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Abstract

A soft decoding algorithm of coded quadrature ampli-
tude modulation (QAM) using single error correcting
integer codes over a finite ring of integers modulo m
is presented. Although the integer codes under consid-
eration are designed to correct only single errors in a
QAM constellation, soft decoding is shown to improve
the error correcting capabilities of these codes. Com-
puter simulation results show that for AWGN channels
the soft decoding algorithm can achieve between 4 dB
and 6 dB coding gain relative to uncoded QAM.

1. INTRODUCTION

Coded modulation is an efficiently combined scheme
of coding and modulation techniques. It has been in-
vestigated extensively by Ungerboeck [1, 2], Imai and
Hirakawa [3] and others. In 1982, Ungerboeck con-
structed a trellis code that maps the input sequence
into signal points of a fixed signal constellation by a
method referred to as set partitioning. This method
is called trellis coded modulation (TCM). An alterna-
tive which allows us to deal with a variety of constella-
tions is block coded modulation [4, 5]. In block coded
modulation, each point of the signal constellation cor-
responds to a symbol of a finite ring of integers modulo
m denoted by Zm. An information sequence is mapped
into a sequence of symbols in Zm and coded by a code
over Zm.

In this article, we consider soft decoding of a block-
coded modulation scheme using integer codes over Zn

m

that is capable of correcting single errors in a two-
dimensional lattice Z2

t , where m ≥ t2. A class of in-
teger codes can be useful in coded modulation, since
each point in a signal constellation can be represented
by an integer (see Fig. 1). The most common errors
will be those which change a point to its nearest neigh-
bour in the grid, i.e., a grid point to the left, right, top
or bottom of the point. Neither the Hamming distance

nor the Lee distance are appropriate for handling these
errors in a QAM signal. In [6], Huber proposed codes
over Gaussian integers with a two-dimensional modular
distance called Mannheim distance to improve the sit-
uation. Although Huber’s codes require fixed parame-
ters, our construction of integer codes are more flexible
and intended for multi-dimensional modulation.

Due to the simple structure of coded QAM using
integer codes, the exact expressions for the bit error
probability (BEP) over additive white Gaussian noise
(AWGN) channels has been derived [7], where an in-
teger code of rate 3/4 is constructed over Z4

17 and it
shown that the code gains 4 dB in a range of BEP
10−5 ∼ 10−8. Moreover, the integer code performs
1 dB better than TCM at the same rate. By applying
soft decoding to coded QAM using integer codes, we
will show that it is possible to achieve an additional
gain of 0.5 dB∼4 dB.

The organization of this article is as follows. In
Section 2, we describe three methods for constructing
integer codes. Next, we present the framework of coded
QAM using integer codes in Section 3. The soft decod-
ing algorithm for integer codes is proposed in Section 4.
Section 5 presents the results of our simulation experi-
ments.

2. CONSTRUCTION OF INTEGER CODES

An integer code C(n)(d,w) ⊂ Zn
m of length n is de-

fined by

C(n)(d,w) =

{
c ∈ Zn

m|
n∑

i=1

ciwi = d (mod m)

}
(1)

where d ∈ Zm, c = (c1, c2, . . . , cn) ∈ Zn
m is a codeword

vector and w = (w1, w2, . . . , wn) ∈ Zn
m is a fixed weight

coefficient vector [5]. The code C(n)(d,w) is said to be
a single (±1,±t)-error correctable if it corrects a single
error vector of the set

E = {(e1, 0, . . . , 0), . . . , (0, . . . , 0, en)}
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Figure 1: Two-dimensional lattice Z2
5 indexed by ele-

ments of Z25

where ei ∈ {±1,±t} and 1 ≤ i ≤ n. For example, the
weight vector w = (1, 2, 3, 6) gives a single (±1,±4)-
error correctable integer code of length 4 over Z17.

To identify each error vector in E , it is necessary to
choose the values of w and m in such a way that the
syndrome values eiwi (mod m) (1 ≤ i ≤ n) are unique
for vectors in E . Hence, if C(n)(d,w) is single (±1,±t)-
error correctable, the following inequality always holds

m ≥ 4n + 1. (2)

An integer code is called perfect if m = 4n + 1 and
quasi-perfect if m > 4n + 1 is the smallest value of m
for which an integer code exists.

We briefly present three (±1,±t)-correctable inte-
ger code constructions that were presented in [8]. The
first two give perfect codes while the last gives quasi-
perfect codes.

