM, PSK,
AWGN, SEP

1. Introduction

Coded modulation is an efficiently combined scheme of cod-
ing and modulation techniques. It has been investigated ex-
tensively by Ungerboeck [1], [2], Imai and Hirakawa [3] and
others. In 1982, Ungerboeck constructed a trellis code that
maps the input sequence into signal points of a fixed sig-
nal constellation by a method referred to as set partition-
ing. This method is called trellis coded modulation (TCM).
An alternative which allows us to deal with a variety of
constellations is block coded modulation [4], [5]. In block
coded modulation, each point of the signal constellation cor-
responds to a symbol of a finite ring of integers modulo A
denoted by ZA. An information sequence is mapped into a
sequence of symbols in ZA and coded by a code over ZA.

Codes over finite rings and in particular codes over fi-
nite rings of integers with their applications in coding theory
have been studied in numerous papers. The earliest works
were given by I. Blake [6], [7]. Some other works on codes
over ZA are [8]–[10]. M. Nilsson [11] discusses linear block
codes over integer rings in order to improve the performance
of PSK communication systems.

One class of block codes, which we investigate in this
paper, is so called integer codes. The original form of in-
teger codes have been found in [12] where an integer code
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to correct a single insertion/deletion error per codeword was
described. A. Han Vinck and H. Morita [5], A. Geyser and
H. Morita [13] investigated these codes with a view to frame
synchronization and coded modulation.

Integer codes are codes defined over finite rings of in-
tegers. Their advantage over the traditional block codes is
that integer codes are capable of correcting limited num-
ber of error patterns which occur most frequently while the
conventional codes intend to correct all possible error pat-
terns. Definitions of “cross,” “square” and “big square”
type of errors can be found in [14]. Similar to integer
codes are codes over Gaussian integers [15], [16] designed
for the Mannheim distance and a class of error correcting
codes based on the Lee distance given in [17]. The lat-
ter codes have very high code rate and have been applied
by Nakamura for differentially encoded PSK and QAM
channel models [18]. The codes over Gaussian integers
with the Mannheim distance 1 can correct error(s) of type
“cross,” while using single Lee-error correcting codes we
are able to correct a “square” type of error on the QAM
constellation, where a signal point can be represented as a
pair of symbols (ai, bi) of two single Lee-error codewords
a = (a1, a2. . . . , an) and b = (b1, b2. . . . , bn). Those are the
only two cases in which other codes can correct exactly the
same type of error(s) as integer codes do.

The aim of this paper is to show the flexibility of integer
codes and their application to different modulation schemes
for decreasing probability of symbol error over an Additive
White Gaussian Noise (AWGN) channel. The integer codes
have low encoding and decoding complexity and they will
be suitable for application in real communication systems.

We are going to introduce a new upper bound for sym-
bol error probability (SEP) in an AWGN channel for square
types of QAM constellations coded independently on the
in-phase and the quadrature components by integer codes.
Moreover, for improving the performance of SEP of inte-
ger codes over an AWGN, we shall present a soft decoding
algorithm.

In our algorithm we use a trellis whose states represent
all possible syndrome values of the applied integer code.
The idea of the trellis structure comes from Jack Wolf‘s
work [19], where is given a decoding algorithm for linear
block codes using a trellis. In the soft decoding algorithm,
as well as in TCM, the core part is the Viterbi algorithm.
Hence, the proposed soft decoding algorithm has a linear
complexity. We compare our results with TCM because
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they are very well known and are widely applied in tele-
phone modems, satellite and terrestrial wireless systems, as
well as in digital audio and TV broadcasting. The examples
of integer codes which are given in this paper are chosen in
such a way that a fair comparison between them and TCM
[2] can be demonstrated. Because of that we shall also com-
pare the performance of the codes based on the probability
of symbol error versus signal-to-noise ration (for energy per
symbol) instead of probability of bit error versus signal-to-
noise ratio (for energy per bit).

As we shall see later, using integer codes with the intro-
duced soft decoding algorithm, we can gain approximately
2 dB over the hard decoding. Compared to TCM, integer
codes with soft decoding have almost same symbol error
rate for a given value of SNR.

