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SUMMARY In this paper, we investigate the problem how
to construct integer codes capable of correcting any single error in
the set {£1,%¢, ..., +tF"1} and generalize our results to obtain
(
different elements in Z 4. Moreover, we shall give the exact form
of the check matrix in most of the classes considered in this paper.
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c1,£eg, ..., Fey) single error correctable codes where e;’s are

1. Introduction

Codes over finite rings and in particular codes over fi-
nite rings of integers with their applications in cod-
ing theory have been studied in numerous papers. The
earliest paper is due to I. Blake [2],[3]. Some other
works on codes over the ring Za of integers modulo
A are [4],[6], [8]. M. Nilsson [7] discusses linear block
codes over integer rings in order to improve the perfor-
mance of PSK conununication systems. A. Han Vinck,
H. Morita [9] and A. Geyser, H. Morita [5] investigated
these codes with a view to frame synchronization and
coded modulation.

Integer codes are codes defined over finite rings of
integers. The original form of integer codes have been
found in [1] where an integer code to correct a single
insertion/deletion error per codeword was described.

The aim of this paper is to give some classes
of single error correctable integer codes. In Sect.2
we give necessary definitions and notations which we
shall use. The advantage of integer codes is that we
can correct errors of given type, which means, we
can choose the type of the error and after that con-
struct integer code capable of correcting those errors.
We show a general construction for (£ey, tea, ..., e,)
single ervor-correctable integer code. In the case of
(1, &, .. 2571 error type we give the exact form of
the check-matrix (which consists only of one column).
As one can see from the examples of Theorem 3.1, it
Is 1ot easy to obtain the check-matrix in general case.
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These constructions are described in Sect.3. As it is
shown in [9], integer codes constructed in that way can
be useful in coded modulation.

In Sect. 4 we show two decoding schemes of integer
codes with an example. The first one is with using a
look-up table. The second one follows from the con-
struction of the integer code given by Theorem 3.1 in
Sect. 3. Both decoding schemes need linear complex-
ity with respect to the codeword length. Conclusion
remarks are given in Sect. 5.

2. Notations and Definitions

Herein we give only the basic definitions and refer the
reader for more details to the above mentioned papers.
Any linear code C can be represented by a genera-
tor matrix or a parity check matrix.
In the latter case, letting H be an m x n matrix,
the subset of Z7 defined by

C={c=(c1,....c,) €Z% | cH" =0} (1)

is a linear code over Z 4.

Sometimes it is more useful to consider the cosets
of C, i.e. to replace 0 in (1) with a vector d € Z7}.

In this paper we restrict ourselves only with the
case m = 1, namely with codes, which are defined as
follows:

Definition 2.1. [9] An integer code of length n
with weight sequence w = (w1, wo, ..., w,) € Z", such
that w; # 0 for 1 < j < n, is referred to as a subset of

n

"4 defined by

T
Clw,d)=<¢ceZ}| Z ciw; = d mod A (2)
i=1
where d € Z 4.

Let Z% be the set of all invertible elements of Z 4,
where x € Z, is invertible if there exists y € Zg4,
such that zy = 1 mod A. It is well known that Z*
is a multiplicative group, i.e. a group under multi-
plication. Obviously, C(ew.d) = e 'C(w,d), for any
€ € Z%. In the linear case, ie. d = 0, C(w,0) =
eC(w,0) = C(ew, 0), for any € € Z*%. Note that the code
C(w,d) may be the empty set for some d in the case
ged(wy, we, - ,w,) # 1. As far as a € 2%, <
g.c.d(a, A) = 1. the set C(w,d) is nonempty for all
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deZy == gcdlw,wy, - ,w,) = 1. A sufficient
condition for this equality to hold is at least one w; to
N . *
belong to Z7 .
the set C(w, d),
it is empty. Of course,

denoted by [C(w, d)], is either A"~ or
Clw,0)] = A" for any w # 0.

Assume that a signal point s; is sent through the
channel. At the other end the detector estimates the
received signal and gives signal point s; at the output.
If § # 4 the detector has taken a wrong decision but dif-
ferent signal points have different chance to be a result

of decision process. The probability the signal point s;
to appear at the output of the detector depends on the
Euclidean distance between s; and really-sent signal s;.

