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Abstract. Codes capable to correct two errors of value ±1 in a codeword are con-
structed and studied. Large number of experiments simulating the implementation
of several double ±1-error correctable codes in QAM-modulation schemes have been
carried out. The obtained results present in graphical form the performance of the
coded modulation schemes based on the considered codes versus signal-to-noise ra-
tio (SNR). The results confirm the good performance of integer coded modulation
in comparison to the other schemes for coded modulation.

1 Introduction

Coded modulation is the collective term for all techniques which combine and
jointly optimize channel coding and modulation for digital transmission. As a
result of more than thirty years intensive investigation numerous and multifar-
ious methods for coded modulation have been proposed. Despite their variety,
the coded modulation schemes can be classified in the following three large
groups:

• Trellis coded modulation (TCM): It consists in an expanding the
input bits by a binary convolutional code and partitioning the used signal
constellation into smaller subsets with a larger intra-set distance. A part
of coded bits are used to select one of these subsets and the remaining
determine which of the signal point in the chosen subset to be transmitted.
The Ungerboeck’s concept requires a larger signal set than the one used
in the case of uncoded modulation.

1This work was partially supported by the Japan Society for the Promotion Science (JSPS).
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• Integer coded modulation (ICM): A type of block coded modulation
- each point of the signal constellation corresponds to a symbol of ZA and
coded by a code over ZA.

• Others: Coded modulation based on Gaussian and algebraic integers
([3], [6], and others).

Integer codes have proved themselves to be very effective for coded modu-
lation, where errors usually have a given type (see [4, 5]), that is, in the case
of modulation schemes where the error-vectors are not equally probable. In
partial M-QAM modulation fall in this case.

In this talk we address codes over integer rings which are capable to correct
up two errors with values ±1. We demonstrate their practical potential by
numerous simulations and comparisons with one error correctable integers codes
and other types of coded modulations.

2 General remarks

Let C be an [n, k] code over the integer ring ZA. Recall that a t-multiple
(±e1,±e2, . . . ,±es)-error correctable code is a code that can correct any up
to t errors with values from the set {±ei, | i = 1, . . . , s} occurred in a codeword
([1, 4]). Single error correctable codes are discussed in [4, 5]. Herein we restrict
our consideration only to the double ±1-error correctable codes. These codes
are interesting since they can be effectively applied to improving the perfor-
mance of Quadrature Amplitude Modulation (QAM) schemes.

Proposition 1 Let C be an [n, k] code over the ring ZA. If C is a double
±1-error correctable code, then the cardinality, A, of the ring satisfies the in-
equalities:

when k = n− 1
A ≥ 2n2 + 1;

when k = n− 2
A ≥

√
2n2 + 1

Proof. More generally, the number of the different error vectors when up to t
error with values ±1 occur per a codeword is

Nt =
t∑

j=0

(
n

j

)
2j .
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This number, Nt, has to be less or equal to the number of possible syndromes.
In the case k = n− 1 the syndromes are elements of ZA, that is, their number
is A. When k = n − 2, the syndromes s ∈ ZA × ZA, and their number is A2.
Hence we must have A ≥ N2, respectively A2 ≥ N2, which give the statement.

Let C be a double ±1-error correctable code with a parity-check matrix

H = (h1,h2, . . . ,hn),

where the length of the columns is n−k, i.e. one (k = n−1) or two (k = n−2).
Therefore hi 6= ±hj , i 6= j, and hi ± hj 6= ±(hl ± hm). Also, the permutations
and multiplications of columns by −1 transform C into an equivalent code.
Hence, we may assume that the first row of H contains only elements ≤ A/2,
arranged in a nondecreasing order.

Also, the multiplication of a row of H by an invertible element of ZA does
not change the code. Hence if there exists an invertible entry of H we may
assume that there is 1 in the first row. Otherwise there is an element that
divide A, and all others have g.c.d. with A greater than 1.

Therefore we can assume that the parity check matrix of [n, n − 2] double
±1-error correctable code has the form

H =
(

1 0 h13 . . . h1n

0 1 h23 . . . h2n

)
or H =

(
1 h12 h13 . . . h1n

0 a h23 . . . h2n

)
,

where a | A.
In partial an interesting case is the group of matrices of the form

H =
(

1 0 2 3 . . . n− 1
0 1 h23 h24 . . . h2n

)

over a ring ZA with A ≥ 2n− 2.
Unfortunately, if a code with a given parity-check matrix is double ±1-error
correctable for a given alphabet ZA it may not preserve this property as a
code over a larger cardinality of the alphabet. For example, the code with a
parity-check matrix

H =
(

0 1 2 3 4 5 6
1 0 5 3 6 2 4

)

is a double ±1-error correctable code over Z15, but does not preserve this prop-
erty over Z16. On the other hand the code with a parity-check matrix given in
Example 1 is such a code over both Z8 and Z9.