The paper is organized as follows. In Sect. 2 we give
the necessary definitions and several construction of inte-
ger codes. A new theoretical upper bound for SEP will be
introduced in Sect. 3. A soft decoding algorithm will be pre-
sented in Sect. 4. To illustrate the advantage of using it we
are going to compare it with a hard decoding algorithm of
integer codes and TCM. In Sect. 5 will be given conclusion
remarks.

2. Necessary Definitions and Constructions of Integer
Codes

Herein we give some necessary definitions and several con-
structions of integer codes which we shall use in the next
section. The reader can find more details in the cited papers.

Definition 2.1. [5] Let ZA be the ring of integers mod-
ulo A. An integer code of length n with parity-check matrix
H ∈ Zm×n

A , is referred to as a subset of Zn
A, defined by

C(H,d )= {c ∈ Zn
A | cHT = d mod A}

where d ∈ Zm
A . �

Assume that a signal point si is sent through an
AWGN-channel. At the other end the detector estimates
the received signal ri and gives signal point s j at the out-
put. If j � i the detector has taken a wrong decision. In
terms of block codes over ZA the aforesaid can be described
in the following way. When a codeword c ∈ C(w, d) is sent
through a noisy channel the received vector can be written
in the form

r = c + e,

where e = (e1, . . . , en) ∈ Zn
A denotes the error vector. It

is clear that the different signal points have not the same
chance to be a result of decision process. The probability
signal point s j to appear at the output of the detector de-
pends on the Euclidean distance between s j and really-sent
signal si. In terms of codes over ZA it means that the ele-
ments of ZA are not equally probable as a value taken by
ei.Which elements of ZA are more probable depends on the
chosen indexing of the signal points by the elements of ZA.
Therefore, there is a point in considering the next definition.

Definition 2.2 The code C(H,d ) is a t-multiple
(±e1,±e2, . . . ,±es)-error correctable if it can correct up to
t errors with values from the set {±e1,±e2, . . . ,±es} which
occur in a codeword. �

Remark: Without loss of generality in the definitions
above we can assume that d = 0 . For convenience of a
notation we shall use C instead of C(H,0 ).

The following general construction of single error cor-
rectable integer code can be found in [20].

Let G = {1, g2, · · · , gn,−1,−g2, · · · ,−gn} be a sub-
group of Z�A of even cardinality |G| = 2n.

Theorem 2.1. [14] If eie−1
j � G, ei, e j ∈ Z�A or the

integer ei divides A, but |eiG| = 2n and ei � e jG, then the in-
teger code C with a parity-check matrix H = (1, g2, · · · , gn)
is (±e1,±e2, · · · ,±es) single error correctable.

Let us assume that we have a communication channel
(AWGN, Rayleigh) and a modulation scheme (QAM, PSK)
we use to transmit the information. Then we investigate the
most probable errors that occur at the receiver and we define
the type of error we want to correct using an integer code,
i.e., we define the values of ei, i = 1, . . . , s. In that situation,
if it is possible, we would like to know the exact form of
the parity-check matrix. In general, that is a very difficult
problem. In next theorem we shall give the exact form of
the parity-check matrix in case of s = 1 and ei = 1, i =
1, . . . , s. We shall see that this construction is very useful
for an AWGN channel and PSK modulation schemes.

Theorem 2.2. The integer code C over Z2m with a
parity-check matrix H = (1, 2, 3, . . . , 2m−1 − 1) is a single
(±1)-error correctable.

Proof: To prove that the code is (±1) single error cor-
rectable it is enough to show that all possible syndrome val-
ues are pairwise disjoint, i.e., ±hi � ±hj, where hi, hj ∈ H.

From the definition of H it is obvious that hi � hj and
−hi � −hj over Z2m+1. Also, we have that −hi ∈ {2m−1 +

1, 2m−1 + 2, . . . , 2m − 1}. Hence, ±hi � ±hj with which the
proof is completed. �

For multiple error correcting integer codes the situation
is more complicated. Even in the simplest case, namely dou-
ble (±1) error correctable integer code, it is rather difficult
to define the exact form of the parity-check matrix H.