In terms of block codes over Z 4 the communication
process can be described in the following way. When a
codeword ¢ € C(w,d) is sent through a noisy channel
the received vector can be written in the form

r=c+e,

where e = (e, ...,¢,) € Z" is so called error vector.

For convenicnce, let assume that d To de-
code corrupted codewords, the inner product < 7, w >
between r and w is (,talculm:(:d:

T

<r,w >= 2 W = E cw; + E e;w; = amod A

=1 =1

where «« € Z 4. If the syndrome value « is unique for
cach of the error the value of the cor-
responding error vector is deducted from r, then the
original codeword is recovered.

Due to aforesaid all clements of Z 4 are not equally
probable as a value taken by ¢;. Which elements of Z 4

tors, i.c.,

<

arc more probable depends on the chosen indexing of

the signal points by the elements of Z 4. Therefore, this
justifies the next definition.
Definition 2.2. [9] The code C(w. d) is said to be

a single (£eq, tea, ... tey)-error correctable if it can
correct any single error with value e;, + = 1,...,5. 0O

Obviously, C(w, d) is a single (+e |,+(‘ ..... +eg)-
crror corrvectable code i and only if the subsets
{tw,ey, fwjes, ..., ,twjey ) C Za, are pairwise disjoint
and of the same « al(hnahlv 25, for any j = 1,2,..., n

Thus, we have
A>2sn+ 1. (3)

Definition 2.3. [9] A single (£e1. ®eo, ..., de,)-
crror correctable code C{w, d) of block length 7 is called
perfect, when A = 2sn + 1.

From Definition 2.3 we notice that if an integer
code is perfect there is a one-to-one correspondence be-
tween Z 4 and the crror vectors. When the code is not
perfect we do not have such a correspondence for some
of the elements of Z 4.
of those elements, we can say that at least an error(s)
which is not of the type (£ey, ea. ..., +e,) appears.

Iven if the syndrome value is one

It is easy to see that the cardinality of
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3. Several Constructions of Codes

The definition of a single (£ey, tea, ..., te,)-error cor-
rectable code shows that to construct such a code of
block length n is a task which is equivalent to split-
ting Za\{0} = {1,2,3,..., A — 1} into pairwise dis-

joint subsets each of which contains the subset of the

type {fweq, twey, ..., +we,} with pairwise different
elements. All 1)()551 ble such codes for a given alphabet
can be found by an exhausting search but obviously
it is neither practically applicable (even for not very
large alphabets) nor this fact has a theoretical value.
Theorem 3.1 gives one sufficiently general method for
such a partitioning of Zg, i.e. it describes a general
construction of a single (+ey, +eq, ..., £e,)-error cor-
rectable code.

Remember that the number of elements of the mul-
t;ip]i(“(llivc ﬂ'mup Z of invertible elements of Z4 is

%= ¢(A), where ¢(A) is the Euler’s function:
@ 4H ] — — when A4 = pit - phe.

)
el Pi

Let G = {l,g2, . gn,—1,—g2.-+ ,—gn} be a
subgroup of Z% of cven (';11’(1111& ity |(7\ = 2n.

Theorem 3.1. If ¢, "¢ G, oeje; € 2% or the
integer ¢; divides A, but [("G\ = An(l ei ¢ ¢;G. then
L Gn) 18

the code with we]gh, sequence w = (l,gz, e
(+eq, £ey, -+ Te,) single error correctable.

Proof: In the first case e, are different coset repre-
sentatives of G in Z%:

Y
e1G = {er, €102, C1Gn, €l —C1g2. = C1gn )
eoli = {e9. Coga, -+ €20, —€2.,—€2G2, "+ ,—Ca0n}
.
e G = {(—«ﬂs-, Cs(2, " CsYn, T Cs, —CsY2, " T Csn }

Henee, all ¢;G are pairwise disjoint. If ¢ divides

A, (denoted by e|/A) but |eG] = 2n, then the subset
e consists of 2n different elements and has an empty
intersection with other e;G, ¢; € Z%. O
Let note the following duality. If C is a
(tey, e, -+, £ey) single error correctable code with
weight sequences w = (wy,wa, . ... w,), then the in-
teger code with weight sequences (e, e i
(Fwy, Lwsy, -
Therefore, taking the dual in the aforesaid sense of a

, +w,,) single error corre (mblc code.

code constructed by Theorem 3.1 we obtain a code with
weight sequence not all of whose elements belong to 2% .

