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Abstract— Integer codes, defined over integer rings, allow the
correction of single cross errors with distance 1 in a signal point
constellation on a two-dimensional lattice. Several construction
methods support the construction of integer codes that give
constellations that have a variety of shapes. In this paper,
we characterize all constellations that can be obtained from a
particular integer code. In particular, we determine those that
minimize the average symbol energy. In addition, we evaluate the
symbol error probability when using an integer code for coded
QAM constellations.

I. INTRODUCTION

Integer codes are defined over Z,, = Z/mZ, the residue
ring of integers modulo m. Let n2,n,k € N, H ¢ ZE*™ and
d € 7% . Aninteger code @(d, w) C Z7, of length n is defined
by

ed, H) = {c e 7,

cHT—d} (1)

where H is the check matrix for the integer code. Integer
codes can be utilized in many applications and were shown
to be particularly useful for coded modulation and magnetic
recording [1], [2]. An overview of integer codes is also given
in [3], [4] and references therein.

In this paper, we are concerned with the integer codes where
E =1. That is, H is an n-dimensional vector w € Z7, and d
is a scalar d in Z,,. Such an integer code €(d, w) can correct
a single error in a codeword. A codeword of G(d, w) consists
of n — 1 information symbols and one error control symbol.
The rate of €(d, w) is 1 — 1/n.

Let £ be the set of error vectors that the code is required to
correct. To identify each error vector in &, it is necessary to
choose the values of w and e in such a way that the syndrome
value is unique for each of the error vectors in &. Therefore,
we have to satisfy the inequality

m 2 €[+ 1. @

If an integer code can correct any error vector in &, then it
is called &-correctable. Such an E-correcting code @(d, w) is
said to be perfect if me = |£| + 1.

Let a single (1, t)-cross error correcting integer code be an
integer code that allows the correction of a single error vector
in the set

E=1(e1,0,...,0),...,(0,...,0,e,)},
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where e; € {—¢,—1,+1,+¢}, and 1 <7 < n.

Constellations associated with a single error correcting
integer code [4] have a variety of shapes, dependent on the
value of ¢. The key issue is to determine the constellation that
has the minimum average symbol energy among all possible
constellations for integer codes.

In this paper, we will characterize all the constellations that
can be obtained for cyclic integer codes proposed in [4], and
extend this construction. Then, we show that all constellations
of the OMEC codes [5], [6] are obtained using this extension
of the cyclic construction.

Moreover, we determine the symbol error probability when
using integer codes in conjunction with QAM over an AWGN
charmel. Our evaluation of the error probability is based on
a counting argument that gives an upper bound that is more
tight than the bound presented in [7].

This paper is organized as follows. Section IT describes
signal constellations which can be designed by means of
single (1,#)-cross error correcting integer codes. Section III
presents a new class of integer codes derived from the theory
of quadratic residues [8]. In Section IV, we compare our codes
with the OMEC codes presented in [5] and show that they
are equivalent. Section V gives an upper bound on the symbol
error probability when an integer code is used for coded QAM.
Section VI summarizes our results.

II. SIGNAL CONSTELLATIONS

A single (1,¢) error correcting code can be used to correct
single errors of the unit magnitude in a two-dimensional signal
point constellation Q,,, € 72 with m points. We will label each
of the . signal points by a unique number a € Z,. A possible
assignment of each grid point @ = {(ay,a5) € Z? is given by
the mapping £(a) = oz -t + a1 (mod m2).

When such a lattice is used for coded modulation in a high
signal-to-noise ratio (SNR) regime, the most common errors
will be to the left, right, top, or bottom of the transmitted signal
point. Using the mapping £, this corresponds to the errors +1,
+¢ in Z,,. The set of most likely errors has the form of a
cross on the lattice.

A signal point constellation with the mapping £ will be
denoted by SPC{m, 1,¢). We will consider integer codes over
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L, that are capable of correcting single (1, ¢)-cross errors on
SPC(m, 1,1).

III. CONSTRUCTION METHODS

The following cyclic construction of integer codes, pre-
sented in [4], provides a class of perfect (1,%)-cross error
cotrecting codes of length n for which m = 4n + 1 is prime
and ¢ generates the multiplicative group 7}, £ 7,,\{0}.

Theorem I ( Construction A [4]): For a prime m = 4n + 1
and ¢ that generates Z} , there exists a perfect single (1,¢)-
cross error correcting code @(d, w'™) C Z* with w(® such
that

w® = (1,124, (3)
Each component w( @ = -2 of w(“) (1 <i<n)isa
quadratic residue [8] modulo m. In fact, for g = w( 2) there
exists a number z = t*-1 ¢ 7! suchthat z? = ¢ (mod m) A
necessary and sufficient condition that ¢ is a quadratic residue
modulo e is that ¢ has an even order for ¢, i.e., g = t2%. The
remaining numbers in Z}, are called quadratic non-residues.
In particular, any generator of Z; is a quadratic non-residue
modulo 1.