Let C have a parity-check matrix

H =

(
h11 h12 h13 h14 . . . h1n

h21 h22 h23 h24 . . . h2n

)
.

The conditions for C to be double (±1) error cor-
rectable code are the following

hi j � ±him, j � m

hi j ± him � ±(hil ± hik), ( j,m) � (l, k). (1)

A construction of double (±1) correctable integer codes
can be found in [21].

To decode integer codes one can use a hard decoding
algorithm [14]. This algorithm uses a look-up table which
maps each syndrome value to the corresponding error vec-
tor. So, the complexity of the algorithm is linear with respect
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to the alphabet size A.
A good approximation of SEP in case of an AWGN

channel using a QAM constellation coded by integer code
can be found in [20]. There is given a lower bound of SEP
in case of a single/multiple error correctable integer code for
“cross,” “square” and “big square” type of errors. In next
section we shall derive a new upper bound for SEP, which is
better than the previous one.

3. Theoretical Bound of Symbol Error Probability for
Integer Codes on L2-QAM over an AWGN Channel

In this section we are going to introduce a technique for ob-
taining an upper bound on the average symbol error prob-
ability on square type of a QAM constellation coded inde-
pendently on the in-phase and quadrature components by an
integer code.

Suppose that a signal point x = (xin, xq) in a L2k-QAM
constellation, coded independently on the in-phase and the
quadrature components by integer code C = (Cin,Cq) over
ZLk × ZLk is sent through an AWGN-channel with power
spectral density N0. At the other end a detector estimates
the received signal r = (rin, rq) and determines the signal
point y = (yin, yq) that is the nearest to r in the constella-
tion. The received signal r can be written as

r = x + e

where e = (ein, eq) is the noise vector representing the
(quantized) additive noise of the channel.

Given a L2k-QAM signal constellation K , let qu =

(qin
u , q

q
u) and qc = (qin

c , q
q
c) be the average probability of a

correct decision per signal point for uncoded K and coded
K , respectively.

Once we obtain qu and qc for K , coded by an integer
code C, we can evaluate the error probability per symbol.

Let Xin(c) with expectation E[Xin(c)] be the random
variable that represents the number of erroneously decoded
symbols in the in-phase component per a codeword when
the codeword c ∈ Cin is sent (Xq(c) and E[Xq(c)], c ∈ Cq

for the quadrature component, respectively). The average
symbol error probability PS (C) of the code C is defined as

PS (C) = 1 − (1 − PS (Cin))(1 − PS (Cq)) (2)

where

PS (Cin) =
∑
c∈Cin

1
|Cin|
E[Xin(c)]

n
(3)

PS (Cq) =
∑
c∈Cq

1
|Cq|
E[Xq(c)]

n

and n is the length of code C.
In our case we encode the in-phase and the quadrature

components by same integer code, i.e., qin
u = qq

u, qin
c = qq

c

and PS (Cin) = PS (Cq). Hence, we can rewrite (2) as

PS (C) = 2PS (Cin) − PS (Cin)2. (4)

Let ri be the received signal when xi is transmitted over
the channel, and let U(a) = (U(ain),U(aq)) and D(a) =
(D(ain),D(aq)) be the decision region of a signal point a of
K in case of uncoded K and coded K , respectively.

Let us suppose that we use single error correctable in-
teger code. Then we can decode x correctly if either of the
following two conditions holds:

1. All the received signals ri (1 ≤ i ≤ n) are inU(xi).
2. An rk is inD(xk)\U(xk) and others inU(xi)(i � k).

But if a single rk is out of D(xk) and others are in
U(xi) (i � k), then we have at most two erroneous sym-
bols in the decoded codeword y . In fact, since we use syn-
drome decoding, the syndrome may correspond incorrectly
to a wrong single error vector.

Moreover, if � signals rk j (2 ≤ � < n, 1 ≤ j ≤ �) are
out of U(xk j ) and others in U(xi) (i � k j, 1 ≤ j ≤ �), then
we have at most � + 1 erroneous symbols. Finally, in case
that an rk is in U(xk) and other ri are out of U(xi) (i � k)
or all n signals are out of their decision regions U(xi) (1 ≤
i ≤ n), then all the symbols of the decoded codeword may
be erroneous.