Example 3.1: Let A = p be a prime number,

~ o7& \ — gy — — "o
p > 2. 7y = Z,\ {0} = |ZP\ = p—1=2ns and
Zy = U 'GL where |G = 2n. Note that Z7 s a
(V(lm group «md a unique subgroup G with |G| = 2n,

exists.
Note that we can choose any element from "G as
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an error value, not necessarily 1,¢,¢%, ..., 571,
Example 3.2: Let A = 2p, where p is an odd

prime number. Then

Ly ={1.3,5,-- 2p— 1} \ {p}, |75, =p - 1.

Let p — 1 = 2ns and G be a subgroup of 73, with
|G| = 2n. Then

Z3, = e;GUeGU---Ue,G,
G = {17927 s Ons —"1-, —g92, 7.(/'11,}~

. gn) can correct single
-, £2ey) error since

The code with w = (1,¢2,---
(tey, teo, -, Fe,, £2eq, 25

2¢1G U .- U2e,G
2e,G # ;G

={2,4,-- 2p— 1},

Also 4sn. = 2(p — 1), i.e., A = 2(2s)n + 2. Therefore,
the code is “almost” perfect.
To construct a perfect code, we should have n =

Ll oand w = (1,92, -+ ,go—1,p). The code can correct

2
+1, +21 in all positions except when +£2 occurs in the
last position. In this case the decoder will decide that
there is no error.

Example 3.3: Let A = pq, where p and ¢ are
prime and p > ¢ > 2. Then |Z4| = |Z; | = (p — 1)(q —

), NZyy| = Zpy \ {kp.lq}. Z7, is not cyclic.

Let H, |H| = p—1 be a subgroup of Zn,

and 25, = U/ la,H. Let p—1 = 2ns, G be a sub-

Dy
group of H and H = G U - - U b,G, where G =
{17 gz, yns -1 y g2, 7.(/11,}~
Th(,ll for Zy,, we have:

Z* - (L]])]GU“‘U

" a b, GU---
“Uag—1bG

) g—1 {)1 Gu

On other hand ¢01G U ¢boG U --- U qb,G = qH =
{q.2q,--- . (p— 1)q} which <11ﬂ(~1s from Z;, .

Thudom, the code with w = (1, o, -
rects any single (£a;0;, £¢b;) error, i =1, -
1.+ s, and

:.(/‘u,) cor-
s 4 L 7 =

L+ [2ns(q—1)+2ns] = 1+ 2nsqg=1+q(p — 1)
=A—(¢-1).

Thus the exceeding of the alphabet is (¢ — 1).
Example 3.4: A = p* where p is an odd prime.
Hp —1) and Lisy = Zope \ {lp}. where I =
0,1,....pF 1 —1. Let H be a subg,lol,xp, where |H| =
p — 1. Note that Z;k Is a cyclic and there is a unique

Zy! = p*~

subgroup of any cardinality dividing p*~'(p — 1).
Let Z;,, =unHUaHU---Uau-Hand G C H
with |G\ = 2n, where p — 1 = 2ns. Then H = b1G U
“Ub,G. (Of course the case n > 1, le., s < (p—1)/2,
is mtucstmg.)
Then the subsets of Z,.:
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a;b; G, pb;G, 7)21).76‘., e ,])"’L/')_,'G.,
i = 1 ﬂY)L:717

are disjoint.

I G = {lLg, - .gn-1,—g2,—g,}+ the
code with w = (1,g2,--.,¢,) can correct single
(fab;, £p'b7), | = 1, k= 1,5 = 1,--- 5,0 =
Lo, pF 1 error. And we have

1+ 2snph~! 4+ 2(k 1)sn
=A [pl""l —(k—=1Lp+ k-2
Therefore, the exceeding of the bound is p*~
L)p+ k= 2. When k = 2 the code is perfect.
Theorem 3.2. Let A = t* 4 1. The integer code
over Za with a weight sequence consisting of the ele-