Construction A.
Consider a weight vector w (a), where w

(a)
i = t2i−2 mod

m. It has been shown in [8] that C(n)(d,w (a)) ⊆ Zn
m,

where d ∈ Zm, is a perfect single (±1,±t)-error cor-
recting integer code C(n)(d,w (a)) ⊆ Zn

m for any prime
m = 4n + 1 and any t that generates Zm.

Construction B.
Consider the weight vector w (b), where w

(b)
i are distinct

elements from the integer set A(t) ⊂ Zm, defined by

A(t) =
{
(p − 1)t + q | 1 ≤ p ≤ ⌊t/2⌋, p ≤ q ≤ t − p

}
.

It follows that

n = |A(t)| =
{

t2/4 if t is even,
(t2 − 1)/4 if t is odd. (3)

It has been proved in [8] that for any m = t2 + 1,
C(n)(d,w (b)) is (±1,±t)-correctable for arbitrary values

Figure 2: Examples of errors of type ‘cross’ (left) and
type ‘square’ (right) on a two-dimensional constella-
tion.

of d where n is given in (3). It follows that the code
C(n)(d,w (b)), d ∈ Zm is perfect for even values of t. If t
is odd, C(n)(d,w (b)) gives m = 4n+2 where m = t2 +1
and n = (t2 − 1)/4. It implies that the integer code
obtained is quasi-perfect, because it does not achieve
the bound 4n + 1.

It should be noted that Construction B has been
extended to construct integer codes suitable for cor-
recting single errors on k-dimensional lattices [9].

Construction C.
Consider the weight sequence w (c) with weights w

(c)
i =

2i − 1, 1 ≤ i ≤ n. It has been shown in [8] that
C(n)(d,w (c)) ⊆ Zn

m is a quasi-perfect integer code for
even values of t, provided that t and 2n+1 are mutually
prime. The codes C(n)(d,w (c)) are called odd-weight
codes.

All the codes presented above are supposed to cor-
rect single errors of the type ‘cross’ in a two-dimensional
lattice Z2

t . Another interesting type of errors to be in-
vestigated are errors of the type ‘square’ that consist
of ±1,±t,±(t − 1), and ±(t + 1). For example, the
weight vector w = (1, 2) gives a code of length 2 over
Z17 which corrects single errors of type ‘square’ in the
two-dimensional lattice Z2

4 (see Fig. 2). It is possible to
find integer codes capable of correcting other error pat-
terns as well as errors of type ‘square’ using exhaustive
search methods. However, it is not yet known whether
it is possible to systematically construct such integer
codes.

3. HARD DECODING ALGORITHM

Suppose that C(n)(d,w) is a single (±1,±t)-error
correctable code. If m ≥ t2, we may apply the subset
C(n)

t2 (d,w) , C(n)(d,w) ∩ Zn
t2 to coded t2-QAM, where

each point (a, b) of the signal constellation is repre-
sented by an integer at + b in Zt2 ⊂ Zm.
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Then, a point (a, b) in Z2
t has four nearest neigh-

bours at distance 1 in Z2
t , i.e., (a, b − 1), (a, b + 1),

(a− 1, b) and (a+1, b). Using the mapping c = a · t+ b
(mod m), this corresponds to the errors ±1, ±t in Zm.
For example, the nearest neighbours of point 12 in the
Z2

5 constellation depicted in Fig. 1 are 7, 11, 13, and 17,
i.e., 12±1, 12±5. each of the error values t, 1,−1, and
−t automatically corresponds to one of the four vectors
(0, 1), (1, 0), (−1, 0), and (0,−1), respectively.

In coded QAM, each codeword c ∈ C(n)
t2 (d,w) is

modulated by a t2 quadrature amplitude modulator.
The modulated codeword is represented by (s1, s2, . . . ,
sn) where si = (ai, bi) is a signal point in the constel-
lation Z2

t for i = 1, . . . , n.
Each component of a modulated codeword is trans-

mitted over an AWGN channel. The sampled channel
output sequence is given by (z1, z2, . . . , zn), where a
pair of output components zi = (xi, yi) ∈ R2 is given
by xi = ai + n2i−1 and yi = bi + n2i with AWGN
samples n2i−1 and n2i, i = 1, . . . , n.