Now we approximate the probability that each compo-
nent of the received signal rin

i is inU(xin
i ) andD(xin

i ) by qin
u

and qin
c , respectively. This means that Xin(c) for c ∈ Cin

is replaced by a common random variable Xin that has the
probability distribution based on qin

u and qin
c . That is, (3) is

rewritten as

PS (Cin) ≈ 1
n
E[Xin]. (5)

Moreover, we obtain

E[Xin] ≤ 2

(
n
1

)
(qin

u )
n−1

(1 − qin
c ) + n

(
n
0

)
(1 − qin

u )n

+

n−1∑
�=2

(� + 1)

(
n
�

)
(1 − qin

u )�(qin
u )

n−�
. (6)

The right-hand side of (6), denoted by F(qin
u , q

in
c ),

yields after a simple calculation

1
n

F(qin
u , q

in
c ) =(1 − qin

u ) − 2(qin
u )

n−1
(qin

c − qin
u )

+
1
n

(1 − (qin
u )

n − (1 − qin
u )n) (7)

Hence, in case of a single error correctable integer
code, using (7) and (4) we obtain one good approximation
of PS (C).

Similarly we obtain an approximation of PS (C) for
double error correctable integer code as well. Here
F(qin

u , q
in
c ) has the following form:

1
n

F(qin
u , q

in
c ) = 1 − qin

u − 2(qin
u )

n−2
(n − 1)(qin

c − qin
u )2

+ (qin
u )

n−1
(2qin

u − 3qin
c ) − qin

u (1 − qin
u )n−1

+
2
n

(1 − (qin
u )

n − (1 − qin
u )n) + (qin

u )
n

(8)
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In the next section Examples 3 and 4 demonstrate a
comparison between the theoretical bound, (8), and exper-
imental results for 64- and 256-QAM signal constellations
coded by double (±1) error correctable codes.

4. Soft Decoding Algorithm for Integer Codes

If we want to obtain more coding gain we should apply
soft decoding algorithm instead of hard decoding algorithm
(which we mentioned above). In this section we are going to
introduce a soft decoding algorithm for integer codes which
is based on the algorithm given in [22].

Let us assume that a signal constellation (QAM, PSK,
ASK) is coded by a single/multiple (±l1,±l2, . . . ,±lt) error
correctable integer code C of length n over ZA with a parity-
check matrix H ∈ Zm×n

A .
Let a modulated codeword be represented by x =

(x1, x2, . . . , xn) where xi is a signal point in that constella-
tion and x is transmitted over an AWGN channel. And
let the sampled channel output sequence be given by y =
(y1, y2, . . . , yn).

First, the decoder makes hard decisions on each chan-
nel output yi, i.e., the decoder selects the nearest signal point
r j to yi in the constellation. We denote the received sequence
at the decoder with r = (r1, r2, . . . , rn), where ri is a signal
point in the constellation.

In soft decoding we utilize the analog received samples
yi, 1 ≤ i ≤ n, to find the most probable codeword to be trans-
mitted in the sense of the maximum likelihood estimation.

We propose the following algorithm for soft decoding
of a (±l1,±l2, . . . ,±lt) error correctable integer code C of
length n over ZA.

Basic Soft Decoding Algorithm for Integer Codes:

In: The channel output y = (y1, y2, . . . , yn) and the re-
ceived sequence r = (r1, r2, . . . , rn).

Out: The decoded codeword c̃ = (c̃1, c̃2, . . . , c̃n).

Step 1. Calculate the squared distance Δ2[i, ε] between yi

and each of the signal points associated with ri + ε (mod A)
where ε ∈ L = {−l1,−l2, . . . ,−ls, 0, l1, l2, . . . , ls}.

Step 2. Compute the syndrome value s = rHT

(mod A), s ∈ Zm
A .

Step 3. Let E[s] be the set of all the vectors e =

(e1, e2, . . . , en) ∈ Ln such that

eHT = s (mod A).