(k-

ments of the set W = {aotl‘”’_' Lath 24y ap—1},
satistying
0 S (&%) S L['Z)QJ

g S (03] § t—2— ap

min{l +ag, a1} <ax < t—1—aqg \

(4)
min{l + ag,ar_3}t <ap_o<t—1—ag
T+ag <ap_1 <t—1-—ag

Is single (1, +¢,..., £t* " D-error correctable. More-
over, the length of the code is given by
152
(t—1-20)"2—(t—1-20) & bt
7= -+ t—1—-2a)""
(Z t—2-2a “( )
1=( o=

(5)
Proof: Any element w of W satisfies the inequality

t—2| , - -
w < {T J P =2 g (=

sz

am ‘ ,
+.o+(t—1) = FJ A 5

Hence, A —w > t¥/2 4 1, which shows (—w =
A—w e Zy) that

Wn(—Ww) =0 (6)

Let us consider the set t W = {tw|w € W}. Keep-
ing in mind that t* = —1 in Z4 we can write

tW ={ath!
= {(d)t"’ :
where 0 <a; <t — 1.
Let assume that tW N W # (). Then using (4) for
the set t W we have

4 ‘+(1,},;,2f2+((l,L:,] —L)t+(t —ag)}
Haytt e ag )

t—ag=aj_, <t—1—a,=1—1—a,.

Thus ay > a; +1 > a; which contradicts to ag < aq in
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(4). Therefore
tWNW=4(. (7)
Now for 7 =2,3,...,k — 2 we have

t W:{(l,.,,f:k " (g =D ag = D!
‘f‘(f ay] — 1 ) fl ETN "F(t—(,l‘//VQ*l)t } (t*”jﬁl)}
={alt" a4 )

If we assume t7 W N W £ (), again using (4) but
this time for the set #/ W we obtain the following in-
cqualities

t—ay— 1 =a; St —1- apy=1-1—a; (8)
ard

t—a; y=a, , <t—1—aq;. (9)

From (8) and (9) it follows ag > a; and a;y > 1+ «;.
But a; > min{a,; 1.1+ ag} that implies

ap > minfa; 1, 1+ ap} = minfa;_1. 1+ ap} = aj 1.

Hence, a; > aj_1 > 14 a; which results the contradic-
tion. Thus, we have

PWAW =0 j=23- k-2 (10)
Since

PIWo= {(apey — DT (= ag — 1)
4+ (= ap—3 — I)t -+ (f — (Lk.,g)},

the asswnption t* 7' W N W # () gives
f—u,u—l:(l,/] §t727u,6 =t—2—ap_ + 1.

Then ag > ar—,. But this contradicts to arp—1 > 1+ ay
in (4). Hence we obtain

"W W= 0. (11)

Taking in account that t* = —1 and ¢ is invertible in

Zoa, (6), (7),(10), and (11) give
PWNEIW =0, i,j=1,2, ... k=1

that proves the first part of the theorem.
Note the set W coincides with Uk'_] W,, where

W, = {(mt}"‘“l +ath—2 4. 4 ap—1 } satisfying

! 0 § [270) < L"EQJ
| 14+ay <a < t—2—uag
Tl4+ag <ax< t—1—ap (12)

14+ag <ap.y <t—1—ap

and for j =2,.. .k
ap—1} satistying

1 W, = {apth~' +at" 2+ +
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0 <ap< LLQ'ZJ
agy = ap = =041
1+ (L) S ay § t—1— ag (13)

1+ [&n) S Ap—1 S t—1— aq.
For any ag we have

|Wilap)| = (t =2 — 2a0)(t — 1~ 2a0)" 2
=(t—1-2a)" ' —(t—-1- 2a0)F 2

(for & = 2 the value is Z},jﬂ (t —1—2a)).
Hence
(Wil = it —1—20)"" =t 1-2a)"7.
a=()
For j =2,3,..., k — 1 we have
152
(Wil = > (t—1-2a)"7
a=0

Therefore, (5) follows from the equality

k—1
n=wi=3 W, 0

J=1

Obviously, the codes given by Theorem 3.2 do not
exhaust all possible single-error correcting codes but
the theorem gives an easy way to construct such codes.
Using “duality” property one can enlarge the set of
codes obtained by Theorem 3.2. For example, the code
with t = 4, k = 3 (i.e. A =65 = 13-5) can be ob-
tained also as a “dual” of a code using the construction
described in Example 3.3. But this approach is more
difficult than the other shown in Theorem 3.2.