A representative wel%ht vector of w@ is obtained by
replacing any weight w = m/2 by m—wga). Therefore, the
representative weight vector is uniquely determined regardless
of the generator ¢ € Z7,.

Theorem 1 states that the code €(d,w(®) is a (1, g)-cross
error correcting integer code for a generator g of Z},. We can
easily extend this statement as follows:

Corollary I: The code €(d,w(®)) is a (1,t)-cross error
correcting code for a quadratic non-residue ¢ modulo m.
Figure 1 shows three signal point constellations with e = 17
points, where ¢ is 3, 4, and 5, respectively. Here, 3 and 5
are quadratic non-residues modulo 17 while 4 is a quadratic
residue modulo 17. In fact, w® is given as (1,2,4,8) for

= 17. Constellations SPC(17,1,3) and SPC(17,1,5) are
obtained by w{*) while constellation SPC(17,1,4) supports a
perfect integer code obtained by Construction AT presented
below.
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Fig. 1. Signal point constellations for m = 17.

Construction At

Since Z}, consists of the same number of quadratic residues
and quadratic non-residues, Corollary 1 implies that we have
2n types of (1,1) to be carrected by &(d, w(®).

Here, we will present another method for constructing
(1,%¢)-cross error correcting codes for quadratic residues ¢

27

with a different weight vector from w(®). First let G =

{l,q,...,¢" 1} for a divisor r of n and a generator g of Z},
where 2 = 4n 4 1. Then we define the weight set Wff’r) as
n/r—1
W&fﬁ‘) _ U QQT'k 9(7-) (4)

k=0

where g2"* G(") is the set that results from the scalar multi-
plication of the elements of G") by ¢2"*. It is easy to verify
that the cardinality of W& is n.

As an example, consider the situation for n = 4, for which
m = 17. For the generators g = 3 and g = 6, we have

WO = 11,2,4,8), WSV = {1,2,4,8},
W = [1,3,4,5), WS ={1,4,6,7},
WY = 11,3,7,8), WO = 11,256}

Moreover, for » = 1, the weight set ngg’ ) is equal to the
set of all components of the representative weight w'® given
in Construction A.

Let w(®(g,7) be the weight vector associated with the
weight set W™ for r that divides n.

Theorem 2: For a generator g of Z} and a divisor r of
n where m = 4dn + 1 is prime, @(d,w ™ {g,r)) is a single
(1, g")-cross error correcting integer code.

According to Theorem 2, we can obtain (1, #)-cross error
correcting codes for a quadratic residue ¢ if £ = ¢” for a divisor
T of n.

Table I shows the wvalues of quadratic residues ¢ that
neither Construction A nor AT can provide single (1,)-cross
error correcting codes while one of the constructions gives
(1,¢)-crass error correcting codes for the remaining quadratic
residues ¢ not in the table.

In the previous example of m 17, e(d,w(®(3,2))
and @(d,w® (3,4)) are (1,8)-cross and (1,4)-cross error
correcting integer codes, respectively since 32 = 8 (mod 17)
and 3* = 4 (mod 17). Similarly @{d, ) (2,6)) is a (1,2)-
cross error correcting code since 6% =2 (mod 17).

TABLE I
LIST OF QUADRATIC RESIDUES ¢t MODULO m EXCEPT 1 NOT PROVIDING
(1,t)-CcrOSS ERROR CORRECTING CODES OF LENGTH n < 28.

1l ‘

i I3

3 13 | {3, 4}

4 17 | &

71 29| {4,56,7,9,13}

9 37 | {3,.4,7,9,10, 11,12, 16}
10 | 41| {4,10, 15, 18}
13 | 53| {4,6,7,9,10, 11,13, 15, 16, 17, 24, 25}
15 | 61| {3,4,5,9,12, 13, 14, 15, 16, 19, 20, 22, 25,27}
18 | 73| {2,4,8,9,16,18, 32, 36}
22 | 89| {2,4,8, 11, 16, 22, 25, 32, 39, 44}
24 | 97| {35, 36}
25 | 101 | {4-6,9,13,14, 16,17,19-25,30,31,33,36,37, 43454749}
27 | 108 | {4,5,75,12,15,16,20-22,25-29 31,34-36,3843.4546,4849 }
28 | 113 | {4,7,16283049}
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IV. INTEGER CODES VERSUS OMEC CODES

OMEC codes [5] are linear codes over Gaussian integers
which are suited for QAM signal constellations. OMEC codes
can correct single errors with distance 1 in a two-dimensional
lattice as well as integer codes although the value of ¢ is
uniquely determined in case of OMEC codes.