Then find the vector e∗ = (e∗1, e
∗
2, . . . , e

∗
n) ∈ E[s] that mini-

mizes
∑n

i=1 Δ
2[i, e∗i ].

Step 4. Output c̃ = r − e∗ and stop. �

The above algorithm accomplishes the maximum like-
lihood decoding for an AWGN channel. In Step 3 an ex-
haustive search is performed to find e∗ among E[s]. It

is reasonable if n is relatively small, say n = 4. For a
large value of n, we can utilize a trellis of n + 1 layers,
in each of which there are Am states. In our algorithm
each state in the i-th layer for i = 0, 1, . . . , n is indexed by
k = (k1, k2, . . . , kn) ∈ Zn

A. A pair of numbers (d(i)
k
, e(i)

k
) is

attached to the k -th state in the i-th layer. Here d(0)
0 = 0 and

d(0)
k
= ∞ for k ∈ Zn

A\{0} and d(i)
k

is given by

d(i)
k
= min
ε∈L

{
d(i−1)
k+εhi

+ Δ2[i, ε]
}
, (9)

where hi is the i-th row of the parity-check matrix H,
i = 1, 2, . . . , n and k ∈ Zn

A. The addition in k + εhi is in
the ring Zn

A. Moreover, e(i)
k
= ε∗ where ε∗ is an element

in L that achieves the minimum value of (9). The Viterbi
algorithm can sequentially calculate {(d(i)

k
, e(i)

k
), k ∈ Zn

A} for
i = 1, 2, . . . , n in a similar way discussed in [19], [23]. After
the calculation is completed, e∗n is given by the value of e(n)

s

associated to the s-th state in the n-th layer where s is the
syndrome value obtained in Step 2. The other e∗n−1, . . . , e

∗
1

are computed in descending order by using the following
recursive equations on k (i), i = n − 1, . . . , 1 with the initial
value k (n) = s :

k (i) = k (i+1) + e∗i+1hi+1, k (i) ∈ Zn
A,

e∗i = e(i)
k (i) .

It is well known that the computational complexity
of the Viterbi algorithm (VA) grows only linearly with the
length of the information sequence [24].

Let us suppose we want to transmit n symbols over an
AWGN channel and a constellation (PSK, QAM) with 2k

signal points using two different codes, that is, integer code
of length n1, n1|n over Z2k with a parity-check matrix H ∈
Z

m×n
2k and a 2k−1 state TCM of length n2 (in bits), n2|n.

In this paper we apply the soft decoding algorithm
(SDA) only for single and double error correctable integer
codes, so we have that m = 1 or m = 2. Moreover, if k|2 we
encode independently the in-phase and quadrature compo-
nents of a QAM constellation by a double error correctable
integer over Z2k/2 . So, the transition matrix of the trellis
for the SDA, using single/double error correctable integer
codes, has a size 2k × 2k, while the TCM has a transition
matrix of size 2k−1 × 2k−1.

We can say that the SDA for integer codes is a modified
VA. The main difference is that some operations (addition,
multiplication) in the SDA are in ZA. For both, integer and
TCM codes, we can apply the truncated Viterbi algorithm to
make the comparison fair. Hence, we can conclude that the
two algorithms have linear complexity with respect to n.

Note that we can apply the soft decoding algorithm to
any modulation schemes (QAM, ASK, PSK).

Below, with several examples, we shall demonstrate
how the soft decoding algorithm works for PSK and QAM
modulation schemes. As we mentioned above, to make the
comparison between TCM and integer codes fair, we use a
2k−1 state TCM to encode a constellation consisting of 2k
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Fig. 1 A comparison of symbol error probability versus signal-to-noise
ratio between 8 state TCM, uncoded and coded 8-PSK (using the integer
code in Example 1 with the hard and soft decoding algorithms).
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(7, 2)(7, 1) (7, 3) (7, 4) (7, 5) (7, 6) (7, 7)(7, 0)

(5, 2)(5, 1) (5, 3) (5, 4) (5, 5) (5, 6) (5, 7)(5, 0)