For k = 2, Theorem 3.2 gives Theorem 2 of [5].
For k = 3 and k& = 4, we have the following corollaries.

Corollary 3.3 Let A = 3 4+ 1. The integer code
over Z 4 with a weight sequence W = {(1,0152 bajt+ast,
where the coeflicients a; satisfy

e t—2
() § y > ‘,fTJ
[a%) S a1 S t—2— (&%)
1+ (&) < ao S t—1— )

is a single (£1, +:1, +t2)—error correctable code of block
length
1 .
n=—(*—1). (14)
6
The exceeding of the alphabet is %.
Remark: The same result holds for A = 3 — 1.
But the exceeding of the alphabet is { — 2.
Corollary 3.4 Let A = t*+1. The integer code
over Z 4 with a weight sequence W = {agt? +at? +
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Table 1 Thus
t k A w
A 2 17 1,2,3,6 tEN(—W)=10. (20)
3 65 [1,2,3,5,6,7,9,10, 11, 22

5 2 26 1,2,3,4,7, 8 ] Also, just looking at (16) one can see that
6 2 37 1,2, 3.4,5,8,9, 10, 15

tEN(LE)=1. (21)

azt-+az}, where the coefficients a; satisfy (4), is a sin-
gle (&1, 4+, 2, £+ ) —error correctable code of block
length

4
—., t=2[
n= :fl, (15)
: t=20+ 1.
8

The code is perfect when ¢ is even and almost perfect
(the exceeding of the alphabet is equal to 1) when t is
odd. O

Remark: Similar result holds for A = t* — 1. But
the exceeding of the alphabet is different.

In Table 1, using Theorem 3.2 we give the weight
sequence w for several cases:

In case of k = 5, the set W defined by (4)
is not a complete set of coset representatives of
{1, 4, 247, £3, £}, ie. the value n defined by (5)
is not the maximum possible. Another set, E, of coset
representatives is defined as follows:

E= {u/0t4 +at® + ast? + azt + (1,4}
where

0 <ag
I4+ay <as
1+ g S g

Li}ij ap =t —1—aqg
t—2 — ap, az — t—1— ag (16)
t—1 — ayg.

INIAIA

The relation E N W = () is an implication from the
equality a; =t — 1 — ag.

Theorem 3.5. Let A = > + 1. The integer
code over Z, with a weight sequence W U E is sin-
gle (£1, 44, ..., £t1)—error correctable and it has block
length

1 ,
n=—(t"—1t). 17
n= 5t = 1) (17)

Proof: For any = € E,
= apt? + at? + agt? + ayt +ay < t9/2.
Thus, we have
En(—-E)y=EnN(—-W)=10. (18)
Since t — 1 —ag > L%J it is easy to see

tEN W = ). (19)

It we assume tE N (= W) = () then we have ay = af, >
min{a}, 1+af} = min{t—1—as, 1 +ap}. Hence 14-a¢ >
t—1—as ie. ag >1—2— qy, which contradicts (16).

Now, let us consider t?E = {a2t4 + (=1 —ag)t® +
(ag —1)t? + (t — 1 — ag)t + (ag + 1)}. The assumption
PENE #0leadsto 1l +ag=a), > 1+a)=1+as >
2 4 ag, which is a contradiction. Hence,

t?ENE = . (22)
In a similar manner, one can obtain that
PENW =10, (23)
Moreover, we have:
t'ENW =tENE=0tENE
=t'En W =0. (24)

Therefore, similar arguments in Theorem 3.2 based on
(18) to (24) complete the first part of the proof.

Now let us calculate the length of the code, i.e. the
cardinality | W U E|. Hence we have

0= W]+ |E| =
l l
Z (2m)* 42 Z (2m)?, t=2l+1
— m=1 m=1

!