The constellation of an OMEC code is determined by the
following modulo function g : Z[¢] — Z[¢] where Z[4] is the
set of Gaussian integers, that is, the set of complex numbers
z=ux+1 y where x and y are integers:

W =5 |2

where m = p+:i.¢ such that m = 7. 7% = p° 44 for a prime
m =1 mod 4 and [] denotes rounding of complex numbers,
that is, [2] = [z +i-y] = [z] + ¢ [y] for a complex number
z=x+1 Y.

If a = p(b) and a,b € Z,, then o is called the residue
of b modulo m and we write & = & (mod 7). The set of
all possible values of residues £ (mod ), where £ € Z[i],
determines the constellation of the [n,n — 1, 3] OMEC code
on the two-dimensional lattice by identifying z + ¢ - y with a
point {(z,y).

It is easy to verify that the function p has the following
properties:

*

mT-m*

(DO)  1(0) = 0.

DL (1) =1

D2) GCD{a,m)#1 = pula)=0.
(D3) a=b(modm) = pula)=ubd).
D) pla-b) = pla) - pu(b) (mod 7).

(D3) plaH) = pfa)  1(5) (mocl 7).

Properties (D1) to (D4) show that ;4 is a Dirichlet character
modulo . Using the properties listed above, we can show
that

1(g")? = plg™) = p(-1) = —p(l) = -1

Hence, pu(g™) = ¢ or —i (mod 7). This implies that the point
associated with ¢™ is located just above or below the origin
on the two-dimensional lattice. Therefore, the constellation of
the [r,n —1,3] OMEC code is given by SPC(m, 1, g"). This
is illustrated in Fig. 2. In fact, the parity-check matrix H of
the [n,n — 1,3] OMEC code is given by

H=(a%a'a? . .. o™ 1)
where a = p(g) for a generator g of Z,. This matrix uniquely

corresponds to the weight vector

w '@ (g,n)

(1,9,92,. .. n_l).

)

Hence, an [n,n — 1,3] OMEC code is equivalent to a single
(1, g™)-cross error correcting code while there are (1, ¢)-cross
error correcting integer codes for all ¢ € 7. Fig. 2 indicates that
the minimum average symbol energy constellations of integer
codes tend to have a rounder shape than OMEC codes as m
increases. These constellations are discussed in more detail
in [4].

28
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Fig. 2. Signal point constellations for m = 41 and 113.

V. SYMBOL ERROR PROBABILITY OF IC-QAM

In this section, we will first determine the symbol-wise
correct decision probability. Next, we will give a definition
of the symbol error probability and present a technique to
enumerate the number of erroneous symbols. We will use this
technique to determine a new upper bound on the average
symbol error probahility.

Symbol-Wise Correct Decision Probability

Suppose that a signal point x in the constellation
SPC(m, 1,¢) of a (1,¢)-cross error correcting integer code over
Zo 18 sent through an AWGN-channel with power spectral
density Np. At the other end a detector estimates the received
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Fig. 3. An example of decision regions in the uncoded case (a) or the coded
case (b)

signal » and determines the signal point y that is the nearest
to » in SPC(m, 1,¢). The received signal » can be written as

r=x+te

where e = (e;,e;) is the noise vector representing the
(quantized) additive noise of the chamnel.

In case of uncoded QAM, if @ # y, the detector has made a
wrong decision. However, if coded QAM based on an integer
code is used, then a single erroneous y that is one of four
neighbors around @ can be corrected.

The decision region of a signal point % is the region of
the received points to be decoded to y by either uncoded or
coded QAM. Figure 3 {a) illustrates a typical decision region
for uncoded QAM. In case of coded QAM, for one of n
symbols of a codeword, its decision region is wider than others
as shown in Figure 3(b). In each case, a signal point on the
border of the constellation has a wider decision region than
other signal points near the center.

Given a constellation, let ¢, and ¢, be the average proba-
bility of a correct decision per signal point for uncoded QAM
and coded QAM, respectively. For a square-shaped L?-QAM
over an AWGN channel, Kostadinov et al. [7] obtained

gu = {1+ (L~ Derf(7)}* /17,
@ = {20 (L 2ert()erf(3y) (L 1) ar(y)
+2(L — 2) erf(37) + 2(L — 1) erf(y) + 3} /L?

where -y is a constant and erf(xz) is the error function

2 T
erf(z) = ﬁ/o e du.

Definition of Symbol Error Probability

Once we obtain ¢, and ¢. for a given constellation
SPC{m, 1,1) associated with an integer code €, we can evalu-
ate the error probability per symbol. Let X (e) be the random
number of erroneous symbols in the decoded codeword when
a codeword ¢ is sent. Let E[X (¢)] denote the expectation of
X(e). The average symbol error probability FPg»(C) of the
code @ is defined as

Psp(C) = (5

where n is the length of code C.