In coded QAM, the decoder makes hard decisions
on each channel output pair (xi, yi) to estimate the
transmitted code symbol and selects the nearest signal
point (āi, b̄i) to (xi, yi) in the constellation. The asso-
ciated number āi + b̄it of (āi, b̄i) can be treated as the
received value of code symbol transmitted, denoted by
ri ∈ Zm (1 ≤ i ≤ n).

4. SOFT DECODING ALGORITHM

In soft decoding we utilize the analog received sam-
ples (xi, yi), 1 ≤ i ≤ n, to find the most probable code-
word to be transmitted in the sense of the maximum
likelihood estimation.

We propose the following algorithm for coded t2-
QAM using C(n)

t2 (d,w) over Zm where m ≥ t2.

In: The channel output z and the received sequence
r = (r1, r2, . . . , rn).

Out: The decoded codeword c̃ = (c̃1, c̃2, . . . , c̃n).

Step 1. Calculate the squared distance ∆2[i, ε] be-
tween (xi, yi) and each of the signal points associated
with ri + ϵ (mod t2) where ϵ ∈ {−t,−1, 0, 1, t}.

Step 2. Compute the syndrome value s =
∑n

i=1 wiri

(mod m).

Step 3. Let E [s] be the set of all the vectors e =
(e1, e2, . . . , en) ∈ {−t,−1, 0, 1, t}n such that

n∑

i=1

wiei = s (mod m).

Then find the vector e∗ = (e∗1, e
∗
2, . . . , e

∗
n) ∈ E [s] that

minimizes
∑n

i=1 ∆2[i, e∗i ].

Step 4. Output c̃ = r − e∗ and stop.

The above algorithm accomplishes maximum like-
lihood decoding for an AWGN channel. In Step 3 an
exhaustive search is performed to find e∗ among E [s],
the cardinality of which is roughly estimated by 5n/4n.
It is reasonable if n is relatively small, say n = 4.
For a large value of n, we can utilize a trellis with
n + 1 layers, in each of which there are m states. Each
state in the ith layer for i = 0, 1, . . . , n is indexed by
k = 0, 1, . . . , m− 1. A pair of numbers (d(i)

k , e
(i)
k ) is at-

tached to the kth state in the ith layer. Here d
(0)
0 = 0

and d
(0)
k = ∞ for k ∈ Zm\{0} and d

(i)
k is given by

d
(i)
k = min

ϵ∈{0,±1,±t}

{
d
(i−1)
k+ϵwi

+ ∆2[i, ϵ]
}

(4)

for i = 1, 2, . . . , n and k = 0, 1, . . . , m − 1.

Moreover, e
(i)
k = ϵ∗ where ϵ∗ is an element in {0,±1,±t}

that achieves the minimum value of (4). The Viterbi
algorithm can sequentially calculate {(d(i)

k , e
(i)
k ), k =

0, 1, . . . ,m − 1} for i = 1, 2, . . . , n in a similar way dis-
cussed in [10, 11]. After the calculation is completed,
e∗n is given by the value of e

(n)
s associated to the s-th

state in the n-th layer where s is the syndrome value
obtained in Step 2. The other e∗n−1, . . . , e

∗
1 are com-

puted in descending order by using the following recur-
sive equations on ki, i = n − 1, . . . , 1 with the initial
value kn = s:

ki = ki+1 + e∗i+1wi+1, (5)

e∗i = e
(i)
ki

. (6)

Although we consider only errors of type ‘cross’ in the
algorithm presented, it is easy to make the algorithm
handle more general error patterns such as the error
type ‘square’. In case of the error type ‘square’, the set
of error values is {−t−1,−t,−t+1,−1, 0, 1, t−1, t, t+1}
in steps 1 and 3.

5. SIMULATION RESULTS

To give an impression of the performance of the soft
decoding algorithm, we determine the bit error proba-
bility of soft decoding for coded t2-QAM (t = 4) using
integer codes. The simulation results will be presented
for two types of errors, that is, ‘cross’ and ‘square’.

5.1. Errors of Type ‘Cross’
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Figure 3: A comparison of symbol error probabil-
ity versus signal-to-noise ratio between uncoded and
coded (type ‘cross’ using ‘hard’ and ‘soft’ decoding al-
gorithms) 16-QAM over AWGN channels. The code
used is C(4)

16 (0,wc) with wc = (1, 2, 3, 6).