(4, 2)(4, 1) (4, 3) (4, 4) (4, 5) (4, 6) (4, 7)(4, 0)

(3, 2)(3, 1) (3, 3) (3, 4) (3, 5) (3, 6) (3, 7)(3, 0)

(2, 2)(2, 1) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7)(2, 0)

(1, 2)(1, 1) (1, 3) (1, 4) (1, 5) (1, 6) (1, 7)(1, 0)

(0, 2)(0, 1) (0, 3) (0, 4) (0, 5) (0, 6) (0, 7)(0, 0)

Fig. 2 Indexing of the signal points in a 64-QAM.

signal points. For more accurate results of SEP in our ex-
periments, for a given value of SNR we transmit 108 bits
over a signal constellation coded separately by TCM and an
integer code.

Example 1. (8-PSK constellation) Let us assume that
the signal points of 8-PSK constellation are numbered by
integers from 1 to 8 (consecutively).

Substituting m = 3 in Theorem 2.2 we obtain a (±1)
single error correctable integer code of length n = 3 over Z8

with a parity-check matrix H = (1, 2, 3).
In Fig. 1 we show the comparison of the simulation re-

sults on symbol error probability for TCM, uncoded and
coded (using hard and soft decoding algorithms) 8-PSK.
From the simulation results we can conclude that using the
soft decoding algorithm for a coded 8-PSK with a single
(±1) error correcting integer code we gain approximately
2 dB compared to the hard decoding. In this case the TCM
(8 state TCM with code rate 2/3 given by Ungerboeck [2])
has slightly better performance than the integer code. �

Example 2. (16-QAM constellation) Let us assume
that the points of a 16-QAM constellation are numbered by

Fig. 3 A comparison of symbol error probability versus signal-to-noise
ratio between simulation results, the new theoretical bound derived here
and the bound given in [20] for 64- and 256-QAM.

the integers from 1 to 16 beginning from the left upper cor-
ner to the bottom right corner. Index each signal point. Us-
ing Theorem 2.1 we can construct a single (±1,±3,±4,±5)-
error correctable code C of length n = 2 over Z17 with a
parity-check matrix H = (1, 2). In this case the code is per-
fect and the error type it can correct is a “square.”

Note that to assign each symbol in a codeword with a
signal point in the constellation, we exclude codewords that
contain zeros. In this case it is only one codeword c = (0, 0).
The rate of the code is 1/2.

The comparison of our simulation results of symbol
error probability versus the signal-to-noise ratio using that
code (applying hard and soft decoding), an 8-state TCM [2]
and an uncoded 16-QAM is given in Fig. 3. Here, because
the rate of the code is relatively low, applying the soft decod-
ing algorithm we gain approximately 4 dB compared with
hard decoding and about 0.5 dB more than TCM. �

Let us consider an M-QAM constellation of square
type. In this case we have that M = 22k, k = 1, 2, . . .. Let
us index each signal point si j in an M-QAM constellation
with a pair (i, j) ∈ Z2k ×Z2k of elements of Z2k where i is the
number of the row and j is the number of the column which
si j is placed in. The counting begins from the left bottom
corner and goes upwards and to the right, respectively (see
Fig. 2 for the case M = 64). A given byte is mapped into
a signal point si j, if its left k bits and its right k bits are the
binary representation of i and j, respectively.

Example 3. (64-QAM constellation) Let us index
each signal point si j with a pair (i, j) ∈ Z8 × Z8 as we de-
scribed above (see Fig. 2). Using (1) it is easy to check that
we can construct a double (±1)-error correctable code C of
length n = 4 over Z9 with a parity-check matrix

H =

(
0 1 2 3
3 1 0 2

)
.

In this case, any two signal points si1 j1 and si2 j2 are
followed by two additional signals sa1b1 and sa2b2 such that
(i1, i2, a1, a2) and ( j1, j2, b1, b2) are codewords of C.

Note that we can not use all the codewords of the code



1368
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.7 JULY 2010

Fig. 4 A comparison of symbol error probability versus signal-to-noise
ratio between the coded 16-QAM (with the integer code from Example 2,
using hard and soft decoding algorithms), the 8 state TCM and the uncoded
16-QAM.