!
Z (2m —1)* 42 Z (2m — 1), t =2l

m=2 m=2

where m =1 — a.
In both cases we have

" 1 'ILS f)
n — 'I[)(' ).
Therefore the exceeding of the alphabet is ¢, since
1, 5
2kn+1 = 2~5~]—6(t°—f)+1:t"—t+1fAft.

g
Analogously to Theorem 3.2 one can also prove the
following theorem.
Theorem 3.6. Let A = 2 + ¢ + 1 where ¢ = 3k
ort = 3k — 1,k > 1. The integer code over Z4 with a
weight sequence consisting of the elements of the set

W = {wjw = apt + a1}

where

0

IN

t—1
ag < {_S—J 2a0 +1 <a; <t—1—ag (25)

is perfect and single (£1, &¢, £(¢+1))-error correctable.
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4. Two Decoding Algorithms

Herein, we will discuss how to decode a sin-
gle (£ey, +ea, ..., tey)-error correctable code C(w,0)
where any e; € Z*%. Let £ be the set of all possible
error vectors e to be correctable by C(w,0). That
is, each e € & consists of all zeroes but one element
in £ = {+e, *eo,....£ey}. To decode a corrupted
codeword 7. the simplest way is to use a look-up ta-
ble which maps cach syndrome value o =< r, w > to
the corresponding error vector. For example, in case
of a (+£1,4t, -+, £tF ) single error-correctable inte-
ger code with t = 4,k = 2, and A = t* +1 = 17, the
weight sequence of C(w,0) is given as w = (1,2,3,6)
and we have the look-up table in Table 2. It is noted
that the cost of obtaining « is proportional to the code-
word length n and the size of the table is A —1 = 2sn.

If the size of A is large, it is not always reason-
able to build such a table because of memory limi-
tation. In that case. we have an alternative as fol-
lows: In advance, we calculate the inverses e; P for
all possible errors. Then, we get all values i(’y({l
for the syndrome o =<7, w > obtained from the re-
ceived 7. If a single error ¢ € E occurs at the po-
sition j in the codeword and no errors at other po-

sitions, then et = w;. Besides, no other product
—1 v -
+ae] ! take any values in {wy, we,. .. Jwy b Other-

wise, we would have two different error vectors e and
e i £ such that <e,w>=<e', w>= o which con-
tradicts to the correctability of C(w.0). Therefore the
error ¢ has occurred in the jth component of r. For
example, for the same code considered above, if we
received r = (6,2,0.2), then « = 5. Since E-! =
{+1, 413}, we have o 7" = {£0, £14} mod 17. Only
~14 = 3 mod 17 belongs to w. Therefore, the error
—4 has occurred at the third position, i.e. the error
vector is (0.0, —4,0) and the vector (6,2.4,2) has been
sent. This decoding procedure needs calculations pro-

Table 2  Syndrome table for (1, +4) single-error correctable
integer code of length 4 over Z;7.
x error vector
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
1 4 0 0 0
5 0 0 -4 0
[§ 0 0 0 1
7 0 0 0 4
3 0 4 0 0
9 0 —4 0 0
| 10 0 0 0 —d
11 0 0 0 —1
|12 0 0 4 0
13 —4 0 0 0
14 0 0 0
15 0 —1 Q0 0
| 16 —1 0 0 0
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portional to the codeword length n for each corrupted
codeword r. As a remark, we see that if 2s < log, n,
a binary search algorithm finds out which element of
aE~1is in w with logy n comparisons.

No matter which using the look-up table or calcu-
lating a2~ ! will be done, the complexity of the decod-
ing procedure would have the linear complexity with
respect to the codeword length.

5. Conclusions

In this paper we proposed a  general construc-
tion for single (&ey,deq, -, Eey)-error correctable
codes. In a specific case when (£eq, feo, - - ,tey) =
(£1, £t -, FtF71) we showed the exact form of the
check-matrix. We presented two decoding schemes of
integer codes capable of correcting single exror with an
example. The first one is with using a look-up ta-
ble. The second one follows from the construction of
the integer code given by Theorem 3.1. Both decod-
ing schemes need linear complexity with respect to the
codeword length.

The construction of integer codes capable of cor-
recting multiple errors of given types is much more
complicated. Here, the weight sequence w will have
a matrix form (not a vector as it is in case of a sin-
gle error) and it is difficult to give its exact form. The
number of all possible error vectors of a given type is a
polynomial function as well. Examples of integer codes
capable of correcting more than one ervor are given in
[9]. Our next step in this study will be to construct
integer codes capable of correcting multiple exrors.
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