29

TABLE II

AN UppER BoUND OF X (<) FOR ERROR EVENTS

error event X(e)
one r in D and others in U 0
one r in D% and others in U < 2
£ r’s in U° and others in U <f4+1
one r in U and others in U°, or <n
all £’s in U®

Enumeration of the Number of Erroneous Symbols

The #th symbol ¢; (1 < ¢ < n) of ¢ € € is mapped to a
signal point x; = £71(¢;) in SPC(m, 1, t) where £71(-) is the
inverse of the mapping function £ : SPC{m, 1,¢) — Z., which
is defined in Section II. Let #; be the received signal when
#; is transmitted over the chammel, and let U{a) and T(a) be
the decision region of a signal point @ of SPC(rm, 1,¢) in case
of uncoded QAM and coded QAM, respectively.

We can decode = correctly if either of the following two
conditions holds:

1) All the received signals r; (1 < i < n) are in Ux;).

2) An ryisin D{xp)\U(xy) and others in Uixe;)(3 # k).

But if a single v is out of D(x;) and others are in
U(a;) (i # k), then we may have at most two erronecus sym-
bols. In fact, since we use syndrome decoding, the syndrome
may correspond incorrectly to a wrong single error vector.

Moreover, if £ signals v, (2 < £ < n,1 < j < £) are
out of U(wxy, ) and others in U(a;) (i # ks, 1 < j < £), then
we may have at most £+ 1 errcneous symbols in the decoded
codeword y. Finally, in case that an »y is in U(=x;) and other
r; are ont of U(w;) (i £ k) or all n signals are out of their
decision regions U(x;) (1 < ¢ < ), then all the symbols
of the decoded codeword may be erroneous. Our observation
described above is summarized in Table I1.

An Upper Bound on the Average Symbol Error Probability

Now we approximate the probability that the received signal
r; is in U(m;) and D(x;) by ¢, and g., respectively. This
means that X{(¢) for ¢ € € is replaced by a common random
variable X that has the probability distribution based on ¢,
and g¢.. That is, (5) is rewritten as

Peu(€) ~ EIX) )
Moreover, we obtain
n nl n
E[X] < 2(1)q3—1(1 — )+ Z(£+ 1)(12) (1—q.)lq "
=3
+ n(E) (1— q.)" 7)
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The right-hand side of (7), denoted by F'(qu, q.), yields after
a simple calculation

1 e
EF(qua QC) :(1 - qu) - 2qu 1(qc - Qu)+

1

(=g = (1 - )" ®)

Hence, (8) can be utilized as an approximation of Psg(C).

formula in [7] ——
simulation results - - --
F(qus gc)/n

0.1

0.001

Probability of symbol error

0.0001

1e-005 ; - ; . .
0 8 10
ES/NO [dB]

Fig. 4. Comparison between the simulation results of the symbol error
probability and the theoretical evaluations.

For example, we can apply an integer code of m = 17 to
coded 16-QAM [7]. Let 2d be the minimum distance between
the signal points. Then the average symbol energy Fg of 16-
QAM is given by Eg = 10d?. Putting v = d/\/Ng, we have

— ES
TV 10Ny

0.001

Probability of symbol error

0.0001

1e-005

1e-006
0 15

ES/NO [dB]

20 25 30

Fig. 5. Evaluation of Psg(Q) for m = 17,41, and 113
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Since L = 4 for 16-QAM, we obtain
1
{1 +3 ef()),

1
=z {12erf(y) erf(3y) — 9ert?(y)+
+4 erf(3v) + 6erf(y) + 3}.

du

de

As shown in Figure 4, substituting these values of ¢, and ¢,
into F(qy,q.)/n gives an upper bound that is much closer to
the simulation results than the formula presented in [7].

We evaluated Psg(C) for integer codes with the minimum
average symbol energy constellations of m = 17,41,113
given in Figures 1 and 2. The results are shown in Figure 5. We
also obtained the curves for the OMECs of m = 17,41, 113 by
means of computer simulations. The difference is very small
for m = 17 but it becomes larger as m increases. In case of
m = 113, at the same level of the symbol error probability,
the SNR of the integer codes is 0.2dB lower than that of the
OMECs.

VI. CONCLUSIONS

We characterized all possible values of ¢ suited to (1,%)-
cross error correcting integer codes over Z,, where m is a
prime such that m = 1 (mod 4). Moreover, we showed that
all the constellations associated with the OMEC codes are
obtained by Construction A™. It is important to select the
value of ¢ of single (1, ¢)-cross error correcting codes when we
minimize the average symbol energy on their constellations.
We also discussed the average symbol error probability when
an integer code is used with QAM. We obtain a tight upper
bound on the symbol error probability by enumerating the
number of erroneous symbols.
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