Fig. 5 A comparison of symbol error probability versus signal-to-noise
ratio between the coded 64-QAM (with the integer code from example 3,
using hard and soft decoding algorithms), the 32 state TCM and uncoded
64-QAM.

C. The error type the code C can correct is a “square” type.
We can obtain a theoretical bound for this code using

(7) and (4) with values of qin
u and qin

c [20]:

qin
u = (1 + 7 erf(γ))/8,

qin
c = (1 + 3 erf(3γ))/4,

where γ =
√

Es/42N0.
The SEP of our simulation results and the theoreti-

cal bound as well as the approximation of error probabil-
ity given in [20] are plotted in Fig. 4. In Fig. 5 we show
the comparison of the simulation results on SEP versus the
signal-to noise ratio of uncoded, coded 16-QAM (using the
integer code with hard and soft decoding), and TCM with 32
states [2]. Here, using the soft decoding algorithm we gain
about 3 dB over the hard decoding and 2 dB over the TCM
with 128 states [2]. �

Example 4. (256-QAM constellation) Let us index
each signal point si j with a pair (i, j) ∈ Z17 × Z17 as we did

Fig. 6 A comparison of symbol error probability versus signal-to-noise
ratio between the coded 256-QAM (with the integer code from example 4,
using hard and soft decoding algorithms), the 128 state TCM and uncoded
256-QAM.

in the previous example. Using (1) we can check that the
code over Z17 with a parity-check matrix

H =

(
0 1 2 3 4 5 6 7
1 5 8 7 3 6 2 0

)
.

is a double (±1)-error correctable code C of length 8.
As in the previous two examples we can not use all

the codewords of the code. We exclude the codewords that
contain a zero as a symbol. Because of that the information
rate slightly decreases - from R=3/4 to R=17/24 (in bits).

The theoretical bound of the code is given by (7) and
(4) with values of qin

u and qin
c [20]:

qin
u = (1 + 15 erf(γ))/16,

qin
c = (1 + 7 erf(3γ))/8,

where γ =
√

Es/170N0.
The SEP obtained by the simulations, the theoretical

bound, and the approximation of error probability given in
[20] are plotted in Fig. 4. The symbol error probability ver-
sus the signal-to-noise ratio obtained by simulations of un-
coded 256-QAM, 128-states TCM [2], and coded modula-
tion with the aforesaid integer code (applying hard and soft
decoding), are given in Fig. 6. These results show that ap-
plying the soft decoding algorithm we gain 2 dB in SNR
over the hard decoding for a given value of symbol error
probability. The TCM with 128-state [2] has the same per-
formance as the soft decoding. �

5. Conclusions

In this paper we presented applications of integer codes in
different modulation schemes. A new upper bound on sym-
bol error probability was derived in the case of square QAM
constellations coded by an integer code. This bound is very
tight compared with simulation results, and even better than
the known bound [20] for small values of SNR. For a high
SNR, these two bounds as well as the simulation results give
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almost same value of SEP. Moreover, to improve the error
rate of integer codes we proposed a soft decoding algorithm.

Experimental results of the comparison on the sym-
bol error probability versus the signal-to-noise ratio over an
AWGN channel between integer codes and TCM schemes
show us that they have very similar error performances. In
some case using the soft decoding we can gain up to 2 dB
over the TCM in Example 4, while in another TCM scheme
is better than the integer code (Example 1). That gives us
a motivation to continue our research on multiple error cor-
recting integer codes with different types of errors.

Also, we can conclude that the proposed soft decoding
algorithm, compared with the hard decoding, has a better
performance for a small value of code length n. For a larger
value of n the soft decision decoder is substantially more
complex than the hard decision decoder. However, in this
case the hard decision decoder has more space complexity,
which can result in increasing the circuit complexity in case
of a hardware implementation.

Integer codes could be applied for fading channels
(Rayleigh, Rician). For our future research plans we con-
sider to start with slow-fading channels, which are similar
to AWGN channels.

As a conclusion we can say that because of their flex-
ibility integer codes will be very suitable for application in
real communication systems.
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