In the case k = n − 1 the parity-check matrix is 1 × n and has the form
H = (1 h2 . . . hn). But according Proposition 1 such codes require large
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cardinality, A, of the alphabet. Nevertheless a [2, 1] code over Z9 with H = (31)
demonstrates very good performance for 64-QAM.

From practical point of view the codes over Z2m or Z2m+1 are more inter-
esting since they enable the standard 22m-QAM constellations to be used.

We have found many codes for small length and reasonable alphabet cardi-
nality, but the full classification has not been completed yet.

3 Applications and simulation results

In this section we demonstrate how a double ±1-error correctable code over
Z2m+1 can be used in real applications for improving the performance of 22m-
QAM.

Example 1. Consider [4, 2] code C over Z9 with a parity-check matrix H
and the corresponding generator matrix G:

H =
(

5 3 1 0
2 3 0 1

)
G =

(
1 0 4 7
0 1 6 6

)
.

The code is double ±1-error correctable and we apply it to 64-QAM modulation
scheme in order to correct errors of type “big square” (see [5] ). Recall that in
such a coding scheme each point of the constellation is indexed by a pair (x, y)
of nonzero elements of an integer ring (in this example Z9) as shown in Fig.1.
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Figure 1: Indexing a 64-QAM constellation
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Encoding and decoding procedures
The encoding and decoding procedure on each of the axes are separated.

More detailed: Any incoming block of 6 bits is split into two 3-bit groups which
are transformed into decimal integers. By adding 1 to each of them we obtain
a pair (a, b) of nonzero elements of Z9. Each of the sequences a1, a2, . . ., resp.
b1, b2, . . . , of the first, resp. the second, coordinates is encoded by the code C.
Therefore

(a1, a2) −→ (a1, a2, 4a1 + 6a2, 7a1 + 6a2),

where the operations are in Z9. Note that 4a1 + 6a2 = 0 ⇔ 7a1 + 6a2 = 0 ⇔
a1 = 3a2. Since the values of the check bits have to be also nonzero, we replace
them with 1 when a1 = 3a2, that is, (3a, a) −→ (3a, a, 1, 1).

At the receiver, for each of the axes, the detection procedure (hard or soft)
gives as an output a vector v = (v1, v2, v3, v4), where vj ∈ Z∗9, . The decoder
proceeds both vectors in parallel following the standard syndrome decoding
scheme giving at the output a pair (u1, u2). The only peculiarity is that after
calculating the syndrome vector s = vH the decoder uses the syndrome-error
table two times: for s and for s − (1, 1). In the latter case if the output pair
(u1, u2) does not satisfy u1 = 3u2, the result is discarded. Also, if s does not
match to any vector in the table, the decoder gives u1 = v1 and u2 = v2.
The correspondence between error frames and syndromes (error-syndrome ta-
ble) is s given in Table 1.

Error vector Syndrome Error vector Syndrome
1 0 0 0 (5,2) -1 0 0 0 (4,7)
1 1 0 0 (8,5) -1 -1 0 0 (1,4)
1 -1 0 0 (2,8) -1 1 0 0 (7,1)
1 0 1 0 (6,2) -1 0 -1 0 (3,7)
1 0 -1 0 (4,2) -1 0 1 0 (5,7)
1 0 0 1 (5,3) -1 0 0 -1 (4,6)
1 0 0 -1 (5,1) -1 0 0 1 (4,8)
0 1 0 0 (3,3) 0 -1 0 0 (6,6)
0 1 1 0 (4,3) 0 -1 -1 0 (5,6)
0 1 -1 0 (2,3) 0 -1 1 0 (7,6)
0 1 0 1 (3,4) 0 -1 0 -1 (6,5)
0 1 0 -1 (3,2) 0 -1 0 1 (6,8)
0 0 1 0 (1,0) 0 0 -1 0 (8,0)
0 0 1 1 (1,1) 0 0 -1 -1 (8,8)
0 0 1 -1 (1,8) 0 0 -1 1 (8,1)
0 0 0 1 (0,1) 0 0 0 -1 (0,8)

Table 1: Error-syndrome table.
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Figure 2: 64-QAM–Grey and [4, 2] code over Z9. (Example 1).
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