We use a single (±1,±4)-error correcting integer
code C(4)(0,wc) over Z17, where the weight vector wc

is given by wc = (1, 2, 3, 6). This integer code can be
obtained from Construction B in Section 2. Moreover,
we consider the subset C(4)

16 (0,wc) = C(4)(0,wc) ∩ Z4
16

to allocate codewords on the 16-QAM constellation.
According to the method shown in [8], we can sys-

tematically encode a binary source string of length 11
into a codeword c of C(4)

16 (0,wc) where c can be repre-
sented by a binary string of length 16. Hence the rate
of this code is 11/16.

Figure 3 shows the performance of the soft decoding
algorithm for C(4)

16 (0,wc) over an AWGN channel. The
horizontal and vertical axes stand for Eb/N0 in dB and
bit error rate (BER), respectively where Eb is average
signal energy per bit and N0/2 is the variance of the
two-side power spectral density of AWGN. In Figure 3,
three curves for uncoded 16-QAM (solid), TCM (thick
dotted), hard decision (dashed) are obtained from the
exact formula derived in [7]. Other two curves for soft
decoding (one-point dashed and thin dotted) have been
obtained by computer simulation where 1,000,000 bi-
nary source block of length 11 were generated equiprob-
ably and encoded into codewords of C(4)

16 (0,wc). The
bit error probability has been estimated by

# erroneous symbols in soft decoding
tN × R

where t = 4, N = 1, 000, 000, and R is the rate of the

code (R = 11/16).
From this figure, we can see that the integer code

gains about 3dB compared with uncoded 16-QAM in a
range of BEP 10−4 ∼ 10−6. And, we find that integer
coded modulation with hard decoding (dashed curve)
can gain 1dB more than TCM (thick dotted curve) in
16-QAM. Moreover, by using soft decoding we can ob-
tain 0.5 dB more coding gain compared with the hard
decoding. It means applying soft decoding to integer
coded modulation enlarges decodability of the code.
In fact, most of double errors have been corrected in a
high SNR region. In a low SNR region less than 6 dB,
soft decoding results in worse performance than hard
decoding. The larger error values become, the more
frequently the soft decoding tends to decode the erro-
neous codeword since the erroneous one might be much
nearer to the received signal than the correct one in a
low SNR environment.

Moreover, by replacing errors of type ‘cross’ by er-
rors of type ‘square’ in the proposed algorithm, we
can correct even errors of type ‘square’ using the same
code. As a result, we can obtain an additional gain
of 0.5 dB (the thin dotted curve) compared with the
results of soft decoding for errors of type ‘cross’. Of
course, the computational complexity of soft decoding
increases when handling errors of type ‘cross’ in the
proposed algorithm. Though a straightforward search
of the maximum likelihood error vector may increase
the complexity by (9/5)n, the Viterbi algorithm sup-
pressed it by double in our experiments where n = 4.

5.2. Error of Type ‘Square’

The effect of soft decoding is more significant for
the error type ‘square’ as shown in Figure 4 where
N = 1, 000, 000. In this experiment, we used the afore-
mentioned integer code C(2)(0,ws) over Z17 where ws =
(1.2). The rate of this code is R = 1/2 as described
above. Similar to Figure 3, three curves for uncoded
16 QAM (solid), TCM (dots), hard decision (dashed)
in Fig. 4 are obtained from the exact formula. Note
that the shapes of the curves are slightly different from
those in Figure 3 because we calculated bit error prob-
ability by normalizing symbol error probability by the
rate of the code. The coding gain using soft decoding
is about 3dB at BEP 10−6. The performance is sur-
prisingly good given the simplicity of the code used in
the experiments.

6. CONCLUSION

We proposed soft decoding for coded QAM using
integer codes to improve the error correcting capabil-
ity of the codes. The computer simulation results show
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Figure 4: A comparison of symbol error probability ver-
sus signal-to-noise ratio between uncoded and coded
(type ‘square’ using ‘hard’ and ‘soft’ decoding algo-
rithms) 16-QAM over AWGN channels. The code used
is C(2)(0,ws) with ws = (1.2).

that combining soft decoding with integer coded mod-
ulation gives a 0.5 dB ∼ 3 dB coding gain relative to
hard decoding of integer coded modulation. It is signif-
icant and remarkable that in case of correcting errors
of type ‘square’, the proposed code allows simple soft
decoding without the Viterbi algorithm.
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